(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0015】
以下、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
実施形態で説明する本発明の各種構成要素は、必ずしも一の部材で構成される必要はなく、一の構成要素が複数の部材で構成されること、複数の構成要素が一の部材で構成されること、或る構成要素の一部と他の構成要素の一部とが互いに重複することを、許容する。
[実施形態1]
【0016】
また、自律走行型掃除機S(
図1参照)が進行する向きのうち、自立走行型掃除機1が通常進行する方向を前方、重力方向と反対の方向を上方、駆動輪2、3(
図2参照)が対向する方向を右方及び左方とする。すなわち、
図1に示すように前後、上下、左右を定義する。
【0017】
[自立走行型掃除機S]
図1は、本発明の実施形態に係る自立走行型掃除機Sの斜視図である。
自立走行型掃除機Sは、室内等の掃除領域を自律的に移動しながら掃除する機器である。
自立走行型掃除機Sは、ケース1で外郭が形成されている。ケース1は、上壁と一部の側壁を成す上ケース1u、底壁と一部の側壁を成す下ケース1s、および前部に設置されるバンパ1bを含んで構成されている。
【0018】
自立走行型掃除機Sが障害物と衝突し、バンパ1bを介して、その作用力がバンパばねに作用した場合、バンパばねは平面視で内側に倒れ込むように変形し、バンパ1bを外向きに付勢しつつバンパ1bの後退を許容する。バンパ1bが障害物から離れて作用力がなくなると、バンパばねの付勢力によってバンパ1bは元の位置に復帰する。ちなみに、バンパ1bの後退(つまり、障害物との接触)は、後記するバンパセンサ8a(
図3参照)によって検知され、その検知結果が制御装置10(
図3参照)に入力される。
【0019】
上ケース1uには、スイッチシート19sと、自立走行型掃除機Sの制御装置10(
図3参照)に対してユーザが指令を与える操作ボタンとして、円形操作ボタン19e及び環形操作ボタン19kが配置されている。
また、自立走行型掃除機Sの上後方側には、ダストケース12が設けられている。
【0020】
図2は、自律走行型掃除機Sの下面図である。自律走行型掃除機Sの下部には、一対の駆動輪2、3と補助輪4とを備えている。駆動輪2は車輪ユニット20と一体に組立てられている。車輪ユニット20の内部には走行モータ2m(
図2参照)、減速機構2gとが格納されている。駆動輪2は走行モータ2mの駆動で減速機構2gを介して回転される。同様に、駆動輪3は車輪ユニット30と一体に組立てられている。車輪ユニット30の内部には走行モータ3m(
図2参照)、減速機構3gとが格納されている。駆動輪3は走行モータ3mの駆動で減速機構3gを介して回転される。
【0021】
自立走行型掃除機Sは、制御装置10(
図3参照)の演算処理によって自律的に駆動輪2、3を駆動させて補助輪4を用いて走行し、清掃する。なお、自立走行型掃除機Sはリモコン等によってユーザの指令を受けて駆動してもよい。
【0022】
また、自律走行型掃除機Sは、
図2に示すように、下部に回転ブラシ5、ガイドブラシ6およびサイドブラシ7を備え、周囲にセンサ8(8a、8b、8c)を備えている。
【0023】
駆動輪2、3は、それぞれ走行モータ2m、3m(
図2参照)により回転駆動される。補助輪4は、自由回転するキャスタである。駆動輪2、3は、自律走行型掃除機Sの前後方向の中央側、左右方向の外側に設けられている。補助輪4は前後方向の前方側、左右方向の中央側に設けられている。
【0024】
図1に示すように、自律走行型掃除機Sの前方側、左右方向の外側には、サイドブラシ7が設けられている。サイドブラシ7は、
図1の矢印α1のように、自律走行型掃除機Sの前方外側の領域を左右方向外側から内側に向かう方向に掃引するよう回転し、床面Y上の塵埃を中央の回転ブラシ5(
図2参照)側に集める。
【0025】
図2に示すように、駆動輪2、3の左右方向内側には、2つのガイドブラシ6それぞれ設けられている。ガイドブラシ6は、サイドブラシ7で集められた塵埃を回転ブラシ5側から外側に逃げないようにガイドする固定ブラシである。
駆動輪2、3の後方には、回転ブラシ5が設けられている。回転ブラシ5は、サイドブラシ7、ガイドブラシ6で集めた塵埃をダストケース12(
図1参照)の内部に掻き込むためのブラシであり、回転ブラシモータ5mの駆動力により回転することができる。床面Y上を走行中の自律走行型掃除機Sについて、回転ブラシ5と床面Yとの間には、回転ブラシ保護部80が設けられている。
【0026】
回転ブラシ保護部80の前側は、左右方向を軸として回動可能に構成されているとともに、床面Y方向に付勢されている。これにより、回転ブラシ5と床面Yとの間の気密性を高めることができるとともに、後述する植毛81−83が回転ブラシ保護部80に設けられている場合は、植毛81−83が床面Yの塵埃に接触しやすくなる。
【0027】
回転ブラシ5の後方には、自律走行型掃除機Sの進行に伴う床面Yとの摩擦力によって回動可能な掻き取りブラシ50を有している。掻き取りブラシ50には一定角以上の掻き取りブラシ50の回動を規制する例えばリブを設けることができる。
【0028】
回転ブラシ5と掻き取りブラシ50との間には、左右方向に延在する領域に植設されている主植毛81が設けられている。主植毛81は、自律走行型掃除機Sの底面、例えば下ケース1s又は回転ブラシ保護部80に設けられている。これにより、回転ブラシ5及び掻き取りブラシ50の間に塵埃が溜まりやすい隙間が生じることを抑制できる。
【0029】
回転ブラシ5の左右方向外側には、前後方向に延在する領域に植設されている副植毛82,83が設けられている。回転ブラシ5の右側に位置する副植毛82及び/又は左側に位置する副植毛83は、下ケース1s又は回転ブラシ保護部80に設けられることができる。また、主植毛81が存在する領域又はこの近傍に届く位置を含んで設けられると好ましい。
【0030】
図3は、上ケース1uを外した自律走行型掃除機Sの上面図である。
図4は、
図3のI−I断面図である。なお、
図4では左半分はアーム24周りのみを示す。
自律走行型掃除機Sの上前部には、自律走行型掃除機Sを制御する制御装置10が設けられている。制御装置10は、自律走行型掃除機Sを統括的に制御する。
【0031】
制御装置10の下方には、充電池9が配設される。充電池9は、自律走行型掃除機Sに電力を供給する。充電池9は、例えば、充電することで再利用可能な二次電池である。充電池9は自律走行型掃除機Sの左右端部に亘って配置されている。
【0032】
充電池9からの電力は、
図3、
図2に示すセンサ8、駆動装置等の各モータ(2m、3m、5m)、制御装置10、及び吸引用の電動送風機11等に供給される。
自律走行型掃除機Sの前上部には、サイドブラシ7を駆動するサイドブラシモータ7mが一対設けられている。
【0033】
自律走行型掃除機Sの中央部には、電動送風機11が設置されている。電動送風機11は、塵埃をダストケース12の内部に吸引する。
自律走行型掃除機Sの後右上部には、回転ブラシ5を回転駆動する回転ブラシモータ5m(
図3参照)が配設されている。
【0034】
[センサ8]
図3に示すように、バンパ1bの後方には、バンパセンサ8aが一対設けられている。
バンパセンサ8aは、バンパ1b(
図1参照)が障害物と接触したことをバンパ1bの後退で検知するセンサ、例えばフォトカプラである。バンパ1bに障害物が接触した場合、バンパ1bの後退でセンサ光が遮られる。この変化に応じた検知信号が制御装置10に出力される。
【0035】
図3に示すように、自律走行型掃除機Sの前部、中央左右前部、および後部の計4か所には、障害物までの距離を検出する測距センサ8bが設置されている。測距センサ8bは、例えば赤外線センサである。
赤外線センサは、赤外線を発光させる発光部(図示せず)と、赤外線が障害物で反射して戻ってくる反射光を受光する受光部(図示せず)とを有している。当該受光部によって検出される反射光の強さに基づき、障害物までの距離が算出される。なお、バンパ1bのうち少なくとも測距センサ8bの近傍は、赤外線を透過させる樹脂又はガラスで形成されている。なお、測距センサ8bは、他の種類のセンサ、例えば、超音波センサ、可視光センサを用いてもよい。
【0036】
図2に示すように、自律走行型掃除機Sの下ケース1sの下面前後左右4か所には、床面用測距センサ8cが設置されている。床面用測距センサ8cは、床面までの距離を計測する。床面用測距センサ8cは、例えば赤外線センサが用いられる。
床面用測距センサ8cによって階段等の大きな段差を検知することで、自律走行型掃除機Sの落下を防止できる。例えば、床面用測距センサ8cによって前方に30mm程度以上の段差が検知された場合、制御装置10(
図3参照)は走行モータ2m、3mを制御して自律走行型掃除機Sを後退させ、自律走行型掃除機Sの進行方向を転換させる。なお、床面用測距センサ8cは赤外線センサ以外のセンサを用いてもよいのは勿論である。
【0037】
[制御装置10]
制御装置10は、例えばマイコン(Microcomputer)と周辺回路とが基板に実装されて構成される。マイコンは、ROM(Read Only Memory)に記憶された制御プログラムを読み出してRAM(Random Access Memory)に展開し、CPU(Central Processing Unit)が実行することで各種処理が実現される。周辺回路は、A/D・D/A変換器、各種モータの駆動回路、センサ回路、充電池9の充電回路等を有している。
【0038】
制御装置10は、利用者による円形操作ボタン19e(
図1参照)、環形操作ボタン19k等の操作、及び、センサ8(
図3、
図2参照)から入力される信号に応じて演算処理を実行し、各モータ(2m、3m、5m)、センサ8、電動送風機11等と信号を入出力する。
【0039】
[駆動輪2、3と車輪ユニット20、30]
下面図の
図2に示すように、駆動輪2および車輪ユニット20と駆動輪3および車輪ユニット30とは、自律走行型掃除機Sの左右の中央の鉛直面に対して、面対称に構成されている。
【0040】
駆動輪2、3は、摩擦力が大きいゴムで製作されている。
駆動輪2、3は、回動することで自律走行型掃除機Sを前進、後退、旋回させるための車輪である。駆動輪2、3は、自律走行型掃除機Sの底部中央の左右両側に配置されている。
【0041】
図5Aは、駆動輪2周りを向かって右上方から見た斜視図であり、
図5Bは、駆動輪2周りを前方から見た正面図である。
図5Cは、駆動輪2周りを上方から見た上面図である。
駆動輪2は、中央の外周面に円筒状の円筒面2cが形成されている。駆動輪2は、
図5Aに示すように、外側の外周面に凹部2o1および凸部2o2を有する大きい凹凸状の外筒面2oが形成されている。駆動輪2は、内側の外周面に凹部2i1および凸部2i2を有する小さい凹凸状の外筒面2iが形成されている。
【0042】
同様に、駆動輪3は、中央の外周面に円筒状の円筒面3cが形成されている。駆動輪3は、外側の外周面に凹部3o1および凸部3o2を有する大きい凹凸状の外筒面3oが形成されている。駆動輪2は、内側の外周面に凹部2i1および凸部2i2を有する小さい凹凸状の外筒面2iが形成されている。
【0043】
図6は、駆動輪3周りを鉛直方向断面で切った断面拡大図である。
図7は、
図6の駆動輪3が下方に出た際の鉛直方向断面で切った断面拡大図である。
【0044】
駆動輪3および車輪ユニット30の構成は、駆動輪2および車輪ユニット20の構成と同様であるから、車輪ユニット20について説明を行い、車輪ユニット30の説明は省略する。車輪ユニット30の各構成要素は、車輪ユニット20の20番台の符号に代えて30番台の符号を付して示す。
【0045】
図2に示す下ケース1sには、駆動輪2、3をそれぞれ支持、駆動する車輪ユニット20、30が収容されている。
車輪ユニット20の内部には、走行モータ2mと減速機構2gとが、格納されている。
【0046】
駆動輪2は、車輪ユニット20に前後方向に回動自在に支持されている。具体的には、駆動輪2の軸は、車輪ユニット20に格納される減速機構2gの一部に固定されている。これにより、駆動輪2は、車輪ユニット20に格納される走行モータ2mの駆動力が複数段の歯車で構成された減速機構2gを介し減速して伝達される。
【0047】
同様に、駆動輪3は、車輪ユニット30に前後方向に回動自在に支持されている。具体的には、駆動輪3の軸は、車輪ユニット30に格納される減速機構3gの一部に固定されている。これにより、駆動輪3は、車輪ユニット30に格納される走行モータ3mの駆動力が複数段の歯車で構成された減速機構3gを介し減速して伝達される。
【0048】
図6に示すように、下ケース1sの電動送風機11の側方には、駆動輪3(2)を回動自在に支持するために、前後方向に延在する第1車輪支持軸35a(25a)が設けられている。
また、車輪ユニット30の駆動輪3(2)に対する反対側の面には、第2車輪支持軸35b(25b)が前後方向に沿って配置されている。
【0049】
第1車輪支持軸35a(25a)には、駆動輪3を回動自在に支持するアーム34(24)(
図5A〜
図5C参照)が、回動自在に支持されている。また、アーム34(24)と車輪ユニット30との間には、第2車輪支持軸35b(25b)が前後方向に沿って配置されている。
【0050】
こうして、
図5Aに示すアーム24(34)の一方端部24i(34i)は、第1車輪支持軸25a(35a)を介して、下ケース1s(
図2参照)に対して回動自在に支持され(
図5Aの矢印β1)、アーム24(34)の他方端部24t(34t)は、第2車輪支持軸25b(35b)を介して、駆動輪2(3)が支持される車輪ユニット20(30)に対して回動自在(
図5Aの矢印β2)に接続されている。
【0051】
つまり、駆動輪2(3)は、車輪ユニット20(30)、第2車輪支持軸25b(35b)、アーム24(34)を介して、下ケース1sの第1車輪支持軸25a(35a)に回動自在に支持されている。
【0052】
また、
図5Aに示すように、駆動輪2(3)上端近くであって、車輪ユニット20(30)の一部には、前後方向に延在する第3車輪支持軸25c(35c)が設けられている。これにより、駆動輪2(3)は、前後方向の第3車輪支持軸25c(35c)周りに回動自在に支持されている。
【0053】
前後方向に延在する第3車輪支持軸25c(35c)には、案内シャフト26a(36a)が固定される有底円筒状の上圧縮ばねケース26b(36b)が回動自在に支持されている。
【0054】
駆動輪2(3)が回動自在に支持される車輪ユニット20(30)には、案内シャフト26a(36a)が挿通された有底円筒状の下圧縮ばねケース26c(36c)が固定されている。なお、上圧縮ばねケース26b(36b)、案内シャフト26a(36a)、下圧縮ばねケース26c(36c)は、アーム24(34)に対して第2のアームを構成する。
【0055】
上圧縮ばねケース26b(36b)と下圧縮ばねケース26c(36c)との内部には、駆動輪2(3)を下方に付勢する圧縮ばねが設けられている。圧縮ばねの中央には案内シャフト26a(36a)が挿通されている。
【0056】
これにより、駆動輪2(3)が外部から力を受けない場合は、下ケース1s(
図2参照)から突出する。一方、駆動輪2(3)が第2車輪支持軸25b(35b)から第3車輪支持軸25c(35c)に向かう方向の力、例えば床面Y等による上方への力を受けた場合には、駆動輪2(3)は下ケース1s内部に押し込まれる。
【0057】
これにより、駆動輪2(3)は、アーム24(34)を用いて、前後方向の第1車輪支持軸25a(35a)を介して、本体部1H(
図6参照)に対して回動自在(
図5A、
図6の矢印β1)に支持されるとともに、第2車輪支持軸25b(35b)を介してアーム24(34)に対して回動自在(
図5A、
図6の矢印β2)に支持される。駆動輪2(3)は、圧縮ばねの付勢力、駆動輪2(3)又は車輪ユニット20(30)の自重により下向きに回動し、また、例えば床面Y(
図6参照)による上方への力により上向きに回動することができる。
【0058】
また、駆動輪2(3)は、他方端部24t(34t)(
図5A参照)より上側に設けられた第3車輪支持軸25c(35c)を介して、本体部1H(
図6参照)に対して回動自在(
図5Aの矢印β3)に支持されるとともに、上下方向に略水平に設けられた上・圧縮ばねケース26b、26c(36b、36c)の内部の圧縮ばねにより、上下動する(
図5Bの矢印β4)ように支持される。
【0059】
[アーム24、34]
アーム24、34について説明する。
図4に示すように、アーム24とアーム34(
図6参照)とは左右対称の形状をもつ。そこで、アーム24について説明を行い、アーム34についての説明は省略し、30番台の符号を付して示す。
【0060】
駆動輪2、アーム24の前面図の
図5Bに示すように、前面視でアーム24は、略L字状に中央が下方に曲がって形成されている。アーム24は、第1車輪支持軸25aに枢設される第1アーム部24aと、第2車輪支持軸25bに枢設される第2アーム部24bとを有している。そして、第1アーム部24aと第2アーム部24bとは互いに曲がって形成され、中央部に空間部24oが上方に位置するように形成される。空間部24oには、自立走行型掃除機Sの構成要素、例えば配線が配置される。
【0061】
[アームストッパ28、38]
第1アーム部24aから下方に延びてアームストッパ28が形成されている。アームストッパ28は、アーム24の内側方向への回転(
図5Bの矢印β1a方向)の周り止めとなるとともに、アーム24の前後方向の位置ズレを抑える役割をもつ。
【0062】
アームストッパ28は、アーム24の内側方向への回転(
図5Bの矢印β1a方向)の周り止めストッパ部28kを有している。ストッパ部28kは、下方にいくに従って外方に位置する傾斜をもって形成されている。
【0063】
駆動輪2、アーム24の上面図の
図5Cに示すように、アームストッパ28の前後の外側面は前後位置決め面28sが鉛直方向かつ左右方向に延びる面をもって形成されている。前後位置決め面28sに対応して、
図2に示す下ケース1sにはストッパガイド面1s2が鉛直方向(
図2の紙面表裏面方向)かつ前後方向(
図2の紙面左右方向)に延びる面をもって形成されている。下ケース1sのストッパガイド面1s2とアームストッパ28の前後位置決め面28sとの間には、互いに摺動するため若干の隙間が形成される。
【0064】
この構成により、アームストッパ28(38)は回動に際して、下ケース1sのストッパガイド面1s2に摺動して前後方向に案内され、アーム24(34)の前後方向のズレが抑えられる。そのため、アーム24(34)の動作信頼性を向上できる。
【0065】
[アーム24(34)と第1車輪支持軸25a(35a)、第2車輪支持軸25b(35b)の配置]
次に、アーム24(34)と、アーム24(34)の両端部を支持する第1車輪支持軸25a(35a)、第2車輪支持軸25b(35b)の配置について説明する。
【0066】
以下、
図6〜
図9Bを用いて、アーム34とアーム34の両端部を支持する第1車輪支持軸35a、第2車輪支持軸35bを例に挙げて説明する。
【0067】
図6に示すように、定常走行時、アーム34と、アーム34を支持する第1車輪支持軸35aと第2車輪支持軸35bとが下ケース1sより上方のケース1(本体部1H)の内部に配置されている。
【0068】
また、
図7に示すように、アーム34、第1車輪支持軸35a、および第2車輪支持軸35bは、駆動輪3が下方に最大限突出した場合にも、下ケース1sより上方のケース1(本体部1H)の内部に納まる構成である。
上述の構成を比較例と比較して説明する。
【0069】
図8Aに、比較例のアーム134、第1車輪支持軸135a、第2車輪支持軸135bの配置を示す。
比較例では、定常走行時に、第1車輪支持軸135aが電動送風機111のデッドスペースに配置され、第2車輪支持軸135bとともに、下ケース101sの近傍に配置されている。
【0070】
図8Bに、比較例の駆動輪103が下方に最大限飛び出した(脱輪した)状態を示す。
駆動輪103が下方に最大限飛び出す(脱輪する)と、駆動輪103に連結されるアーム134や第2車輪支持軸135bが下ケース101sの下方に突出する。
【0071】
そのため、床面Yに段差がある場合、段差にアーム134や第2車輪支持軸135bが当接し、自律走行型掃除機が段差を乗り越えられない場合がある。
これに対し、
図9Aに、実施形態のアーム34、第1車輪支持軸35a、第2車輪支持軸35bの配置を示す。
【0072】
実施形態では、定常走行時に、第1車輪支持軸35aが電動送風機11の近くに配置され、第2車輪支持軸35bとともに、下ケース1sの上方(本体部1Hの内部)に配置されている。
第1車輪支持軸35aと第2車輪支持軸35bとに軸支持されるアーム34も、同様に下ケース1sの上方のケース1の内部に配置されている。
【0073】
図9Bに、実施形態の駆動輪3が下方に最大限飛び出した脱輪した状態を示す。
実施形態では、駆動輪3が下方に最大限飛び出した(脱輪した)場合にも、第1車輪支持軸35aと第2車輪支持軸35b、および、駆動輪3に連結され第1車輪支持軸35aと第2車輪支持軸35bとで支持されるアーム34も下ケース1sの上方のケース1の内部に納められている。
【0074】
そのため、床面Yに段差がある場合にも、アーム34や第2車輪支持軸35bがケース1の内部にあるために段差に当接せず、円滑に段差を乗り越えられる。
アーム24と、アーム24の両端部を支持する第1車輪支持軸25a、第2車輪支持軸25bも、上述のアーム34とアーム34の両端部を支持する第1車輪支持軸35a、第2車輪支持軸35bと対称な同様な構成である。
【0075】
[アーム24、34の回転規制]
次に、アーム24、34に支持される駆動輪2、3が下方に飛び出す方向(脱輪方向)への回転規制について説明する。
アーム24の回転規制と、アーム34の回転規制とは左右対称で同様であるから、アーム34の回転規制を例に説明する。
例えば、駆動輪3が定常状態の
図6からアーム34が第1車輪支持軸35a周りに内側に回転すると(
図6、
図7の矢印β1a)駆動輪3が下方に飛び出る。
【0076】
そして、駆動輪3が
図7に示す脱輪の状態になると、アームストッパ38のストッパ部38kが下ケース1sのストッパ受け1s1に当接し、アーム34の回転が阻止され、脱輪が停止される。
この際、
図6、
図7に示すように、アーム34のアームストッパ38は、下ケース1sより上方に位置する。そのため、
図5Cに示すように、アーム24、34の前後位置決め面38s(28s)がそれぞれ下ケース1sのストッパガイド面1s2(
図2参照)に常時案内され、アーム24、34の前後方向の位置ズレを、アーム24、34の回転状態に拘らず抑えられる。
なお、従来は、アームが下ケースの下方に突出すため、アームの回動に際してアームの前後方向の位置ズレを規制することは困難であった。
【0077】
[脱輪検知の構成]
図5Aに示すように、アーム24(34)には、前後方向に延びて車輪2(3)のケース1から下方への飛び出し(脱輪)を検知する脱輪検知突起29(39)が形成されている。
図5Bに示すように、脱輪検知突起29(39)は下方に対向する傾斜をもって形成されている。
【0078】
本実施形態では、アーム24(34)が本体部1H(ケース1)の内部にあるので、駆動輪2(3)の脱輪を検知するリミットスイッチsw(
図10参照)を以下のように構成する。なお、従来は、アームが本体部の外方に突出するので、下記の実施形態の構成は困難であった。
図10は、定常走行時のアーム34の脱輪検知突起39と脱輪検知用のリミットスイッチswとの位置関係を示す前方から見た鉛直方向拡大断面図である。
図11は、駆動輪3の脱輪時のアーム34の脱輪検知突起39とリミットスイッチswとの位置関係を示す前方から見た鉛直方向拡大断面図である。
【0079】
アーム34の脱輪検知突起39に対向して、駆動輪3の脱輪を検知するリミットスイッチswがアーム34の回転軸である第1車輪支持軸35a周りの回転方向の鉛直方向成分に対向するように配置されている。同様に、アーム24の脱輪検知突起29に対向して、駆動輪2の脱輪を検知するリミットスイッチswがアーム24の回転軸である第1車輪支持軸25a周りの回転方向の鉛直方向成分に対向するように配置されている。
【0080】
[駆動輪2、3の脱輪検知]
次に、リミットスイッチswを用いた駆動輪2、3の脱輪検知について説明する。
駆動輪2と駆動輪3との脱輪検知は左右対称に同様に行われるので、駆動輪3の脱輪検知について説明する
【0081】
前記したように、リミットスイッチswは、アーム34の回転の鉛直方向成分の動作を検知レバーsw1で検知するように設置される
自律走行型掃除機Sが
図10に示す定常走行している場合、アーム34の脱輪検知突起39と、脱輪検知用のリミットスイッチswの検知レバーsw1とは離膈した状態にある。
【0082】
図10の状態から、アーム34がケース1の下方に突出するように回転して(
図10の矢印β1a)、駆動輪3が脱輪した状態になると、
図11に示すように、アーム34の脱輪検知突起39がリミットスイッチswのレバーsw1を下方に押圧し、リミットスイッチswの脱輪検知情報が、制御装置10(
図3参照)に送信される。
【0083】
この際、リミットスイッチswの検知レバーsw1はアーム34の脱輪検知突起39の回転方向の鉛直下方向成分の動作を検知する。そのため、回転方向の鉛直下方向成分と垂直なアーム34の左右方向(
図11の紙面左右方向)成分の動作は検知されない。
【0084】
すなわち、リミットスイッチswはアーム34の鉛直方向の動作を検知し、アーム34の水平方向の動作を検知しないので、アーム34の水平方向の取付け誤差、ガタつき等は脱輪検知に際して含まれない。そのため、駆動輪3の脱輪を精確に検知できる。
【0085】
[車輪2、3の脱輪検知の従来技術と本実施形態(本発明)との比較]
図12Aは、比較例のアーム134と脱輪検知用のリミットスイッチ10swとの位置関係と脱輪の検知状態を示す前方から見た模式図である。
【0086】
比較例(従来)では、
図12Aに示すように、脱輪検知用のリミットスイッチ10swが、駆動輪103に連結される車輪ユニット130の回転中心周りの回転の水平方向の動作を検知レバー10sw1が拾うように構成されている。すなわち、検知レバー10sw1が車輪ユニット130の回転の水平方向成分の移動を検知するように、リミットスイッチ10swが配置されている。
【0087】
この場合、駆動輪103が下方に回転すると(
図12の矢印β2a方向)(
図12の二点鎖線で示す)、リミットスイッチ10swの検知レバー10sw1は、車輪ユニット130の回転の水平方向成分の動作により脱輪を検出する。
【0088】
そのため、脱輪検知に際して、車輪ユニット130の左右方向のガタつき、取付誤差等が影響する。従って、駆動輪103の脱輪を精確に測定することが困難となっていた。
これに対して、
図12Bは、本実施形態のアーム34と脱輪検知用のリミットスイッチswとの位置関係と脱輪の検知状態を示す前方から見た模式図である。
【0089】
本実施形態では、
図12Bに示すように、脱輪検知用のリミットスイッチswが、駆動輪3に連結されるアーム34の第1車輪支持軸35aの周りの回転方向の垂直方向成分の動作を検知レバーsw1が拾うように配置されている。
【0090】
実施形態の場合、駆動輪3に連結されるアーム34が下方に回転すると(
図12Bの矢印β2b方向)、リミットスイッチswの検知レバーsw1は、アーム34の脱輪検知突起39(
図11参照)の回転の垂直方向成分の動作を検出する。
【0091】
そのため、本実形態においては、アーム34の検出方向の鉛直方向成分に垂直な左右方向(水平方向)のガタつき、取付誤差等に影響されることなく脱輪を検知できる。
【0092】
上記構成によれば、下記の効果を奏する
1.
図11、
図12Bに示すように、アーム24、34や第1車輪支持軸25a、35aと第2車輪支持軸25b、35bが定常走行時においても、脱輪した場合においも、ケース1(本体部1H)の内部に配置されている。そのため、自律走行型掃除機Sが段差にアーム24、34や第2車輪支持軸25b、35bが当接することがない。そこで、床面Yに段差があった場合にも、自律走行型掃除機Sが段差を乗り越えて走行できる。
【0093】
2.アーム24、34も、定常走行時および脱輪時にケース1(本体部1H)の内部に位置している。そのため、アーム24、34が段差に当接するのを回避できる。
【0094】
3.
図5B、
図6に示すように、アーム24、34が上方に空間24o、34oを有するように曲がって形成されるので、下ケース1sの内部にスペースが生じ、自律走行型掃除機Sの構成要素を配置できる。
【0095】
4.駆動輪2、3の脱輪を検知するリミットスイッチswが、アーム24、34の回動の鉛直方向成分を検知するように構成したので、アーム24、34の水平方向のガタつき、組立て誤差等に影響されない。そのため、脱輪の精確な検知が可能である。
【0096】
5.
図6、
図7に示すように、アーム24、34をケース1(本体部1H)の内部に納めたので、アーム24、34の脱輪方向のストッパのアームストッパ28、38をケース1の内部に配置できる。そして、アームストッパ28、38の前後の前後位置決め面28s、38sを下ケース1sのストッパガイド面1s2(
図2参照)に常時案内されるように構成している。そのため、アーム24、34の回転動作に拘らず、アーム24、34の前後方向の移動を規制できる。
従って、駆動輪2、3を支持するアーム24、34の動作信頼性を確保できる。
【0097】
6.以上のことから、小型でありながら段差を乗り越えられ、脱輪の精確な検知が可能な自律走行型掃除機Sを実現できる。
【0098】
[実施形態2]
本実施形態の構成は、以下の点を除き実施形態1と同様にできる。
図13は、本実施形態の自律走行型掃除機Sに対して制御信号を出力できるリモコン90の正面図である。リモコン90は、前進指令部91、左超信地旋回指令部92、右超信地旋回指令部93、帰還指令部94、モード指令部95、結果通知指令部96、及びスポット清掃指令部97を有する。
【0099】
自律走行型掃除機Sはリモコン90からの指令信号を受信する受信部を有しており、前進指令部91、左超信地旋回指令部92、右超信地旋回指令部93、帰還指令部94に対応する信号それぞれを受信すると、前進、上面視で反時計回りの超信地旋回、上面視で時計回りの超信地旋回、及び基地局(充電台)の「探索モード」を実行する。また、モード指令部95に対応する信号を受信すると、その回数に応じて、充電池9の電力が所定以下になるまで又は所定時間清掃を継続するまで自律駆動してから基地局に帰還しようとする「自動モード」、自動モードに比して運転音及び/又は移動速度を低減した「マナーモード」、リモコン90からの信号に従って駆動する「マニュアルモード」、並びに別途ユーザから指定された態様の走行を行う「おこのみモード」を実行する。
【0100】
また、各モードの実行中にスポット清掃指令部97に対応する信号を受信すると、自律走行型掃除機Sはその場を略中心にした渦巻き型の軌跡で走行する。この渦巻きは、径が漸増するものでもよいし漸減するものでも良い。また、軌跡が円形渦巻でなく多角形渦巻でもよい。これにより、ユーザのリモコン90からの指令によって、ユーザが集中的な清掃を望む領域を効果的に清掃させることができる。
【0101】
図14は本実施形態の自律走行型電気掃除機Sが実行可能な運転モードを説明する概略図である。図中、太線矢印は自律走行型電気掃除機Sの走行軌跡の一例を示している。
自律走行型電気掃除機Sは、家具の配置など状況に合わせて「壁際走行重視モード」、「反射走行重視モード」、「脚周り走行重視モード」の運転モードをユーザの指定により選択して実行できる。この指定は、例えばモード指令部95の操作を通じて行うことができる。
【0102】
自律走行型電気掃除機Sは、壁際走行、反射走行、及び脚周り走行を含む走行パターンを実行する「自動モード」を実行することができるところ、自動モードの実行時間中に行われるこれら壁際走行、反射走行、及び脚周り走行の時間割合が、自動モードよりもそれぞれ高いモードとして、「壁際走行重視モード」、「反射走行重視モード」、「脚周り走行重視モード」が用意されている。
【0103】
壁際走行とは、本体側面に設けた測距センサ8bを用いて壁から所定距離を保つように走行する走行パターンである。
反射走行とは、たとえ例えばバンパセンサ8a等によって前方に障害物を検出したらその場回転(超信地旋回)を行うことで進行方向を変える走行パターンである。検知した障害物(例えば壁)で反射しているかのような走行軌跡を示す。
【0104】
脚周り走行とは、例えば壁のように太い障害物ではなく椅子の脚のように細い障害物と判断したら、その障害物のごく近い所を回り込むように本体を旋回させ、その障害物の先をさらに掃除する走行パターンである。障害物の太さは、バンパセンサ8aを複数設け、このうち幾つが同時に障害物を検知したのかを判断することなどで区別することができる。
【0105】
図15は本実施形態の自律走行型電気掃除機Sが塵埃の多い領域を検知した場合の動作を示す図である。自律走行型電気掃除機Sは、ダストケース12に入る塵埃の個数を検知するゴミセンサ8d(
図2参照)を有しており、走行する床面に存在するごみの量を計量できる。なお、ゴミセンサ8dの位置は一例であり、他の位置でもよい。
【0106】
しかし、ごみの量は走行と並行して計測されることから、ごみ量が多いことを検知した段階では、その領域を通り過ぎてしまっていることがある。このため、自律走行型電気掃除機Sは、ゴミの量が多いことを検知すると、自らの径(又は寸法。以下同じ)よりも小さい径で進行方向を逆向きにするよう旋回(その場回転、すなわち超信地旋回を除く。)し、さらに自らの径よりも大きい径でさらに進行方向を逆向きにするよう(進行方向を復帰するよう)旋回(超信地旋回を除く。)する。この2つの旋回動作は、互いに同じ方向(時計回り又は反時計回り)で行うことが好ましい。
【0107】
このように旋回を行うことで進行方向を変えることで、ごみ量が多いと検知した領域を広く清掃することができる。また、自らの径よりも小さい径と大きい径とで同じ方向に旋回することで、より広い範囲を清掃できる。
なお、上述の実施形態2の制御は、制御装置10(
図3参照)により行われる。
【0108】
[その他の実施形態]
1.前記実施形態では、アーム24、34が曲がっている場合を説明したが、アーム24、34を真直ぐな形状に形成してもよい。或いは、アーム24、34の何れか一方を曲がって形成し、他方を真直ぐな形状に形成してもよい。
【0109】
2.なお、前記実施形態では、本発明の一例を示したものであり、特許請求の範囲内で様々な具体的形態が可能である。また、前記実施形態で説明した構成を適宜組み合わせて構成してもよい。