(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0013】
マイクロ電子基板から対象物を選択的に除去する方法は、各種実施例に記載されている。1もしくは2以上の特定の細部を含まずに、または他の置換および/もしくは追加の方法、材料、もしくは部材を含むように、各種実施例が実施され得ることは、当業者には認識される。本発明の各種実施例の態様が不明確となることを避けるため、別の例では、よく知られた構造、材料、または動作は、記載されず、示されていない。同様に、説明の目的で、特定の数、材料、および配置が記載され、システムおよび方法の十分な理解が提供される。ただし、システムおよび方法は、特定の細部がない状態で実施されてもよい。また、図面に記載された各種実施例は、一例を表すものであって、
図6Aおよび6Bを除き、必ずしもスケールは示されていないことが理解される。
【0014】
本明細書を通じて、「ある実施例」または「実施例」と言う用語は、実施例に関連して示された特定の特徴、構造、材料、または特性が、これらが各実施例には存在しなくても、
本発明の少なくとも一つの実施例に含まれることを意味する。従って、本明細書における各場所の「ある実施例における」または「実施例における」という文言は、必ずしも本発明の同じ実施例を意味しない。また、特定の特徴、構造、材料、または特性は、1または2以上の実施例において、いかなる好適な方法で組み合わされても良い。各種追加の層および/または構造が含まれ、および/または記載の特徴は、他の実施例では省略されてもよい。
【0015】
本願に使用される「マイクロ電子基板」は、通常、本発明により処理される対象を表す。マイクロ電子基板は、装置のいかなる材料部分または構造、特に半導体または他の電子装置を含んでも良く、例えば、薄膜のようなベース基板構造を覆う、あるいはベース基板構造上の半導体基板または層のような、ベース基板構造であってもよい。従って、基板は、いかなる特定のベース構造、パターンされたもしくは未パターン化の下地層、または被覆層に限定されることも意図するものではなく、むしろ、いかなるそのような層またはベース構造、ならびに層および/またはベース構造のいかなる組み合わせが含まれることも意図される。以下の記載では、特定の種類の基板が参照されるが、これは、単なる説明用であって、限定的なものではない。示された技術は、マイクロ電子基板に加えて、フォトリソグラフィ技術を用いたマイクロ電子基板のパターン化に使用され得る、レチクル基板のクリーニングにも使用することができる。
【0016】
極低温流体クリーニングは、汚染物質とマイクロ電子基板の間の接着力を超える、エアロゾル粒子またはガスジェット粒子(例えばガスクラスタ)からの十分なエネルギーを衝突させることにより、汚染物質を除去するために使用される技術である。従って、適正なサイズおよび流速の極低温流体混合物(例えばエアロゾルスプレーおよび/またはガスクラスタジェットスプレー)を製造し、または膨脹させることが望ましい。エアロゾルまたはクラスタのモーメントは、質量と速度の関数である。モーメントは、速度または質量の増加により上昇し、これは、特に粒子が極めて微細な場合(<100nm)、粒子と基板表面の間の強固な接着力を打ち消すのに重要である。
【0017】
極低温流体の速度に影響を及ぼすため、比較的小さなまたは大きな原子量の原子/分子で構成されるキャリアガスが、流体混合物に導入され、基板上の汚染物質のクリーニングが助長される。キャリアガスは、流体混合物の残りにより、極低温に冷却されても、されなくてもよい。キャリアガスは、主極低温混合物の分圧に、追加の分圧を供給する。分圧およびガス温度は、液体/気体状態において、または気体状態において、流体混合物と置換するように調整され、システムのクリーニング機能が高められる。この技術は、従来のエアロゾル技術では不十分な速度エネルギーのため限界のあった、微細な汚染物質を有する基板のクリーニングを促進し、半導体産業での高まる要望を満たす。
【0018】
図1には、クリーニングシステム100の概略的な説明図を示す。クリーニングシステム100は、エアロゾルスプレーまたはガスクラスタージェット(GCJ)スプレーを用いた、マイクロ電子基板のクリーニングに使用される。また
図1には、クリーニングが行われる処理チャンバ104の断面
図102を示す。エアロゾルスプレーまたはGCJスプレーは、処理チャンバ104内で、極低温に冷却された流体混合物をサブ大気圧環境に膨脹させることにより形成される。
図1に示すように、1または2以上の流体源106は、処理チャンバ102内で加圧流体がノズル110を介して膨脹する前に、極低温冷却システム108に加圧流体を提供する。真空システム112は、処理チャンバ104でのサブ大気環境を維持し、必要に応じて、流体混合物を除去するために使用される。
【0019】
この構成では、マイクロ電子基板から対象物を除去する上で、1または2以上の以下の変数が重要となる:膨脹前にノズル110に導入される流体混合物の圧力および温度、流体混合物の流速、流体混合物の組成および比、ならびに処理チャンバ104の圧力。従って、制御器112を用いてプロセスレシピがメモリ114に保管され、本願のクリーニング技術を実行するため、コンピュータプロセッサ116を用いて、クリーニングシステム100の各種部材を制御するネットワーク118にわたって指令が出されてもよい。
【0020】
半導体プロセスに関する当業者には、流体源106、極低温冷却システム、真空システム134、およびこれらの各サブ部材(図示されていない。例えばセンサ、制御など)を構成し、本願の実施例を実施することができる。例えば、ある実施例では、クリーニングシステム100の部材は、50psigから800psigの間の加圧流体混合物を提供するように構成される。流体混合物の温度は、流体混合物を極低温冷却システム108の液体窒素デュワーに通過させることにより、70Kから270Kの範囲、好ましくは70Kから150Kの間に維持される。真空システム134は、エアロゾルまたはガスクラスタの形成を促進するため、処理チャンバ104を、35Torr未満、または好ましくは10Torr未満の圧力に維持するように構成されてもよい。
【0021】
加圧され冷却された流体混合物は、ノズル110を通り、処理チャンバ104において膨脹する。ノズルは、エアロゾルスプレーまたはGCJスプレーを、マイクロ電子基板118に向かうように誘導してもよい。少なくとも一つのノズル110は、処理チャンバ104内に支持され、ノズル110は、マイクロ電子基板118に向かって流体混合物を誘導する、少なくとも一つのノズルオリフィスを有してもよい。例えば、ある実施例では、ノズル110は、ノズルスプレーの全長に沿って複数の開口を有するノズルスプレーバーであってもよい。ノズル110は、マイクロ電子基板118に衝突する流体スプレーの角度が特定の処理に最適化されるように、調整可能であってもよい。マイクロ電子基板118は、可動式チャック122に固定され、このチャックは、好ましくは真空チャンバ120の長手軸に沿った、少なくとも一つの平行移動の自由度124を提供し、ノズル110から放出される流体スプレーを介した、マイクロ電子基板128の少なくとも一部の直線走査が容易となってもよい。可動式のチャックは、基板平行移動駆動システム128に結合され、このシステムは、可動式チャック122の移動経路を定める、1または2以上のスライドおよびガイド機構を有し、作動機構を用いて、誘導経路に沿った可動式チャック122の動きを伝達してもよい。作動機構は、いかなる電気的、機械式、電気機械式、油圧式、または空気圧式の装置を有してもよい。作動機構は、長さ方向に十分な動きの範囲を提供するように設計され、少なくとも一つのノズル110から放出される液体スプレーの領域を介して、少なくとも部分的に、マイクロ電子基板118の露出表面の移動が可能となる。基板平行移動駆動システム128は、真空チャンバ120の壁に、スライド式真空シール(図示されていない)まで延伸する支持アーム(図示されていない)を有してもよく、第1の端部は、可動式チャック122に取り付けられ、第2の端部は、真空チャンバ120の外部に配置された作動機構と係合される。
【0022】
また、可動式チャック122は、基板回転駆動システム130を有し、これは、好ましくはマイクロ電子基板118の露出表面に垂直な軸の周りに、少なくとも一つの回転自由度126を提供してもよい。これにより、第1の所定の指標化位置から、マイクロ電子基板118の別の部分を流体スプレーに露出させる、第2の所定の指標化位置までの、マイクロ電子基板118の回転の指標付けが容易となる。別の実施例では、可動式チャック122は、任意の指標化位置で停止することなく、継続的な速度で回転してもよい。また、可動式チャック122は、マイクロ電子基板118の位置が変化することにより、ノズル110の角度の変化に関連して、または単にそれ自身により、流体スプレーの入射角が変化してもよい。
【0023】
別の実施例では、可動式チャック122は、少なくとも一つの流体スプレーがマイクロ電子基板118の露出表面に衝突する間、マイクロ電子基板118を可動式チャック122の上部表面に固定する機構を有する。半導体プロセスの分野の当業者には明らかなように、マイクロ電子基板118は、例えば、機械的な留め具もしくはクランプ、真空クランプ、または静電クランプを用いて、可動式チャック122に固定されてもよい。
【0024】
また、可動式チャック122は、温度制御機構を有し、周囲温度よりも高いまたは低い温度に、マイクロ電子基板118の温度を制御してもよい。温度制御機構は、加熱システム(図示されていない)または冷却システム(図示されていない)を有し、可動式チャック122およびマイクロ電子基板118の温度を調整および/または制御するように構成されてもよい。加熱システムまたは冷却システムは、冷却の際に、可動式チャック122からの熱を受容し、熱交換システム(図示されていない)に熱を輸送し、または加熱の際に、熱交換システムからの熱を可動式チャック122に輸送する、熱輸送流体の再循環フローを有してもよい。別の実施例では、可動式チャック122に、抵抗性加熱素子または熱電ヒータ/クーラのような、加熱/冷却素子が備えられてもよい。
【0025】
図1に示すように、処理チャンバ102は、ジュアルノズル構成(例えば第2のノズル132)を有しても良く、これにより、同じ真空チャンバ120内で、極低温エアロゾルおよび/もしくはGCJスプレー、またはそれらの組み合わせを用いた基板118の処理が可能となる。ただし、ジュアルノズル構成は、必ずしも必要ではない。ノズル110の設計のある例は、
図2A乃至
図4に示されている。ノズル110、132は、並列に配置されて示されているが、これらは、クリーニングプロセスの実施のため、相互に並列である必要はない。別の実施例では、ノズル110、132は、処理チャンバ120の対向する両端部にあり、可動式チャック122は、ノズル110、132の1または2以上の位置に、基板118を移動して、流体混合物がマイクロ電子基板118上にスプレーされてもよい。
【0026】
別の実施例では、マイクロ電子基板118は、マイクロ電子基板118の露出表面領域(例えば電子装置を含む領域)に、流体混合物(例えばエアロゾルまたはGCJ)が衝突されるように移動し、流体混合物は、同時にもしくは同様の時間に(例えば並列処理で)、または異なる時間(例えば逐次プロセス)で、第1のノズル110および/もしくは第2のノズル132から提供される。例えば、クリーニングプロセスは、エアロゾルクリーニングプロセスの後にGCJクリーニングプロセスを含み、またはその反対であってもよい。また、第1のノズル110および第2のノズル132は、それぞれの流体混合物が、同時に異なる位置でマイクロ電子基板118に衝突するように配置されてもよい。例えば、基板118は、マイクロ電子基板118全体が異なる流体混合物に対して露出するように回転されてもよい。
【0027】
ノズル110は、出口圧力(例えば35Torr未満)よりも実質的に高い入口圧力(例えば50psigから800psig)の、低温流体混合物(例えば273K未満)を受容するように構成されてもよい。ノズル110の内部構造により、流体混合物が膨脹して、固体および/または液体粒子が生じ、この粒子は、マイクロ電子基板118に向かって誘導されてもよい。ノズル110の寸法は、膨脹した流体混合物の特性に大きな影響を及ぼし、スプレーバーに沿って配置された単純なオリフィスから、マルチ膨脹体積構成、単一膨脹体積構成までの構成範囲であってもよい。
図2A乃至
図4には、使用され得るいくつかのノズル110の実施例を示す。ただし、本発明の範囲は、示された実施例に限定されるものではなく、本願に示された方法には、いかなるノズル110の構成も適用できる。前述のように、ノズル110の図には、スケールは示されていない。
【0028】
図2Aには、2ステージガスノズル200の断面図を示す。このノズルは、2つのガス膨脹領域を有し、これらは、相互に流体連通され、流体混合物が2ステージのガス(TSG)ノズル200を通過すると、圧力が変化するように、流体混合物を制御する。TSGノズル200の第1のステージは、入口204を通る流体混合物を受容するリザーバ部材202であり、この入口は、極低温冷却システム108および流体源106と流体連通される。流体混合物は、リザーバ部材202内で、入口圧力未満の圧力に膨脹してもよい。流体混合物は、遷移オリフィス206を介して出口部材208に流れる。ある実施例では、流体混合物は、これが遷移オリフィス206を通って流れる際に、高圧に圧縮されてもよい。流体混合物は、出口部材208内で再度膨脹され、流体混合物は、出口オリフィス210を介して真空チャンバ120の低圧環境に晒されることで、エアロゾルスプレーまたはガスクラスタジェットの形成に寄与してもよい。概して、TGSノズル200は、入口オリフィス204と出口オリフィス210の間で、流体混合物のジュアル膨脹が可能な、いかなる寸法で構成されても良い。TGSノズル200の範囲は、記載された実施例に限定されない。
【0029】
図2Aの実施例では、リザーバ部材202は、円柱状の構成を有し、入口オリフィス204から遷移オリフィス206に延伸する。円柱は、直径212を有し、これは、遷移オリフィス206のサイズから、該遷移オリフィス206のサイズよりも3倍以上大きなサイズまで変化してもよい。
【0030】
ある実施例では、TGSノズル200は、0.5mmから3mmの範囲、好ましくは0.5mmから1.5mmの範囲の入口オリフィス204の直径を有してもよい。リザーバ部材208は、直径212が2mmから6mmの間、好ましくは4mmから6mmの間の円柱を有してもよい。リザーバ部材208は、20mmから50mmの間、好ましくは20mmから25mmの間の全長214を有してもよい。リザーバ部材208の非入口端部は、小さな直径に遷移し、これにより、流体混合物が遷移オリフィス206を通り、出口部材208において圧縮されてもよい。
【0031】
いくつかの異なる実施例には、遷移オリフィス206が存在し、これは、流体混合物を調整するように使用され、リザーバ部材202と出口部材208の間で流体混合物が遷移する。ある実施例では、遷移オリフィス206は、リザーバ部材202の一端の単純なオリフィスまたは開口であってもよい。この遷移オリフィス206の直径は、2mmと5mmの間であり、2mmと2.5mmの間であることが好ましい。別の実施例では、
図2Aに示すように、遷移オリフィス206は、前述の実施例における単純な開口よりも大きな体積を有してもよい。例えば、遷移オリフィス206は、円柱形状を有し、5mm未満のある距離に沿って、一定であってもよい。この実施例では、遷移オリフィス206の直径は、出口部材208の初期直径よりも大きい。この例では、遷移オリフィス206と出口部材208の間に、ステップ高さが存在してもよい。ステップ高さは、1mm未満であってもよい。ある特定の実施例では、ステップ高さは、約0.04mmであってもよい。出口部材208は、円錐形状を有し、遷移オリフィス206と出口オリフィス208の間で、直径が増加してもよい。出口部材208の円錐部は、3゜と10゜の間の半角、好ましくは3゜と6゜の半角を有してもよい。
【0032】
図2Bには、TGSノズル200の別の実施例220を示す。このノズルは、リザーバ部材202を有し、その直径218は、遷移オリフィス206とほぼ等しい。この実施例では、直径218は、2mmと5mmの間であり、全長214は、
図2Aの実施例と等しい。
図2Bの実施例では、リザーバ部材202と出口部材208の間の圧力差が小さくなり、TGSノズル200の第1のステージの間の流体混合物の安定性が改善される。しかしながら、他の実施例では、シングルステージのノズル300が使用され、TSGノズル200の実施例における圧力変動が抑制され、流体混合物の乱流が抑制されてもよい。
【0033】
図3には、シングルステージのガス(SSG)ノズル300の一実施例の断面図を示す。これは、入口オリフィス302と出口オリフィス304の間の単一の膨脹チャンバに組み込まれてもよい。SSGノズル300膨脹チャンバは、変更してもよいが、
図3の実施例では、初期直径306(例えば1.5mm〜3mm)を有する円錐構造が示されている。初期直径306は、入口オリフィス302(例えば0.5mm〜1.5mm)よりも僅かに大きい。円錐構造は、3゜から10゜の間、好ましくは3゜から6゜の間の半角を有してもよい。半角は、SSGノズル300の膨脹チャンバを通る仮想中心線(入口オリフィス302および出口オリフィス304から)と、膨脹チャンバの側壁(例えば円錐壁)の間の角度であってもよい。最後に、SSGノズル300は、18mmから40mm、好ましくは18mmから25mmの間の全長を有してもよい。SSGノズル300の別の変形例は、
図4に示すように、入口オリフィス302から出口オリフィス304まで、膨脹体積の連続的なテーパを有してもよい。
【0034】
図4には、フラッシュガス(FG)ノズル400の断面図を示す。これは、連続膨脹チャンバを有し、これは、入口オリフィス402と出口オリフィス404の間に、いかなるオフセットまたは圧搾部も有しない。膨脹体積の初期直径は、入口直径402と一致し、これは、0.5mmと3mmの間、好ましくは1mmと1.5mmの間である。ある実施例では、出口直径404は、2mmと12mmの間であり、好ましくは、入口直径402の2倍から4倍であってもよい。また、半角は、3゜と10゜の間であり、好ましくは3゜と6゜の間であってもよい。膨脹体積の全長406は、入口オリフィス402と出口オリフィス404の間において、10mmから50mmの間で変化してもよい。また、以下の実施例は、
図3および
図4の両方の実施例に適用されてもよい。ある特定の実施例では、ノズルは、20mmの円錐長、3゜の半角、および約4mmの出口オリフィス直径を有してもよい。別の特定の実施例では、円錐長は、15mmと25mmの間であり、出口オリフィス直径は、3mmと6mmの間である。別の特定の実施例では、出口オリフィス直径は、約4mmであり、入口直径は、約1.2mmであり、円錐長は、約35mmである。
【0035】
クリーニングシステム100のクリーニング効率に影響する別の特徴は、ノズル出口404とマイクロ電子基板118の間の距離である。あるプロセスの実施例では、ギャップ距離は、クリーニング効果に影響を及ぼし、基板118にわたる単一パス中の粒子の量、さらには粒子が除去される表面積の値に影響を及ぼす。ある実施例では、ノズル110の出口オリフィスがマイクロ電子基板119に接近している場合(例えば50mm未満)、エアロゾルスプレーまたはGCJスプレーは、基板118の大きな表面領域をクリーニングすることができる。
【0036】
図5には、本発明の少なくとも一つの実施例による、ノズル110の出口オリフィス404とマイクロ電子基板118の間の、ギャップ距離502の
図500を示す。ある例では、ギャップ距離502は、ノズル110用の構造または支持を形成する、ノズル110組立体の端部から測定される。別の例では、ギャップ距離502は、マイクロ電子基板118に晒される円錐膨脹領域の最大直径にわたって延伸する面から測定される。
【0037】
ギャップ距離502は、チャンバ圧力、ガス組成、流体混合物温度、入口圧力、ノズル110の構成、またはこれらのいくつかの組み合わせに依存して、変化してもよい。通常、ギャップ距離502は、2mmから50mmの間である。通常、真空チャンバ120圧力は、35Torr未満であり、2mmから50mmのギャップ距離502の範囲内で作動される。しかしながら、チャンバ圧力が10Torr未満で、ガスノズル110が6mm未満の出口オリフィスを有する場合、ギャップ距離502は、10mm未満に最適化されてもよい。ある特定の実施例では、所望のギャップ距離502は、ノズル110が5mm未満の出口直径を有し、真空チャンバ120圧力が10Torr未満の場合、約5mmである。
【0038】
別の実施例では、ギャップ距離502は、少なくとも一部が、真空チャンバ120圧力と反比例する関係に基づき、定められてもよい。例えば、ギャップ距離502は、一定値をチャンバ120圧力で割ることで得られる値以下であってもよい。ある実施例では、定数は、無次元のパラメータであり、またはmm×Torrの単位であり、真空チャンバ120圧力は、Torr単位で、(1)式のように測定されてもよい:
ギャップ距離≦定数/チャンバ圧力 (1)
この場合、定数をチャンバ圧力で除すことで得られる値は、クリーニングプロセスで使用されるギャップ距離502を提供する。例えば、ある特定の実施例では、定数は、50であり、チャンバ圧力は、約7Torrであってもよい。この例では、ギャップ距離は、(1)式の下、約7mm以下となる。別の実施例では、定数は、40から60の範囲であり、圧力は1Torrから10Torrの範囲である。別の実施例では、定数は、0.05から0.3の範囲であり、圧力は、0.05Torrから1Torrの範囲である。ギャップ距離502は、クリーニング効率に正の影響を有してもよいが、エアロゾルスプレーおよびガスクラスタジェットスプレーを用いたクリーニング効率に影響する、いくつかの他のプロセス変数が存在する。
【0039】
図1乃至
図5に示したハードウェアは、ハードウェアの僅かな変更およびプロセス条件の相応の変化により、エアロゾルスプレーおよびガスクラスタジェット(GCJ)スプレーが可能になるように使用されてもよい。プロセス条件は、異なる流体混合物組成および割合、入口圧力、入口温度、または真空チャンバ120圧力の間で変化してもよい。エアロゾルスプレーとGCJスプレーのプロセス間のある実質的な差異は、ノズル110への供給流体混合物の相組成である。例えば、エアロゾルスプレー流体混合物は、GCJ流体混合物よりも高い液体濃度を有し、これは、ノズル110への供給GCJ流体混合物中に、極めて僅かの液体を含む、または液体が存在しないような、気体状態で存在する。
【0040】
エアロゾルスプレーの実施例では、極低温冷却システム108の温度は、ノズル110への供給流体混合物の少なくとも一部が、液体相で存在するような点に設定される。この実施例では、ノズル混合物は、重量比で少なくとも10%が液体状態である。次に、液体/気体混合物は、処理チャンバ104において高圧で膨脹し、ここで極低温エアロゾルが形成され、固体および/または液体粒子の実質的な一部が含まれる。しかしながら、以下に詳しく説明するように、流体混合物の状態が、エアロゾルプロセスとGCJプロセスの間の唯一の差異ではない。
【0041】
一方、ノズル110に供給されるGCJスプレー流体混合物は、極めて少量の(例えば1体積%未満)液相を含み、または液相を含まず、完全に気体状態であってもよい。例えば、極低温冷却システム108の温度は、GCJクリーニングプロセスにおいて、流体混合物が液相で存在することを防止するような点に設定される。従って、相平衡図は、プロセス温度および圧力を定める一例となり、これの使用により、処理チャンバ104でのエアロゾルスプレーまたはGCJスプレーの形成が可能となる。
【0042】
図6A乃至6Bを参照すると、相平衡
図600、608が示されている。これは、供給される流体混合物の成分には、どの相が存在し、特に、液相、気相、またはこれらの組み合わせが含まれるかどうかを示す。一例としての相平衡図の説明および表示のため、アルゴン相平衡
図602、窒素相平衡
図604、酸素相平衡
図610、およびキセノン相平衡
図612が示されている。当業者は、文献において、またはMDゲイサーズバーグの米国標準技術局を介して、またはその他のソースから、相平衡情報を見出すことができる。また、本願に記載された他の化学物質は、典型的な相平衡図を示すが、説明の容易化のため、ここでは示されていない。
【0043】
相平衡
図600、608は、圧力(例えばy軸)と温度(例えばx軸)の間の関係を強調するグラフの表示によって表され、あるいは元素が気体または液体状態で存在することを同様に示す。相平衡図は、気-液相変化線606(または蒸気-液変化線)を含み、これは、元素が液体状態と気体状態の間で遷移することを表す。これらの実施例では、元素の圧力および温度が気-液変化線606の左にある場合、液相が存在する傾向にあり、元素の圧力および温度が気-液変化線606の右にある場合、気相が支配的である。また、元素の圧力および温度が気-液変化線606に極めて接近している場合、元素は、気体で存在し、圧力および温度が気-液変化線606から離れている場合、液相がより多くなる。例えば、アルゴンの相平衡
図602を見ると、アルゴンが100Kで300psiの圧力に保持されると、アルゴンは、液相である部分を含む傾向にあり、またはアルゴンが130Kで300psiの圧力に保持されると、より高濃度(重量比)の液体を含むようになる。アルゴンの液体濃度は、300psiの圧力が維持されたまま、温度が130Kから低下すると上昇する。同様に、アルゴンの液体濃度は、温度が130Kに維持されたまま、圧力が300psiから増加すると上昇する。通常、相平衡
図600から、アルゴンを気体状態に維持するためには、温度を83Kよりも高くし、窒素を気体状態に維持するためには、温度を63K超にする必要がある。しかしながら、いかなる窒素-アルゴン混合物の相も、元素の相対濃度、ならびに流体混合物の圧力および温度に依存する。ただし、相平衡
図600は、アルゴン-窒素流体混合物の相の示唆、または少なくとも液体が存在する傾向を提供する、ガイドラインとして使用できる。例えば、エアロゾルクリーニングプロセスでは、供給流体混合物は、該供給流体混合物の元素の1または2以上において、気-液変化線606と一致する、または左にある温度または圧力を有する。一方、GCJクリーニングプロセスでは、GCJ供給流体混合物の1または2以上の元素において、気液相変化線606の右にある圧力および温度を有する供給流体混合物が使用される傾向にある。ある例では、システム100は、流体混合物の供給温度および/または圧力を変えることにより、エアロゾルプロセスとGCJプロセスの間で切り換えてもよい。
【0044】
気-液相変化線606は、相平衡
図600、608の各々に類似するが、これらの値は、相平衡
図600、608の各々に指定された化学物質に特有であることに留意する必要がある。ただし、アルゴンの相平衡
図602において説明したように、相平衡
図600、608は、当業者により使用することができる。当業者は、相平衡
図600、608を使用して、エアロゾルスプレーまたはGCJスプレーの流体混合物中の液体および/または気体の量を最適化することができる。
【0045】
極低温エアロゾルスプレーは、少なくとも一つの流体の液化温度、またはその近傍の極低温に晒された流体または流体混合物で形成され、次に、流体混合物は、ノズル110を介して、低圧環境の処理チャンバ104において膨脹する。流体混合物の膨脹条件および組成は、微細な液滴および/または固体粒子の形成に重要であり、これらは、基板118に衝突するエアロゾルスプレーを含む。エアロゾルスプレーを使用して、エアロゾルスプレー(例えば液滴、固体粒子)から、汚染物質とマイクロ電子基板118の間の接着力を超える十分なエネルギーを衝突させることにより、マイクロ電子基板118の汚染物質(例えば粒子)を除去してもよい。エアロゾルスプレーのモーメントは、少なくとも一部が前述の接着力のために必要なエネルギーの量に基づき、粒子の除去に重要な役割を果たす。粒子の除去効率は、質量および/または速度が変化する成分(例えば液滴、結晶など)を有する、極低温エアロゾルの形成により最適化される。汚染物質の除去に必要なモーメントは、質量および速度の関数である。質量および速度は、粒子と基板表面の間の強力な接着力に打ち勝つため、極めて重要であり、特に、粒子が極めて小さい場合(100nm未満)、重要である。
【0046】
図7には、極低温エアロゾルを用いて粒子を除去し、マイクロ電子基板118を処理する方法のフローチャート700を示す。前述のように、粒子の除去効率を高めるある方法は、エアロゾルスプレーのモーメントを高めることである。モーメントは、エアロゾルスプレー含有物の質量と速度の積であり、エアロゾルスプレーの成分の質量および/または速度を増加させることにより、速度エネルギーは上昇する。質量および/または速度は、各種因子に依存し、これには、これに限られるものではないが、流体混合物の組成、供給流体混合物の圧力および/もしくは温度、ならびに/または処理チャンバ104の温度および/もしくは圧力が含まれる。フローチャート700には、窒素および/またはアルゴンと、少なくとも一つの他のキャリアガスの各種組み合わせを使用して、モーメントを最適化する一実施例が示されている。
【0047】
図7を参照すると、ブロック702において、システム100は、処理チャンバ104内に、マイクロ電子基板118を受容する。マイクロ電子基板118は、半導体材料(例えばシリコンなど)を有してもよく、これを用いて、電子装置が製造される。電子装置には、これに限られるものではないが、メモリ装置、マイクロプロセッサ装置、光放射ディスプレイ、太陽電池等が含まれる。マイクロ電子基板118は、パターン化された膜または全面膜を有し、これは、汚染物質を含んでもよい。汚染物質は、システム100において実施される、エアロゾルクリーニングプロセスにより除去される。システム100は、処理チャンバ104を有し、これは、極低温冷却システム108および1または2以上の流体源106と、流体連通される。また、処理チャンバは、流体膨脹部材(例えばTSGノズル200など)を有しても良く、これを用いて、流体混合物が膨脹し、マイクロ電子基板118をクリーニングするエアロゾルスプレーが形成される。
【0048】
ブロック704では、システム100は、極低温冷却システム108を介して、流体膨脹部材に流体混合物を供給する。極低温冷却システム108は、流体混合物を273K未満に冷却する。ある実施例では、流体混合物の温度は、70K以上200K以下であり、温度は、130K未満であることが好ましい。また、システム100は、流体混合物を大気圧よりも高い圧力に維持する。ある実施例では、流体混合物の圧力は、50psigから800psigの間に維持される。
【0049】
ある実施例では、流体混合物は、28未満の原子量の分子を含む第1の流体成分と、少なくとも28の原子量の分子を含む、少なくとも一つの追加の流体成分と、を含む。エアロゾルスプレー成分の所望のモーメントを得て、粒子の除去効率を最適化するため、または異なる種類またはサイズの粒子を対象とするため、当業者は、2または3以上の流体の流体混合物を最適化することができる。この例では、第1の流体成分は、これに限られるものではないが、ヘリウム、ネオン、またはこれらの組み合わせを含んでもよい。少なくとも一つの追加の流体成分は、これに限られるものではないが、窒素(N
2)、アルゴン、クリプトン、キセノン、二酸化炭素、またはこれらの組み合わせを含んでもよい。ある特定の実施例では、追加の流体成分は、N
2とアルゴンの混合物を含み、第1の流体成分は、ヘリウムを含んでもよい。ただし、流体混合物の温度、圧力、および濃度は、異なる種類のエアロゾルスプレーを提供するため、変更されてもよい。他の実施例では、流体混合物の相または状態は、以下に示すように、各種濃度で、気体、液体、気体-液体を含んでもよい。
【0050】
第1の流体成分と追加の流体成分の間の比は、マイクロ電子基板118をクリーニングするために必要なスプレーの種類に応じて変化する。流体混合物は、化学組成および濃度、および/または物質の相もしくは状態(例えば気体、液体等)が変化してもよい。あるエアロゾルの実施例では、第1の流体成分は、重量比で少なくとも50%の流体混合物を含み、これは、気体状態の第1の部分と、液体状態の第2の部分とを有してもよい。多くの例では、流体混合物は、重量比で少なくとも10%の液相を有してもよい。流体混合物は、パターン化される(た)マイクロ電子基板118上の、異なる種類および/またはサイズの粒子を処理するように最適化される。粒子除去特性を変化させるある方法は、流体混合物の組成および/または濃度を調整し、粒子の除去特性を高めることである。別の流体混合物の実施例では、第1の流体成分は、重量比で10%から50%の間の流体混合物を含む。別の実施例では、第1の流体成分は、重量比で20%から40%の間の流体混合物を含む。別の流体混合物の実施例では、第1の流体成分は、重量比で30%から40%の間の流体混合物を含む。また、前述のエアロゾル流体混合物の相は、基板118上の異なる種類の粒子および膜に対応するため、大きく変更してもよい。例えば、流体混合物は、気体状態にある第1の部分と、液体状態にある第2の部分とを有してもよい。
【0051】
ある実施例では、第2の部分は、重量比で少なくとも10%の流体混合物を含む。ただし、ある例では、粒子の除去に、より少ない濃度の液体が望ましい場合がある。より少ない液体濃度の実施例では、第2の部分は、重量比で流体混合物の1%以下である。流体混合物の液体部分は、流体混合物を含む液相または1もしくは2以上の気体を有してもよい。これらの流体混合物の実施例では、システム100は、追加の流体成分の120slmから140slmの間の流れ、および第1の流体成分の30slmから45slmの間の流れにより、エアロゾルスプレーを実施してもよい。
【0052】
流体混合物の供給圧力、濃度、および組成に加えて、エアロゾルスプレーのモーメントおよび組成も、処理チャンバ102内の圧力に影響される。より具体的には、チャンバ圧力は、エアロゾルスプレーの液滴および/または固体粒子の質量および/または速度に影響を及ぼす。流体混合物の膨脹は、ノズル110にわたる圧力差に依存する。
【0053】
ブロック706では、システム100は、処理チャンバ104に流体混合物を提供し、流体混合物の少なくとも一部は、マイクロ電子基板118に接触する。流体膨脹部材(例えばノズル110)を介した流体混合物の膨脹により、エアロゾルスプレーの液滴および/または固体粒子が形成される。システム100は、処理チャンバ104のチャンバ圧力を、35Torr以下に維持する。ある例では、エアロゾルスプレー内の液滴および/または固体粒子の質量および/または速度を最適化するため、より低い圧力に、処理チャンバ104を維持することが望ましい場合がある。ある特定の実施例では、処理チャンバが10Torr未満に維持されることが、ある粒子にとって、エアロゾルスプレーの粒子除去特性により望ましい場合がある。また、流体混合物の膨脹の間、処理チャンバ104が5Torr未満に維持される場合、粒子除去効率が大きな表面積をカバーすることに留意する必要がある。
【0054】
流体膨脹部材を介して流体混合物が流れると、流体混合物は、該流体混合物が比較的高圧(例えば大気圧超)から、比較的低圧(例えば35Torr未満)に膨脹することに対応して、相変化する。ある実施例では、供給流体混合物は、気相または液相-気相で存在し、処理チャンバ102に比べて、比較的大きな圧力となる。しかしながら、処理チャンバ104の低圧に、流体混合物が流れ、または膨脹すると、流体混合物は、変化し始め、前述のように、液滴および/または固体状態が形成される。例えば、膨脹した流体混合物は、気相、液相、および/または固相の部分の組み合わせを有する。これは、前述の極低温エアロゾルと称されるものを含む。また、さらに別の実施例では、流体混合物は、ガスクラスタを有する。ある実施例では、弱い引力(例えばファンデルワールス力)により、原子または分子の凝集が生じる。ある例では、ガスクラスタは、気体と固体の間の物質の相であるとみなされ、ガスクラスタのサイズは、数分子または原子から、10
5原子の範囲である。
【0055】
ある実施例では、同じマイクロ電子基板118の処理の間、流体混合物は、同一のノズル内でエアロゾルとガスクラスタ(例えばGCJ)の間で変化する。この方法では、流体混合物は、流体混合物中で、高い液体濃度から低い液体濃度に変化することにより、エアロゾルとGCJの間で変化する。あるいは、流体混合物は、流体混合物中で、低い液体濃度から高い液体濃度に変化することにより、GCJとエアロゾルの間で変化してもよい。前述の
図6A乃至6Bの説明のように、液相濃度は、温度、圧力、またはそれらの組み合わせにより制御され得る。例えば、ある特定の実施例では、エアロゾルからGCJへの変化において、流体混合物の液体濃度は、重量比で10%から1%未満に変化する。別の特定の実施例では、GCJからエアロゾルの変化は、流体混合物の液体濃度が、重量比で1%から10%未満に変化した際に生じる。しかしながら、エアロゾルとGCJの間、またはその逆の変化は、前述の特定の実施例における百分率に限定されるものではなく、これは、説明用の単なる一例であって、限定的ではない。
【0056】
ブロック708では、膨脹した流体は、マイクロ電子基板118に向かって誘導され、流体の膨脹成分がマイクロ電子基板118の表面にわたって移動した際に、マイクロ電子基板118の粒子が除去される。ある実施例では、システム100は、複数の流体膨脹部材を有し、これらは、マイクロ電子基板118の周囲に配置されてもよい。複数の流体膨脹部材は、粒子の除去の際に、同時に使用されても、連続的に使用されてもよい。あるいは、流体膨脹部材のいくつかは、エアロゾルプロセスの専用のものであり、残りの流体膨脹部材は、GCJプロセスに使用されてもよい。
【0057】
エアロゾルプロセスに加えて、マイクロ電子基板118は、GCJプロセスを用いてクリーニングされてもよい。アルゴンまたは窒素またはその混合物のような気体化学種が、ジュワー(例えば極低温冷却システム108)のような熱交換器容器を通過した際に、極低温ガスクラスタが形成され、気体は、いずれかの気体成分の液化温度を超える、極低温に晒される。次に、高圧極低温ガスは、マイクロ電子基板118の表面に対して傾斜された、または垂直なノズル110、もしくはノズルの配列を介して膨脹する。GCJスプレーを用いて、マイクロ電子基板118の表面に、いかなる損傷も生じさせずに、または損傷量を抑制した状態で、半導体ウェハの表面から粒子が除去されてもよい。
【0058】
ある力(例えばファンデルワールス力)による原子/分子の集合体または凝集体であるガスクラスタは、気体の原子または分子と固相の間の、物質の別個の相として分類され、数原子から10
5原子の範囲のサイズである。(2)式で得られるHagena経験クラスタスケーリングパラメータ(Γ*)は、クラスタサイズに影響を及ぼす臨界パラメータを提供する。kは、凝集パラメータであり、結合形成に関連する(気体種の特性)。dは、ノズルオリフィス直径である。αは、膨脹半角であり、P
0およびT
0は、それぞれ、予備膨脹圧力および温度である。円錐形を有するノズル形状は、膨脹ガスの拘束を助長し、より効率的なクラスタ形成のための原子または分子の間の衝突回数を高める。この場合、ノズル110は、十分に大きなクラスタの形成を助長し、基板118の表面から汚染物質が除去される。ノズル110から放出されるGCJスプレーは、基板118と衝突する前には、イオン化されておらず、中性の原子の集合体として残留する。
【0059】
【数1】
クラスタを有する原子または分子の集合体は、100nm未満のサイズの汚染物質のクリーニングに対してより良い処理能力を提供する、寸法分布を有する。マイクロ電子基板118上の汚染物質の寸法に、極低温クラスタサイズの寸法が接近するためである。また、マイクロ電子基板118に衝突する極低温クラスタの小さなサイズは、敏感な構造を有するため処理の間、保護する必要のあるマイクロ電子基板118の損傷を防止し、または最小限に抑制する。
【0060】
エアロゾルプロセスと同様、GCJプロセスでは、
図1のシステム100で説明されたハードウェア、および
図2乃至
図5において説明したような部材と、同じまたは同様のハードウェアが使用される。ただし、GCJ法の実施は、記載されたハードウェアの実施例に限られるものではない。ある実施例では、GCJプロセスは、エアロゾルプロセスと同じまたは同様の処理条件を使用するが、GCJプロセスは、流体混合物の低い液相濃度を有してもよい。しかしながら、GCJプロセスは、本願に記載の全てのエアロゾルプロセスの実施例よりも低い液体濃度を有する必要はない。当業者は、本願のGCJ法に含まれる、任意の液滴および/または固体粒子(例えば冷凍液体)に対して、ガスクラスタの量または密度を高めた、GCJプロセスを実施することができる。これらのGCJ法は、クリーニングプロセスを最適化するいくつかの異なる技術を有し、当業者は、任意のマイクロ電子基板118をクリーニングするこれらの技術のいかなる組み合わせを使用してもよい。例えば、当業者は、マイクロ電子基板118をクリーニングするため、ノズル110の構成および/もしくは配置、流体混合物の組成、濃度、または組成、流体混合物の供給圧力および/もしくは温度、ならびに処理チャンバ104の圧力および/もしくは温度を変更し得る。
【0061】
図8には、GCJプロセスを発生させ、マイクロ電子基板118から粒子を除去する、極低温法のフローチャート800を示す。この実施例では、本方法は、
図1A乃至2Bで説明した2ステージガス(TSG)ノズル200と同様の、マルチステージノズル100を使用するGCJプロセスを表す。
図8の実施例は、マルチステージノズル110を介して、高圧環境から低圧環境に変化する、流体混合物の圧力差または変化を反映する。
【0062】
図8を参照すると、ブロック802では、システム100は、真空処理チャンバ104内にマイクロ電子基板118を受容する。このチャンバは、流体膨脹部材(例えばTSGノズル200)を有する。システムは、マイクロ電子基板118を、極低温冷却システム108により提供される任意の流体混合物に暴露する前に、処理チャンバ104をサブ大気条件に晒す。
【0063】
ブロック804では、システム100は、273K未満の温度、および大気圧よりも大きな圧力で、流体混合物を供給し、または調整する。例えば、流体混合物温度は、70Kから200Kの間、特に、70Kと120Kの間であってもよい。流体混合物圧力は、50psigと800psigとの間であってもよい。通常、流体混合物の少なくとも主要部分(重量比)は、気相であってもよい。ただし、別の実施例では、流体混合物は、気相が10%(重量比)未満であり、特に、気相が1%未満(重量比)である。
【0064】
流体混合物は、単一の流体組成、または流体の組み合わせであってもよく、これは、これに限られるものではないが、N
2、アルゴン、キセノン、ヘリウム、ネオン、クリプトン、二酸化炭素、またはこれらの任意の組み合わせを含む。当業者は、前述の流体の1または2以上の組み合わせを選定し、同じマイクロ電子基板118に対して、一度に一つの流体混合物を用いて、または流体混合物の組み合わせを用いて、基板を処理することができる。
【0065】
ある実施例では、流体混合物は、1:1から11:1の間の比の、N
2とアルゴンの組み合わせを有する。当業者は、N
2および/またはアルゴンの液体濃度を考慮して、マイクロ電子基板118から粒子を除去するため、この比を最適化することができる。ただし、他の実施例では、当業者は、粒子除去効率が最適化されるように、GCJ流体混合物のエネルギーまたはモーメントを最適化することもできる。例えば、流体混合物は、別のキャリアガスを含み、これは、GCJプロセスの質量および/または速度を変化させてもよい。キャリアガスは、これに限られるものではないが、キセノン、ヘリウム、ネオン、クリプトン、二酸化炭素、またはこれらの任意の組み合わせを含む。ある実施例では、流体混合物は、N
2とアルゴンの、1:1から4:1の混合物を有し、これは、以下の1または2以上のキャリアガスを含んでもよい:キセノン、クリプトン、二酸化炭素、またはこれらの任意の組み合わせ。別の例では、キャリアガス組成および濃度は、キャリアガスの異なる割合の、N
2とアルゴンの異なる比で最適化される。別の実施例では、キャリアガスは、表1に示すように、Hagena値kに基づいて含有されてもよい。
【0066】
【表1】
通常、ある実施例では、k値を下げるため、流体は、N
2、アルゴン、またはそれらの組み合わせと混合された際に、濃度が等しくまたはそれ以上になる必要がある。例えば、キャリアガスがN
2、アルゴン、またはこれらの組み合わせと混合されると(例えば1:1から4:1)、最大11:1の混合比で、キセノン、ヘリウム、ネオン、クリプトン、二酸化炭素、またはこれらの任意の組み合わせを使用した際に、N
2、アルゴン、またはこれらの組み合わせの間の比は、少なくとも4:1の混合比を用いて、行われる必要がある。一方、ヘリウム、ネオン、またはN
2、アルゴン、もしくはこれらの組み合わせ(例えば1:1から4:1)との組み合わせでは、N
2、アルゴン、またはこれらの組み合わせ(例えば1:1から4:1)と、ヘリウム、ネオン、またはこれらの組み合わせとの間の混合比は、少なくとも1:4である。N
2、アルゴン、および/またはキャリアガスの前述の組み合わせは、本願の別のエアロゾルおよびGCJ方法に適用されてもよい。
【0067】
ブロック806では、システム110において、流体源106および/または極低温冷却システム108から流体膨脹部材に、流体混合物が提供される。またシステム100は、処理チャンバ104を35Torr未満の圧力に維持する。例えば、システム100は、流体混合物が処理チャンバ104に導入される前に、または導入中に、真空システム134を使用して、処理チャンバ104の圧力を制御する。ある実施例では、処理チャンバ104の圧力は、5Torrから10Torrの間であり、ある実施例では、圧力は、5Torr未満であってもよい。
【0068】
GCJスプレーは、流体混合物が高圧環境(例えばノズル110の上流)と、低圧環境(例えば処理チャンバ)の間で変化した際に、形成される。
図8の実施例では、流体膨脹部材は、TSGノズル200であり、これは、少なくとも2つの圧力変化の下で、流体混合物を配置してもよい。またはマイクロ電子基板118に衝突する前に、膨脹してもよい。
【0069】
ブロック808では、流体混合物は、入口オリフィス204を通り、リザーバ部材202内で膨脹し、リザーバ部材202内で、処理チャンバ104の圧力よりも高く、流体混合物の供給圧力よりも低いリザーバ圧力が達成され、または維持される。概して、リザーバ圧力は、800psig未満であり、35Torr以上である。ただし、リザーバ圧力202は、
図2A乃至2Bに示された密閉空間内でのガス流の変化により、変動してもよい。
【0070】
流体混合物は、遷移オリフィス206に供給され、これは、リザーバ部材202の直径よりも小さくても、大きくてもよい。遷移オリフィス206がリザーバ部材202の直径よりも小さい場合、流体混合物は、遷移オリフィス206を通ってTSGノズル200の出口部材208に流れた際に、より高圧に圧縮される。
【0071】
ブロック810では、流体混合物は、流体膨脹部材の出口部材210の出口圧力に維持される。出口圧力は、チャンバ圧力よりも大きく、リザーバ部材202の圧力よりも小さくてもよい。遷移オリフィス206と出口オリフィス210の遷移の間、流体混合物は、膨脹し、前述のガスクラスタを形成する。出口部材210と処理チャンバ102の間の圧力差は、処理チャンバ104の大きな体積に比べて、出口部材210の密閉体積が小さいことによるものである。
【0072】
ガスクラスタは、出口オリフィス210に向かって誘導され、流体混合物は、流体混合物がTSGノズル200から排出された後も、膨脹し続ける。しかしながら、モーメントは、少なくともガスクラスタスプレーの主要部分を、マイクロ電子基板118に向かって誘導する。前述のように、ガスクラスタのサイズは、数原子から10
5の間で変化する。プロセスは、前述の処理条件を変化させることにより、ガスクラスタの数およびその寸法を制御するように最適化される。例えば、当業者は、供給流体混合物の圧力、流体混合物の組成/濃度、処理チャンバ102の圧力、またはこれらの組み合わせを変更して、マイクロ電子基板118から粒子を除去することができる。
【0073】
ブロック812では、GCJスプレーの成分は、速度的または化学的に、マイクロ電子基板118から対象物または汚染物質を除去するように使用される。対象物は、GCJスプレーの速度的衝突、および/または流体混合物と対象物との間の任意の化学的相互作用を介して、除去される。ただし、対象物の除去は、速度論的なおよび/または化学的な除去の理論に限定されず、除去の説明には、いかなる理論が適用されてもよい。GCJスプレーの適用後に対象物が除去されることは、対象物の除去を説明するために使用されるいかなる適用可能な理論に対しても、十分な根拠となる。
【0074】
また、TSGノズル200とマイクロ電子基板118の相対位置を利用して、対象物の除去を最適化してもよい。例えば、GCJスプレーの入射角度は、マイクロ電子基板118の表面と出口オリフィス210の面との間で、TSGノズル220を、0゜から90゜の間で動かすことにより調整される。ある特定の実施例では、入射角度は、30゜から60゜の間であってもよく、マイクロ電子基板118の組成またはパターンに基づいて、対象物が除去される。あるいは、入射角度は、60゜と90゜の間であり、好ましくは約90゜である。別の実施例では、2以上のノズル110を用いて、同様のまたは異なる入射角度で、マイクロ電子基板118が処理される。
【0075】
前述の除去の実施例では、マイクロ電子基板118は、除去プロセス中に、平行移動および/または回転されてもよい。除去の速度は、マイクロ電子基板118の特定の部分にわたる、GCJスプレーの所望の滞留時間に最適化される。当業者は、滞留時間およびGCJスプレーの衝突位置を最適化して、所望の粒子除去効率を得ることができる。例えば、所望の粒子除去効率は、粒子測定前後の間で、80%よりも大きくてもよい。
【0076】
同様に、出口オリフィス210とマイクロ電子基板118の表面の間のギャップ距離は、粒子除去効率が高まるように最適化される。ギャップ距離は、
図5の説明において、詳しく記載されているが、通常、ギャップ距離は、50mm未満である。
【0077】
また、GCJプロセスは、
図3および
図4の記載に示したような、シングルステージノズル300、400を用いて実施されてもよい。シングルステージノズル300、400は、連続的な単一の膨脹チャンバを有し、膨脹領域の直径306は、一定であり、または入口オリフィス302と出口オリフィス304の間で増加する。例えば、シングルステージノズル300、400は、TSGノズル200のような遷移オリフィス206を有しない。ただし、シングルステージGCJ方法は、TSGノズル200を使用してもよく、シングルステージノズルシステム100に限定されるものではない。同様に、
図9乃至
図12の説明で示した方法は、シングルステージノズル300、400で使用されてもよい。
【0078】
図9には、GCJスプレーを用いてマイクロ電子基板118を処理する、別の方法のフローチャート900を示す。マイクロ電子基板118に対するノズル110の配置は、粒子の除去効率に大きな影響を及ぼす。特に、出口オリフィス304とマイクロ電子基板118の表面の間のギャップ距離は、粒子の除去効率に影響する。ギャップ距離は、GCJスプレーの流体流および分布に影響を及ぼし、ノズル110によるクリーニング表面領域の寸法に影響を及ぼす。従って、GCJプロセスのサイクル時間は、ノズル110の少ないパスまたは短い滞留時間のため低減され得る。
【0079】
図9を参照すると、ブロック902では、気体膨脹部材(GEC)(例えばノズル300、400)を有する処理チャンバ104に、マイクロ電子基板1118が受容される。GECは、本願に記載のいかなるノズル110であっても良く、特に、TSGノズル200
、SSGノズル300またはフラッシュノズル400と同一のまたは同様のもので構成されてもよい。通常、ノズルは、流体混合物を受容する入口オリフィス402と、流体混合物を処理チャンバ104に流す出口オリフィス404とを有する。
【0080】
ブロック904では、システム100は、GECに対向してマイクロ電子基板118を配置し、出口オリフィス404がマイクロ電子基板118の上部または近傍に配置される。また、GECは、マイクロ電子基板118の表面に対して、ある角度で配置されてもよい。表面は、マイクロ電子装置が形成される位置である。角度は、0゜と90゜の間の範囲であってもよい。また、GECの配置は、
図5に示したようなギャップ距離502に基づいて最適化されてもよい。ギャップ距離502は、マイクロ電子基板118に向かう、および/またはマイクロ電子基板118にわたる流れ分布に影響を及ぼし得る。ギャップ距離502が増加すると、クリーニング表面積が減少し、粒子の除去効率を維持し、または改善するため、追加のノズルが必要となる。また、膨脹流体混合物の速度は、ギャップ距離502に応じて変化してもよい。例えば、ギャップ距離502が減少すると、マイクロ電子基板118にわたる横方向の流体流が上昇する。ある実施例では、速度の増加により、大きな粒子除去効率が得られる。
【0081】
通常、GECは、マイクロ電子基板118の表面の50mm以内である。ただし、ほとんどの実施例では、記載されたエアロゾルまたはGCJプロセスの場合、ギャップ距離502は、10mm未満である。ある特定の実施例では、流体混合物がGECを介して処理チャンバ104に分散される前のギャップ距離502は、約5mmである。
【0082】
ブロック906では、システム100は、273K未満の温度、および流体混合物の提供温度において、流体混合物の液体形成が防止できる圧力で、GECに流体混合物を供給する。従って、流体混合物内の液体濃度は、流体混合物の重量比で少なくとも1%未満であり、あるいは存在しない。化学プロセス処理の当業者は、任意の既知の技術を用いて、流混合物の液体濃度を測定することができる。また、当業者は、相平衡
図600、608、または単一種もしくは混合化学種に利用可能な、他の任意の既知の相平衡図文献を用いて、温度と圧力の適切な組み合わせを選定することができる。
【0083】
ある実施例では、温度は、70K以上であり、273K未満である。流体混合物は、窒素、アルゴン、キセノン、ヘリウム、二酸化炭素、クリプトン、またはこれらの任意の組み合わせを含んでもよい。同様に、圧力は、相平衡
図600、608を用いて、または液体濃度の量を流体混合物の重量比で1%未満に最小化する、他のいかなる既知の測定技術により、選定されてもよい。ほとんどの実施例では、圧力は、10Torr以下である。ただし、他の実施例では、粒子の除去効率を最大化するため、圧力は、10Torrよりも大きい。
【0084】
ブロック908では、システムは、GECを介して、処理チャンバ104に流体混合物を提供し、流体混合物の少なくとも一部は、マイクロ電子基板118と接触する。前述のように、処理チャンバ104内で、流体混合物は、比較的高い圧力から低い圧力に膨脹する。ある実施例では、処理チャンバ104は、35Torr以下のチャンバ圧力に維持される。
【0085】
ある実施例では、流体混合物は、N
2とアルゴンの組み合わせを有し、比は1:1から11:1であり、特に比は、4:1未満である。別の実施例では、流体混合物は、別のキャリアガスを含み、これは、GCJスプレーの質量および/または速度を変化させる。キャリアガスは、これに限られるものではないが、キセノン、ヘリウム、ネオン、クリプトン、二酸化炭素、またはこれらの組み合わせを含んでもよい。ある実施例では、流体混合物は、アルゴンに対するN
2の混合が1:1から4:1の範囲であり、これは、以下のキャリアガスの1または2以上と混合されてもよい:キセノン、クリプトン、二酸化炭素、またはこれらの任意の組み合わせ。
【0086】
例えば、キャリアガスがN
2、アルゴン、またはその組み合わせ(例えば1:1から4:1)と混合される場合、N
2とアルゴンの間の比、またはこれらの組み合わせ間の比は、キセノン、クリプトン、二酸化炭素、またはこれらの任意の組み合わせを、最大11:1までの混合比で使用する場合、少なくとも4:1の混合比を用いて定められる。一方、ヘリウムもしくはネオン、またはN
2、アルゴンもしくはこれらの組み合わせ(例えば1:1から4:1)との組み合わせの場合、N
2、アルゴン、またはこれらの組み合わせ(例えば1:1から4:1)と、ヘリウム、ネオン、またはこれらの組み合わせの間の混合比は、少なくとも1:4である。N
2、アルゴン、および/またはキャリアガスの前述の組み合わせは、前述の他のエアロゾルおよびGCJ法にも適用できる。
【0087】
別の実施例では、流体混合物は、ヘリウムまたはネオンと組み合わされたN
2と、以下の少なくとも一つのガスとを含む:アルゴン、クリプトン、キセノン、二酸化炭素。ある特定の実施例では、前述の組み合わせの混合比は、1:2:1.8であってもよい。
【0088】
ブロック910では、膨脹流体混合物(例えばGCJスプレー)は、マイクロ電子基板118に向かって放出され、表面の対象物と接触し(例えば速度的および/または化学的な相互作用)、マイクロ電子基板118から対象物が除去される。GCJスプレーの速度的および/または化学的な相互作用は、対象物とマイクロ電子基板118の間の接着力を超える。対象物は、真空システム134を介して、処理チャンバ104から除去され、または処理チャンバ104内の別の場所に配置される。
【0089】
図10には、極低温流体によりマイクロ電子基板118を処理する別の方法の、別のフローチャート1000を示す。この実施例では、流体混合物からGCJスプレーが生じ、これは、比較的低い液体濃度を有する。前述のように、流体混合物の温度および圧力は、流体混合物中に存在する液体量(重量比)に影響を及ぼす。この例では、流体混合物の液体濃度は、温度を変更することにより最適化される。
【0090】
図10を参照すると、ブロック1002では、マイクロ電子基板118は、気体膨脹部材(GEC)(例えばノズル300、400)を有する処理チャンバ104に受容される。GECは、本願に示したいかなるノズル110であってもよいが、特に、TSGノズル200、SSGノズル300、またはフラッシュノズル400と同一のまたは同様のもので構成されてもよい。通常、ノズルは、流体混合物を受容する入口オリフィス402と、流体混合物を処理チャンバ104に流す出口オリフィス404とを有する。
【0091】
ブロック1004では、システム100は、GECに対向してマイクロ電子基板118を配置し、出口オリフィス404は、マイクロ電子基板118の上部または近傍に配置される。また、GECは、マイクロ電子基板118の表面に対してある角度で配置されてもよい。表面は、マイクロ電子装置が製造される部分である。角度は、0゜から9゜間の範囲であってもよい。またGECの配置は、
図5に示したようなギャップ距離502に基づいて最適化されてもよい。通常、GECは、マイクロ電子基板118の表面から50mm以内である。ただし、ほとんどの実施例では、本願のエアロゾルまたはGCJプロセスの場合、ギャップ距離502は、20mm未満である。ある特定の実施例では、GECを介して流体混合物を処理チャンバ104に配置する前のギャップ距離502は、約5mmである。
【0092】
ブロック1006では、システム110は、大気圧よりも高い圧力、および273K未満の温度であって、所与の圧力における流体混合物の凝縮濃度よりも高い温度で、FECに流体混合物を供給する。凝縮温度は、異なる気体間で変化し、異なる組成および濃度を有する、異なる気体混合物間で変化する。当業者は、既知の文献(例えば相平衡図)を用いて、あるいは少なくとも一部が既知の技術を用いた流体混合物の観測および/または測定に基づく実験技術を用いて、流体混合物の気体凝縮温度を定めることができる。
【0093】
ある例では、所与の圧力における凝縮温度は、流体が液相存在状態に変化する温度である。例えば、流体混合物が前述の凝縮温度を超える温度に保持された場合、これは、流体混合物が、いかなる液相も含まない気体状態にあり、または極めて僅かの量の液相(例えば重量比で1%未満)を含む状態にあることを表す。ほとんどの実施例では、流体混合物の温度は、50Kから200Kの間であり、特に、異なる凝縮温度の気体を含む流体混合物の組成に応じて、70Kから150Kの間で変化する。
【0094】
例えば、N
2流体混合物の実施例では、重量比における液体の量は、N
2の相平衡
図604を用いて予測される。約100psiの供給圧力の場合、流体混合物の温度は、液体量を最小化するため、100Kよりも高い。この実施例では、供給圧力が約120Kで、圧力が100psiの場合、流体混合物は、いかなる液体も含まず、または液体は、少なくとも重量比で1%未満である。
【0095】
ブロック1008では、システム100は、GECを介して、処理チャンバ104に流体混合物を提供し、流体混合物の少なくとも一部は、マイクロ電子基板118と接触する。この実施例では、処理チャンバ104の圧力は、少なくともサブ大気圧であり、特に10Torr未満である。
【0096】
ある実施例では、流体混合物は、N
2とアルゴンの組み合わせを含み、比は1:1から11:1の間であり、特に比は、4:1未満である。別の実施例では、流体混合物は、GCJスプレーの質量および/または速度を変える、別のキャリアガスを含む。キャリアガスは、これに限られるものではないが、キセノン、ヘリウム、ネオン、クリプトン、二酸化炭素、およびこれらの任意の組み合わせを含んでもよい。ある実施例では、流体混合物は、アルゴンに対して1:1から4:1のN
2の混合物を含み、これは以下のキャリアガスの1または2以上と混合されてもよい:キセノン、クリプトン、二酸化炭素、またはこれらの任意の組み合わせ。
【0097】
例えば、キャリアガスは、N
2、アルゴン、またはこれらの組み合わせ(例えば1:1から4:1)と混合され、N
2およびアルゴン、またはその組み合わせの間の比は、最大11:1の混合比でキセノン、クリプトン、二酸化炭素、またはこれらの任意の組み合わせを用いた場合、少なくとも4:1の混合比を用いて定められる。一方、ヘリウムもしくはネオン、またはN
2、アルゴン、もしくはその組み合わせ(例えば1:1から4:1)との組み合わせを使用した場合、N
2、アルゴン、またはその組み合わせ(例えば1:1から4:1)と、ヘリウム、ネオンまたはその組み合わせの間の混合比は、少なくとも1:4である。N
2、アルゴン、および/またはキャリアガスの前述の組み合わせは、本願に記載された他のエアロゾルまたはGCJ法にも適用できる。
【0098】
ブロック1010では、膨脹流体混合物(例えばGCJスプレー)は、マイクロ電子基板118に向かって放出され、表面の対象物と接触し(例えば速度的および/または化学的な相互作用)、対象物がマイクロ電子基板118から除去される。GCJスプレーの速度的および/または化学的な相互作用は、対象物とマイクロ電子基板118の間の接着力を超える。対象物は、真空システム134を介して、処理チャンバ104から除去され、または処理チャンバ104内の他の場所に配置される。
【0099】
図11には、極低温流体を用いてマイクロ電子基板118を処理する、別の方法のフローチャート1100を示す。この実施例では、流体混合物から、比較的低い液体濃度のGCJスプレーが生じる。前述のように、流体混合物の温度および圧力は、流体混合物に含まれる液体量(重量比)に影響を及ぼす。この例では、流体混合物の液体濃度は、圧力を変えることにより最適化される。また、ギャップ距離502は、レシピ圧力および以下に示す定数を使用した計算を用いて、制御器112を用いて定められる。
【0100】
図11を参照すると、ブロック1102では、マイクロ電子基板118は、気体膨脹部材(GEC)(例えばノズル300)を有する処理チャンバ104に受容される。GECは、前述のノズル110のいずれかであってもよく、特に、TSGノズル200、SSGノズル300、またはフラッシュのずる400と同一のまたは同様のもので構成されてもよい。通常、ノズルは、流体混合物を受容する入口オリフィス402と、処理チャンバ104に流体混合物を流す出口オリフィス404とを有する。
【0101】
ブロック1104では、システム100は、273K未満の供給温度で、および該供給温度でのガス混合物中での液体の形成を抑制する供給圧力で、GCEにガス混合物を供給する。例えば、N
2の実施例では、N
2の相平衡
図604において、流体混合物が約100Kで100psi未満の圧力となり、N
2が気相で維持されることが示される。圧力が約150psi以上の場合、N
2処理ガス中に、液相が存在する可能性が高まる。
【0102】
ブロック1106では、システム100は、GECを介して処理チャンバ104に流体混合物を提供し、流体混合物の少なくとも一部は、マイクロ電子基板118と接触する。この実施例では、処理チャンバ104の圧力は、少なくともサブ大気圧であり、特に10Torr未満である。
【0103】
ある実施例では、流体混合物は、N
2とアルゴンの組み合わせを含み、比は1:1から11:1の間であり、特に比は、4:1未満である。別の実施例では、流体混合物は、別のキャリアガスを含み、これは、GCJスプレーの質量および/または速度を変化させる。キャリアガスは、これに限られるものではないが、キセノン、ヘリウム、ネオン、クリプトン、二酸化炭素、またはこれらの任意の組み合わせを含んでもよい。ある実施例では、流体混合物は、アルゴンに対する1:1から4:1のN
2の混合物を含み、この混合物は、1または2以上の以下のキャリアガスと混合されてもよい:キセノン、クリプトン、二酸化炭素、またはこれらの任意の組み合わせ。
【0104】
例えば、キャリアガスがN
2、アルゴン、またはその組み合わせ(例えば1:1から4:1)と混合される場合、最大11:1の混合比でキセノン、クリプトン、二酸化炭素、またはこれらの任意の組み合わせを用いた場合、N
2およびアルゴン、またはその組み合わせとの間の比は、少なくとも4:1である。一方、ヘリウムもしくはネオン、またはN
2、アルゴン、もしくはその組み合わせ(例えば1:1から4:1)との組み合わせの場合、N
2、アルゴン、またはその組み合わせ(例えば1:1から4:1)と、ヘリウム、ネオン、またはその組み合わせの間の混合比は、少なくとも1:4である。N
2、アルゴン、および/またはキャリアガスの前述の組み合わせは、本願に記載の他のエアロゾルおよびGCJ方法に適用することもできる。
【0105】
ブロック1108では、システム110は、出口(例えば出口オリフィス404)とマイクロ電子基板118の間のギャップ距離502で、マイクロ電子基板118を配置する。ギャップ距離502は、
図5の記載において(1)式に示したように、少なくとも一部が、チャンバ圧力と、40から60の間の定数パラメータの比に基づく。ある実施例では、定数パラメータの単位は、長さ/圧力(例えばmm/Torr)を有してもよい。
【0106】
ブロック1110では、膨脹流体混合物は、マイクロ電子基板118に向かって放射され、表面の対象物と接触し(例えば速度的または化学的な相互作用)、対象物がマイクロ電子基板118から除去される。GCJスプレーの速度的および/または化学的な相互作用は、対象物とマイクロ電子基板118の間の接着力を超える。対象物は、真空システム134を介して処理チャンバ104から除去され、あるいは処理チャンバ104の他の場所に設置される。
【0107】
図12には、極低温流体を用いてマイクロ電子基板118を処理する、別の方法のフローチャート1200を示す。この実施例では、流体混合物から、比較的低い液体濃度のGCJスプレーが生じる。前述のように、流体混合物の温度および圧力は、流体混合物中の液体量(重量比)に影響を及ぼす。この例では、システム100は、モーメントまたは組成(例えばガスクラスタ等)を最適化するように、供給流体混合物圧力と、チャンバ圧力104の間の比を維持する。また、システム100は、供給流体混合物の圧力を最適化し、供給圧力と処理チャンバ104の圧力の間の圧力比関係の範囲内で、供給流体混合物の液体濃度を制御する。
【0108】
図12を参照すると、ブロック1202では、気体膨脹部材(GEC)(例えばノズル300、400)を有する処理チャンバ104に、マイクロ電子基板118が収容される。GECは、本願のいかなるノズル110であってもよく、特に、TSGノズル200、SSGノズル300、またはフラッシュノズル400と同一のまたは同様のもので構成されてもよい。通常、ノズルは、流体混合物を受容する入口オリフィス402と、処理チャンバ104に流体混合物圧力を流す出口オリフィス404とを有する。
【0109】
ブロック1204では、システム100は、流体混合物を真空処理チャンバ104に供給し、システム100は、流体混合物が気相に維持されるように、流体混合物の温度および/または圧力を維持する。流体混合物は、これに限られるものではないが、以下の少なくともつのガスを含んでもよい:窒素、アルゴン、キセノン、クリプトン、二酸化炭素、またはヘリウム。
【0110】
別の実施例では、流体混合物は、少なくともヘリウムまたはネオンと組み合わされたN
2を含み、以下の少なくとも一つのガスを有する:アルゴン、クリプトン、キセノン、二酸化炭素。ある特定の実施例では、前述の流体混合物の組み合わせの比は、約1:2:2である。別の特定の実施例では、前述の流体混合物の比は、1:2:1.8である。
【0111】
ブロック1206では、システム100は、圧力比を用いて、処理チャンバ104の圧力、および供給流体混合物圧力を維持する。従って、システム100では、供給圧力と処理圧力の間のバランスまたは関係が確実に得られる(例えば比=(供給圧力/処理圧力))。圧力比は、ある範囲を超えるもしくは超えない閾値となり、あるいは圧力比は、供給圧力またはチャンバ圧力に対する変化にかかわらず、維持される範囲を含む。圧力比の値は、200から500,000の間の範囲である。しかしながら、圧力比は、ある範囲を超えるまたは超えない閾値として機能し、あるいは制御器112に保管されたレシピ条件を維持する範囲を定める。従って、ノズルにわたる圧力差は、GCJ/エアロゾルスプレーのモーメントまたは組成(例えばガスクラスタサイズ、ガスクラスタ密度、固体粒子サイズ等)を維持するように制御される。
【0112】
本圧力比の実施例では、バルブは、同様の単位(ユニット)であり、制御器112は、圧力を同じまたは同様の単位(ユニット)に変換して、供給圧力およびチャンバ圧力を制御する。
【0113】
上閾値の実施例は、これを超えない圧力比を含み、チャンバ圧力を超える供給圧力は、
上閾値比よりも小さい。例えば、上閾値は、300000、5000、3000、2000、1000、または500のうちの一つの値である。
【0114】
別の実施例では、制御器112は、供給および処理圧力を、圧力比の値の範囲内に維持する。範囲の一例は、これに限られるものではないが、100000から300000、200000から300000、5000から100000、5000から25000、200から3000、800から2000、500から1000、または700から800を含む。
【0115】
ブロック1208では、システム110は、出口(例えば出口オリフィス404)とマイクロ電子基板118の間のあるギャップ距離502で、マイクロ電子基板118を配置する。ギャップ距離502は、
図5に示した(1)式に示すように、少なくとも一部が、チャンバ圧力と、40から60の間の値を有する定数パラメータとの比に基づく。ある実施例では、定数パラメータの単位は、長さ/圧力(例えばmm/Torr)の単位を有してもよい。
【0116】
ブロック1210では、膨脹流体混合物が、マイクロ電子基板118に向かって放出され、表面の対象物と接触し(速度的および/または化学的な相互作用)、対象物がマイクロ電子基板118/から除去される。GCJスプレーの速度的および/または化学的な相互作用は、対象物とマイクロ電子基板118の間の接着力を超える。
【0117】
対象物は、真空システム134を介して、処理チャンバ104から除去され、または処理チャンバ104内の他の場所に設置される。
【0118】
図13は、非液体含有流体混合物(例えばGCJ)と、液体含有流体混合物(例えばエアロゾル)の間の、粒子除去効率の改善の棒グラフを表す。示された予測を超える結果の一つは、サブ100nmの粒子の粒子効率の改善、および100nmを超える粒子に対する粒子除去効率の維持または改善に関する。前述の技術は、液体濃度が10%を超える極低温流体混合物で、マイクロ電子基板を処理することを含む。予期しない結果が生じた新たな技術には、液体濃度(重量比)を有しない、または液体濃度が1%未満の極低温流体混合物で、マイクロ電子基板118を処理することが含まれる。
【0119】
図13の実施例では、市販の成膜システムを用いて、マイクロ電子基板118に窒化ケイ素粒子が設置された。窒化ケイ素粒子は、何れの試験においても、同様の密度およびサイズを有する。少なくとも一つのマイクロ電子基板118に、ベースラインの極低温プロセス(例えば、重量比で液体濃度>1%)が適用され、窒化ケイ素粒子で覆われた、異なる群のマイクロ電子基板118に、GCJが適用された。この例では、GCJプロセスは、アルゴンに対する窒素の流量比は、2:1であり、約9Torrに維持される真空チャンバから高圧流体源を分離するノズル110の前の入口圧力は、83psigである。ノズル110の入口直径は、約0.06インチであった。ガス距離502は、2.5mmから4mmの間であった。ノズルの下側を2倍の水が通り、粒子で汚染された領域は、GCJスプレーに2回晒される。カナダ国ミルピタスのKLA-Tencor(登録商標)のKLA SURF SCAN SP2-XPを用いた処理の前後で、粒子が測定される。
【0120】
図13に示した前述の技術において、サブ100nmの粒子除去効率(PRE)は、90nm超の粒子における80%超から、42nm未満の粒子の場合、30%未満に低下した。特に、PREは、約87%(90nm超の粒子)から、65nmから90nmの間の粒子の場合、約78%まで低下した。55nm〜65nmの粒子と、40nm〜55nmの粒子との間のPREにおける低下は、より顕著であった。PREは、それぞれ、〜61%、および〜55%低下した。最後に、PREの最大の低下は、40nm未満の粒子において認められ、~24%のPREであった。
【0121】
このデータから、サブ100nmの粒子の効率改善は、粒子サイズの減少とともに、同様の収益逓減を示すことが予想される。しかしながら、示されたGCJ技術では、サブ100nmのPREの改善のみならず、予想よりも高いPREが維持された。例えば、
図13に示すように、GCJのPREは、いかなる粒子ビンサイズにおいても、〜80%以下には低下しなかった。
【0122】
図13に示すように、90nmよりも大きな粒子のGCJのPREは、95%を超え、これは、以前の技術を用いた結果から、5%超改善されている。また、GCJプロセスは、以前の技術と比べて、粒子サイズの減少とともに、サブ100nmの粒子を除去する能力を示した。例えば、65nm〜90nm、55nm〜65nm、および40nm〜55nmのビンは、少なくとも90%のPREを示した。各ビンサイズにおいて、〜15%から〜35%の間の範囲で、改善された。ただし、最大の改善は、サブ40nmのビンサイズの場合であり、PREは、25%から〜82%改善された。
【0123】
GCJのPREにおける予期しない結果は、2重であった。まず、90nmを超える粒子に対するPREの増加は、サブ90nmの粒子の場合のPREの上昇と連動した。第2に、GCJプロセスに対するビンサイズの間の差異は、同様の範囲のプロセス条件を用いたエアロゾルプロセスのPRE結果に比べて、より狭小の分布を示した。
【0124】
図14には、マイクロ電子基板の粒子マップ1400を示す。少なくとも一部には、ノズル100とマイクロ電子基板118の間の小さなギャップ距離502に基づいて、広いクリーニング領域が示されている。通常、気体は、高圧環境から低圧環境に膨脹するため、気体は、大きな表面積、または被覆領域を覆う傾向にあり、別の気体は、初期の膨脹位置から遠ざかる。従って、マイクロ電子基板118から遠い位置にガスノズルが配置された場合、有効なクリーニング領域は、大きくなると思われる。しかしながら、これは正しくない。小さなギャップ距離502では、完全に直感に反した結果が得られ、マイクロ電子基板118に広いクリーニング領域が得られた。
【0125】
ポストクリーニング粒子マップに示すように、5mmのギャップ距離は、10mmのギャップ距離よりも、広いクリーニング領域を有する。5mmのギャップ粒子マップ1406は、マイクロ電子基板118の右側半分では、PRE結果が〜70%であることを示す。一方、10mmのギャップ粒子マップ1408では、200mmのマイクロ電子基板118の右側半分に、〜50%のPREが得られる。この例では、5mmのギャップ粒子マップは、クリーニング領域1410を示し、ここは、6mm以下の出口オリフィスを用いた場合、ノズル110から約80mm広い。そのような小さな出口オリフィスを有するノズル110で、それ自身のサイズの12倍を超える有効なクリーニング距離が得られることは、予測を超える。
【0126】
図15には、マイクロ電子基板特徴物の写真1500を示す。これらは、前述の技術(例えばエアロゾル)と、本願の技術(例えばGCJ)の間の、異なる特徴物の損傷差を示す。損傷の差は、肉眼でも視認されるが、走査型電子顕微鏡(SEM)によるより接近した検査により確認される。この実施例では、既知のパターン化技術を用いて、マイクロ電子基板上にポリシリコン特徴物が形成される。特徴物は、約20nmの幅、および約125nmの高さを有する。別個の特徴物サンプル(例えばライン構造)は、本願に示したエアロゾルおよびGCJプロセスと同様のプロセスに晒される。
【0127】
前述の技術において、エアロゾルクリーニングプロセスに晒されたマイクロ電子基板118の写真1502、1504における変色により、ライン構造に対する損傷は、明らかである。視認できるライン損傷は、エアロゾルSEM写真1506により確認される。一方、GCJ写真1508、1510には、変色は存在せず、GCJのSEM写真1512には損傷は存在しない。従って、GCJの写真1508、1510に変色のないこと、およびGCJのSEM写真1512に損傷が無いことは、示されたGCJ技術が、エアロゾルプロセスに比べて、マイクロ電子基板118にあまり損傷を及ぼさないないことを示唆するものである。
【0128】
本発明のある実施例のみについて詳細に説明したが、本発明の新たな示唆および利点から実質的に逸脱しないで、実施例において、多くの変更が可能であることは、当業者には明らかである。従って、そのような全ての変更は、本発明の範囲内に含まれることを意図するものである。例えば、前述の実施例は、相互に組み合わされても良く、あるいは、示された実施例の一部は、追加または省略されてもよい。すなわち、実施例の数は、具体的に示された実施例に限定されるものではなく、当業者には、記載された示唆を用いて、追加の実施例が想定できる。