(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0017】
A.第1実施形態
A−1.半導体装置の構成
図1は、第1実施形態における半導体装置100の構成を模式的に示す断面図である。半導体装置100は、窒化ガリウム(GaN)を用いて形成されたGaN系の半導体装置である。
【0018】
図1には、相互に直交するXYZ軸が図示されている。
図1のXYZ軸のうち、X軸は、
図1の紙面左から紙面右に向かう軸である。+X軸方向は、紙面右に向かう方向であり、−X軸方向は、紙面左に向かう方向である。
図1のXYZ軸のうち、Y軸は、
図1の紙面手前から紙面奥に向かう軸である。+Y軸方向は、紙面奥に向かう方向であり、−Y軸方向は、紙面手前に向かう方向である。
図1のXYZ軸のうち、Z軸は、
図1の紙面下から紙面上に向かう軸である。+Z軸方向は、紙面上に向かう方向であり、−Z軸方向は、紙面下に向かう方向である。
【0019】
半導体装置100は、基板110と、n型半導体層112と、p型不純物含有領域118と、p型半導体層114と、イオン注入領域116と、を備える。
【0020】
半導体装置100の基板110は、X軸およびY軸に沿って広がる板状の半導体である。本実施形態では、基板110、n型半導体層112、及びp型半導体層114は、III族窒化物半導体である。III族窒化物半導体としては、例えば、窒化ガリウム(GaN)、窒化アルミニウム(AlN)、窒化アルミニウムガリウム(AlGaN)、窒化インジウムガリウム(InGaN)、窒化インジウムアルミニウムガリウム(InAlGaN)などが例示できる。なお、電力制御用の半導体装置に用いる観点から、III族窒化物半導体としては、窒化ガリウム(GaN)、窒化アルミニウムガリウム(AlGaN)が好ましい。本実施形態では、III族窒化物半導体として、窒化ガリウム(GaN)を用いる。なお、本実施形態の効果を奏する範囲において、窒化ガリウム(GaN)の一部をアルミニウム(Al)やインジウム(In)などの他のIII族元素に置換してもよく、他の不純物を含んでいてもよい。
【0021】
本実施形態では、基板110は、ケイ素(Si)をn型不純物として含むn型半導体層である。本実施形態では、基板110に含まれるケイ素(Si)濃度の平均値は、1.0×10
18cm
−3である。
【0022】
半導体装置100のn型半導体層112は、基板110の+Z軸方向側に位置し、X軸およびY軸に沿って広がる半導体層である。本実施形態では、n型半導体層112は、ケイ素(Si)をn型不純物として含むn型半導体層である。n型半導体層112に含まれるケイ素(Si)濃度の平均値は、1.0×10
15cm
−3以上1.0×10
17cm
−3以下が好ましい。本実施形態では、n型半導体層112に含まれるケイ素(Si)濃度の平均値は、基板110に含まれるケイ素(Si)濃度の平均値よりも小さく、1.0×10
16cm
−3である。n型半導体層112の厚み(Z軸方向の長さ)は、3μm以上30μm以下が好ましく、本実施形態では、10μmである。なお、n型半導体層112は、第1のn型半導体層とも呼ぶ。
【0023】
半導体装置100のp型不純物含有領域118は、n型半導体層112の+Z軸方向側の一部の領域である。p型不純物含有領域118のp型不純物濃度は、所望の特性を得る観点から、2.0×10
17cm
−3以上が好ましい。本実施形態では、p型不純物を1.0×10
18cm
−3以上含む領域である。p型不純物含有領域118は、X軸およびY軸に沿って広がる半導体領域である。本実施形態では、p型不純物含有領域118におけるp型不純物濃度は、p型半導体層114におけるp型不純物濃度よりも小さい。本実施形態では、p型不純物含有領域118は、n型不純物としてケイ素(Si)を含有するとともに、p型不純物としてマグネシウム(Mg)についても含有する。
【0024】
p型不純物含有領域118は、p型半導体層114と上面(+Z軸方向側の面)で接する。また、p型不純物含有領域118は、イオン注入領域116の下方に位置し、後述するイオン注入領域形成工程(工程P110)を経ることにより、p型半導体層114に含まれるp型不純物が拡散した領域である。ここで、「下方」とは、n型半導体層112とp型半導体層114との積層の方向(Z軸方向)において、p型半導体層114よりもn型半導体層112側(−Z軸方向側)に位置し、かつ、積層の方向(Z軸方向)から見たときに、少なくとも一部が重なる位置にあることを示す。p型不純物含有領域118の厚み(Z軸方向の長さ)は、イオン注入領域116の厚み及び濃度と関連を有する。本実施形態では、p型不純物含有領域118の厚みは1.0μm以下である。
【0025】
半導体装置100のp型半導体層114は、n型半導体層112の上(+Z軸方向側)に位置し、X軸およびY軸に沿って広がる半導体層である。本実施形態では、p型半導体層114は、p型不純物を含むp型半導体層である。p型不純物としては、例えば、マグネシウム(Mg)と、亜鉛(Zn)と、ベリリウム(Be)と、炭素(C)との少なくとも一つを用いることができる。本実施形態では、p型半導体層114は、p型不純物としてマグネシウム(Mg)を含む。
【0026】
p型半導体層114に含まれるマグネシウム(Mg)濃度の平均値は、4.0×10
18cm
−3である。本実施形態では、p型半導体層114の厚み(Z軸方向の長さ)は、1.0μm以下である。本実施形態では、n型半導体層112とp型半導体層114との積層方向から見たときに、p型不純物含有領域118と重なる位置のp型半導体層114におけるp型不純物の平均濃度は、p型不純物含有領域118と重ならない位置のp型半導体層114におけるp型不純物の平均濃度よりも小さい。
【0027】
半導体装置100のイオン注入領域116は、p型半導体層114の+Z軸方向側の一部の領域であり、p型不純物を含む領域である。イオン注入領域116は、X軸およびY軸に沿って広がる半導体領域である。本実施形態では、イオン注入領域116は、p型半導体層114の+Z軸方向側の一部に対してマグネシウム(Mg)のイオン注入が行われたことにより形成された領域である。なお、イオン注入に用いるp型不純物は、例えば、マグネシウム(Mg)と、亜鉛(Zn)と、炭素(C)との少なくとも一つを用いることができる。本実施形態では、イオン注入に用いるp型不純物としてマグネシウム(Mg)を用いる。本実施形態において、イオン注入領域116におけるp型不純物濃度は4.0×10
18cm
−3以上である。また、本実施形態において、イオン注入領域116の厚み(Z軸方向の長さ)は、0.3μm以下である。
【0028】
A−2.半導体装置の製造方法
図2は、第1実施形態における半導体装置100の製造方法を示す工程図である。まず、製造者は、基板110を準備する(工程P100)。本実施形態では、基板110は、窒化ガリウム(GaN)から主に形成されている。
【0029】
次に、製造者は、結晶成長を行う(工程P105)。具体的には、製造者は、(i)基板110の上にn型半導体層112を積層し、(ii)n型半導体層112の上にp型半導体層114を積層する。本実施形態では、製造者は、結晶成長の手法として有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)を用いる。工程P105を、積層工程とも呼ぶ。
【0030】
本実施形態において、基板110及びn型半導体層112は、ケイ素(Si)をドナー元素として含むn型半導体である。また、p型半導体層114は、マグネシウム(Mg)をアクセプタ元素として含むp型半導体である。
【0031】
積層工程(工程P105)の後、製造者は、p型半導体層114の一部にイオン注入領域116を形成する(工程P110)。工程P110は、イオン注入領域形成工程とも呼ぶ。イオン注入領域形成工程(工程P110)は、p型半導体層114にp型不純物をイオン注入するイオン注入工程(工程P120)と、イオン注入したp型不純物を活性化させるために熱処理する熱処理工程(工程P130)とを備える。工程P120を、p型イオン注入工程とも呼び、工程P130を熱処理工程とも呼ぶ。
【0032】
製造者は、p型半導体層114にp型不純物をイオン注入する(工程P120)。本実施形態では、製造者は、p型不純物としてマグネシウム(Mg)をp型半導体層114の中にイオン注入する。
【0033】
具体的には、まず、製造者は、p型半導体層114の上に膜210を形成する。膜210は、イオン注入にて注入される不純物のp型半導体層114における深さ方向の分布を調整するために用いる。つまり、膜210は、p型半導体層114に注入される元素をp型半導体層114の表面近傍に集めるために用いる。また、膜210は、イオン注入に伴うp型半導体層114における表面の損傷を防止する機能も有する。本実施形態において、膜210は、p型半導体層114に入った場合にドナーとならない材料を用いることが好ましい。膜210の材料として、例えば、窒化アルミニウム(AlN)、窒化アルミニウムガリウム(AlGaN)、窒化ホウ素(BN)などのIII族窒化物半導体が挙げられる。本実施形態では、製造者は、有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)によって膜210を形成する。
【0034】
次に、製造者は、膜210上の一部にマスク220を形成する。マスク220は、p型半導体層114の上であって、イオン注入を行わない領域の上に形成される。本実施形態では、製造者は、フォトレジスト(Photoresist)によってマスク220を形成する。本実施形態では、マスク220の膜厚は、約2μmである。
【0035】
その後、製造者は、p型半導体層114の上からイオン注入を行う。本実施形態では、製造者は、p型半導体層114に対してマグネシウム(Mg)をイオン注入する。イオン注入時のドーズ量は、2.0×10
14cm
−2以上3.0×10
15cm
−2以下が好ましく、1.0×10
15cm
−2以上3.0×10
15cm
−2以下がより好ましい。イオン注入領域の厚みが0より大きく0.4μm以下となるように、製造者は、イオン注入時の加速電圧を調整することが好ましい。イオン注入の回数は、1回であっても、複数回であってもよい。イオン注入時のチャネリング効果を防止する観点から、イオン注入角度は、Z軸方向に対して5°以上15°以下であることが好ましい。本実施形態では、イオン注入角度は、9°とする。イオン注入時における基板110の温度は、20℃以上800℃以下が好ましい。本実施形態では、イオン注入時における基板110の温度は、25℃以上とする。
【0036】
図3は、イオン注入がされている状態を模式的に示す断面図である。イオン注入により、膜210のうちマスク220に覆われていない部分の下において、p型半導体層114に元素が注入された領域としてイオン注入領域116Nが形成される。イオン注入領域116Nにおけるp型不純物濃度は、膜210の材質や膜厚、イオン注入の加速電圧やドーズ量を調整することにより所望の濃度に調整することができる。なお、イオン注入領域116Nは、注入されたp型不純物がアクセプタ元素として機能するように活性化されていない。このため、イオン注入直後のイオン注入領域116Nは、抵抗が高い領域である。また、イオン注入工程においては、未だp型不純物含有領域118は形成されないが、イオン注入領域116Nとp型不純物含有領域118との位置関係を説明するため、
図3にp型不純物含有領域118を図示している。
【0037】
次に、製造者は、膜210及びマスク220を除去する。本実施形態では、製造者は、ウェットエッチングによって膜210及びマスク220を除去する。以上により、イオン注入工程(工程P120(
図2参照))が完了する。
【0038】
イオン注入工程(工程P120)を行った後、製造者は、イオン注入領域116Nにおけるp型不純物を活性化させるための熱処理工程(工程P130)を行う。熱処理工程(工程P130)において、製造者は、イオン注入領域116Nを加熱することによって、p型の導電性を有するイオン注入領域116を形成する。
【0039】
まず、製造者は、p型半導体層114及びイオン注入領域116Nの上にキャップ膜を形成する。キャップ膜は、加熱に伴うp型半導体層114及びイオン注入領域116Nにおける表面の損傷を防止する機能を有するとともに、p型半導体層114からガリウム(Ga)や窒素(N)が抜けることを抑制する機能を有する。キャップ膜の材料としては、窒化物が好ましく、窒化ケイ素(SiN
x)、窒化アルミニウム(AlN)、窒化アルミニウムガリウム(AlGaN)、窒化ガリウム(GaN)、窒化ホウ素(BN)などが挙げられ、スパッタ法や有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)によって形成することができる。本実施形態では、製造者は、キャップ膜として、窒化アルミニウム(AlN)を有機金属気相成長法により形成する。
【0040】
次に、製造者は、p型半導体層114及びイオン注入領域116Nを加熱する。p型半導体層114及びイオン注入領域116Nを加熱する温度は、900℃以上1400℃以下が好ましく、1000℃以上1200℃以下であることがより好ましい。また、加熱時間は、10秒以上10分以下が好ましく、10秒以上5分以下が好ましい。熱処理時の雰囲気ガスとして、窒素(N)と、アンモニア(NH
3)と、アルゴン(Ar)との少なくとも一つを用いることが好ましい。
【0041】
熱処理工程により、イオン注入領域116Nが、p型の導電性を有するイオン注入領域116となる。また、イオン注入工程(工程P120)と熱処理工程(工程P130)とを経ることにより、イオン注入領域116の下方に位置する領域であって、n型半導体層112の+Z軸方向側の領域に、p型不純物含有領域118が形成される。つまり、n型半導体層112の一部に、p型不純物含有領域118が形成される。p型不純物含有領域118は、p型半導体層114に含まれるp型不純物がn型半導体層112に拡散することによって形成された領域である。本実施形態では、積層方向(Z軸方向)から見たとき、p型不純物含有領域118は、イオン注入領域116と重なる位置となる。
【0042】
p型不純物含有領域118に含まれるp型不純物濃度は、イオン注入(工程P120)時の加速電圧やドーズ量、熱処理(工程P130)の加熱温度や加熱時間を調整することにより調整できる。例えば、イオン注入(工程P120)時の加速電圧を大きくする、もしくはドーズ量を多くすることにより、p型不純物含有領域118に拡散するp型不純物濃度を大きくすることができる。
【0043】
熱処理の後、製造者は、p型半導体層114及びイオン注入領域116N(イオン注入領域116)の上からキャップ膜を除去する。本実施形態では、製造者は、ウェットエッチングによってキャップ膜を除去する。以上により、熱処理工程(工程P130(
図2参照))が完了し、同時に、イオン注入領域形成工程(工程P110)が完了する。これらの工程を経て、半導体装置100が完成する。
【0044】
A−3.効果
第1実施形態の半導体装置100の製造方法によれば、n型半導体層112へのp型不純物のイオン注入を行わずに、イオン注入領域形成工程(工程P110)においてp型不純物含有領域118を形成することができる。
【0045】
また、第1実施形態の半導体装置100の製造方法によれば、n型半導体層112へのp型不純物のイオン注入を行わないため、p型不純物のイオン注入を行うことに起因したn型半導体層112の結晶構造の乱れを抑制できる。
【0046】
第1実施形態の半導体装置100において、p型不純物含有領域118は、p型半導体層114と接している。このため、p型半導体層114中のp型不純物であるマグネシウム(Mg)を活性化させるために行う熱処理工程において、p型不純物含有領域118中のp型不純物であるマグネシウム(Mg)についても活性化される。つまり、この工程において、p型不純物含有領域118中の水素がp型半導体層114を経由して外部に排出される。このため、第1実施形態の半導体装置100は、p型半導体層114とp型不純物含有領域118の中のp型不純物の活性化を一度に行えることができるため、製造が容易である。
【0047】
以下、上述のイオン注入領域形成工程(工程P110)を経ることによって、n型半導体層112の中にp型不純物含有領域118が形成されることを裏付ける評価試験の結果を示す。
【0048】
A−4.評価試験
評価試験には、以下の試料を用いた。試験者は、試料1から試料3を用意した。具体的には、試験者は、まず、第1実施形態と同じ方法により、基板110を準備して(工程P105)、結晶成長を行った(工程P110)。その後、試験者は、(i)イオン注入工程(工程P120)を行わず、熱処理工程(工程P130)を行った試料1と、(ii)イオン注入工程(工程P120)を行い、熱処理工程(工程P130)を行わない試料2と、(iii)イオン注入工程(工程P120)を行った後、熱処理工程(工程P130)を行った試料3とを用意した。つまり、試料1から試料3は以下のような関係となる。なお、試験者は、イオン注入時のドーズ量を2.6×10
15cm
−3とした。
・試料1:イオン注入工程無し、熱処理工程有り
・試料2:イオン注入工程有り、熱処理工程無し
・試料3:イオン注入工程有り、熱処理工程有り
【0049】
図4は、評価試験の結果を示す図である。
図4は、各試料のp型半導体層114及びn型半導体層112におけるマグネシウム(Mg)の不純物濃度を二次イオン質量分析法(Secondary Ion Mass Spectrometry:SIMS)により測定した結果を示す。
図4において、横軸はp型半導体層114、n型半導体層112の−Z軸方向の深さ(μm)を示し、縦軸はマグネシウム(Mg)の濃度(cm
−3)を示す。深さ0μmは、p型半導体層114(
図1参照)の+Z軸方向側の表面である。
【0050】
図4から、以下のことが分かる。つまり、試料1から3において、深さが0μmから約1μmまでの領域は、マグネシウム濃度が約1×10
18cm
−3以上の領域であり、p型半導体層114に相当する領域である。また、深さが約1.0μm以上の領域は、n型半導体層112に相当する領域である。
【0051】
イオン注入工程が行われた試料2及び3の結果において、深さが0μmから約0.3μmまでの領域が、マグネシウム濃度が約1×10
20cm
−3の領域であり、この領域がイオン注入によってマグネシウムが注入された領域であることが分かる。
【0052】
また、深さが約0.3μmから約1.0μmまでのほとんどの領域において、イオン注入工程が行われた試料2の方が、イオン注入工程が行われていない試料1と比較して、マグネシウム濃度が大きい。このことから、イオン注入によってp型半導体層114に拡散したマグネシウム(Mg)が、p型半導体層114とn型半導体層112との界面(深さ:約1.0μm)付近まで拡散していることが分かる。なお、イオン注入工程が行われた試料2において、p型半導体層114とn型半導体層112との界面(深さ:約1.0μm)付近のマグネシウム濃度は約6.0×10
18cm
−3である。
【0053】
p型半導体層114とn型半導体層112との界面(深さ:約1.0μm)付近までのマグネシウムの拡散は、イオン注入されたマグネシウム(Mg)の高い運動エネルギーに起因すると考えられる。この拡散によって、p型半導体層114内において結晶性の低下や微小な欠陥などのダメージが発生する虞がある。しかし、試料2において、この拡散は、p型半導体層114とn型半導体層112との界面(深さ:約1.0μm)で止まっており、n型半導体層112にはこの拡散が見られない。このことから、イオン注入されたマグネシウム(Mg)の高い運動エネルギーに起因するn型半導体層112へのダメージは発生していないと考えられる。
【0054】
イオン注入工程が行われた試料2及び3のうち、熱処理工程が行われていない試料2と熱処理工程が行われた試料3を比較すると、試料3は、マグネシウム(Mg)のn型半導体層112への拡散が起こっていることが分かる。具体的には、試料3は、深さが約1.0μmから約1.8μmまでの領域がp型不純物含有領域118である。
図4において、p型不純物含有領域118のマグネシウム濃度は、1.0×10
17cm
−3以上である。
【0055】
イオン注入工程が行われていない試料1において、深さが約1.0μmより深い部分は、深さが0μmから約1.0μmの部分と比較して、マグネシウム濃度が急激に小さくなっている。つまり、熱処理工程のみを行った場合では、p型半導体層114のマグネシウムがn型半導体層112へのマグネシウムの拡散が見られない。
【0056】
また、イオン注入工程が行われていない試料1とイオン注入工程が行われた試料3とを比較すると、深さが0μmから約1.0μmまでの領域において、試料3が試料1のマグネシウム濃度を下回る部分がある。具体的には、深さが約0.3μmから約1.0μmまでの領域において、試料3のマグネシウム濃度が約4.0×10
18cm
−3を下回り、約2.0×10
18cm
−3まで低下している領域がある。このことから、熱処理により拡散したマグネシウム(Mg)は、イオン注入されたマグネシウム(Mg)だけではなく、p型半導体層114内に存在したマグネシウム(Mg)も含まれることが分かる。また、このことから、イオン注入領域116の下方におけるp型半導体層114の領域は、イオン注入領域116の下方ではないp型半導体層114の領域よりも、平均p型不純物濃度が低いことがわかる。なお、イオン注入工程が行われず、熱処理工程のみ行った試料1の結果から、熱処理のみを行ってもp型半導体層114からn型半導体層112へのマグネシウム(Mg)の拡散が起きないことが分かる。
【0057】
ここで、試料2及び3において、深さが0μmから2.0μmまでのマグネシウムの量を算出したところ、試料2の値と試料3の値が一致した。このことから、試料3のp型不純物含有領域118に含まれるマグネシウム(Mg)は、p型半導体層114から拡散したことが分かる。
【0058】
以上のように、評価試験の結果から、イオン注入のみではn型半導体層112までp型不純物が拡散せず、その後の熱処理によりp型不純物含有領域118が形成されることが分かる。つまり、n型半導体層112及びp型半導体層114が上述のイオン注入領域形成工程(工程P110)を経ることによって、n型半導体層112のp型不純物含有領域118が形成されることが分かる。
【0059】
B.第2実施形態
図5は、第2実施形態においてイオン注入がされている状態を模式的に示す断面図である。第2実施形態の半導体装置は、第1実施形態の半導体装置100と比較して、さらに、(i)基板110とn型半導体層112との間に、n型半導体層112よりもn型不純物濃度が高いn型半導体層111と、(ii)n型半導体層112の中に、p型不純物含有領域118と交わるように配置されており、n型半導体層112よりもn型不純物濃度が高いn型半導体層113と、(iii)p型半導体層114の上に、n型半導体層112よりもn型不純物濃度が高いn型半導体層115とを備える点で異なるが、それ以外は同じである。なお、n型半導体層113は、p型不純物含有領域118と交わるように図示されているが、p型不純物含有領域118よりも下に配置されていてもよい。また、n型半導体層111と、n型半導体層113と、n型半導体層115との少なくとも一つを備えなくてもよい。n型半導体層111とn型半導体層113とn型半導体層115との不純物濃度は、いずれも1.0×10
17cm
−3以上であり、厚みは、0.1μmから1μmである。なお、n型半導体層115を第2のn型半導体層とも呼ぶ。ここで、n型半導体層111は、基板110への電極形成が困難な場合にドレイン電極を形成するためのコンタクト層として利用できる。n型半導体層115は、ソース電極を形成するためのコンタクト層として利用できる。n型半導体層113は、p型不純物含有領域118からの内蔵電位によりn型半導体層112が空乏化して電子が流れにくくなることを抑制できる。
【0060】
第2実施形態の半導体装置の製造方法においても、n型半導体層112へのp型不純物のイオン注入を行わずに、イオン注入領域形成工程(工程P110)においてp型不純物含有領域118を形成することができる。
【0061】
C.第3実施形態
図6は、第3実施形態においてイオン注入がされている状態を模式的に示す断面図である。第3実施形態の半導体装置は、第2実施形態の半導体装置と同様に、第1実施形態の半導体装置100と比較して、さらに、(i)基板110とn型半導体層112との間に、n型半導体層112よりもn型不純物濃度が高いn型半導体層111と、(ii)n型半導体層112の中に、p型不純物含有領域118と交わるように配置されており、n型半導体層112よりもn型不純物濃度が高いn型半導体層113と、(iii)p型半導体層114の上に、n型半導体層112よりもn型不純物濃度が高いn型半導体層115とを備え、さらに、(iv)トレンチ構造を有するが、それ以外は半導体装置100と同様である。なお、このようなトレンチ構造は、半導体層にトレンチを形成し、その中にゲート電極の少なくとも一部が埋め込まれているトレンチゲート構造として用いることができる。第3実施形態の半導体装置は、縦型トレンチMISFET(Metal-Insulator-Semiconductor Field-Effect Transistor)である。
【0062】
図6において、領域122は、イオン注入後の工程において、トレンチ122を形成する領域である。つまり、第3実施形態の製造方法では、p型半導体層114を貫通して、n型半導体層112に至るまで落ち込んだトレンチ122を形成するトレンチ形成工程を備える。なお、第3実施形態では、p型半導体層114の上にn型半導体層115を備え、トレンチ122はn型半導体層115についても貫通している。また、第3実施形態では、イオン注入工程の後にトレンチ形成工程を行うが、トレンチ形成工程の後にイオン注入工程を行ってもよい。
【0063】
n型半導体層112とp型半導体層114との積層の方向(Z軸方向)において、p型不純物含有領域118の底面BS1は、トレンチ122の底面BS2と同じか、もしくはトレンチ122の底面BS2より下(−Z軸方向側)に位置する。第3実施形態では、n型半導体層112とp型半導体層114との積層の方向(Z軸方向)において、p型不純物含有領域118の底面BS1は、トレンチ122の底面BS2より下(−Z軸方向側)に位置する。このようにすることにより、第3実施形態の半導体装置によれば、トレンチ122の底面BS2の外周付近に電界が集中することを、より効果的に抑制できる。なお、「底面」とは、その領域もしくは層のうち、最も−Z軸方向側の面を言う。また、本実施形態において、トレンチ122は、p型不純物含有領域118と重ならない。すなわち、トレンチ122が形成される領域にイオン注入を行っていない。これにより、トレンチ122へのイオン注入によるダメージを抑制でき、より安定した電機特性を得ることができる。
【0064】
第3実施形態の半導体装置は縦型トレンチMISFET(Metal-Insulator-Semiconductor Field-Effect Transistor)であるため、第3実施形態における半導体装置の製造方法では、さらに、トレンチ122の内側に絶縁膜を形成する工程と、n型半導体層115と接するソース電極(第1の電極とも呼ぶ)及びボディ電極を形成する工程と、基板110であるn型半導体と接するドレイン電極(第2の電極とも呼ぶ)を形成する工程と、絶縁膜の上に、第1の電極と第2の電極との間の電流の流れを制御するゲート電極(制御電極とも呼ぶ)を形成する工程と、を備える。なお、基板110が絶縁体である場合、ドレイン電極は、基板110ではなくn型半導体層111と接するように形成する。
【0065】
D.第4実施形態
図7及び
図8は、第4実施形態においてイオン注入がされている状態を模式的に示す断面図である。
図7は、第1のイオン注入がされている状態を模式的に示す断面図であり、
図8は、第2のイオン注入がされている状態を模式的に示す断面図である。
【0066】
第4実施形態の半導体装置は、第1実施形態の半導体装置100と比較して、さらに、(i)基板110とn型半導体層112との間にn型のn型半導体層111と、(ii)n型半導体層112とp型半導体層114との間にn型のn型半導体層113と、を備え、さらに、(iii)p型不純物含有領域119と、(iv)イオン注入領域117Nとを備える点で異なるが、それ以外は同じである。
【0067】
第4実施形態では、
図7に示すとおり、第1のイオン注入領域形成工程として、p型半導体層114へn型不純物であるケイ素(Si)をイオン注入するn型イオン注入工程を行う。このn型イオン注入工程により、p型半導体層114の表面に、イオン注入領域117Nが形成され、後の熱工程によりp型不純物含有領域119が形成される。なお、後の熱工程により、イオン注入領域117Nは、n型半導体領域となる。
【0068】
第1のイオン注入領域形成工程の後、
図8に示すとおり、第2のイオン注入領域形成工程として、p型半導体層114へp型不純物であるマグネシウム(Mg)をイオン注入するp型イオン注入工程を行う。このp型イオン注入工程によりイオン注入領域116Nが形成され、後の熱処理によりp型不純物含有領域118が形成される。p型不純物含有領域118を、第1のp型不純物含有領域118とも呼び、p型不純物含有領域119を、第2のp型不純物含有領域119とも呼ぶ。
【0069】
図7及び
図8において、領域122は、イオン注入工程の後に行われるトレンチ形成工程において、トレンチ122を形成する領域である。
図8に示すとおり、n型半導体層112とp型半導体層114との積層の方向(Z軸方向)において、p型不純物含有領域118の底面BS1及びp型不純物含有領域119の底面BS3は、トレンチ122の底面BS2と同じか、もしくはトレンチ122の底面BS2より下(−Z軸方向側)に位置する。第4実施形態では、n型半導体層112とp型半導体層114との積層の方向(Z軸方向)において、p型不純物含有領域118の底面BS1及びp型不純物含有領域119の底面BS3は、いずれもトレンチ122の底面BS2より下(−Z軸方向側)に位置する。このため、第4実施形態の半導体装置によれば、トレンチ122の底面BS2の外周付近に電界が集中することを、より効果的に抑制できる。さらに、n型半導体層112とp型半導体層114との積層の方向(Z軸方向)において、p型不純物含有領域118の底面BS1は、p型不純物含有領域119の底面BS3よりも下に位置し、p型不純物含有領域119の底面BS3は、トレンチ122の底面BS2より下(−Z軸方向側)に位置する。これにより、p型不純物含有領域118からの電界集中を緩和できる。
【0070】
また、トレンチ形成工程において、p型不純物含有領域119の少なくとも一部と重なる位置にトレンチ122が形成されることにより、トレンチの底面BS2の少なくとも一部が、p型不純物含有領域119により形成される。第4実施形態では、トレンチ形成工程において、p型不純物含有領域119の一部と重なる位置にトレンチ122が形成されることにより、トレンチの底面BS2の一部が、p型不純物含有領域119により形成される。このため、第4実施形態の半導体装置によれば、トレンチ122の底面BS2の外周付近に電界が集中することを、さらに効果的に抑制できる。
【0071】
E.第5実施形態
図9は、第5実施形態においてイオン注入がされている状態を模式的に示す断面図である。第5実施形態において、p型不純物含有領域118は、終端部に設けられている。第5実施形態では、トランジスタやダイオードが形成されたアクティブ領域の周りを囲うように設けられおり、多重の環状に設けられている。第5実施形態では、5重の環状である。なお、5重の環状ではなく、4重以下の環状でもよく、6重以上の環状でもよい。また、p型不純物含有領域118は、環状でなくてもよく、途中に途切れた部分があってもよい。このように多重にすることで、p型不純物含有領域118の数、幅、間隔を変えることができ、所望の特性に応じた終端部を形成することができる。
【0072】
図10は、第5実施形態からn型半導体層113とそれよりも上の層を、ドライエッチングなどにより取り除いた状態を示す模式図である。このような形態として用いてもよい。
【0073】
F.他の実施形態
本発明は、上述の実施形態や実施例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、実施例中の技術的特徴は、上述の課題の一部または全部を解決するために、あるいは、上述の効果の一部または全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
【0074】
第1実施形態において、基板110とn型半導体層112との間には、他の層が存在しないが、他の層が存在してもよい。他の層として、例えば、(i)n型半導体層112よりもn型不純物濃度が高いn型半導体層111(n型不純物濃度:5.0×10
18cm
−3、厚み:0.5μmから1μm)や、(ii)基板110と接する層から順に、窒化アルミニウム(AlN)層と窒化ガリウム(GaN)層とを備える格子不整合を緩和する層や、(iii)低温堆積バッファ層が挙げられる。基板110とn型半導体層112との間に、n型半導体層112よりもn型不純物濃度が高いn型半導体層111を備え、基板110を絶縁体とした場合、n型半導体層112よりもn型不純物濃度が高いn型半導体層111は、ドレインコンタクト層として機能し、ドレイン電極はドレインコンタクト層と接するように形成される。
【0075】
第1実施形態において、n型半導体層112とp型半導体層114の間には、他の層が存在しないが、他の層が存在してもよい。他の層として、例えば、n型半導体層112よりもn型不純物濃度が高いn型半導体層113(n型不純物濃度:5.0×10
17cm
−3以下、厚み:1μm以下)が挙げられる。このようなn型半導体層113は、p型不純物含有領域118からの内蔵電位によりn型半導体層112が空乏層化して電子が流れにくくなることを抑制できる。
【0076】
第1実施形態において、p型半導体層114の上には半導体層が存在しないが、他の層が存在してもよい。他の層として、例えば、n型不純物濃度が高いn型半導体層115(n型不純物濃度:5.0×10
18cm
−3、厚み:0.5μm以下)が挙げられる。この層は、ソースコンタクト層として機能する。
【0077】
第3実施形態から第5実施形態では、本発明が適用される半導体装置として、縦型トレンチMISFETを用いて説明した。例えば、第3実施形態における縦型トレンチMISFETは、以下のような形態となる。
【0078】
図11は、第3実施形態における縦型トレンチMISFETの模式図である。第3実施形態における縦型トレンチMISFETは、絶縁膜130と、ソース電極141と、ゲート電極142と、ドレイン電極143と、ボディ電極144とを備える。しかし、本発明が適用される半導体装置は、これに限られず、例えば、絶縁ゲートバイポーラトランジスタ(IGBT)などのトレンチゲート構造を有し、制御電極で反転層を形成する原理を用いて電流を制御する半導体装置であってもよい。
【0079】
上述の実施形態において、n型不純物としてケイ素(Si)を用いている。しかし、本発明はこれに限らない。n型不純物として、例えば、酸素(O)や、ゲルマニウム(Ge)を用いてもよい。