(58)【調査した分野】(Int.Cl.,DB名)
有機EL表示装置において、第一電極上に形成された絶縁層が(A)アルカリ可溶性樹脂、(B)o−キノンジアジド化合物、(C)有機溶剤を含むポジ型感光性樹脂組成物より得られる硬化膜であり、(B)o−キノンジアジド化合物が4−ナフトキノンジアジドスルホニルエステル化合物を含み、該硬化膜の断面を電子線マイクロアナライザで測定した際に得られる硫黄と炭素のモル比S/Cが0.004以上0.005以下であり、前記(A)アルカリ可溶性樹脂が、ポリイミド、ポリイミド前駆体、またはポリベンゾオキサゾール前駆体の中から選ばれる少なくとも1種以上のアルカリ可溶性樹脂またはそれらの共重合体であることを特徴とする、有機EL表示装置。
前記絶縁層の硬化膜を180℃、30分加熱したときに放出されるアウトガス成分中、パージ・アンド・トラップ法で吸着捕捉され、ガスクロマトグラフ質量分析(GC−MS)にて検出される成分のうち、有機溶剤に由来するガス成分の総量がn−ヘキサデカン換算で10ppm以下であることを特徴とする、請求項1に記載の有機EL表示装置。
有機EL表示装置において、駆動回路上に形成された平坦化層が(A)アルカリ可溶性樹脂、(B)o−キノンジアジド化合物、(C)有機溶剤を含むポジ型感光性樹脂組成物より得られる硬化膜であり、その硬化膜断面を電子線マイクロアナライザで測定した際に得られる硫黄と炭素のモル比S/Cが0.003以上0.008以下であることを特徴とする、請求項1〜3のいずれかに記載の有機EL表示装置。
前記ポジ型感光性樹脂組成物に含まれる(A)アルカリ可溶性樹脂が、ポリイミド、ポリイミド前駆体、またはポリベンゾオキサゾール前駆体の中から選ばれる少なくとも1種以上のアルカリ可溶性樹脂またはそれらの共重合体であることを特徴とする、請求項4に記載の有機EL表示装置。
前記平坦化層の硬化膜を180℃、30分加熱したときに放出されるアウトガス成分中、パージ・アンド・トラップ法で吸着捕捉され、ガスクロマトグラフ質量分析(GC−MS)にて検出される成分のうち、有機溶剤に由来するガス成分の総量がn−ヘキサデカン換算で10ppm以下であることを特徴とする、請求項4または5に記載の有機EL表示装置。
【発明を実施するための形態】
【0010】
本発明の実施の形態について詳細に説明する。
【0011】
本発明の実施形態の有機EL表示装置は、マトリックス上に形成された複数の画素を有するアクティブマトリックス型の有機EL表示装置である。アクティブマトリックス型の表示装置は、ガラスなどの基板上にTFT(薄膜トランジスタ)とTFTの側方部に位置しTFTと接続された配線とを有し、その駆動回路上に凹凸を覆うようにして平坦化層を有し、さらに平坦化層上に表示素子が設けられている。表示素子と配線とは、平坦化層に形成されたコンタクトホールを介して接続される。また、本発明の実施形態の有機EL表示装置では、第一電極上に絶縁層が形成される。
【0012】
図1に平坦化層と絶縁層を形成したTFT基板の断面図を示す。基板6上に、ボトムゲート型またはトップゲート型のTFT1が行列状に設けられており、このTFT1を覆う状態でTFT絶縁層3が形成されている。また、このTFT絶縁層3の下にTFT1に接続された配線2が設けられている。さらにTFT絶縁層3上には、配線2を開口するコンタクトホール7とこれらを埋め込む状態で平坦化層4が設けられている。平坦化層4には、配線2のコンタクトホール7に達するように開口部が設けられている。そして、このコンタクトホール7を介して、配線2に接続された状態で、平坦化層4上にITO(透明電極)5が形成されている。ここで、ITO5は、有機EL素子の第一電極となる。そしてITO5の周縁を覆うように絶縁層8が形成される。この有機EL素子は、基板6の反対側から発光光を放出するトップエミッション型でもよいし、基板6側から光を取り出すボトムエミッション型でもよい。
【0013】
また、この基板に赤、緑、青色領域にそれぞれ発光ピーク波長を有する有機EL素子が配列したもの、もしくは全面に白色の有機EL素子を作製して別途カラーフィルタと組み合わせて使用するようなものをカラーディスプレイと呼び、通常、表示される赤色領域の光のピーク波長は560〜700nm、緑色領域は500〜560nm、青色領域は420〜500nmの範囲である。
【0014】
発光画素と呼ばれる範囲は、対向配置された第一電極と第二電極とが交差し重なる部分、さらに、第一電極上の絶縁層により規制される範囲である。アクティブマトリックス型ディスプレイにおいては、スイッチング手段が形成される部分が発光画素の一部を占有するように配置されることがあり、発光画素の形状は矩形状ではなく、一部分が欠落したような形でもよい。しかしながら、発光画素の形状はこれらに限定されるものではなく、例えば円形でもよく、絶縁層の形状によっても容易に変化させることができる。
【0015】
本発明の有機EL素子の作製は、マスク蒸着法によって有機EL層が形成される。マスク蒸着法とは、蒸着マスクを用いて有機化合物を蒸着してパターニングする方法で、所望のパターンを開口部とした蒸着マスクを基板の蒸着源側に配置して蒸着を行う。高精度の蒸着パターンを得るためには、平坦性の高い蒸着マスクを基板に密着させることが重要であり、一般的に、蒸着マスクに張力をかける技術や、基板背面に配置した磁石によって蒸着マスクを基板に密着させる技術などが用いられる。
【0016】
蒸着マスクの製造方法としては、エッチング法や機械的研磨、サンドブラスト法、焼結法、レーザー加工法、感光性樹脂の利用などが挙げられるが、微細なパターンが必要な場合は、加工精度に優れるエッチング法や電鋳法を用いることが多い。
【0017】
本発明の有機EL素子に含まれる有機EL層の構成は特に限定されず、例えば、(1)正孔輸送層/発光層、(2)正孔輸送層/発光層/電子輸送層、(3)発光層/電子輸送層のいずれであってもよい。
【0018】
続いて第二電極を形成する。アクティブマトリックス型では、発光領域全体に渡って第二電極がベタで形成されることが多い。第二電極には、電子を効率よく注入できる陰極としての機能が求められるので、電極の安定性を考慮して金属材料が多く用いられる。なお、第一電極を陰極に、第二電極を陽極にすることも可能である。
【0019】
第二電極を形成後、封止をおこない有機EL表示装置が得られる。一般的に、有機EL素子は酸素や水分に弱いとされ、信頼性の高い表示装置を得るためには出来るだけ酸素と水分の少ない雰囲気下で封止をおこなうことが好ましい。封止に使用する部材についても、ガスバリア性の高いものを選定することが好ましい
本発明の有機EL表示装置では、第一電極上に形成された絶縁層が(A)アルカリ可溶性樹脂、(B)o−キノンジアジド化合物、(C)有機溶剤を含むポジ型感光性樹脂組成物より得られる硬化膜であって、該硬化膜の断面を電子線マイクロアナライザで測定した際に得られる硫黄と炭素のモル比S/Cが0.003以上0.008以下であることを特徴とする。
【0020】
本発明者は鋭意検討を重ねた結果、絶縁層中に含有する硫黄原子が、有機EL装置の長期信頼性を低下させる因子であることを突き止めるに至った。より具体的には、平坦化層または絶縁層中の硫黄成分が画素内部に染み出ることで、画素の端部から発光輝度が低下する、もしくは不点灯となる、画素シュリンクと呼ばれる現象を引き起こすことを特定した。
【0021】
この課題に対し、該硬化膜の断面を電子線マイクロアナライザで測定した際に得られる硫黄と炭素のモル比S/Cを0.008以下、より好ましくは0.007以下、さらに好ましくは0.006以下とすることで、発光輝度の低下や画素シュリンクが起こらず、有機EL装置として十分な長期信頼性を与えることが可能となる。また上記モル比S/Cを0.003以上、より好ましくは0.004以上とすることで、ポジ型感光性樹脂として優れた感度で加工することができる。硫黄と炭素のモル比S/Cの測定方法としては、有機EL表示装置を分解および研磨することによって絶縁層を露出させ、電子線マイクロアナライザを用い、標準試料を用いた定量分析法により硫黄および炭素のピーク強度を測定し求めた。
【0022】
また、該硬化膜を180℃、30分加熱したときに放出されるアウトガス成分中、パージ・アンド・トラップ法で吸着捕捉され、ガスクロマトグラフ質量分析(GC−MS)にて検出される成分のうち、有機溶剤に由来するガス成分の総量がn−ヘキサデカン換算で10ppm以下であることが好ましい。これにより有機EL表示装置の信頼性をさらに高めることができる。より具体的には、硬化膜中に残存する微量の有機溶剤が原因で引き起こされる画素シュリンクを大幅に抑制できる。有機溶剤に由来するアウトガスの測定方法としては、有機EL表示装置を分解および研磨することによって絶縁層を露出させ、絶縁層を必要量採取した上、180℃、30分加熱し、パージ・アンド・トラップ法で吸着捕捉した成分をGC−MSを用いて分析した。n−ヘキサデカンを標準物質として、検量線を作成し、ガス成分の発生量を求めた。なお、有機溶剤に由来するガス成分とは、後述する(C)成分として具体的に記載している化合物のことを指す。 さらには、該硬化膜の5%熱重量減少温度は350℃以上であることが好ましい。これにより、有機EL表示装置の長期信頼性をさらに高める効果が得られる。5%熱重量減少温度の測定方法は、有機EL表示装置を分解および研磨することによって絶縁層を露出させ、絶縁層を必要量採取した上、熱重量分析装置を用いて重量が初期重量に対して5%減少した温度を測定することにより求めた。
【0023】
絶縁層と同様に、駆動回路上に形成された平坦化層についても上記の硬化膜であることが好ましい。すなわち、駆動回路上に形成された平坦化層が(A)アルカリ可溶性樹脂、(B)o−キノンジアジド化合物、(C)有機溶剤を含むポジ型感光性樹脂組成物より得られる硬化膜であり、その硬化膜断面を電子線マイクロアナライザで測定した際に得られる硫黄と炭素のモル比S/Cが0.003以上0.008以下であることが好ましい。平坦化層に上記の硬化膜を用いることで、有機ELの長期信頼性をより向上させることが可能となる。
【0024】
平坦化層の硬化膜について、硫黄と炭素のモル比S/C、有機溶剤に由来するアウトガス、および5%熱重量減少温度を測定する場合も、有機EL表示装置を分解および研磨することによって平坦化層を露出させ、絶縁層と同様の方法で実施する。
【0025】
本発明の有機EL表示装置において、第一電極上に形成された絶縁層の硬化膜や、駆動回路上に形成された平坦化層の硬化膜は、(A)アルカリ可溶性樹脂、(B)o−キノンジアジド化合物、(C)有機溶剤を含むポジ型感光性樹脂組成物より得られる硬化膜と規定されている。すなわち、上記硬化膜は、特定のポジ型感光性樹脂組成物より得られる硬化膜として規定されている。よって、「その物の製造方法が記載されている場合」に該当すると解される可能性がある。
【0026】
しかしながら、一般的に硬化膜を、「その構造又は特性により直接特定すること」は困難である。よって、「出願人にこのような特定を要求することがおよそ実際的でないという事情(「不可能・非実際的事情」)」が存在すると考えられる。
【0027】
本発明で用いられるポジ型感光性樹脂組成物は(A)アルカリ可溶性樹脂を含有する。本発明におけるアルカリ可溶性とは、樹脂をγ−ブチロラクトンに溶解した溶液をシリコンウェハー上に塗布し、120℃で4分間プリベークを行って膜厚10μm±0.5μmのプリベーク膜を形成し、該プリベーク膜を23±1℃の2.38重量%テトラメチルアンモニウムヒドロキシド水溶液に1分間浸漬した後、純水でリンス処理したときの膜厚減少から求められる溶解速度が50nm/分以上であることをいう。
【0028】
(A)アルカリ可溶性樹脂としては、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、ポリアミノアミド、ポリアミド、アルカリ可溶性基を有するラジカル重合性モノマーから得られる重合体、カルド樹脂、フェノール樹脂、環状オレフィン重合体、シロキサン樹脂などが挙げられるが、これに限定されない。これらの樹脂を2種以上含有してもよい。これらのアルカリ可溶性樹脂の中でも、耐熱性に優れ、高温下におけるアウトガス量が少ないものが好ましい。具体的には、ポリイミド、ポリイミド前駆体、またはポリベンゾオキサゾール前駆体の中から選ばれる少なくとも1種以上のアルカリ可溶性樹脂またはそれらの共重合体が好ましい。
【0029】
本発明の(A)アルカリ可溶性樹脂として用いることができるポリイミド、ポリイミド前駆体、またはポリベンゾオキサゾール前駆体の中から選ばれるアルカリ可溶性樹脂またはそれらの共重合体は、上記アルカリ可溶性を付与するため、樹脂の構造単位中および/またはその主鎖末端に酸性基を有することが好ましい。酸性基としては、例えば、カルボキシル基、フェノール性水酸基、スルホン酸基などが挙げられ、これらの中で、カルボキシル基またはフェノール性水酸基が、硫黄原子を含まない点で好ましい。また、フッ素原子を有することが好ましく、アルカリ水溶液で現像する際に、膜と基材との界面に撥水性を付与し、界面へのアルカリ水溶液のしみこみを抑制することができる。アルカリ可溶性樹脂中のフッ素原子含有量は、界面へのアルカリ水溶液のしみこみ防止効果の観点から5重量%以上が好ましく、アルカリ水溶液に対する溶解性の点から20重量%以下が好ましい。
【0030】
上述のポリイミドは下記一般式(1)で表される構造単位を有し、ポリイミド前駆体およびポリベンゾオキサゾール前駆体は下記一般式(2)で表される構造単位を有する。これらを2種以上含有してもよいし、一般式(1)で表される構造単位および一般式(2)で表される構造単位を共重合した樹脂を用いてもよい。
【0032】
一般式(1)中、R
1は4〜10価の有機基、R
2は2〜8価の有機基を表す。R
3およびR
4はカルボキシル基、またはフェノール性水酸基を表し、それぞれ単一のものであっても異なるものが混在していてもよい。pおよびqは0〜6の整数を表す。
【0034】
一般式(2)中、R
5は2〜8価の有機基、R
6は2〜8価の有機基を表す。R
7およびR
8はフェノール性水酸基、またはCOOR
9を表し、それぞれ単一のものであっても異なるものが混在していてもよい。R
9は水素原子または炭素数1〜20の1価の炭化水素基を示す。rおよびsは0〜6の整数を表す。ただしr+s>0である。
【0035】
ポリイミド、ポリイミド前駆体、またはポリベンゾオキサゾール前駆体の中から選ばれるアルカリ可溶性樹脂またはそれらの共重合体は、一般式(1)または(2)で表される構造単位を5〜100000有することが好ましい。また、一般式(1)または(2)で表される構造単位に加えて、他の構造単位を有してもよい。この場合、一般式(1)または(2)で表される構造単位を、全構造単位数のうち50モル%以上有することが好ましい。
【0036】
上記一般式(1)中、R
1−(R
3)
pは酸二無水物の残基を表す。R
1は4価〜10価の有機基であり、なかでも芳香族環または環状脂肪族基を含有する炭素原子数5〜40の有機基が好ましい。
【0037】
酸二無水物としては、具体的には、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、9,9−ビス(3,4−ジカルボキシフェニル)フルオレン酸二無水物、9,9−ビス{4−(3,4−ジカルボキシフェノキシ)フェニル}フルオレン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、2,3,5,6−ピリジンテトラカルボン酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、および下記に示した構造の酸二無水物などの芳香族テトラカルボン酸二無水物や、ブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物などの脂肪族のテトラカルボン酸二無水物などを挙げることができる。これらを2種以上用いてもよい。
【0039】
R
10は酸素原子、C(CF
3)
2、またはC(CH
3)
2を表す。R
11およびR
12は水素原子、または水酸基を表す。
【0040】
上記一般式(2)中、R
5−(R
7)
rは酸の残基を表す。R
5は2価〜8価の有機基であり、なかでも芳香族環または環状脂肪族基を含有する炭素原子数5〜40の有機基が好ましい。
【0041】
酸成分としては、ジカルボン酸の例としてテレフタル酸、イソフタル酸、ジフェニルエーテルジカルボン酸、ビス(カルボキシフェニル)ヘキサフルオロプロパン、ビフェニルジカルボン酸、ベンゾフェノンジカルボン酸、トリフェニルジカルボン酸など、トリカルボン酸の例としてトリメリット酸、トリメシン酸、ジフェニルエーテルトリカルボン酸、ビフェニルトリカルボン酸など、テトラカルボン酸の例としてピロメリット酸、3,3’,4,4’−ビフェニルテトラカルボン酸、2,3,3’,4’−ビフェニルテトラカルボン酸、2,2’,3,3’−ビフェニルテトラカルボン酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、2,2’,3,3’−ベンゾフェノンテトラカルボン酸、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン、2,2−ビス(2,3−ジカルボキシフェニル)ヘキサフルオロプロパン、1,1−ビス(3,4−ジカルボキシフェニル)エタン、1,1−ビス(2,3−ジカルボキシフェニル)エタン、ビス(3,4−ジカルボキシフェニル)メタン、ビス(2,3−ジカルボキシフェニル)メタン、ビス(3,4−ジカルボキシフェニル)エーテル、1,2,5,6−ナフタレンテトラカルボン酸、2,3,6,7−ナフタレンテトラカルボン酸、2,3,5,6−ピリジンテトラカルボン酸、3,4,9,10−ペリレンテトラカルボン酸および下記に示した構造の芳香族テトラカルボン酸や、ブタンテトラカルボン酸、1,2,3,4−シクロペンタンテトラカルボン酸などの脂肪族のテトラカルボン酸などを挙げることができる。これらを2種以上用いてもよい。
【0043】
R
10は酸素原子、C(CF
3)
2、またはC(CH
3)
2を表す。R
11およびR
12は水素原子、または水酸基を表す。
【0044】
これらのうち、トリカルボン酸、テトラカルボン酸では1つまたは2つのカルボキシル基が一般式(2)におけるR
7基に相当する。また、上に例示したジカルボン酸、トリカルボン酸、テトラカルボン酸の水素原子を、一般式(2)におけるR
7基、好ましくは水酸基で1〜4個置換したものがより好ましい。これらの酸は、そのまま、あるいは酸無水物、活性エステルとして使用できる。
【0045】
上記一般式(1)のR
2−(R
4)
qおよび上記一般式(2)のR
6−(R
8)
sはジアミンの残基を表す。R
2およびR
8は2〜8価の有機基であり、なかでも芳香族環または環状脂肪族基を含有する炭素原子数5〜40の有機基が好ましい。
【0046】
ジアミンの具体的な例としては、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、1,4−ビス(4−アミノフェノキシ)ベンゼン、ベンジジン、m−フェニレンジアミン、p−フェニレンジアミン、1,5−ナフタレンジアミン、2,6−ナフタレンジアミン、ビス(4−アミノフェノキシ)ビフェニル、ビス{4−(4−アミノフェノキシ)フェニル}エーテル、1,4−ビス(4−アミノフェノキシ)ベンゼン、2,2’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ジエチル−4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジエチル−4,4’−ジアミノビフェニル、2,2’,3,3’−テトラメチル−4,4’−ジアミノビフェニル、3,3’,4,4’−テトラメチル−4,4’−ジアミノビフェニル、2,2’−ジ(トリフルオロメチル)−4,4’−ジアミノビフェニル、9,9−ビス(4−アミノフェニル)フルオレンあるいはこれらの芳香族環の水素原子の少なくとも一部をアルキル基やハロゲン原子で置換した化合物や、脂肪族のシクロヘキシルジアミン、メチレンビスシクロヘキシルアミンおよび下記に示した構造のジアミンなどが挙げられる。これらを2種以上用いてもよい。
【0048】
R
10は酸素原子、C(CF
3)
2、またはC(CH
3)
2を表す。R
11〜R
14はそれぞれ独立に水素原子、または水酸基を表す。
【0049】
これらのジアミンは、ジアミンとして、または対応するジイソシアネート化合物、トリメチルシリル化ジアミンとして使用できる。
【0050】
また、これらの樹脂の末端を、酸性基を有するモノアミン、酸無水物、酸クロリド、モノカルボン酸により封止することで、主鎖末端に酸性基を有する樹脂を得ることができる。
【0051】
このようなモノアミンの好ましい例としては、5−アミノ−8−ヒドロキシキノリン、1−ヒドロキシ−7−アミノナフタレン、1−ヒドロキシ−6−アミノナフタレン、1−ヒドロキシ−5−アミノナフタレン、1−ヒドロキシ−4−アミノナフタレン、2−ヒドロキシ−7−アミノナフタレン、2−ヒドロキシ−6−アミノナフタレン、2−ヒドロキシ−5−アミノナフタレン、1−カルボキシ−7−アミノナフタレン、1−カルボキシ−6−アミノナフタレン、1−カルボキシ−5−アミノナフタレン、2−カルボキシ−7−アミノナフタレン、2−カルボキシ−6−アミノナフタレン、2−カルボキシ−5−アミノナフタレン、2−アミノ安息香酸、3−アミノ安息香酸、4−アミノ安息香酸、4−アミノサリチル酸、5−アミノサリチル酸、6−アミノサリチル酸、3−アミノ−4,6−ジヒドロキシピリミジン、2−アミノフェノール、3−アミノフェノール、4−アミノフェノール、2−アミノチオフェノール、3−アミノチオフェノール、4−アミノチオフェノールなどが挙げられる。これらを2種以上用いてもよい。
【0052】
また、このような酸無水物、酸クロリド、モノカルボン酸の好ましい例としては、無水フタル酸、無水マレイン酸、ナジック酸無水物、シクロヘキサンジカルボン酸無水物、3−ヒドロキシフタル酸無水物などの酸無水物、3−カルボキシフェノール、4−カルボキシフェノール、3−カルボキシチオフェノール、4−カルボキシチオフェノール、1−ヒドロキシ−7−カルボキシナフタレン、1−ヒドロキシ−6−カルボキシナフタレン、1−ヒドロキシ−5−カルボキシナフタレン、1−メルカプト−7−カルボキシナフタレン、1−メルカプト−6−カルボキシナフタレン、1−メルカプト−5−カルボキシナフタレン、などのモノカルボン酸類およびこれらのカルボキシル基が酸クロリド化したモノ酸クロリド化合物、テレフタル酸、フタル酸、マレイン酸、シクロヘキサンジカルボン酸、1,5−ジカルボキシナフタレン、1,6−ジカルボキシナフタレン、1,7−ジカルボキシナフタレン、2,6−ジカルボキシナフタレンなどのジカルボン酸類の1つのカルボキシル基だけが酸クロリド化したモノ酸クロリド化合物、モノ酸クロリド化合物とN−ヒドロキシベンゾトリアゾールやN−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドとの反応により得られる活性エステル化合物が挙げられる。これらを2種以上用いてもよい。
【0053】
上記したモノアミン、酸無水物、酸クロリド、モノカルボン酸などの末端封止剤の含有量は、樹脂を構成する酸およびアミン成分の総和100モル%に対して、2〜25モル%が好ましい。
【0054】
樹脂中に導入された末端封止剤は、以下の方法で容易に検出できる。例えば、末端封止剤が導入された樹脂を、酸性溶液に溶解し、樹脂の構成単位であるアミン成分と酸成分に分解し、これをガスクロマトグラフィー(GC)や、NMR測定することにより、末端封止剤を容易に検出できる。これとは別に、末端封止剤が導入された樹脂を直接、熱分解ガスクロマトグラフ(PGC)や赤外スペクトル及び
13C−NMRスペクトル測定することで検出することが可能である。
【0055】
本発明の(A)アルカリ可溶性樹脂は公知の方法により合成される。ポリアミド酸またはポリアミド酸エステルの場合、製造方法として例えば、低温中でテトラカルボン酸二無水物とジアミン化合物を反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後アミンと縮合剤の存在下で反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後残りのジカルボン酸を酸クロリド化し、アミンと反応させる方法などで合成することができる。
【0056】
ポリヒドロキシアミドの場合、製造方法としては、ビスアミノフェノール化合物とジカルボン酸を縮合反応させることで得ることが出来る。具体的には、ジシクロヘキシルカルボジイミド(DCC)のような脱水縮合剤と酸を反応させ、ここにビスアミノフェノール化合物を加える方法やピリジンなどの3級アミンを加えたビスアミノフェノール化合物の溶液にジカルボン酸ジクロリドの溶液を滴下するなどがある。
【0057】
ポリイミドの場合、前述の方法で得られたポリアミド酸またはポリアミド酸エステルを加熱あるいは酸や塩基などの化学処理で脱水閉環することにより得ることができる。
【0058】
本発明の(A)アルカリ可溶性樹脂として用いることができるアルカリ可溶性基を有するラジカル重合性モノマーを含む重合体は、アルカリ可溶性を付与するために、フェノール性水酸基またはカルボキシル基を有するラジカル重合性モノマーを用いる。フェノール性水酸基またはカルボキシル基を有するラジカル重合性モノマーとしては、例えば、o−ヒドロキシスチレン、m−ヒドロキシスチレンおよびp−ヒドロキシスチレン、ならびにこれらのアルキル、アルコキシ、ハロゲン、ハロアルキル、ニトロ、シアノ、アミド、エステル、カルボキシ置換体; ビニルヒドロキノン、5−ビニルピロガロール、6−ビニルピロガロール、1−ビニルフロログリシノ− ル等のポリヒドロキシビニルフェノール類; o−ビニル安息香酸、m−ビニル安息香酸、およびp−ビニル安息香酸、ならびにこれらのアルキル、アルコキシ、ハロゲン、ニトロ、シアノ、アミド、エステル置換体、メタクリル酸およびアクリル酸、ならびにこれらのα−位のハロアルキル、アルコキシ、ハロゲン、ニトロ、シアノ置換体; マレイン酸、無水マレイン酸、フマル酸、無水フマル酸、シトラコン酸、メサコン酸、イタコン酸および1,4−シクロヘキセンジカルボン酸等の二価の不飽和カルボン酸、ならびにこれらのメチル、エチル、プロピル、i−プロピル、n−ブチル、sec−ブチル、ter−ブチル、フェニル、o−、m−、p−トルイルハーフエステルおよびハーフアミドが好ましい。
【0059】
これらのうち、o−ヒドロキシスチレン、m−ヒドロキシスチレンおよびp−ヒドロキシスチレン、ならびにこれらのアルキル、アルコキシ置換体がパターニング時の感度や解像度、現像後の残膜率、耐熱変形性、耐溶剤性、下地との密着性、溶液の保存安定性等の点から好ましく用いられる。これらは1種または2種以上のモノマーを一緒に用いることができる。
【0060】
また、その他のラジカル重合性モノマーは、例えばスチレン、およびスチレンのα−位、o−位、m−位、またはp−位のアルキル、アルコキシ、ハロゲン、ハロアルキル、ニトロ、シアノ、アミド、エステル置換体; ブタジエン、イソプレン、クロロプレン等のジオレフィン類; メタクリル酸またはアクリル酸のメチル、エチル、n−プロピル、i−プロピル、n−ブチル、sec−ブチル、ter−ブチル、ペンチル、ネオペンチル、イソアミルヘキシル、シクロヘキシル、アダマンチル、アリル、プロパギル、フェニル、ナフチル、アントラセニル、アントラキノニル、ピペロニル、サリチル、シクロヘキシル、ベンジル、フェネシル、クレシル、グリシジル、1,1,1−トリフルオロエチル、パーフルオロエチル、パーフルオロ−n−プロピル、パーフルオロ−i−プロピル、トリフェニルメチル、トリシクロ[5.2.1.0
2 , 6] デカン−8−イル( 慣用名:「ジシクロペンタニル」)、クミル、3−(N,N−ジメチルアミノ)プロピル、3−(N,N−ジメチルアミノ)エチル、フリル、フルフリルの各エステル化物、メタクリル酸またはアクリル酸のアニリド、アミド、またはN,N−ジメチル、N,N−ジエチル、N,N−ジプロピル、N,N−ジイソプロピル、アントラニルアミド、アクリロニトリル、アクロレイン、メタクリロニトリル、塩化ビニル、塩化ビニリデン、弗化ビニル、弗化ビニリデン、N−ビニルピロリドン、ビニルピリジン、酢酸ビニル、N−フェニルマレインイミド、N−(4−ヒドロキシフェニル)マレインイミド、N−メタクリロイルフタルイミド、N−アクリロイルフタルイミド等を用いることができる。これらは1種または2種以上併用することができる。
【0061】
これらのうち、スチレン、およびスチレンのα−位、o−位、m−位、p−位のアルキル、アルコキシ、ハロゲン、ハロアルキル置換体; ブタジエン、イソプレン; メタクリル酸、またはアクリル酸のメチル、エチル、n−プロピル、n−ブチル、グリシジルおよびトリシクロ[5.2.1.0
2 , 6] デカン−8−イルの各エステル物が、パタ−ニング時の感度や解像度、現像後の残膜率、耐熱変形性、耐溶剤性、下地との密着性、溶液の保存安定性等の観点から特に好適に用いられる。アルカリ可溶性樹脂としてフェノール性水酸基を有するラジカル重合性モノマーとその他のラジカル重合性モノマーの共重合体を用いる場合、その他のラジカル重合性モノマーの好ましい割合は、フェノール性水酸基を持つラジカル重合性モノマーおよび他のラジカル重合性モノマーの合計量に対して、好ましくは40重量%以下、特に好ましくは5〜30重量%である。また、アルカリ可溶性樹脂としてカルボキシル基を有するラジカル重合性モノマーとその他のラジカル重合性モノマーの共重合体を用いる場合、他のラジカル重合性モノマーの好ましい割合は、カルボキシル基を有するラジカル重合性モノマーおよび他のラジカル重合性モノマーの合計量に対して、好ましくは90重量% 以下、特に好ましくは10 〜80重量%である。これらのラジカル重合性モノマーの割合がフェノール性水酸基またはカルボキシル基を有するラジカル重合性モノマーに対して前述した割合を越えると、アルカリ現像が困難となる場合がある。
【0062】
アルカリ可溶性基を有するラジカル重合性モノマーを含む重合体の製造に用いられる溶剤は、例えばメタノール、エタノールなどのアルコール類; テトラヒドロフランなどのエーテル類; エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのグリコールエーテル類; メチルセロソルブアセテート、エチルセロソルブアセテートなどのエチレングリコールアルキルエーテルアセテート類; ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテルなどのジエチレングリコール類; プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテルなどのプロピレングリコールモノアルキルエーテル類; プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、プロピレングリコールブチルエーテルアセテートなどのプロピレングリコールアルキルエーテルアセテート類; プロピレングリコールメチルエーテルプロピオネート、プロピレングリコールエチルエーテルプロピオネート、プロピレングリコールプロピルエーテルプロピオネート、プロピレングリコールブチルエーテルプロピオネートなどのプロピレングリコールアルキルエーテルプロピオネート類; トルエン、キシレンなどの芳香族炭化水素類; メチルエチルケトン、シクロヘキサノン、4−ヒドロキシ−4−メチル−2−ペンタノンなどのケトン類; および酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、2−ヒドロキシプロピオン酸エチル、2−ヒドロキシ−2−メチルプロピオン酸メチル、2−ヒドロキシ−2−メチルプロピオン酸エチル、ヒドロキシ酢酸メチル、ヒドロキシ酢酸エチル、ヒドロキシ酢酸ブチル、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、3−ヒドロキシプロピオン酸メチル、3−ヒドロキシプロピオン酸エチル、3−ヒドロキシプロピオン酸プロピル、3−ヒドロキシプロピオン酸ブチル、2−ヒドロキシ−3−メチルブタン酸メチル、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸プロピル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル、エトキシ酢酸プロピル、エトキシ酢酸ブチル、プロポキシ酢酸メチル、プロポキシ酢酸エチル、プロポキシ酢酸プロピル、プロポキシ酢酸ブチル、ブトキシ酢酸メチル、ブトキシ酢酸エチル、ブトキシ酢酸プロピル、ブトキシ酢酸ブチル、2−メトキシプロピオン酸メチル、2−メトキシプロピオン酸エチル、2−メトキシプロピオン酸プロピル、2−メトキシプロピオン酸ブチル、2−エトキシプロピオン酸メチル、2−エトキシプロピオン酸エチル、2−エトキシプロピオン酸プロピル、2−エトキシプロピオン酸ブチル、2−ブトキシプロピオン酸メチル、2−ブトキシプロピオン酸エチル、2−ブトキシプロピオン酸プロピル、2−ブトキシプロピオン酸ブチル、3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、3−メトキシプロピオン酸プロピル、3−メトキシプロピオン酸ブチル、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、3−エトキシプロピオン酸プロピル、3−エトキシプロピオン酸ブチル、3−プロポキシプロピオン酸メチル、3−プロポキシプロピオン酸エチル、3−プロポキシプロピオン酸プロピル、3−プロポキシプロピオン酸ブチル、3−ブトキシプロピオン酸メチル、3−ブトキシプロピオン酸エチル、3−ブトキシプロピオン酸プロピル、3−ブトキシプロピオン酸ブチルなどのエステル類が挙げられる。これらの溶剤の使用量は、ラジカル重合性モノマー100重量部当たり、好ましくは20〜1000重量部である。
【0063】
アルカリ可溶性基を有するラジカル重合性モノマーを含む重合体の製造に用いられる重合開始剤は、例えば2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス−(2,4 −ジメチルバレロニトリル)、2,2’−アゾビス−(4−メトキシ−2,4−ジメチルバレロニトリル)のようなアゾ化合物;ベンゾイルペルオキシド、ラウロイルペルオキシド、t−ブチルペルオキシピバレート、1,1’−ビス−(t−ブチルペルオキシ)シクロヘキサンのような有機過酸化物;および過酸化水素が挙げられる。ラジカル重合開始剤として過酸化物を用いる場合には、過酸化物を還元剤とともに用いてレドックス型開始剤としてもよい。
【0064】
アルカリ可溶性基を有するラジカル重合性モノマーを含む重合体の好ましい重量平均分子量は、ゲルパーミエーションクロマトグラフィーを用いポリスチレン換算で、好ましくは2000〜100000、より好ましくは3000〜50000、特に好ましくは5000〜30000である。重量平均分子量が100000を超えると現像性、感度が悪化する傾向があり、2000未満ではパターン形状、解像度、現像性、耐熱性が劣化しやすい。
【0065】
これらのアルカリ可溶性基を有するラジカル重合性モノマーを含む重合体は、単独でまたは2種以上を混合して用いてもよい。また重合前にカルボキシル基やフェノール性水酸基に保護基を導入しておき、重合後に脱保護することによってアルカリ可溶性を付与する方法でアルカリ可溶性樹脂を合成してもよい。さらに水添処理等によって可視光における透明性や軟化点を変化させてもよい。
【0066】
本発明の(A)アルカリ可溶性樹脂として用いることができるカルド樹脂としては、カルド構造、即ち、環状構造を構成している4級炭素原子に二つの環状構造が結合した骨格構造、を有する樹脂が挙げられる。カルド構造の一般的なものはフルオレン環にベンゼン環が結合したものである。
【0067】
環状構造を構成している4級炭素原子に二つの環状構造が結合した骨格構造の具体例としては、フルオレン骨格、ビスフェノールフルオレン骨格、ビスアミノフェニルフルオレン骨格、エポキシ基を有するフルオレン骨格、アクリル基を有するフルオレン骨格等が挙げられる。
【0068】
カルド樹脂は、このカルド構造を有する骨格がそれに結合している官能基間の反応等により重合して形成される。カルド樹脂は、主鎖と嵩高い側鎖が一つの元素で繋がれた構造(カルド構造)をもち、主鎖に対してほぼ垂直方向に環状構造を有している。
【0069】
カルド構造を有する単量体の具体例としては、ビス(グリシジルオキシフェニル)フルオレン型エポキシ樹脂、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン等のカルド構造含有ビスフェノ−ル類や9,9−ビス(シアノメチル)フルオレン等の9,9−ビス(シアノアルキル)フルオレン類、9,9−ビス(3−アミノプロピル)フルオレン等の9,9−ビス(アミノアルキル)フルオレン類等が挙げられる。
【0070】
カルド樹脂は、カルド構造を有する単量体を重合して得られる重合体であるが、その他の共重合可能な単量体との共重合体であってもよい。
【0071】
上記単量体の重合方法としては、一般的な方法を用いることができ、例えば、開環重合法や付加重合法などが挙げられる。
【0072】
本発明の(A)アルカリ可溶性樹脂として用いることができるフェノール樹脂としては、ノボラックフェノール樹脂やレゾールフェノール樹脂があり、種々のフェノール類の単独あるいはそれらの複数種の混合物をホルマリンなどのアルデヒド類で重縮合することにより得られる。
【0073】
ノボラックフェノール樹脂およびレゾールフェノール樹脂を構成するフェノール類としては、例えばフェノール、p−クレゾール、m−クレゾール、o−クレゾール、2,3−ジメチルフェノール、2,4−ジメチルフェノール、2,5−ジメチルフェノール、2,6−ジメチルフェノール、3,4 −ジメチルフェノール、3,5−ジメチルフェノール、2,3,4−トリメチルフェノール、2,3,5−トリメチルフェノール、3,4,5−トリメチルフェノール、2,4,5−トリメチルフェノール、メチレンビスフェノール、メチレンビスp−クレゾール、レゾルシン、カテコール、2−メチルレゾルシン、4−メチルレゾルシン、o−クロロフェノール、m−クロロフェノール、p−クロロフェノール、2,3−ジクロロフェノール、m−メトキシフェノール、p−メトキシフェノール、p−ブトキシフェノール、o−エチルフェノール、m−エチルフェノール、p−エチルフェノール、2,3−ジエチルフェノール、2,5−ジエチルフェノール、p−イソプロピルフェノール、α−ナフトール、β−ナフトールなどが挙げられ、これらは単独で、または複数の混合物として用いることができる。
【0074】
また、アルデヒド類としては、ホルマリンの他、パラホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、ヒドロキシベンズアルデヒド、クロロアセトアルデヒドなどが挙げられ、これらは単独でまたは複数の混合物として用いることができる。
【0075】
本発明で用いられるフェノール樹脂の好ましい重量平均分子量は、ゲルパーミエーションクロマトグラフィーを用い、ポリスチレン換算で2000〜 50000、好ましくは3000〜30000の範囲にあることが好ましい。重量平均分子量が50000を超えると現像性、感度が悪化する傾向があり、2000未満ではパターン形状、解像度、現像性、耐熱性が劣化しやすい。
【0076】
本発明の(A)アルカリ可溶性樹脂として用いることができる環状オレフィン重合体としては、環状構造(脂環又は芳香環)と炭素−炭素二重結合とを有する環状オレフィン単量体の、単独重合体又は共重合体が挙げられる。環状オレフィン重合体は、環状オレフィン単量体以外の単量体を有していてもよい。
【0077】
環状オレフィン重合体を構成するための単量体としては、プロトン性極性基を有する環状オレフィン単量体、プロトン性以外の極性基を有する環状オレフィン単量体、極性基を有さない環状オレフィン単量体、および環状オレフィン以外の単量体などが挙げられる。なお、環状オレフィン以外の単量体はプロトン性極性基またはこれ以外の極性基を有してもよく、極性基を有していなくてもよい。
【0078】
プロトン性極性基を有する環状オレフィン単量体の具体例としては、5−ヒドロキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、5−メチル−5−ヒドロキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、5−カルボキシメチル−5−ヒドロキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、5−エキソ−6−エンド−ジヒドロキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、8−ヒドロキシカルボニルテトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、8−メチル−8−ヒドロキシカルボニルテトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、8−エキソ−9−エンド−ジヒドロキシカルボニルテトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン等のカルボキシル基含有環状オレフィンや5−(4−ヒドロキシフェニル)ビシクロ[2.2.1]ヘプト−2−エン、5−メチル−5−(4−ヒドロキシフェニル)ビシクロ[2.2.1]ヘプト−2−エン、8−(4−ヒドロキシフェニル)テトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、8−メチル−8−(4−ヒドロキシフェニル)テトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン等の水酸基含有環状オレフィン等が挙げられる。これらの単量体はそれぞれ単独で使用してもよく、2種以上を組み合わせて使用してもよい。
【0079】
プロトン性以外の極性基を有する環状オレフィン単量体の具体例としては、5−アセトキシビシクロ[2.2.1]ヘプト−2−エン、5−メトキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、5−メチル−5−メトキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、8−アセトキシテトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、8−メトキシカルボニルテトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、8−エトキシカルボニルテトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、8−n−プロポキシカルボニルテトラシクロ[4.4.0.11
2,5.1
7,10]ドデカ−3−エン、8−イソプロポキシカルボニルテトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、8−n−ブトキシカルボニルテトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、8−メチル−8−メトキシカルボニルテトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、8−メチル−8−エトキシカルボニルテトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、8−メチル−8−n−プロポキシカルボニルテトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、8−メチル−8−イソプロポキシカルボニルテトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、8−メチル−8−n−ブトキシカルボニルテトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、8−(2,2,2−トリフルオロエトキシカルボニル)テトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、8−メチル−8−(2,2,2−トリフルオロエトキシカルボニル)テトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン等エステル基を有する環状オレフィンやN−フェニル−(5−ノルボルネン−2,3−ジカルボキシイミド)等のN−置換イミド基を有する環状オレフィン、8−シアノテトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、8−メチル−8−シアノテトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、5−シアノビシクロ[2.2.1]ヘプト−2−エン等のシアノ基を有する環状オレフィン、8−クロロテトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、8−メチル−8−クロロテトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン等のハロゲン原子を有する環状オレフィンが挙げられる。これらの単量体はそれぞれ単独で使用してもよく、2種以上を組み合わせて使用してもよい。
【0080】
極性基を有さない環状オレフィン単量体の具体例としては、ビシクロ[2.2.1]ヘプト−2−エン、5−エチル−ビシクロ[2.2.1]ヘプト−2−エン、5−ブチル−ビシクロ[2.2.1]ヘプト−2−エン、5−エチリデン−ビシクロ[2.2.1]ヘプト−2−エン、5−メチリデン−ビシクロ[2.2.1]ヘプト−2−エン、5−ビニル−ビシクロ[2.2.1]ヘプト−2−エン、トリシクロ[4.3.0.1
2,5]デカ−3,7−ジエン、テトラシクロ[8.4.0.1
11,14.0
3,7]ペンタデカ−3,5,7,12,11−ペンタエン、テトラシクロ[4.4.0.1
2,5.1
7,10]デカ−3−エン、8−メチル−テトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、8−エチル−テトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、8−メチリデン−テトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、8−エチリデン−テトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、8−ビニル−テトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、8−プロペニル−テトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、ペンタシクロ[6.5.1.1
3,6.0
2,7.0
9,13]ペンタデカ−3,10−ジエン、シクロペンテン、シクロペンタジエン、1,4−メタノ−1,4,4a,5,10,10a−ヘキサヒドロアントラセン、8−フェニル−テトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン、テトラシクロ[9.2.1.0
2,10.0
3,8]テトラデカ−3,5,7,12−テトラエン、ペンタシクロ[7.4.0.1
3,6.1
10,13.0
2,7]ペンタデカ−4,11−ジエン、ペンタシクロ[9.2.1.14,7.0
2,10.0
3,8]ペンタデカ−5,12−ジエン等が挙げられる。これらの単量体はそれぞれ単独で使用してもよく、2種以上を組み合わせて使用してもよい。
【0081】
環状オレフィン以外の単量体の具体例としては、エチレン;プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、3−メチル−1−ブテン、3−メチル−1−ペンテン、3−エチル−1−ペンテン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン、4,4−ジメチル−1−ヘキセン、4,4−ジメチル−1−ペンテン、4−エチル−1−ヘキセン、3−エチル−1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセン等の炭素数2〜20のα−オレフィン;1,4−ヘキサジエン、4−メチル−1,4−ヘキサジエン、5−メチル−1,4−ヘキサジエン、1,7−オクタジエン等の非共役ジエン等の鎖状オレフィンが挙げられる。これらの単量体はそれぞれ単独で使用してもよく、2種以上を組み合わせて使用してもよい。
【0082】
前記単量体を用いて環状オレフィン重合体を重合するための方法としては、一般的な方法を用いることができる。例えば、開環重合法や付加重合法などが挙げられる。
【0083】
その際用いる重合触媒としては、例えば、モリブデン、ルテニウム、オスミウム等の金属錯体が好適に用いられる。これらの重合触媒は、それぞれ単独で又は2種以上を組み合わせて用いることができる。
【0084】
各単量体を重合して得られた環状オレフィン重合体の水素添加は、通常、水素添加触媒を用いて行われる。水素添加触媒としては、例えば、オレフィン化合物の水素添加に際して一般的に使用されているものを用いることができる。具体的には、チーグラータイプの均一系触媒、貴金属錯体触媒、及び担持型貴金属系触媒等が利用できる。
【0085】
これらの水素添加触媒のうち、官能基が変性する等の副反応が起きず、重合体中の炭素−炭素不飽和結合を選択的に水素添加できる点から、ロジウム、ルテニウム等の貴金属錯体触媒が好ましく、電子供与性の高い含窒素複素環式カルベン化合物又はホスフィン類が配位したルテニウム触媒が特に好ましい。
【0086】
本発明の(A)アルカリ可溶性樹脂として用いることができるシロキサン樹脂としては、一般式(3)で表されるオルガノシランおよび一般式(4)で表されるオルガノシランから選ばれた少なくとも1種の化合物を加水分解縮合されることによって得られるポリシロキサンが挙げられる。一般式(3)および(4)に示すオルガノシランを用いることにより、感度と解像度に優れた感光性着色樹脂組成物が得られる。
【0087】
本発明で用いる一般式(3)で表されるオルガノシランは以下の通りである。
【0089】
(上記一般式(3)中、R
15は水素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基または炭素数6〜16のアリール基を表す。R
16は水素、炭素数1〜6のアルキル基、炭素数2〜6のアシル基または炭素数6〜16のアリール基を表す。mは0〜3の整数を表す。mが2以上の場合、複数のR
15はそれぞれ同じでも異なってもよい。また、mが2以下の場合、複数のR
16はそれぞれ同じでも異なってもよい。)
前記一般式(3)で表されるオルガノシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラアセトキシシラン、テトラフェノキシシラン等の4官能性シラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリn−ブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、エチルトリn−ブトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、n−ヘキシルトリメトキシシラン、n−ヘキシルトリエトキシシラン、デシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p−ヒドロキシフェニルトリメトキシシラン、1−(p−ヒドロキシフェニル)エチルトリメトキシシラン、2−(p−ヒドロキシフェニル)エチルトリメトキシシラン、4−ヒドロキシ−5−(p−ヒドロキシフェニルカルボニルオキシ)ペンチルトリメトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、〔(3−エチル−3−オキセタニル)メトキシ〕プロピルトリメトキシシラン、〔(3−エチル−3−オキセタニル)メトキシ〕プロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−トリメトキシシリルプロピルコハク酸、1−ナフチルトリメトキシシラン、1−ナフチルトリエトキシシラン、1−ナフチルトリ−n−プロポキシシラン、2−ナフチルトリメトキシシラン、1−アントラセニルトリメトキシシラン、9−アントラセニルトリメトキシシラン、9−フェナントレニルトリメトキシシラン、9−フルオレニルトリメトキシシラン、2−フルオレニルトリメトキシシラン、1−ピレニルトリメトキシシラン、2−インデニルトリメトキシシラン、5−アセナフテニルトリメトキシシラン等の3官能性シラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジアセトキシシラン、ジn−ブチルジメトキシシラン、ジフェニルジメトキシシラン、(3−グリシドキシプロピル)メチルジメトキシシラン、(3−グリシドキシプロピル)メチルジエトキシシラン、ジ(1−ナフチル)ジメトキシシラン、ジ(1−ナフチル)ジエトキシシラン等の2官能性シラン、トリメチルメトキシシラン、トリn−ブチルエトキシシラン、(3−グリシドキシプロピル)ジメチルメトキシシラン、(3−グリシドキシプロピル)ジメチルエトキシシラン等の1官能性シランが挙げられる。これらのオルガノシランを2種以上用いてもよい。 本発明で用いる一般式(4)で表されるオルガノシランは以下の通りである。
【0091】
(上記一般式(4)中、R
17〜R
20はそれぞれ独立に水素、炭素数1〜6のアルキル基、炭素数2〜6のアシル基または炭素数6〜16のアリール基を表す。nは2〜8の範囲を表す。nが2以上の場合、複数のR
18およびR
19はそれぞれ同じでも異なってもよい。)
前記一般式(4)で表されるオルガノシランの具体例としては、扶桑化学工業株式会社製メチルシリケート51(R
17〜R
20:メチル基、n:平均4)、多摩化学工業株式会社製Mシリケート51(R
17〜R
20:メチル基、n:平均3〜5)、シリケート40(R
17〜R
20:エチル基、n:平均4〜6)、シリケート45(R
17〜R
20:エチル基、n:平均6〜8)、コルコート株式会社製メチルシリケート51(R
17〜R
20:メチル基、n:平均4)、メチルシリケート53A(R
17〜R
20:メチル基、n:平均7)、エチルシリケート40(R
17〜R
20:エチル基、n:平均5)等が挙げられ、各社から入手できる。これらを2種以上用いてもよい。
【0092】
ポリシロキサンにおける一般式(3)および一般式(4)で表されるオルガノシランに由来するSi原子の含有量は、
1H−NMR、
13C−NMR、
29Si−NMR、IR、TOF−MS等により原料となるオルガノシランの構造を決定し、IRスペクトルのSi−C結合由来のピークとSi−O結合由来のピークの積分比から求めることができる。
【0093】
ポリシロキサンの重量平均分子量(Mw)は特に制限されないが、GPC(ゲルパーミネーションクロマトグラフィ)で測定されるポリスチレン換算で1,000以上であれば、塗膜性が向上するため好ましい。一方、現像液に対する溶解性の観点からは100,000以下が好ましく、50,000以下がより好ましい。
【0094】
本発明におけるポリシロキサンは、前記一般式(3)および(4)で表されるオルガノシランなどのモノマーを加水分解および部分縮合させることにより合成される。ここで、部分縮合とは、加水分解物のSi−OHを全て縮合させるのではなく、得られるポリシロキサンに一部Si−OHを残存させることを指す。加水分解および部分縮合には一般的な方法を用いることができる。例えば、オルガノシラン混合物に溶剤、水、必要に応じて触媒を添加し、50〜150℃で0.5〜100時間程度加熱撹拌する方法等が挙げられる。撹拌中、必要に応じて、加水分解副生物(メタノール等のアルコール)や縮合副生物(水)を蒸留により留去してもよい。
【0095】
触媒に特に制限はないが、酸触媒、塩基触媒が好ましく用いられる。酸触媒の具体例としては、塩酸、硝酸、硫酸、フッ酸、リン酸、酢酸、トリフルオロ酢酸、ギ酸、多価カルボン酸あるいはその無水物、イオン交換樹脂等が挙げられる。塩基触媒の具体例としては、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、ジエチルアミン、トリエタノールアミン、ジエタノールアミン、水酸化ナトリウム、水酸化カリウム、アミノ基を有するアルコキシシラン、イオン交換樹脂等が挙げられる。
【0096】
また、ポジ型感光性樹脂組成物の貯蔵安定性の観点から、加水分解、部分縮合後のポリシロキサン溶液には上記触媒が含まれないことが好ましく、必要に応じて触媒の除去を行うことができる。除去方法に特に制限はないが、操作の簡便さと除去性の点で、水洗浄および/またはイオン交換樹脂による処理が好ましい。水洗浄とは、ポリシロキサン溶液を適当な疎水性溶剤で希釈した後、水で数回洗浄して得られた有機層をエバポレーター等で濃縮する方法である。イオン交換樹脂による処理とは、ポリシロキサン溶液を適当なイオン交換樹脂に接触させる方法である。
【0097】
本発明で用いられるポジ型感光性樹脂組成物は、(B)o−キノンジアジド化合物を含有する。o−キノンジアジド化合物は、フェノール性水酸基を有した化合物にナフトキノンジアジドのスルホン酸がエステルで結合した化合物が好ましい。ここで用いられるフェノール性水酸基を有する化合物としては、Bis−Z、BisP−EZ、TekP−4HBPA、TrisP−HAP、TrisP−PA、TrisP−SA、TrisOCR−PA、BisOCHP−Z、BisP−MZ、BisP−PZ、BisP−IPZ、BisOCP−IPZ、BisP−CP、BisRS−2P、BisRS−3P、BisP−OCHP、メチレントリス−FR−CR、BisRS−26X、DML−MBPC、DML−MBOC、DML−OCHP、DML−PCHP、DML−PC、DML−PTBP、DML−34X、DML−EP,DML−POP、ジメチロール−BisOC−P、DML−PFP、DML−PSBP、DML−MTrisPC、TriML−P、TriML−35XL、TML−BP、TML−HQ、TML−pp−BPF、TML−BPA、TMOM−BP、HML−TPPHBA、HML−TPHAP(商品名、本州化学工業(株)製)、BIR−OC、BIP−PC、BIR−PC、BIR−PTBP、BIR−PCHP、BIP−BIOC−F、4PC、BIR−BIPC−F、TEP−BIP−A、46DMOC、46DMOEP、TM−BIP−A(商品名、旭有機材工業(株)製)、2,6−ジメトキシメチル−4−tert−ブチルフェノール、2,6−ジメトキシメチル−p−クレゾール、2,6−ジアセトキシメチル−p−クレゾール、ナフトール、テトラヒドロキシベンゾフェノン、没食子酸メチルエステル、ビスフェノールA、ビスフェノールE、メチレンビスフェノール、BisP−AP(商品名、本州化学工業(株)製)などの化合物に4−ナフトキノンジアジドスルホン酸あるいは5−ナフトキノンジアジドスルホン酸をエステル結合で導入したものが好ましいものとして例示することが出来るが、これ以外の化合物を使用することもできる。
【0098】
4−ナフトキノンジアジドスルホニルエステル化合物は水銀灯のi線領域に吸収を持っており、i線露光に適しており、5−ナフトキノンジアジドスルホニルエステル化合物は水銀灯のg線領域まで吸収が伸びており、g線露光に適している。本発明は、4−ナフトキノンジアジドスルホニルエステル化合物、5−ナフトキノンジアジドスルホニルエステル化合物のどちらも好ましく使用することが出来るが、露光する波長によって4−ナフトキノンジアジドスルホニルエステル化合物、または5−ナフトキノンジアジドスルホニルエステル化合物を選択することが好ましい。また、同一分子中に4−ナフトキノンジアジドスルホニル基、5−ナフトキノンジアジドスルホニル基を併用した、ナフトキノンジアジドスルホニルエステル化合物を得ることもできるし、4−ナフトキノンジアジドスルホニルエステル化合物と5−ナフトキノンジアジドスルホニルエステル化合物を混合して使用することもできる。
【0099】
これらのうち、4−ナフトキノンジアジドスルホニルエステル化合物は、加熱処理工程において、o−キノンジアジド化合物が分解し、一部が二酸化硫黄となり膜外に除去されるため、硬化膜に含まれる硫黄原子量を低減できる。結果、硫黄原子に由来する画素シュリンクをさらに抑制できることから、特に好ましく用いられる。
【0100】
上記ナフトキノンジアジド化合物は、フェノール性水酸基を有する化合物と、キノンジアジドスルホン酸化合物とのエステル化反応によって、合成することが可能であって、公知の方法により合成することができる。これらのナフトキノンジアジド化合物を使用することで解像度、感度、残膜率がより向上する。
【0101】
(B)成分の添加量は、溶剤を除く樹脂組成物全量に対して好ましくは4重量%以上、より好ましくは5重量%以上、さらに好ましくは6重量%以上で、好ましくは12重量%以下、より好ましくは10重量%以下、さらに好ましくは9重量%以下である。4重量%以上とすることで優れた感度でパターン形成することができ、12重量%以下とすることで、o−キノンジアジド化合物の硫黄原子に由来する画素シュリンクを抑制でき、有機EL装置の長期信頼性を高めることができる。
【0102】
本発明で用いられるポジ型感光性樹脂組成物は、(C)有機溶剤を含有する。これによりワニスの状態にすることができ、塗布性を向上させることができる。
【0103】
前記有機溶剤は、γ−ブチロラクトンなどの極性の非プロトン性溶剤、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ−n−プロピルエーテル、エチレングリコールモノ−n−ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ−n−プロピルエーテル、ジエチレングリコールモノ−n−ブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ−n−プロピルエーテル、プロピレングリコールモノ−n−ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ−n−プロピルエーテル、ジプロピレングリコールモノ−n−ブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、アセトン、メチルエチルケトン、ジイソブチルケトン、シクロヘキサノン、2−ヘプタノン、3−ヘプタノン、ジアセトンアルコールなどのケトン類、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチルなどのエステル類、2−ヒドロキシ−2−メチルプロピオン酸エチル、3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2−ヒドロキシ−3−メチルブタン酸メチル、3−メトキシブチルアセテート、3−メチル−3−メトキシブチルアセテート、3−メチル−3−メトキシブチルプロピオネート、酢酸エチル、酢酸n−プロピル、酢酸i−プロピル、酢酸n−ブチル、酢酸i−ブチル、ぎ酸n−ペンチル、酢酸i−ペンチル、プロピオン酸n−ブチル、酪酸エチル、酪酸n−プロピル、酪酸i−プロピル、酪酸n−ブチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸n−プロピル、アセト酢酸メチル、アセト酢酸エチル、2−オキソブタン酸エチル等の他のエステル類、トルエン、キシレンなどの芳香族炭化水素類、N−メチルピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類、などの溶剤を単独、または混合して使用することができる。
【0104】
前記有機溶剤の使用量は、特に限定されないが、溶剤を除く樹脂組成物全量に対して、100〜3000重量%が好ましく、150〜2000重量部がさらに好ましい。また有機溶剤全量に対する沸点180℃以上の溶剤が占める割合は、20重量%以下が好ましく、10重量%以下がさらに好ましい。沸点180℃以上の溶剤の割合を30重量%以下にすることで、熱硬化後の平坦化層または絶縁層からのアウトガス量を低く抑えることができ、結果として有機EL装置の長期信頼性を高めることができる。
【0105】
本発明で用いられるポジ型感光性樹脂組成物は、(D)熱架橋剤を含有することができる。熱架橋剤とは、アルコキシメチル基、メチロール基、エポキシ基、オキセタニル基をはじめとする熱反応性の官能基を分子内に少なくとも2つ有する化合物を指す。熱架橋剤は(A)成分の樹脂またはその他添加成分を架橋し、熱硬化後の膜の耐熱性、耐薬品性および硬度を高めることができ、さらには硬化膜からのアウトガス量を低減し、有機EL表示装置の長期信頼性を高めることができることから、含有することが好ましい。
【0106】
アルコキシメチル基またはメチロール基を少なくとも2つ有する化合物の好ましい例としては、例えば、DML−PC、DML−PEP、DML−OC、DML−OEP、DML−34X、DML−PTBP、DML−PCHP、DML−OCHP、DML−PFP、DML−PSBP、DML−POP、DML−MBOC、DML−MBPC、DML−MTrisPC、DML−BisOC−Z、DML−BisOCHP−Z、DML−BPC、DML−BisOC−P、DMOM−PC、DMOM−PTBP、DMOM−MBPC、TriML−P、TriML−35XL、TML−HQ、TML−BP、TML−pp−BPF、TML−BPE、TML−BPA、TML−BPAF、TML−BPAP、TMOM−BP、TMOM−BPE、TMOM−BPA、TMOM−BPAF、TMOM−BPAP、HML−TPPHBA、HML−TPHAP、HMOM−TPPHBA、HMOM−TPHAP(以上、商品名、本州化学工業(株)製)、NIKALAC(登録商標) MX−290、NIKALAC MX−280、NIKALAC MX−270、NIKALAC MX−279、NIKALAC MW−100LM、NIKALAC MX−750LM(以上、商品名、(株)三和ケミカル製)が挙げられる。
【0107】
エポキシ基を少なくとも2つ有する化合物の好ましい例としては、例えば、エポライト40E、エポライト100E、エポライト200E、エポライト400E、エポライト70P、エポライト200P、エポライト400P、エポライト1500NP、エポライト80MF 、エポライト4000、エポライト3002(以上、共栄社化学(株)製)、デナコールEX−212L、デナコールEX−214L、デナコールEX−216L、デナコールEX−850L(以上、ナガセケムテックス(株)製)、GAN、GOT(以上、日本化薬(株)製)、エピコート828、エピコート1002 、エピコート1750、エピコート1007、YX8100−BH30、E1256、E4250、E4275(以上、ジャパンエポキシレジン(株)製)、エピクロンEXA−9583、HP4032(以上、大日本インキ化学工業(株)製)、VG3101(三井化学(株)製)、テピックS、テピックG、テピックP(以上、日産化学工業(株)製)、デナコールEX−321L(ナガセケムテックス(株)製)、NC6000(日本化薬(株)製)、エポトートYH−434L(東都化成(株)製)、EPPN502H、NC3000(日本化薬(株)製)、エピクロンN695、HP7200(以上、大日本インキ化学工業(株)製)などが挙げられる。
【0108】
オキセタニル基を少なくとも2つ有する化合物の好ましい例としては、例えば、エタナコールEHO、エタナコールOXBP、エタナコールOXTP、エタナコールOXMA(以上、宇部興産(株)製)、オキセタン化フェノールノボラックなどが挙げられる。
【0109】
熱架橋剤は2種類以上を組み合わせて用いてもよい。
【0110】
熱架橋剤の含有量は、溶剤を除く樹脂組成物全量に対して1重量%以上30重量%以下が好ましい。熱架橋剤の含有量が1重量%以上30重量%以下であれば、焼成後または硬化後の膜の耐薬品性および硬度を高めることができ、さらには硬化膜からのアウトガス量を低減し、有機EL表示装置の長期信頼性を高めることができ、感光性樹脂組成物の保存安定性にも優れる。
【0111】
本発明で用いられるポジ型感光性樹脂組成物は、密着改良剤を含有してもよい。密着改良剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、エポキシシクロヘキシルエチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシランなどのシランカップリング剤、チタンキレート剤、アルミキレート剤、芳香族アミン化合物とアルコキシ基含有ケイ素化合物を反応させて得られる化合物などが挙げられる。これらを2種以上含有してもよい。これらの密着改良剤を含有することにより、感光性樹脂膜を現像する場合などに、シリコンウェハー、ITO、SiO2、窒化ケイ素などの下地基材との密着性を高めることができる。また、洗浄などに用いられる酸素プラズマ、UVオゾン処理に対する耐性を高めることができる。密着改良剤の含有量は、溶剤を除く樹脂組成物全量に対して、0.1〜10重量%が好ましい。
【0112】
本発明で用いられるポジ型感光性樹脂組成物は、必要に応じて基板との濡れ性を向上させる目的で界面活性剤を含有してもよい。界面活性剤は市販の化合物を用いることができ、具体的にはシリコーン系界面活性剤としては、東レダウコーニングシリコーン社のSHシリーズ、SDシリーズ、STシリーズ、ビックケミー・ジャパン社のBYKシリーズ、信越シリコーン社のKPシリーズ、日本油脂社のディスフォームシリーズ、東芝シリコーン社のTSFシリーズなどが挙げられ、フッ素系界面活性剤としては、大日本インキ工業社の“メガファック(登録商標)”シリーズ、住友スリーエム社のフロラードシリーズ、旭硝子社の“サーフロン(登録商標)”シリーズ、“アサヒガード(登録商標)”シリーズ、新秋田化成社のEFシリーズ、オムノヴァ・ソルーション社のポリフォックスシリーズなどが挙げられ、アクリル系および/またはメタクリル系の重合物からなる界面活性剤としては、共栄社化学社のポリフローシリーズ、楠本化成社の“ディスパロン(登録商標)”シリーズなどが挙げられるが、これらに限定されない。
【0113】
界面活性剤の含有量は溶剤を除く樹脂組成物全量に対して好ましくは0.001〜1重量%である。
【0114】
本発明で用いられるポジ型感光性樹脂組成物は、必要に応じて感光性樹脂組成物のアルカリ現像性を補う目的で、フェノール性水酸基を有する化合物を含有してもよい。フェノール性水酸基を有する化合物としては、例えば、Bis−Z、BisOC−Z、BisOPP−Z、BisP−CP、Bis26X−Z、BisOTBP−Z、BisOCHP−Z、BisOCR−CP、BisP−MZ、BisP−EZ、Bis26X−CP、BisP−PZ、BisP−IPZ、BisCRIPZ、BisOCP−IPZ、BisOIPP−CP、Bis26X−IPZ、BisOTBP−CP、TekP−4HBPA(テトラキスP−DO−BPA)、TrisPHAP、TrisP−PA、TrisP−PHBA、TrisP−SA、TrisOCR−PA、BisOFP−Z、BisRS−2P、BisPG−26X、BisRS−3P、BisOC−OCHP、BisPC−OCHP、Bis25X−OCHP、Bis26X−OCHP、BisOCHP−OC、Bis236T−OCHP、メチレントリス−FR−CR、BisRS−26X、BisRS−OCHP、(商品名、本州化学工業(株)製)、BIR−OC、BIP−PC、BIR−PC、BIR−PTBP、BIR−PCHP、BIP−BIOC−F、4PC、BIR−BIPC−F、TEP−BIP−A(商品名、旭有機材工業(株)製)、1,4−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン、2,4−ジヒドロキシキノリン、2,6−ジヒドロキシキノリン、2,3−ジヒドロキシキノキサリン、アントラセン−1,2,10−トリオール、アントラセン−1,8,9−トリオール、8−キノリノールなどが挙げられる。これらのフェノール性水酸基を有する化合物を含有することで、得られるポジ型感光性樹脂組成物は、露光前はアルカリ現像液にほとんど溶解せず、露光すると容易にアルカリ現像液に溶解するために、現像による膜減りが少なく、かつ短時間で現像が容易になる。そのため、感度が向上しやすくなる。
【0115】
このようなフェノール性水酸基を有する化合物の含有量は、溶剤を除く樹脂組成物全量に対して、好ましくは1重量%以上20重量%以下である。
【0116】
また、本発明で用いられるポジ型感光性樹脂組成物は、無機粒子を含んでもよい。好ましい具体例としては酸化珪素、酸化チタン、チタン酸バリウム、アルミナ、タルクなどが挙げられるがこれらに限定されない。これら無機粒子の一次粒子径は100nm以下、より好ましくは60nm以下が好ましい。
【0117】
無機粒子の含有量は、溶剤を除く樹脂組成物全量に対して、好ましくは5〜90重量%である。
【0118】
本発明で用いられるポジ型感光性樹脂組成物は、有機EL表示装置の長期信頼性を損なわない範囲で熱酸発生剤を含有してもよい。熱酸発生剤は、加熱により酸を発生し、(D)熱架橋剤の架橋反応を促進する他、(A)成分の樹脂に未閉環のイミド環構造、オキサゾール環構造を有している場合はこれらの環化を促進し、硬化膜の機械特性をより向上させることができる。
【0119】
本発明に用いられる熱酸発生剤の熱分解開始温度は、50℃〜270℃が好ましく、250℃以下がより好ましい。また、本発明のポジ型感光性樹脂組成物を基板に塗布した後の乾燥(プリベーク:約70〜140℃)時には酸を発生せず、その後の露光、現像でパターニングした後の最終加熱(キュア:約100〜400℃)時に酸を発生するものを選択すると、現像時の感度低下を抑制できるため好ましい。
【0120】
本発明に用いられる熱酸発生剤から発生する酸は強酸が好ましく、例えば、p−トルエンスルホン酸、ベンゼンスルホン酸などのアリールスルホン酸、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ブタンスルホン酸などのアルキルスルホン酸やトリフルオロメチルスルホン酸などのハロアルキルスルホン酸などが好ましい。これらはオニウム塩のような塩として、またはイミドスルホナートのような共有結合化合物として用いられる。これらを2種以上含有してもよい。
【0121】
本発明に用いられる熱酸発生剤の含有量は、溶剤を除く樹脂組成物全量に対して、0.01重量%以上が好ましく、0.1重量%以上がより好ましい。0.01重量%以上含有することで、架橋反応および樹脂の未閉環構造の環化が促進されるため、硬化膜の機械特性および耐薬品性をより向上させることができる。また、有機EL表示装置の長期信頼性の観点から、5重量%以下が好ましく、3重量%以下がより好ましく、2重量%以下がより好ましい。
【0122】
本発明の有機EL表示装置の製造方法は、(A)アルカリ可溶性樹脂、(B)o−キノンジアジド化合物、(C)有機溶剤を含むポジ型感光性樹脂組成物を用いて第一電極上に形成された絶縁層の硬化膜を得る工程を含むことを特徴とする、有機EL表示装置の製造方法である。また、本発明の有機EL表示装置の製造方法は、(A)アルカリ可溶性樹脂、(B)o−キノンジアジド化合物、(C)有機溶剤を含むポジ型感光性樹脂組成物を用いて駆動回路上に形成された平坦化層の硬化膜を得る工程を含むことが好ましい。
【0123】
次に、本発明のポジ型感光性樹脂組成物を用いた硬化膜の製造方法について詳しく説明する。本発明のポジ型感光性樹脂組成物をスピンコート法、スリットコート法、ディップコート法、スプレーコート法、印刷法などで塗布し、ポジ型感光性樹脂組成物の塗布膜を得る。塗布に先立ち、ポジ型感光性樹脂組成物を塗布する基材を予め前述した密着改良剤で前処理してもよい。例えば、密着改良剤をイソプロパノール、エタノール、メタノール、水、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、乳酸エチル、アジピン酸ジエチルなどの溶剤に0.5〜20重量%溶解させた溶液を用いて、基材表面を処理する方法が挙げられる。基材表面の処理方法としては、スピンコート、スリットダイコート、バーコート、ディップコート、スプレーコート、蒸気処理などの方法が挙げられる。塗布後、必要に応じて減圧乾燥処理を施し、その後、ホットプレート、オーブン、赤外線などを用いて、50℃〜180℃の範囲で1分間〜数時間の熱処理を施すことで感光性樹脂膜を得る。
【0124】
次に、得られた感光性樹脂膜からパターンを形成する方法について説明する。感光性樹脂膜上に所望のパターンを有するマスクを通して化学線を照射する。露光に用いられる化学線としては紫外線、可視光線、電子線、X線などがあるが、本発明では水銀灯のi線(365nm)、h線(405nm)、g線(436nm)を用いることが好ましい。
【0125】
露光後、現像液を用いて露光部を除去する。現像液としては、テトラメチルアンモニウムヒドロキシド、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどのアルカリ性を示す化合物の水溶液が好ましい。また場合によっては、これらのアルカリ水溶液にN−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、γ−ブチロラクトン、ジメチルアクリルアミドなどの極性溶剤、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを単独あるいは数種を組み合わせたものを添加してもよい。現像方式としては、スプレー、パドル、浸漬、超音波等の方式が可能である。
【0126】
次に、現像によって形成したパターンを蒸留水にてリンス処理をすることが好ましい。ここでもエタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを蒸留水に加えてリンス処理をしてもよい。
【0127】
次に加熱処理を行う。加熱処理により残留溶剤や耐熱性の低い成分を除去できるため、耐熱性および耐薬品性を向上させることができる。特に、本発明のポジ型感光性樹脂組成物が、ポリイミド前駆体、ポリベンゾオキサゾール前駆体の中から選ばれるアルカリ可溶性樹脂、それらの共重合体またはそれらとポリイミドとの共重合体を含む場合は、加熱処理によりイミド環、オキサゾール環を形成できるため、耐熱性および耐薬品性を向上させることができ、また、アルコキシメチル基、メチロール基、エポキシ基、またはオキタニル基を少なくとも2つ有する化合物を含む場合は、加熱処理により熱架橋反応を進行させることができ、耐熱性および耐薬品性を向上させることができる。この加熱処理は温度を選び、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分間〜5時間実施する。一例としては、150℃、250℃で各30分ずつ熱処理する。あるいは室温より300℃まで2時間かけて直線的に昇温するなどの方法が挙げられる。本発明においての加熱処理条件としては150℃から400℃が好ましく、200℃以上350℃以下がより好ましい。
【実施例】
【0128】
以下実施例等をあげて本発明を説明するが、本発明はこれらの例によって限定されるも
のではない。なお、実施例中のポジ型感光性樹脂組成物の評価は以下の方法により行った。
【0129】
(1)感度評価現像膜の作製
塗布現像装置Mark−7(東京エレクトロン(株)製)を用いて、8インチシリコンウェハー上にワニスをスピンコート法で塗布を行い、120℃で3分間ホットプレートにてベークをして膜厚3.0μmのプリベーク膜を作製した。その後、露光機i線ステッパーNSR−2005i9C(ニコン社製)を用い、10μmのコンタクトホールのパターンを有するマスクを介して、100〜1200mJ/cm
2の露光量にて50mJ/cm
2ステップで露光した。露光後、前記Mark−7の現像装置を用いて、2.38重量%のテトラメチルアンモニウム水溶液(以下TMAH、多摩化学工業(株)製)を用いて現像時の膜減りが0.5μmになる時間で現像した後、蒸留水でリンス後、振り切り乾燥し、パターンを得た。
【0130】
膜厚の測定方法
大日本スクリーン製造(株)製ラムダエースSTM−602を使用し、屈折率1.63として測定した。
【0131】
感度の算出
前記の方法で得た現像膜のパターンをFDP顕微鏡MX61(オリンパス(株)社製)を用いて倍率20倍で観察し、コンタクトホールの開口径が10μmに達した最低必要露光量を求め、これを感度とした。
【0132】
(2)絶縁層の電子線マイクロアナライザ測定
有機EL表示装置の作製方法
図2に使用した基板の概略図を示す。まず、38×46mmの無アルカリガラス基板10に、表1の参考例の内、各実施例に即したワニスをスピンコート法により塗布し、120℃のホットプレート上で2分間プリベークした。この膜にフォトマスクを介してUV露光した後、2.38%TMAH水溶液で現像し、露光部分のみを溶解させた後、純水でリンスした。得られたポリイミド前駆体パターンを、窒素雰囲気下250℃のオーブン中で60分間キュアした。このようにして、基板有効エリアに限定して平坦化層11を形成した。平坦化層の厚さは約2.0μmであった。次に、スパッタ法によりAPC合金膜100nmを基板全面に形成し、反射電極12としてエッチングした。その後、スパッタ法によりITO透明導電膜10nmを基板全面に形成し、第一電極13としてエッチングした。また、同時に第二電極を取り出すため補助電極14も同時に形成した。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で10分間超音波洗浄してから、超純水で洗浄した。次にこの基板全面に、表1の参考例の内、各実施例に即したワニスをスピンコート法により塗布し、120℃のホットプレート上で2分間プリベークした。この膜にフォトマスクを介してUV露光した後、2.38%TMAH水溶液で現像し、露光部分のみを溶解させた後、純水でリンスした。得られたポリイミド前駆体パターンを、窒素雰囲気下250℃のオーブン中で60分間キュアした。このようにして、幅70μm、長さ260μmの開口部が幅方向にピッチ155μm、長さ方向にピッチ465μmで配置され、それぞれの開口部が第一電極を露出せしめる形状の感光性ポリイミドからなる絶縁層15を、基板有効エリアに限定して形成した。なお、この開口部が最終的に発光画素となる。また、基板有効エリアは16mm四方、絶縁層の厚さは約2.0μmであった。
【0133】
次に、平坦化層、反射電極、第一電極、絶縁層を形成した基板を用いて有機EL表示装置の作製を行った。前処理として窒素プラズマ処理をおこなった後、真空蒸着法により発光層を含む有機EL層16を形成した。なお、蒸着時の真空度は1×10
-3Pa以下であり、蒸着中は蒸着源に対して基板を回転させた。まず、正孔注入層として化合物(HT−1)を10nm、正孔輸送層として化合物(HT−2)を50nm蒸着した。次に発光層に、ホスト材料としての化合物(GH−1)とドーパント材料としての化合物(GD−1)を、ドープ濃度が10%になるようにして40nmの厚さに蒸着した。次に、電子輸送材料として化合物(ET−1)とLiQを体積比1:1で40nmの厚さに積層した。有機EL層で用いた化合物の構造を以下に示す。
【0134】
【化8】
【0135】
次に、LiQを2nm蒸着した後、MgAgを体積比10:1で10nm蒸着して第二電極17とした。最後に、低湿窒素雰囲気下でキャップ状ガラス板をエポキシ樹脂系接着剤を用いて接着することで封止をし、1枚の基板上に5mm四方の発光装置を4つ作製した。なお、ここで言う膜厚は水晶発振式膜厚モニター表示値である。
【0136】
電子線マイクロアナライザ測定
上記で作製した有機EL表示装置のキャップ状ガラス板を取り除き、斜め研磨およびイオンミリングにより、絶縁層部分を露出させた。カーボン蒸着の上、電子線マイクロアナライザEMPA−1610((株)島津製作所製)で硬化膜を元素分析した。測定条件は、加速電圧:15kV、ビームサイズ:10μm、照射電流:10nA、計測時間:10秒、CはLS12L分光結晶を用いて44.70オングストロームのKαピーク強度、SはPET分光結晶を用いて5.37オングストロームのKαピーク強度を測定した。標準試料としてC、BaSO
4を用い、ZAF補正(Z:原子番号補正、A:吸収補正、F:蛍光励起補正)を施した。各サンプルにつき3回測定し、その平均値で硫黄と炭素のモル比S/Cを算出した。
【0137】
(3)平坦化層の電子線マイクロアナライザ測定
(2)と同様の方法で作製した有機EL表示装置のキャップ状ガラス板を取り除き、斜め研磨およびイオンミリングにより、平坦化層部分を露出させた。次に(2)と同様に方法で電子線マイクロアナライザを測定、硫黄と炭素のモル比S/Cを算出した。
【0138】
(4)絶縁層のアウトガス測定
(2)と同様の方法で作製した有機EL表示装置のキャップ状ガラス板、第二電極、有機薄膜層を除いて絶縁層を露出させた。この絶縁層10mgをパージ・アンド・トラップ法にて吸着捕捉した。具体的には、採取した硬化膜をパージガスとしてヘリウムを用いて180℃で30分間加熱し、脱離した成分を吸着剤(Carbotrap400)に捕集した。
【0139】
捕集した成分を280℃で5分間熱脱離させ、次いで、GC−MS装置6890/5973N(Agilent社製)を用い、カラム温度:40〜300℃、キャリアガス:ヘリウム(1.5mL/min)、スキャン範囲:m/Z=29〜600の条件で、GC−MS分析を実施した。n−ヘキサデカンを標準物質として上記と同一条件でGC−MS分析して検量線を作成することで、n−ヘキサデカン換算でガス発生量を算出した。
【0140】
得られた硬化膜のうち10mgをパージ・アンド・トラップ法にて吸着捕捉した。具体的には、採取した硬化膜をパージガスとしてヘリウムを用いて180℃で30分間加熱し、脱離した成分を吸着剤(Carbotrap400)に捕集した。
【0141】
捕集した成分を280℃で5分間熱脱離させ、次いで、GC−MS装置6890/5973N(Agilent社製)を用い、カラム温度:40〜300℃、キャリアガス:ヘリウム(1.5mL/min)、スキャン範囲:m/Z29〜600の条件で、GC−MS分析を実施した。n−ヘキサデカンを標準物質として上記と同一条件でGC−MS分析して検量線を作成することで、n−ヘキサデカン換算でガス発生量を算出した。
【0142】
(5)平坦化層のアウトガス測定
(2)と同様の方法で作製した有機EL表示装置のキャップ状ガラス板、第二電極、有機薄膜層、絶縁層、第一電極を除いて平坦化層を露出させた。この平坦化層10mgを(4)と同様の方法でアウトガス測定をした。
【0143】
(6)絶縁層の熱重量減少温度測定
(2)と同様の方法で作製した有機EL表示装置のキャップ状ガラス板、第二電極、有機薄膜層を除いて絶縁層を露出させた。この絶縁層10mgを熱重量分析装置TGA−50(島津製作所(株)製)を用い、窒素雰囲気下、150℃で30分予備乾燥した後、昇温速度10℃/分での昇温過程で、重量が初期重量に対して5%減少した時の温度を測定した。
【0144】
(7)平坦化層の熱重量減少温度測定
(2)と同様の方法で作製した有機EL表示装置のキャップ状ガラス板、第二電極、有機薄膜層、絶縁層、第一電極を除いて平坦化層を露出させた。この平坦化層10mgを(6)と同様の方法で熱重量減少温度測定を行い、重量が初期重量に対して5%減少した時の温度を測定した。
【0145】
(8)有機EL表示装置の長期信頼性試験
(2)の方法で作製した有機EL表示装置を、発光面を上にして80℃に加熱したホットプレートに乗せ、波長365nm、照度0.6mW/cm
2のUV光を照射した。250時間、500時間、1000時間経過後に10mA/cm
2で直流駆動にて発光させ、発光画素における発光面積を測定した。
【0146】
合成例1 ヒドロキシル基含有ジアミン化合物の合成
2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン(以降BAHFと呼ぶ)18.3g(0.05モル)をアセトン100mL、プロピレンオキシド17.4g(0.3モル)に溶解させ、−15℃に冷却した。ここに3−ニトロベンゾイルクロリド20.4g(0.11モル)をアセトン100mLに溶解させた溶液を滴下した。滴下終了後、−15℃で4時間反応させ、その後室温に戻した。析出した白色固体をろ別し、50℃で真空乾燥した。
【0147】
固体30gを300mLのステンレスオートクレーブに入れ、メチルセロソルブ250mLに分散させ、5%パラジウム−炭素を2g加えた。ここに水素を風船で導入して、還元反応を室温で行なった。約2時間後、風船がこれ以上しぼまないことを確認して反応を終了させた。反応終了後、濾過して触媒であるパラジウム化合物を除き、ロータリーエバポレーターで濃縮し、下記式で表されるヒドロキシル基含有ジアミン化合物を得た。
【0148】
【化9】
【0149】
合成例2 アルカリ可溶性樹脂(A−1)の合成
乾燥窒素気流下、3,3’,4,4’−ジフェニルエーテルテトラカルボン酸二無水物(以降ODPAと呼ぶ)31.0g(0.10モル)をNMP500gに溶解させた。ここに合成例1で得られたヒドロキシル基含有ジアミン化合物45.35g(0.075モル)と1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン1.24g(0.005モル)をNMP50gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に末端封止剤として4−アミノフェノール4.36g(0.04モル)をNMP5gとともに加え、50℃で2時間反応させた。その後、N,N−ジメチルホルムアミドジメチルアセタール28.6g(0.24モル)をNMP50gで希釈した溶液を10分かけて滴下した。滴下後、50℃で3時間撹拌した。撹拌終了後、溶液を室温まで冷却した後、溶液を水3Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、目的のアルカリ可溶性樹脂であるポリイミド前駆体(A−1)を得た。
【0150】
合成例3 アルカリ可溶性樹脂(A−2)の合成
乾燥窒素気流下、BAHF29.3g(0.08モル)、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン1.24g(0.005モル)、末端封止剤として、3−アミノフェノール3.27g(0.03モル)をN−メチル−2−ピロリドン(NMP)150gに溶解した。ここにODPA31.0g(0.1モル)をNMP50gとともに加えて、20℃で1時間撹拌し、次いで50℃で4時間撹拌した。その後、キシレンを15g添加し、水をキシレンとともに共沸しながら、150℃で5時間撹拌した。撹拌終了後、溶液を水3Lに投入して白色沈殿を集めた。この沈殿をろ過で集めて、水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、アルカリ可溶性樹脂であるポリイミド(A−2)を得た。
【0151】
合成例4 アルカリ可溶性樹脂(A−3)の合成
乾燥窒素気流下、BAHF18.3g(0.05モル)をNMP50g、グリシジルメチルエーテル26.4g(0.3モル)に溶解させ、溶液の温度を−15℃まで冷却した。ここにジフェニルエーテルジカルボン酸ジクロリド(日本農薬(株)製)7.4g(0.025モル)、イソフタル酸クロリド(東京化成(株)製)5.1g(0.025モル)をγ−ブチロラクトン(GBL)25gに溶解させた溶液を内部の温度が0℃を越えないように滴下した。滴下終了後、−15℃で6時間撹拌を続けた。反応終了後、メタノールを10重量%含んだ水3Lに溶液を投入して白色の沈殿を集めた。この沈殿を濾過で集めて、水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、目的のアルカリ可溶性樹脂であるポリベンゾオキサゾール前駆体(A−3)を得た。
【0152】
合成例5 アルカリ可溶性樹脂溶液(A−4)の合成
500mlのフラスコに2,2’−アゾビス(イソブチロニトリル)を5g、t−ドデカンチオールを5g、プロピレングリコールモノメチルエーテルアセテート(以下、PGMEAと略する)を150g入れた。その後、メタクリル酸を30g、ベンジルメタクリレートを35g、トリシクロ[5.2.1.0
2,6]デカン−8−イルメタクリレートを35g加え、室温でしばらく撹拌し、フラスコ内を窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを15g、ジメチルベンジルアミンを1g、p−メトキシフェノールを0.2g添加し、90℃で4時間加熱撹拌し、アクリル樹脂溶液(A−4)を得た。得られたアクリル樹脂溶液(A−4)の固形分濃度は43重量%であった。
【0153】
合成例6 アルカリ可溶性樹脂(A−5)の合成
酸二無水物としてODPAを15.5g(0.05モル)、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物17.9g(0.05モル)を加えた以外は合成例3と同様にして、骨格中に硫黄原子を含むアルカリ可溶性樹脂であるポリイミド(A−5)を得た。
【0154】
合成例7 キノンジアジド化合物(B−1)の合成
乾燥窒素気流下、TrisP−PA(商品名、本州化学工業(株)製)21.22g(0.05モル)と5−ナフトキノンジアジドスルホニル酸クロリド36.27g(0.135モル)を1,4−ジオキサン450gに溶解させ、室温にした。ここに、1,4−ジオキサン50gと混合したトリエチルアミン15.18gを、系内が35℃以上にならないように滴下した。滴下後30℃で2時間撹拌した。トリエチルアミン塩を濾過し、ろ液を水に投入した。その後、析出した沈殿をろ過で集めた。この沈殿を真空乾燥機で乾燥させ、下記式で表されるキノンジアジド化合物(B−1)を得た。
【0155】
【化10】
【0156】
合成例8 キノンジアジド化合物(B−2)の合成
乾燥窒素気流下、TrisP−PA(商品名、本州化学工業(株)製)21.22g(0.05モル)と4−ナフトキノンジアジドスルホニル酸クロリド36.27g(0.135モル)を1,4−ジオキサン450gに溶解させ、室温にした。ここに、1,4−ジオキサン50gと混合したトリエチルアミン15.18gを、系内が35℃以上にならないように滴下した。滴下後30℃で2時間撹拌した。トリエチルアミン塩を濾過し、ろ液を水に投入した。その後、析出した沈殿をろ過で集めた。この沈殿を真空乾燥機で乾燥させ、下記式で表されるキノンジアジド化合物(B−2)を得た。
【0157】
【化11】
【0158】
合成例9 キノンジアジド化合物(B−3)の合成
乾燥窒素気流下、TrisP−PA(商品名、本州化学工業(株)製)21.22g(0.05モル)と5−ナフトキノンジアジドスルホニル酸クロリド36.27g(0.10モル)を1,4−ジオキサン450gに溶解させ、室温にした。ここに、1,4−ジオキサン50gと混合したトリエチルアミン15.18gを、系内が35℃以上にならないように滴下した。滴下後30℃で2時間撹拌した。トリエチルアミン塩を濾過し、ろ液を水に投入した。その後、析出した沈殿をろ過で集めた。この沈殿を真空乾燥機で乾燥させ、下記式で表されるキノンジアジド化合物(B−3)を得た。
【0159】
【化12】
【0160】
参考例1
前記合成例2で得られたアルカリ可溶性樹脂(A−1)10.0g、(B−1)1.2gをプロピレングリコールモノメチルエーテル(以下PGMEと呼ぶ)32.0gとγ−ブチロラクトン(以下GBLと呼ぶ)8.0gに溶解した後、0.2μmのポリテトラフルオロエチレン製のフィルター(住友電気工業(株)製)で濾過してポジ型感光性樹脂組成物(ワニス)Aを得た。
【0161】
参考例2〜31
参考例1と同様の方法で、化合物の種類と量は表1、2記載の通りでワニスB〜X、およびワニスa〜hを得た。なお、表1で示した化合物の名称と構造を示す。
【0162】
D−1:HMOM−TPHAP(商品名、本州化学工業(株)製)
D−2:NC6000(商品名、日本化薬(株)製)
E−1:PAG−103(商品名、チバスペシャルティケミカルズ(株)製)
【0163】
【化13】
【0164】
実施例1〜24、比較例1〜8
平坦化層にワニスa、絶縁層に表1記載のワニスを用い、前記方法で有機EL表示装置を作製した。この有機EL表示装置を用いて前記方法で絶縁層の電子線マイクロアナライザ測定、絶縁層のアウトガス測定、絶縁層の熱重量減少温度測定、および有機EL表示装置の長期信頼性試験を実施した。評価結果を表3、4に示す。
ここで、実施例1〜10は参考例33〜42、実施例13〜24は参考例43〜54と読み替えるものとする。
【0165】
実施例25〜33
平坦化層、絶縁層にそれぞれ表1記載のワニスを用い、前記方法で有機EL表示装置を作製した。この有機EL表示装置を用いて前記方法で絶縁層および平坦化層の電子線マイクロアナライザ測定、絶縁層および平坦化層のアウトガス測定、絶縁層および平坦化層の熱重量減少温度測定、および有機EL表示装置の長期信頼性試験を実施した。評価結果を表5に示す。
ここで、実施例25〜33は参考例55〜63と読み替えるものとする。
【0166】
有機EL表示装置の長期信頼性試験結果
絶縁層が、(A)アルカリ可溶性樹脂、(B)o−キノンジアジド化合物、(C)有機溶剤を含むポジ型感光性樹脂組成物より得られる硬化膜であって、電子線マイクロアナライザで測定した際に得られる硫黄と炭素のモル比S/Cが0.003以上0.008以下の条件を満たす有機EL表示装置である実施例1〜24は、上記条件を満たさない比較例1〜8に比べて長期信頼性が極めて良好な結果となった。なお、比較例3は1200mJ/cm
2の露光量でも露光部に溶け残りがあり、所望のパターンを得ることができなかったため、長期信頼性試験を実施できなかった。比較例3は絶縁層のパターン加工をせずに有機EL表示装置を作製し、上記方法で電子線マイクロアナライザ測定、アウトガス測定、熱重量減少温度測定を行った。
【0167】
さらに絶縁層に加えて平坦化層も(A)アルカリ可溶性樹脂、(B)o−キノンジアジド化合物、(C)有機溶剤を含むポジ型感光性樹脂組成物より得られる硬化膜であって、電子線マイクロアナライザで測定した際に得られる硫黄と炭素のモル比S/Cが0.003以上0.008以下である有機EL表示装置である実施例25〜27、29、31、33は、長期信頼性がさらに良好な結果となった。
【0168】
【表1】
【0169】
【表2】
【0170】
【表3】
【0171】
【表4】
【0172】
【表5】