特許第6693345号(P6693345)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社IHIの特許一覧

<>
  • 特許6693345-タール改質装置 図000002
  • 特許6693345-タール改質装置 図000003
  • 特許6693345-タール改質装置 図000004
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6693345
(24)【登録日】2020年4月20日
(45)【発行日】2020年5月13日
(54)【発明の名称】タール改質装置
(51)【国際特許分類】
   C10K 3/02 20060101AFI20200427BHJP
【FI】
   C10K3/02ZAB
【請求項の数】2
【全頁数】11
(21)【出願番号】特願2016-169246(P2016-169246)
(22)【出願日】2016年8月31日
(65)【公開番号】特開2018-35254(P2018-35254A)
(43)【公開日】2018年3月8日
【審査請求日】2019年6月27日
(73)【特許権者】
【識別番号】000000099
【氏名又は名称】株式会社IHI
(74)【代理人】
【識別番号】110000936
【氏名又は名称】特許業務法人青海特許事務所
(72)【発明者】
【氏名】坪井 陽介
(72)【発明者】
【氏名】内田 正宏
【審査官】 森 健一
(56)【参考文献】
【文献】 特開2003−336079(JP,A)
【文献】 特開2009−298974(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C10K 3/00
(57)【特許請求の範囲】
【請求項1】
合成ガスが通過する第1流路および第2流路と、
前記第1流路に接続され、該第1流路から導入された合成ガスを量論比以上の酸化剤で燃焼させる燃焼部と、
前記燃焼部と、前記第2流路とに接続され、該燃焼部で生じた燃焼排ガスと、前記合成ガスとが導入される合流部と、
前記合流部において生じた前記燃焼排ガスと前記合成ガスとの混合ガスに含まれるタールを改質する触媒を保持し、該混合ガスが導入される触媒部と、
を備えたタール改質装置。
【請求項2】
前記触媒部の入口の混合ガスの温度に基づいて、前記第1流路を通過する合成ガスの流量と、前記第2流路を通過する合成ガスの流量とを調整する調整部を備えた請求項1に記載のタール改質装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、合成ガス中のタールを改質するタール改質装置に関する。
【背景技術】
【0002】
近年、石油に代えて、石炭やバイオマス、タイヤチップなどの未利用燃料等の原料をガス化して合成ガスを生成する技術が開発されている。このようにして生成された合成ガスは、発電システムや、水素の製造、合成燃料(合成石油)の製造、化学肥料(尿素)等の化学製品の製造等に利用されている。合成ガスの原料のうち、特に石炭は、可採年数が100年程度と、石油の可採年数の2倍以上である。また、石炭は、石油と比較して埋蔵地が偏在していない。このため、石炭は、長期に亘り安定供給が可能な天然資源として期待されている。
【0003】
従来、石炭のガス化プロセスは、酸素や空気を用いて部分酸化することにより行われていた。しかし、従来のガス化プロセスは、2000℃といった高温で部分酸化する必要がある。このため、従来のガス化プロセスは、ガス化炉のコストが高くなるといった欠点を有していた。
【0004】
この問題を解決するために、水蒸気を利用し、700℃〜900℃程度で石炭をガス化する技術(水蒸気ガス化)が開発されている。この水蒸気ガス化技術では、温度を低く設定することでコストを低減することが可能となる。しかし、生成された合成ガスには、2000℃の高温で部分酸化して生成した合成ガスと比較して、タールが多く含まれる。このため、水蒸気ガス化によって生成された合成ガスを利用するプロセスにおいて合成ガスの温度が低下すると、合成ガスに含まれるタールが凝縮し、配管の閉塞、プロセスで使用する機器の故障、触媒の被毒等の問題が生じてしまう。
【0005】
そこで、合成ガスを触媒に接触させ、触媒でタールを改質することで、合成ガスに含まれるタールを除去する技術が開発されている(例えば、特許文献1)。特許文献1の技術では、合成ガスを触媒の活性温度まで上昇させるために、合成ガスに酸化剤を供給して合成ガスの一部を燃焼させている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2014−205582号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
上述した特許文献1の技術では、合成ガスと酸化剤とが反応する際に、合成ガス中の炭化水素やタールから煤が発生してしまうことがある。この場合、煤によって機器の運転等に不具合を来してしまう。
【0008】
本開示は、このような課題に鑑み、煤の発生量を低減することが可能なタール改質装置を提供することを目的としている。
【課題を解決するための手段】
【0009】
上記課題を解決するために、タール改質装置は、合成ガスが通過する第1流路および第2流路と、前記第1流路に接続され、該第1流路から導入された合成ガスを量論比以上の酸化剤で燃焼させる燃焼部と、前記燃焼部と、前記第2流路とに接続され、該燃焼部で生じた燃焼排ガスと、前記合成ガスとが導入される合流部と、前記合流部において生じた前記燃焼排ガスと前記合成ガスとの混合ガスに含まれるタールを改質する触媒を保持し、該混合ガスが導入される触媒部と、を備える。
【0010】
また、前記触媒部の入口の混合ガスの温度に基づいて、前記第1流路を通過する合成ガスの流量と、前記第2流路を通過する合成ガスの流量とを調整する調整部を備えてもよい。
【発明の効果】
【0011】
煤の発生量を低減することが可能となる。
【図面の簡単な説明】
【0012】
図1】合成ガス生成装置を説明するための図である。
図2】タール改質装置を説明するための図である。
図3図2のIII−III線断面図である。
【発明を実施するための形態】
【0013】
以下に添付図面を参照しながら、実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本開示に直接関係のない要素は図示を省略する。
【0014】
(合成ガス生成装置100)
図1は、合成ガス生成装置100を説明するための図である。図1に示すように、合成ガス生成装置100は、燃焼炉112と、媒体分離装置(サイクロン)114と、ガス化炉116と、タール改質装置200と、精製装置300とを含んで構成される。なお、図1中、原料の流れを破線の矢印で、ガスの流れを実線の矢印で、流動媒体(砂)の流れを一点鎖線の矢印で示す。
【0015】
合成ガス生成装置100では、全体として、粒径が300μm程度の硅砂(珪砂)等の砂で構成される流動媒体を熱媒体として循環させている。具体的には、まず、流動媒体は、燃焼炉112で900℃〜1000℃程度に加熱される。燃焼炉112で加熱された流動媒体は、二酸化炭素(CO)を含む燃焼排ガスとともに媒体分離装置114に導入される。媒体分離装置114においては、高温の流動媒体と燃焼排ガスとが分離される。分離された高温の流動媒体は、ガス化炉116に導入される。そして、ガス化炉116に導入された流動媒体は、ガス化炉116の底面から導入されるガス化剤(水蒸気)によって流動層化された後、最終的に、燃焼炉112に戻される。また、媒体分離装置114で分離された燃焼排ガスは、ボイラ等で熱回収される。
【0016】
ガス化炉116は、例えば、循環流動層方式の一種である気泡流動層ガス化炉である。ガス化炉116は、原料を700℃〜900℃でガス化させて合成ガスを生成する。原料は、例えば、褐炭等の石炭、石油コークス(ペトロコークス)、バイオマス、タイヤチップ等の固体原料や、黒液等の液体原料である。本実施形態では、ガス化炉116に水蒸気を供給することにより、原料をガス化させて合成ガスを生成する(水蒸気ガス化)。
【0017】
なお、ここでは、ガス化炉116として、循環流動層方式を例に挙げて説明する。しかし、原料をガス化することができれば、ガス化炉116の構成に限定はない。例えば、ガス化炉116は、単なる気泡流動層方式や、砂が自重で鉛直下方向に流下することで移動層を形成する移動層方式であってもよい。
【0018】
ガス化炉116で生成された合成ガスGG1には、タール、水蒸気等が含まれている。このため、合成ガスGG1は、後述するタール改質装置200に導入され、タール改質装置200でタールが改質される。タール改質装置200においてタールが改質された合成ガスGG2は、精製装置300でさらに精製される。また、ガス化炉116において生じたチャー(原料残渣)は、流動媒体とともに燃焼炉112に導入され、燃焼炉112において燃焼される。
【0019】
精製装置300は、熱交換器、スプレー塔、ミストセパレータ、昇圧器、脱硫装置、脱硝装置、脱塩装置等を含んで構成され、合成ガスGG2を精製する。熱交換器は、タール改質装置200から送出された合成ガスGG2を冷却する。スプレー塔は、熱交換器で冷却された合成ガスに水を噴霧して残留タールやスラッジを除去する。ミストセパレータは、合成ガスに霧状の水を噴霧して残留タールやスラッジをさらに除去する。昇圧器は、残留タールやスラッジが除去された合成ガスを昇圧する。脱硫装置は、合成ガスから硫化物を除去する。脱硝装置は、合成ガスから窒化物を除去する。脱塩装置は、合成ガスから塩化物を除去する。
【0020】
(タール改質装置200)
続いて、タール改質装置200の具体的な構成について説明する。図2は、タール改質装置200を説明するための図である。本実施形態の図2を含む以下の図では、垂直に交わるX軸(水平方向)、Y軸(水平方向)、Z軸(鉛直方向)を図示の通り定義している。また、図2中、ガス化炉116で生成された合成ガスGG1を黒い塗りつぶしの矢印で示し、酸化剤SZを破線の矢印で示し、燃焼排ガスNGをハッチングの矢印で示し、燃焼排ガスNGと合成ガスGG1との混合ガスKGをクロスハッチングの矢印で示し、合成ガスGG1中に含まれるタールが改質された合成ガスGG2を白抜きの矢印で示す。
【0021】
図2に示すように、タール改質装置200は、改質炉210と、主配管310と、分岐配管320と、酸化剤供給部330と、調整部340とを含んで構成される。
【0022】
改質炉210は、円筒形状の外壁部212と、外壁部212の上面を封止する上壁部214と、外壁部212の下面を封止する下壁部216とを含んで構成される。改質炉210は、外壁部212の軸が鉛直方向(図2中Z軸方向)となるように設置される。
【0023】
改質炉210の内部空間は、外壁部212の内周面から突出した環形状の部材である第1突出部220および第2突出部230によって、3つの領域(上方から順に、燃焼部240、合流部250、触媒部260)に区画される。合流部250は、通路270を介して燃焼部240に連通される。触媒部260は、通路272を介して合流部250に連通される。以下、合流部250、燃焼部240、触媒部260の順で説明する。
【0024】
合流部250を構成する外壁部212には、主導入口252が形成されており、主導入口252に主配管310が接続される。主配管(第2流路)310は、ガス化炉116と合流部250とを連通する。したがって、主配管310を通じて、ガス化炉116から合流部250に合成ガスGG1が導入される。また、詳しくは後述するが、合流部250には、通路270を通じて燃焼排ガスNGが導入される。したがって、合流部250において、合成ガスGG1と燃焼排ガスNGとの混合ガスKGが生成されることとなる。
【0025】
燃焼部240を構成する外壁部212には、副導入口242が形成されている。副導入口242には、分岐配管(第1流路)320が接続される。分岐配管320は、主配管310から分岐された配管である。換言すれば、分岐配管320は、ガス化炉116と燃焼部240とを連通する。したがって、分岐配管320を通じて、ガス化炉116から燃焼部240に合成ガスGG1が導入されることとなる。
【0026】
酸化剤供給部330は、上壁部214に形成された酸化剤供給口332を通じて、燃焼部240内に酸化剤SZを供給する。酸化剤供給口332は、上壁部214(燃焼部240)の実質的に中央に形成される。本実施形態において、酸化剤供給口332は、合成ガスGG1の旋回流と直交する方向から酸化剤SZが供給されるように設計される。また、酸化剤供給部330は、分岐配管320から導入される合成ガスGG1の流量より少流量の酸化剤SZを燃焼部240に供給する。
【0027】
本実施形態において、酸化剤供給部330は、分岐配管320から燃焼部240に導入される合成ガスGG1に対して量論比以上の酸化剤SZ(例えば、酸素)を燃焼部240内に供給する。すなわち、酸化剤供給部330は、合成ガスGG1に対して理論混合比(量論混合比、化学量論混合比)以上の酸化剤SZ、つまり、合成ガスGG1を二酸化炭素に変換する(酸化させる)ために必要な最低量以上の酸化剤SZを燃焼部240に供給する。これにより、合成ガスGG1を完全燃焼させることができる。したがって、燃焼部240において、煤をほとんど発生させることなく、高温の燃焼排ガスNGを生成することができる。
【0028】
図3は、図2のIII−III線断面図である。なお、図3中、合成ガスGG1を黒い塗りつぶしの矢印で示す。図3に示すように、外壁部212は、水平断面が略円形状となっている。また、副導入口242は、合成ガスGG1が、外壁部212の接線方向もしくは内周面に沿って流れるように、外壁部212の中心から内周面側に角度をずらして開口している。換言すれば、燃焼部240内で合成ガスGG1が高速度で旋回するように、副導入口242の開口位置が設定されている。したがって、ガス化炉116から燃焼部240に導かれた合成ガスGG1は、燃焼部240内で旋回する。
【0029】
したがって、ガス化炉116から燃焼部240に導かれた合成ガスGG1は、燃焼部240内で旋回し、合成ガスGG1の旋回過程において、酸化剤供給口332を通じて供給された酸化剤SZと混合される。
【0030】
ここで、合成ガスGG1と酸化剤SZとの混合装置として、合成ガスGG1の流れ方向に沿って(例えば、分岐配管320内に)、酸化剤SZを供給する構成(以下、比較例という)が考えられる。しかし、合成ガスGG1と酸化剤SZとの流量(運動量)の差が大きいことから、比較例では、酸化剤SZの拡散による混合が支配的となる。このため、酸化剤供給部330が量論比の酸化剤SZを供給したとしても、混合不足による不均一性が原因となり、煤が生じてしまう。
【0031】
一方、合成ガスGG1の旋回過程において酸化剤SZが混合される本実施形態の構成では、高速で吹き込む酸化剤SZと合成ガスGG1を直交させることで大きな乱れを発生させることができる。これにより、比較例と比較して、合成ガスGG1と酸化剤SZとを急速に混合することができる(混合距離を短くすることができる)。したがって、局所的な高温場の発生を抑制することができ、煤の発生を低減することが可能となる。
【0032】
また、合成ガスGG1の旋回により、下流から上流へ向かう逆向きの流れが発生し、合成ガスGG1と酸化剤SZとの混合をさらに促進させることができる。こうして、合成ガスGG1と酸化剤SZとが満遍なく(偏りなく)混合される。
【0033】
これにより、酸化剤供給部330が量論比の酸化剤SZを供給しても、燃焼部240において、合成ガスGG1と酸化剤SZとが混合不良を起こしてしまう事態を回避することができる。つまり、燃焼部240において必要最低限(量論比)の酸化剤SZが供給された場合であっても、合成ガスGG1と酸化剤SZとが満遍なく混合されることにより、煤の発生を低減することができる。
【0034】
また、合成ガスGG1の旋回過程において酸化剤SZが混合される本実施形態の構成では、比較例とは異なり、酸化剤供給口332を複数設けることができる。したがって、合成ガスGG1と酸化剤SZとを広範囲で混合することが可能となる。これにより、合成ガスGG1と酸化剤SZとを満遍なく混合することができる。
【0035】
したがって、合成ガスGG1と酸化剤SZとの燃焼反応を実質的に均一に促進させることができ、煤をほとんど発生させることなく、燃焼排ガスNGを生成することが可能となる。そして、燃焼部240で生じた燃焼排ガスNGは、通路270を介して合流部250に導入される。
【0036】
図2に戻って説明すると、燃焼部240において生成された燃焼排ガスNGは、合成ガスGG1より高温である(例えば、合成ガスGG1が800℃程度、燃焼排ガスNGが1200℃程度)。このため、合流部250において、合成ガスGG1と燃焼排ガスNGとを混合することにより、合成ガスGG1の温度(混合ガスKGの温度)を上昇させることができる。なお、詳しくは後述するが、調整部340によって、合流部250において生成される混合ガスKG(触媒部260の入口の混合ガスKG)の温度は、触媒部260が保持する触媒の活性温度(例えば、850℃〜900℃程度)となる。
【0037】
また、燃焼排ガスNGは、合成ガスGG1を完全燃焼させた結果生じたガスであるため、煤をほとんど含まない。したがって、燃焼排ガスNGと合成ガスGG1とを混合する構成により、煤をほとんど含まない、高温の合成ガスGG1(混合ガスKG)を生成することができる。
【0038】
調整部340は、第1流量調整部342と、第2流量調整部344と、流量計346と、制御部348とを含んで構成される。
【0039】
第1流量調整部342は、主配管310における分岐配管320の分岐個所と主導入口252との間に設けられる。第2流量調整部344は、分岐配管320に設けられる。第1流量調整部342、第2流量調整部344は、ダンパで構成される。このため、ダスト(媒体分離装置114を通過したガス化炉116からの流動媒体など)によって第1流量調整部342、第2流量調整部344が故障するリスクを低減することができる。また、第1流量調整部342、第2流量調整部344のメンテナンス頻度を低減することが可能となる。
【0040】
流量計346は、分岐配管320(詳細には、分岐配管320における第2流量調整部344の下流側)を流れる合成ガスGG1の流量を測定する。
【0041】
制御部348は、CPU(中央処理装置)を含む半導体集積回路で構成される。制御部348は、ROMからCPU自体を動作させるためのプログラムやパラメータ等を読み出し、ワークエリアとしてのRAMや他の電子回路と協働する。
【0042】
制御部348は、第1流量調整部342を制御し、主配管310の開度を調整する。つまり、制御部348は、合流部250に導入する合成ガスGG1の流量を調整する。また、制御部348は、第2流量調整部344を制御し、分岐配管320の開度を調整する。つまり、制御部348は、燃焼部240に導入する合成ガスGG1の流量を調整する。
【0043】
本実施形態において、制御部348は、主配管310に導入される合成ガスGG1の温度に基づいて、触媒部260の入口(合流部250の出口)の混合ガスKGの温度が触媒の活性温度以上劣化温度未満となるように第1流量調整部342、第2流量調整部344を制御する。換言すれば、制御部348は、触媒部260の入口の混合ガスKGの温度が触媒の活性温度以上劣化温度未満となるように、合流部250に導入する合成ガスGG1の流量および燃焼部240に導入する合成ガスGG1の流量を調整する。
【0044】
そして、制御部348は、流量計346が測定した合成ガスGG1の流量、すなわち、燃焼部240に導入する合成ガスGG1の流量に基づいて、酸化剤供給部330が燃焼部240に供給する酸化剤SZの量を調整する。
【0045】
調整部340を備える構成により、触媒部260の入口の混合ガスKGの温度を触媒の活性温度以上劣化温度未満とすることが可能となる。また、燃焼部240において合成ガスGG1を確実に完全燃焼させることができる。
【0046】
燃焼部240と合流部250との間に配される第1突出部220は、外壁部212の内周面における副導入口242と主導入口252との間に設けられた環形状の部材である。第1突出部220は、上壁部214から下壁部216(合流部250)に向かって、流路断面積を漸減させる絞部222aと、絞部222aから下壁部216に向かって流路断面積が実質的に一定となる頂部222bと、頂部222bから下壁部216に向かって流路断面積を漸増させる拡大部222cとを含んで構成される。
【0047】
第1突出部220を備える構成により、拡大部222cにおいて、合成ガスGG1と酸化剤SZとの混合気KKを再循環させることができる。このため、混合気KK中において合成ガスGG1と酸化剤SZとの混合を促進する(混合気KK中における酸化剤SZの偏りを低減する)ことが可能となる。したがって、混合気KK中の合成ガスGG1と酸化剤SZとの燃焼反応を実質的に均一に促進させることができ、煤の発生を防止して、燃焼排ガスNGを生成することが可能となる。
【0048】
合流部250と触媒部260との間に配される第2突出部230は、外壁部212の内周面における主導入口252と下壁部216との間に設けられた環形状の部材である。第2突出部230は、上壁部214(合流部250)から下壁部216(触媒部260)に向かって、流路断面積を漸減させる絞部232aと、絞部232aから下壁部216に向かって流路断面積が実質的に一定となる頂部232bと、頂部232bから下壁部216に向かって流路断面積を漸増させる拡大部232cとを含んで構成される。
【0049】
第2突出部230を備える構成により、拡大部232cにおいて、混合ガスKGを再循環させることができ、また、拡大部232cの下方において混合ガスKGを急速に拡散させることができる。このため、混合ガスKG中において合成ガスGG1と燃焼排ガスNGとの混合を促進することが可能となる。したがって、混合ガスKGの温度を実質的に均一にすることが可能となる。
【0050】
触媒部260は、タールの改質を促進する触媒を保持する。ここで、触媒は、少なくともNi(ニッケル)を含んで構成される。触媒は、活性温度の環境(雰囲気)下において、混合ガスKGと接触することで、混合ガスKG中のタールを改質することができる。
【0051】
こうして、触媒部260によってタールが改質(除去)された合成ガスGG2は、外壁部212における下壁部216近傍に設けられた送出口218を通じて、上記精製装置300に供給されることとなる。
【0052】
以上説明したように、本実施形態にかかるタール改質装置200によれば、量論比以上の酸化剤SZで合成ガスGG1を燃焼させることにより、煤が含まれない高温の燃焼排ガスNGを生成することができる。こうして生成された燃焼排ガスNGと合成ガスGG1とを混合するだけといった簡易な構成で、煤の発生を防止しつつ、合成ガスGG1の温度を触媒の活性温度まで上昇させることが可能となる。したがって、触媒間に形成される流路や、配管、精製装置300を構成する機器等が煤によって閉塞されてしまう事態を回避しつつ、合成ガスGG1に含まれるタールを改質して除去することができる。
【0053】
また、上述したように、ガス化炉116では、水蒸気ガス化を行っているため、ガス化炉116で生成された合成ガスGG1には水蒸気が多く(例えば、50%程度)含まれている。したがって、合成ガスGG1に触媒を接触させることで、混合ガスKG中のタールと水蒸気とを反応させることができ、タールを、水素(H)、一酸化炭素(CO)等に改質することが可能となる。
【0054】
以上、添付図面を参照しながら実施形態について説明したが、本開示はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に技術的範囲に属するものと了解される。
【0055】
例えば、上記実施形態において、合成ガスGG1の供給源としてガス化炉116を例に挙げて説明した。しかし、タールを含む合成ガスGG1の供給源であれば、合成ガスGG1の供給源に限定はない。
【0056】
また、上記実施形態において、燃焼部240に合成ガスGG1を導入する第1流路が、主配管310から分岐された分岐配管320で構成される場合を例に挙げて説明した。しかし、第1流路は、燃焼部240に合成ガスGG1を導入できればよい。例えば、ガス化炉116と燃焼部240とを直接連通する配管であってもよい。つまり、ガス化炉116と燃焼部240とを連通する配管(第1流路)と、ガス化炉116と合流部250とを連通する配管(第2流路)とを別々に備えるとしてもよい。
【0057】
また、上記実施形態の燃焼部240において、合成ガスGG1と酸化剤SZとが、合成ガスGG1の旋回過程において混合される構成について説明した。しかし、合成ガスGG1と酸化剤SZとの混合装置に限定はない。例えば、合成ガスGG1の流れに逆らって酸化剤SZを供給することで、両者を混合してもよい。この構成では、酸化剤SZの供給口を複数設けることができる。
【0058】
また、上記実施形態において、調整部340を備える構成を例に挙げて説明した。しかし、ガス化炉116から導入される合成ガスGG1の温度が所定温度範囲内に維持されている場合、調整部340を省略することができる。この場合、触媒部260の入口の温度が触媒の活性温度となるように、主配管310と、分岐配管320との流路断面積を設計すればよい。
【0059】
また、上記実施形態において、第1流量調整部342、第2流量調整部344がダンパで構成される場合を例に挙げて説明した。しかし、第1流量調整部342は、第2流路の流量を調整できればよい。また、第2流量調整部344は、第1流路の流量を調整できればよい。例えば、第1流量調整部342、第2流量調整部344は、ファンやポンプで構成されてもよい。
【0060】
また、上記実施形態において、触媒として、少なくともNiを含む触媒を例に挙げて説明した。しかし、混合ガス中のタールを改質して、タールを除去することができれば、触媒の材質に限定はない。例えば、Ca(カルシウム)、Mg(マグネシウム)、Fe(鉄)、および、Si(ケイ素)の群から選択される1または複数の元素の酸化物または炭酸塩であり、例えば、ドロマイト、カンラン石、褐鉄鉱、石灰石といった天然鉱石を触媒として用いてもよい。つまり、Ca、Mg、Fe、および、Siの群から選択される1または複数を含む触媒を採用してもよい。
【産業上の利用可能性】
【0061】
本開示は、合成ガス中のタールを改質するタール改質装置に利用することができる。
【符号の説明】
【0062】
200 タール改質装置
240 燃焼部
250 合流部
260 触媒部
310 主配管(第2流路)
320 分岐配管(第1流路)
340 調整部
図1
図2
図3