【実施例】
【0125】
例1:本発明に係る式(I)のPAG油の調製−油(1)
【化4】
平均値:m=3.53、n=2.84
オートクレーブステンレス鋼反応器中に、ドデカノール(2647g)を開始剤として入れて、その後、45mass%の水酸化カリウムの溶液(28.2g)を入れた。混合物を、窒素雰囲気下で115℃に加熱した。
【0126】
次に、水を、0.1wt%未満の水濃度まで、フラッシュ蒸発(115℃、3MPa)によって除去した。
【0127】
1,2−プロピレンオキシド(2910g)と1,2−ブチレンオキシド(2910g)との混合物を、130℃の温度かつ490kPaの圧力で反応器中に入れた。混合物を撹拌して、130℃で14時間反応させた。
【0128】
残留触媒を50℃でケイ酸マグネシウムを通じて濾過することで分離して、ASTM D445標準で従って測定した40℃での動粘度が22.4mm
2・s
-1であり、ASTM 445標準に従って測定した100℃での動粘度が4.76mm
2・s
-1であり、粘度指数が137であり、流動点が−48℃である、中間生成物(A)を得た。
【0129】
ステンレス鋼のオートクレーブ反応器中に、生成物(A)(8266g)を入れた。メタノール中で25mass%のナトリウムメトキシドの溶液(3060g)を加えて、120℃で12時間、窒素流(200mL/分)で、減圧(1kPa未満)で撹拌した(180回転/分)。
【0130】
塩化メチル(751g)を、80℃かつ圧力(260kPa)下で加えた。
【0131】
混合物を撹拌して、80℃で1.5時間反応させた。
【0132】
次に、反応しなかったジメチルエーテルと塩化メチルとを分離するために、フラッシュ蒸発(10分間、80℃、減圧下)を行った。
【0133】
混合物から塩化ナトリウムを洗浄するために、水(2555g)を加えて、次いで、80℃で40分間撹拌した。撹拌をやめて、混合物を80℃で1時間、静止状態で放置した。
【0134】
塩水相(3283g)を、デカンテーションによって分離して、ケイ酸マグネシウム(50g)を残りの混合物に加えて、フラッシュ蒸発を、残留水を分離するために、窒素流(200mL/分)下で、撹拌(180回転/分)しながら行った(1時間、100℃、1kPa未満の圧力)。
【0135】
混合物を60℃で冷却させて、次いで、油(1)(8359g)を分離するために、50℃でケイ酸マグネシウム上で濾過した。メチル化工程の収率は98.6mass%であった。
【0136】
この油(1)については、ASTM D445標準で従って測定した40℃での動粘度が14.4mm
2・s
-1であり、ASTM D445標準に従って測定した100℃での動粘度が3.98mm
2・s
-1であり、ISO3016標準に従って測定した流動点が−54℃であった。
【0137】
この油の粘度指数は194であり、ASTM D5293標準に従って測定した−35℃でのその絶対粘度(CCS)は1120mPa・sであった。
【0138】
例2:本発明に係る式(I)のPAG油の調製−油(2)
【化5】
平均値:m=2.45、n=1.97
オートクレーブステンレス反応器中に、ドデカノール(2369g)を開始剤として入れて、次いで、45mass%の水酸化カリウムの溶液(20.02g)を入れた。混合物を、窒素雰囲気下で115℃に加熱した。フラッシュ蒸発を、水を分離するために混合物で行った(115℃、3MPa)。混合物の水濃度を0.1mass%未満に下げた。
【0139】
1,2−プロピレンオキシド(1808.5g)と1,2−ブチレンオキシド(1808.5g)との混合物を、130℃の温度かつ490kPaの圧力で反応器中に入れた。混合物を撹拌して、130℃で14時間反応させた。
【0140】
残留触媒を、50℃でケイ酸マグネシウムを通じて濾過することで分離して、ASTM D445標準に従って測定した40℃での動粘度が16.1mm
2・s
-1であり、ASTM D445標準に従って測定した100℃での動粘度が3.7mm
2・s
-1であり、流動点が−39℃である、中間生成物(B)を得た。
【0141】
オートクレーブステンレス鋼反応器中に、一部の生成物(B)(5797g)を入れた。メタノール中で25mass%のナトリウムメトキシドの溶液(2765g)を加えて、120℃で12時間、窒素流(200mL/分)で、減圧(1kPa未満)で撹拌した(180回転/分)。
【0142】
反応器の混合物の一部(3825g)を空にした。
【0143】
次に、反応器中に残っていた混合物の残りの部分(2264g)に、塩化メチル(252g)を、80℃かつ圧力(260kPa)下で加えた。
【0144】
混合物を撹拌して、80℃で1.5時間作用させた。
【0145】
次に、フラッシュ蒸発を、ジメチルエーテルと未反応の塩化メチルとを分離するために行った(10分間、80℃、減圧下)。
【0146】
混合物の塩化ナトリウムを洗浄するために、水(796g)を加えて、次いで、80℃で40分間撹拌した。撹拌をやめて、混合物を80℃で1時間、静止状態で放置した。
【0147】
塩水相(961g)を、デカンテーションによって分離して、ケイ酸マグネシウム(50g)を残りの混合物に加えて、フラッシュ蒸発を、窒素流(200mL/分)下で、撹拌(180回転/分)しながら行った(1時間、100℃、1kPa未満の圧力)。
【0148】
混合物を60℃で冷却させて、次いで、油(2)(2218g)を分離するために、50℃でケイ酸マグネシウム上で濾過した。メチル化工程の収率は93.7mass%であった。
【0149】
この油(2)については、ASTM D445標準に従って測定した40℃での動粘度が9.827mm
2・s
-1であり、ASTM D445標準に従って測定した100℃での動粘度が2.97mm
2・s
-1であり、ISO3016標準に従って測定した流動点が−48℃であった。
【0150】
この油の粘度指数は172であり、ASTM D5293標準に従って測定した−35℃での絶対粘度(CCS)は450mPa・sであった。
【0151】
比較例3:公知のPAG油の調製−比較の油(1)
【化6】
平均値:m=1.76、n=1.42
オートクレーブステンレス鋼反応器中に、ドデカノール(4364g)を開始剤として入れて、その後、45mass%の水酸化カリウムの溶液(39.68g)を入れた。混合物を、窒素雰囲気下で115℃に加熱した。
【0152】
フラッシュ蒸発を、水を分離するために混合物で行った(115℃、3MPa)。混合物の水濃度を0.1mass%未満に下げた。
【0153】
1,2−プロピレンオキシド(2276g)と1,2−ブチレンオキシド(2276g)とを、130℃の温度かつ370kPaの圧力で反応器中に入れた。混合物を撹拌して、130℃で12時間作用させた。
【0154】
残留触媒を、50℃でケイ酸マグネシウムを通じて濾過することで分離して、ASTM D445標準に従って測定した40℃での動粘度が12.2mm
2・s
-1であり、ASTM D445標準に従って測定した100℃での動粘度が3.0mm
2・s
-1であり、流動点が−29℃である、比較の油(1)を得た。
【0155】
この油の粘度指数は60であり、ASTM D5293標準に従って測定した−35℃での絶対粘度(CCS)は4090mPa・sであった。
【0156】
比較例4:公知のPAG油の調製−比較の油(2)
【化7】
平均値:m=2.79、n=2.25
オートクレーブステンレス鋼反応器中に、ドデカノール(3141g)を開始剤として入れて、その後、45mass%の水酸化カリウムの溶液(38.4g)を入れた。混合物を、窒素雰囲気下で115℃に加熱した。フラッシュ蒸発を、水を分離するために混合物で行った(115℃、3MPa)。混合物の水濃度を0.1mass%未満に下げた。
【0157】
1,2−プロピレンオキシド(2735.5g)と1,2−ブチレンオキシド(2735.5g)との混合物を、130℃の温度かつ370kPaの圧力で反応器中に入れた。混合物を撹拌して、130℃で12時間反応させた。
【0158】
残留触媒を、50℃でケイ酸マグネシウムを通じて濾過することで分離して、ASTM D445標準に従って測定した40℃での動粘度が18.0mm
2・s
-1であり、ASTM D445標準に従って測定した100℃での動粘度が4.0mm
2・s
-1であり、流動点が−41℃である、比較の油(2)を得た。
【0159】
この比較の油(2)の粘度指数は116であり、ASTM D5293標準に従って測定した−35℃での絶対粘度(CCS)は3250mPa・sであった。
【0160】
例5:本発明に係る潤滑組成物、比較の潤滑組成物の調製と、電動車両の変速機の潤滑用のこれらの組成物の性質の評価
表1の量(mass%)に従って潤滑組成物を調製するために、潤滑組成物を、例2に係る油(2)及び公知の油を、他の基油及び添加剤と混合することで調製した。
【0161】
【表2】
【0162】
調製した潤滑組成物の特性を評価して、得られた結果を表2に示した。
【0163】
【表3】
【0164】
エネルギー収率を、グループIIIの油に基づくギアボックス用の商用油(KV100=7.46mm
2・s
-1、KV40=33.97mm
2・s
-1、VI=196)と比較して評価した。評価した組成物とこの商用油の間のエネルギー収率の偏差(ずれ)を測定した。
【0165】
したがって、この試験は、出力トルクを入力トルクと比較することで、エネルギー収率を評価する可能性と、使用したギアボックスの収率を測定する可能性とを与えた。
【0166】
それによって、適用したギアボックス用の油の燃料節約の性質を評価することができた。
【0167】
この試験中に、5つのギアを持つ手動ギアボックスを使用した。油の温度は20℃及び50℃であった。それらは、特に、低温条件(20℃)下で、それらの燃料節約の性質を持つ油を良好に差別化する可能性を与えた。入力トルクを30Nmに、次いで90Nmに設定した。入力条件を1000rpmに、次いで3000rpmに設定した。各油の温度及び各ギア比について、使用条件を表Bに示す。
【0168】
【表4】
【0169】
この試験は、NEDC欧州試験をシミュレーションする可能性と、特定の油により潤滑されたギアボックスのCO
2排出及び燃料消費を決定する可能性とを与えた。収率値が高いほど、燃料消費の低減が良好になる。
【0170】
したがって、技術水準のグループIIIの2つの油を含む潤滑組成物と比較して、本発明に係る油(2)を含む潤滑組成物は改善した性質を有した。
【0171】
粘度指数が極めて優れていた。トラクション係数は少なくとも7%に下がった。エネルギー収率はまた大きく改善し、グループIIIの油に基づく商用油に基づく組成物と比較して3倍超の向上を可能とした。したがって、これらのパラメータは、本発明に係る組成物の燃料節約の向上を示す可能性を与えることが確かめられた。
【0172】
本発明に係る潤滑組成物はまた、技術水準に係る潤滑組成物と比べて同一レベルか又は大きい酸化耐性を有した。異なるエラストマーへのそれらの相溶性は、それらが接触している変速機ガスケットで使用されることがあり、それはまた、技術水準の潤滑組成物と比べて同一レベルか又は良好であった。
【0173】
さらに、本発明に係る組成物は、自動車用の変速機の機械部品の摩耗に対する良好な耐性を可能とした。
【0174】
最後に、本発明に係る油(2)の20%を含む潤滑組成物の性質における改善は、本発明に係る油(2)の38.45%を含む潤滑組成物に比べ同程度か又は大きいことが確かめられた。
【0175】
例6:本発明に係る潤滑組成物、比較の潤滑組成物の調製と、車両エンジンの潤滑用のこれらの組成物の性質の評価
潤滑組成物を、表3の量(mass%)に従って潤滑組成物を調製するために、例1に係る油(1)及び公知の油を、他の基油及び添加剤と混合することによって調製した。
【0176】
【表5】
【0177】
調製した潤滑組成物の特性を評価して、得られた結果を表4に示した。
【0178】
【表6】
【0179】
技術水準のグループIIIの2つの油とグループIVの油とを含む潤滑組成物と比較して、本発明に係る油(1)を含む潤滑組成物は改善した性質を有した。
【0180】
粘度指数が優れるか又は極めて優れ、ノアック揮発性が改善された。したがって、これらのパラメータは、本発明に係る組成物の「燃料節約」の向上を示す可能性を与えた。
【0181】
本発明に係る潤滑組成物はまた、技術水準の潤滑組成物より大きい酸化耐性を有した。本発明に係る潤滑組成物の洗浄力は、技術水準の潤滑組成物と比べて同一レベルか又は良好であった。
【0182】
本発明に係る潤滑組成物の異なるエラストマーへの相溶性は、それらが接触している変速機ガスケットで使用されることがあり、それはまた、技術水準の潤滑組成物と比べて同一レベルか又は良好であった。
【0183】
最後に、本発明に係る油(1)の8%を含む潤滑組成物の性質における改善は、本発明に係る油(1)の27.7%を含む潤滑組成物に比べ同程度か又は優れていることが確かめられた。
【0184】
例7:本発明に係る潤滑組成物、比較の潤滑組成物の調製と、車両エンジンの潤滑用のこれらの組成物の性質の評価
潤滑組成物を、表5の量(mass%)に従って、例1に係る油(1)及び公知の油を、他の基油と混合することによって調製した。比較の潤滑組成物(3)をまた、比較例(3)に係る比較の油(2)から調製した。
【0185】
【表7】
【0186】
調製した潤滑組成物の特性を評価して、得られた結果を表6に示した。
【0187】
【表8】
【0188】
技術水準のグループIIIの2つの油と比較の油(2)とを含む潤滑組成物と比較して、本発明に係る油(1)を含む潤滑組成物は改善した性質を有した。
【0189】
測定した100℃での動粘度はより低かった。絶対粘度(−35℃でのCCS)はより低く、それは、本発明に係る組成物の低温挙動における改善を示した。
【0190】
さらに、粘度指数は極めて優れ、ノアック揮発性は大きく改善された。したがって、これらのパラメータは、本発明に係る組成物の「燃料節約」の向上を示す可能性を与えた。
【0191】
例8:本発明に係る潤滑組成物、比較の潤滑組成物の調製と、車両エンジンの潤滑用のこれらの組成物の性質の評価
潤滑組成物を、表7の量(mass%)に従って潤滑組成物を調製するために、例1に係る油(1)及び公知の油を別の基油及び添加剤と混合することによって調製した。
【0192】
【表9】
【0193】
調製した潤滑組成物の特性を評価して、得られた結果を表8に示した。
【0194】
【表10】
【0195】
技術水準のグループIIIの油と、グループIVの油と、比較の油(2)とを含む潤滑組成物と比較して、本発明に係る油(1)を含む潤滑組成物は改善した性質、より具体的には「燃料節約」の向上を有した。
【0196】
粘度指数は優れていた。絶対粘度(−35℃でのCCS)は劣っていた。
【0197】
酸化耐性は改善した。
【0198】
例9:本発明に係る潤滑組成物、比較の潤滑組成物の調製と、電動車両の変速機の潤滑用のこれらの組成物の性質の評価
潤滑組成物を、表9の量(mass%)に従って潤滑組成物を調製するために、例2に係る油(2)及び公知の油を別の基油及び添加剤と混合することによって調製した。
【0199】
【表11】
【0200】
調製した潤滑組成物の特性を評価して、得られた結果を表10に示した。
【0201】
【表12】
【0202】
技術水準のグループIVの油と比較の油(1)とを含む潤滑組成物と比較して、本発明に係る油(2)を含む潤滑組成物は改善した性質を有した。
【0203】
粘度指数は極めて優れ、トラクション係数は12%超下がった。したがって、これらのパラメータは、本発明に係る組成物の「燃料節約」の向上を示す可能性を与えた。