(58)【調査した分野】(Int.Cl.,DB名)
前記コントローラは、前記車両の車体の横方向加速度が横加速度閾値を超えるか、前記車両の車体の前後方向加速度が前後加速度閾値を超える場合、必要最低回転数を0を超える規定値に設定する最低回転数規制部を備え、
前記目標回転数決定部は、前記必要最低回転数に前記路面状態指標に基づいて得る加算回転数を加算して前記目標回転数を求める
ことを特徴とする請求項1から3のいずれか一項に記載のサスペンション装置。
前記最低回転数規制部は、前記車両の車体の横方向加速度が横加速度閾値以下であり、かつ、前記車両の車体の前後方向加速度が前後加速度閾値以下である場合、前記ポンプの必要最低回転数を0に設定する
ことを特徴とする請求項4に記載のサスペンション装置。
【発明を実施するための形態】
【0021】
<サスペンション装置の基本構成>
以下、図に示した実施の形態に基づき、本発明を説明する。サスペンション装置Sは、
図1から
図3に示すように、伸縮可能なアクチュエータACと、ポンプ4と、アクチュエータACとポンプ4との間に設けられてポンプ4から吐出される液体をアクチュエータACへ供給してアクチュエータACを伸縮させる液圧回路FCと、ポンプ4を駆動制御するコントローラCとを備えて構成されている。
【0022】
このサスペンション装置Sでは、アクチュエータACは、シリンダ1と、シリンダ1内に移動自在に挿入されてシリンダ1内を伸側室R1と圧側室R2とに区画するピストン2と、シリンダ1内に移動自在に挿入されてピストン2に連結されるロッド3を備える。ロッド3は、伸側室R1内のみに挿通されていて、アクチュエータACは、所謂、片ロッド型のアクチュエータとされている。なお、リザーバRは、
図1に示したところでは、アクチュエータACとは独立して設けられているが、詳しくは図示しないが、アクチュエータACにおけるシリンダ1の外周側に配置される外筒を設けて、シリンダ1と外筒との間の環状隙間で形成されてもよい。また、
図3に示すように、コントローラCは、車両Caの四輪に設けたアクチュエータACを制御するようになっているが、コントローラCが制御するアクチュエータACの数は任意に決定できる。
【0023】
なお、サスペンション装置Sを車両Caに適用する場合、シリンダ1を車両Caの車体Bおよび車輪Wのうち一方に連結し、ロッド3を車体Bおよび車輪Wのうち他方に連結して、車体Bと車輪Wとの間に介装すればよい。
【0024】
そして、伸側室R1および圧側室R2には液体として、たとえば、作動油等の液体が充満され、リザーバR内は液体が貯留される。リザーバRにも液体が充填され、気体ばね或いはばね或いはこれら両方によって充填される液体を加圧している。伸側室R1、圧側室R2、リザーバRおよびリザーバR内に充填される液体は、作動油以外にも、たとえば、水、水溶液といった液体を使用できる。また、本発明では、伸長行程時に圧縮される室を伸側室R1とし、収縮行程時に圧縮される室を圧側室R2としてある。
【0025】
ポンプ4は、吸込側から液体を吸い込んで吐出側から液体を吐出する一方向吐出型に設定され、モータ13によって駆動されるようになっている。モータ13には、直流、交流を問わず、種々の形式のモータ、たとえば、ブラシレスモータ、誘導モータ、同期モータ等を採用できる。
【0026】
そして、ポンプ4の吸込側はポンプ通路14によってリザーバRに接続されており、吐出側は液圧回路FCに接続されている。したがって、ポンプ4は、モータ13によって駆動されると、リザーバRから液体を吸い込んで液圧回路FCへ液体を吐出するようになっている。
【0027】
また、ポンプ4を駆動するモータ13は、コントローラCによって制御される。コントローラCは、モータ13へ供給する電流量を調節でき、ポンプ4の駆動および停止のみならず、ポンプ4の回転数を制御できるようになっている。つまり、ポンプ4は、コントローラCによって、駆動制御される。
【0028】
液圧回路FCは、コントローラCによって制御される電磁弁を備えており、ポンプ4から吐出される液体をアクチュエータACにおける伸側室R1と圧側室R2へ供給できるようになっている。また、液圧回路FCは、伸側室R1と圧側室R2のいずれかから排出される液体およびポンプ4から吐出される液体のうち余剰分をリザーバRへ排出するようになっている。そして、液圧回路FCは、コントローラCからの指令により伸側室R1と圧側室R2の圧力を調節してアクチュエータACの推力を制御し、アクチュエータACをアクティブサスペンションとして機能させるようになっている。ポンプ4が停止しておりアクチュエータACがポンプ4から液体供給を受けられない場合、液圧回路FCは、アクチュエータACを外部入力による伸縮に対して当該伸縮を抑制する推力を発揮するセミアクティブサスペンション或いはダンパとして機能させる。
【0029】
コントローラCは、
図2および図3に示すように、車両Caの前端に設けられたプレビューセンサ41と、プレビュー位置決定部42と、路面状態指標取得部43と、最低回転数規制部44と、目標回転数決定部45と、ポンプ停止判断部46と、推力演算部47と、ドライバDrと、車体Bの上下方向加速度を検知する加速度センサ48と、車輪Wの上下方向加速度を検知する加速度センサ49と、車両Caの速度(車速)Vsを検知する車速センサ50と、車体Bの横方向加速度Glatを検知する加速度センサ51と、車体Bの前後方向加速度Glongを検知する加速度センサ52とを備えて構成されている。
図2では、理解を容易にするため、コントローラCに対して一つのアクチュエータACを制御する構成を図示している。よって、車両Caの四輪各輪Wと車体Bとの間に介装される四つのアクチュエータACを単一のコントローラCで制御する場合、車輪Wの上下方向加速度を検知する加速度センサ49については、アクチュエータAC毎に対応させて四つ設けるようにすればよい。加速度センサ51,52は、それぞれ、車体Bの横方向加速度Glatと前後方向加速度Glongを検知するセンサであるので、車体Bに対して一つずつ設ければよい。なお、プレビューセンサ41は、コントローラCに含まれているが、
図3では、理解を容易にするため、便宜上、プレビューセンサ41をコントローラCから独立した図としている。また、以下では、車両Caの前側の車輪Wに設けられたアクチュエータACを制御する場合を例にコントローラCの動作を説明する。
【0030】
推力演算部47は、車両Caの振動を抑制するべく車両Caにおける車体Bの制御に必要なアクチュエータACが発生すべき推力を求める。本例では、推力演算部47は、基本的には、スカイフック制御則に則り、加速度センサ48が検知する車体Bの上下方向の加速度に基づいて車体Bの振動を抑制するために必要なアクチュエータACが発揮すべき推力を目標推力として求める。また、本例では、スカイフック制御による振動抑制制御のほかに、加速度センサ51,52で検知する横方向加速度および前後方向加速度の入力を受けて車両Caの車体である車体Bのロール、ノーズダイブおよびスクォートを抑制する姿勢制御と、加速度センサ49で検知する車輪Wの上下方向加速度の入力を受けて車輪Wの振動抑制制御を加味して、アクチュエータACが発生すべき推力を目標推力として求めるようにしている。なお、スカイフック制御のみをおこなう場合、コントローラCは、車体Bの上下方向の加速度のみから目標推力を求めるようにしてもよい。推力演算部47で用いる制御則については、スカイフック制御以外の制御則を採用してもよく、車両Caに適するものを選択すればよい。
【0031】
そして、目標推力がアクチュエータACの伸長方向の推力である場合、コントローラCは、液圧回路FCにおける電磁弁を制御してポンプ4から吐出される液体を圧側室R2へ供給させ、目標推力の大きさに応じて圧側室R2の圧力を制御する。反対に、目標推力がアクチュエータACの収縮方向の推力である場合、コントローラCは、液圧回路FCにおける電磁弁を制御してポンプ4から吐出される液体を伸側室R1へ供給させ、目標推力の大きさに応じて伸側室R1の圧力を制御する。具体的には、推力演算部47が求めた目標推力は、制御指令としてドライバDrに入力され、ドライバDrが目標推力によって指示されたとおりに電磁弁を駆動しアクチュエータACの推力が目標推力通りに制御される。
【0032】
このように、コントローラCでは、アクチュエータACの推力を制御することのほか、ポンプ4の吐出流量を制御すべく、プレビューセンサ41、プレビュー位置決定部42、路面状態指標取得部43、最低回転数規制部44、目標回転数決定部45およびポンプ停止判断部46を備えている。
【0033】
プレビューセンサ41は、
図3に示すように、車体Bの前端に設けられており、車両Caがこれから走行する路面変位を検知するために、車両Caの前側の車輪Wからプレビュー位置決定部42で決定された距離Lを開けて前方の路面における路面変位を検知する。プレビューセンサ41としては、車両Caから離れた位置における前方路面RSの変位を検知できるセンサであればよく、たとえば、ミリ波レーダー、マイクロ波レーダー、レーザーレーダー、光学カメラ、超音波ソナー、赤外線センサといったセンサを利用できる。なお、プレビューセンサ41の車体Bへの設置位置は、路面変位を検知できる位置であれば、前端以外に設置してもよい。
【0034】
路面状態指標取得部43は、
図2に示すように、本実施の形態では、プレビューセンサ41から入力される前方路面RSの路面変位の絶対値のサンプリング時間T内における積分平均値を得て、この積分平均値を路面状態指標Iとする。具体的には、
図4に示すように、路面変位を絶対
値処理して、サンプリング時間T内にサンプリングされる路面変位の絶対値の総和をサンプリング時間Tで割り算するか、或いは、路面変位のデータの個数で割り算することで路面状態指標Iを得ればよい。サンプリング時間Tは、路面状態指標Iを求めるのに適する長さに設定されればよい。路面状態指標取得部43は、路面状態指標Iを得る演算を行う時点から遡りサンプリング時間T前までにサンプリングされた路面変位を用いて路面状態指標Iを求め、所定の演算周期で路面状態指標Iを得る演算を繰り返し、路面状態指標Iを最新の値に更新し続ける。
【0035】
路面状態指標Iは、車両Caが走行する路面の路面粗さを表す尺度であり、数値が大きいほど路面のうねりや凹凸が多く路面が粗い状態を示している。つまり、プレビューセンサ41で検知した路面変位の変動が大きければ大きいほど、路面状態指標Iが大きくなり、路面粗さが粗いとの評価となる。
【0036】
また、路面状態指標Iを求めるには、サンプリング時間Tの範囲内の路面変位の絶対値の積分値、絶対値の積分平均値、二乗平均平方根値、絶対値の単純平均値、絶対値の最大値、或いは、絶対値の度数分布を得ることで求められる。たとえば、絶対値の積分値を用いる場合は、サンプリング時間Tの範囲内にサンプリングされた路面変位の絶対値の各値の総和を求めて、これを路面状態指標Iの値とすればよい。当然、路面状態指標Iの値が大きければ大きいほど、路面粗さが大きいことになる。
【0037】
二乗平均平方根値を路面状態指標Iとする場合には、サンプリング時間T内にサンプリングされる路面変位の二乗の値の総和を路面変位のデータ個数で割った値の平方根を求めて、これを路面状態指標Iとすればよい。さらに、度数分布を路面状態指標Iとする場合には、路面変位の絶対値に複数の区分を設けて、データ個数が一番多く含まれる区分に割り当てられた値を路面状態指標Iとすればよい。路面粗さが大きくなるほど路面状態指標Iが大きくなるように区分に値を関連付けして度数分布を調べれば、路面粗さが粗くなればなるほど、路面状態指標Iも大きくなるので、このようにして路面状態指標Iを求めるようにしてもよい。区分に関連付けする値は任意に決めることができ、区分が区切る路面変位の絶対値の中央値をその区分の値として関連づけしてもよい。
【0038】
最低回転数規制部44は、加速度センサ51で検知した車体Bの横方向加速度Glatと横加速度閾値αとを比較し、加速度センサ52で検知した車体Bの前後方向加速度Glongと前後加速度閾値βとを比較して、必要最低回転数を設定する。具体的には、最低回転数規制部44は、横方向加速度Glatが横加速度閾値αを超えるか、或いは、前後方向加速度Glongが前後加速度閾値βを超える場合、必要最低回転数Nbを規定値Nb1に設定する。必要最低回転数Nbは、ポンプ4が吐出すべき流量を確保するうえで、最低限必要なポンプ4の回転数であり、規定値Nb1は、0を超える値に予め設定されている。車体Bの制動時のノーズダイブや加速時のスクォート、旋回時などで生じるロール等は、前記した姿勢制御によって抑制されアクチュエータACの伸縮量はわずかとなる。このような場合、アクチュエータAC内の圧力を最低限制御に要求される圧力に設定できるだけの少ない流量で足りるので、規定値Nb1は、低い回転数でよい。また、最低回転数規制部44は、横方向加速度Glatが横加速度閾値α以下であり、かつ、前後方向加速度Glongが前後加速度閾値β以下である場合には、必要最低回転数Nbを0に設定するようになっている。
【0039】
目標回転数決定部45は、路面状態指標Iに基づいてポンプ4の目標回転数Nrefを決定する。具体的には、目標回転数決定部45は、路面状態指標Iと加算回転数Nrとの関係を示すマップを保有しており、当該マップを参照して路面状態指標取得部43から入力される路面状態指標Iから加算回転数Nrを求めるマップ演算を行う。マップでは、
図5に示すように、加算回転数Nrが路面状態指標Iの増加に対して段階的に数値が大きくなるように関係付けられている。前記したマップは、一例であって、マップは、たとえば、路面状態指標Iと加算回転数Nrとを路面状態指標Iの増加に対して比例的に加算回転数Nrが増加するように関係付けてもよい。また、目標回転数決定部45は、加算回転数Nrを求めると、路面状態指標Iとは別に入力される必要最低回転数Nbに加算回転数Nrを加算することで目標回転数Nrefを求め、この目標回転数Nrefをポンプ停止判断部46へ入力するようになっている。最低回転数規制部44が必要最低回転数Nbを規定値Nb1とする場合には、目標回転数決定部45は、規定値Nb1に加算回転数Nrを加算した値を出力する。最低回転数規制部44が必要最低回転数Nbを0とする場合には、目標回転数決定部45は、0に加算回転数Nrを加算するので、加算回転数Nrをそのまま目標回転数Nrefとして出力する。路面状態指標Iは路面粗さの尺度であって、路面粗さが大きな路面を車両Caが走行すると、アクチュエータACの伸縮量および伸縮速度が高くなる傾向となる。よって、路面状態指標Iの値が大きい場合には、外力によって強制的にアクチュエータACが伸縮させられてシリンダ1内で必要となる流体量も多くなる。そのため、ポンプ4の回転数を大きくする必要があり、路面状態指標Iが大きくなると加算回転数Nrも大きな値を採るように、加算回転数Nrが路面状態指標Iに関連付けられる。
【0040】
なお、最低回転数規制部44を省略する場合、目標回転数決定部45は、路面状態指標Iから加算回転数Nrを求めるのではなく、路面状態指標Iと目標回転数Nrefの関係をマップ化しておき、路面状態指標Iから直接に目標回転数Nrefを求めてもよい。また、目標回転数決定部45では、路面状態指標Iから加算回転数Nr或いは目標回転数Nrefを求める際にマップを利用しているが、路面状態指標Iをパラメータとした関数を演算することで加算回転数Nr或いは目標回転数Nrefを求めてもよい。
【0041】
ポンプ停止判断部46は、前記車速Vsが速度閾値γ以下である場合、ポンプ4の目標回転数Nrefを0に設定する。具体的には、ポンプ停止判断部46は、車速センサ50から車速Vsの入力を受け、当該車速Vsが速度閾値γ以下であるか判断し、車速Vsが速度閾値γ以下である場合には、ポンプ4の目標回転数を0に設定して出力する。これに対して、車速Vsが速度閾値γを超える場合には、ポンプ停止判断部46は、目標回転数決定部45が出力した目標回転数Nrefをそのまま出力して、ドライバDrへ入力する。車速Vsが低い場合、アクチュエータACの伸縮量、伸縮速度ともに小さく、ポンプ4を停止しても、アクチュエータACが発生する推力で車両Caの振動を十分に抑制することができるので、目標回転数Nrefを0としてポンプ4を停止させる。速度閾値γは、サスペンション装置Sが搭載される車両Caに適するように任意に設定される。
【0042】
ドライバDrは、液圧回路FCにおける電磁弁をPWM駆動する駆動回路と、ポンプ4を駆動するモータ13をPWM駆動する駆動回路を備えており、推力演算部47からの電磁弁への指令と、ポンプ停止判断部46からの指令を受けると、指令通りに電磁弁およびモータ13へ電流を供給する。なお、ドライバDrにおける各駆動回路は、PWM駆動を行う駆動回路以外の駆動回路であってもよい。
【0043】
プレビュー位置決定部42は、車速センサ50から入力される車速Vsに基づいてプレビューセンサ41が車両Caからどれだけ離れた前方路面RSを検知するかを決定する。つまり、プレビュー位置決定部42は、プレビューセンサ41が検知する前方路面RSから車両Caまでの距離Lを車速Vsに基づいて決定する。詳しくは後述するが、路面状態指標取得部43は、所定のサンプリング時間Tにプレビューセンサ41が得た路面変位の積分平均値を利用して路面状態指標Iを求めるようになっている。また、
図6に示すように、ポンプ4には、ハードウェア上の応答遅れ時間τがあり、コントローラCがモータ13の回転数を変更してポンプ4の回転数を変更する際に時間遅れが生じる。
【0044】
そして、プレビューセンサ41が車両Caから一定距離の前方路面RSを検知する場合、車速Vsが高低すると、プレビューセンサ41が前方路面RSの路面変位を検知した時刻から車両Caの車輪Wが前方路面RSを通過するまでの時間が変化する。
【0045】
よって、プレビューセンサ41で検知した前方路面RSの路面変位から得られる路面状態指標Iを利用してポンプ4の回転数を制御して、コントローラCが指示する回転数通りにポンプ4が制御されるタイミングで車輪Wが前方路面RSを通過するようにするとよい。プレビューセンサ41の路面変位の検知した時間からコントローラCがポンプ4の回転数を制御するまでに、サンプリング時間Tとポンプ4の応答遅れ時間τを加算した時間が経過する。この経過時間中に車両Caが走行する距離は、車速Vsに応じて変化する。そこで、プレビュー位置決定部42は、距離Lをサンプリング時間Tと応答遅れ時間τを加算した値に車速Vsを乗じて求める。つまり、プレビュー位置決定部42は、L=Vs×(T+τ)を演算して距離Lを求める。そして、プレビュー位置決定部42は、距離Lを求めて、プレビューセンサ41が検知する前方路面RSを変更する。このように距離Lを求めると、プレビューセンサ41が検知する前方路面RSを得てコントローラCが指示する回転数通りにポンプ4が制御されるタイミングで車輪が前方路面RSを通過するようになる。
【0046】
コントローラCの各部の動作は以上であるが、つづいて、コントローラCにおけるポンプ4の目標回転数Nrefを求める処理手順を
図7に示すフローチャートの一例を用いて説明する。まず、コントローラCは、プレビューセンサ41の入力を受けて路面状態指標Iを求める(ステップST1)。つづいて、ステップST2へ移行して、コントローラCは、車速Vsが速度閾値γを超えるか否かを判断し、車速Vsが速度閾値γ以下である場合にはステップST3へ移行し、車速Vsが速度閾値γを超えている場合にはステップST4へ移行する。
【0047】
ステップST3では、車速Vsが速度閾値γ以下であるので、コントローラCは、目標回転数Nrefを0に設定して、ステップST11へ移行する。他方、ステップST4では、コントローラCは、横方向加速度Glatが横加速度閾値αを超えるか否かを判断し、横方向加速度Glatが横加速度閾値αを超える場合にはステップST5へ移行する。対して、横方向加速度Glatが横加速度閾値α以下である場合にはステップST6へ移行する。
【0048】
ステップST6では、コントローラCは、前後方向加速度Glongが前後加速度閾値βを超えるか否かを判断し、前後方向加速度Glongが前後加速度閾値βを超える場合にはステップST5へ移行する。対して、前後方向加速度Glongが前後加速度閾値β以下である場合にはステップST8へ移行する。
【0049】
ステップST5では、コントローラCは、必要最低回転数Nbを規定値Nb1に設定してステップST7へ移行する。ステップST7では、コントローラCは、路面状態指標Iから加算回転数Nrを求めて、ステップST10へ移行する。
【0050】
ステップST8では、コントローラCは、必要最低回転数Nbを0に設定してステップST9へ移行する。ステップST9では、コントローラCは、路面状態指標Iから加算回転数Nrを求めて、ステップST10へ移行する。
【0051】
ステップST10では、コントローラCは、必要最低回転数Nbに加算回転数Nrを加算して目標回転数Nrefを求めて、ステップST11へ移行する。ステップST11では、コントローラCは、目標回転数Nref通りにポンプ4を回転駆動させるべく、モータ13へ電流指令を出力する。コントローラCは、以上の処理手順を繰り返し実行して、ポンプ4の目標回転数Nrefを繰り返し求めて、ポンプ4を制御する。
【0052】
プレビュー位置決定部42におけるプレビューセンサ41が検知する前方路面RSの位置を変更する処理は、前述のフローチャートとは別のルーチンによって処理されて、車速Vsが変化するとそれに応じて検知対象の前方路面RSの位置を変更する。
【0053】
以上、サスペンション装置Sは、前記したように動作する。そして、本発明のサスペンション装置Sによれば、路面状態指標Iに基づいて目標回転数Nrefを求めるようになっている。路面状態指標Iは路面粗さの尺度であり、路面が粗くなればなるほど、アクチュエータACの伸縮量および伸縮速度が高くなる傾向にある。路面状態指標Iの値が大きい場合には、アクチュエータACが外力で強制的に伸縮させられてシリンダ1内で必要となる流量が多くなるが、路面状態指標Iが大きい場合には、目標回転数Nrefの値も大きくなり、シリンダ1内での流量不足が生じない。反対に、路面状態指標Iの値が小さい場合には、目標回転数Nrefの値が小さくなって、ポンプ4の回転速度が低減されるために、サスペンション装置Sにおける消費電力が低減される。
【0054】
よって、本発明のサスペンション装置Sでは、ポンプ4が一定回転速度で駆動されず、吐出流量が少なくて済むようななめらかな路面を走行中であるような場合にはポンプ4の回転速度を低下させることができ、消費エネルギが低減される。また、アクチュエータACが高速で伸縮する場合でも、アクチュエータACで必要とする必要流量Qがポンプ4から供給されるので、流量不足を生じない。
【0055】
したがって、本発明のサスペンション装置Sによれば、ポンプ4を駆動する際の消費エネルギを低減でき、ポンプ4を常時一定回転速度で駆動されなくなるから、HEVやEVといった自動車にもサスペンション装置Sを利用できる。
【0056】
また、プレビューセンサ41が検知する前方路面RSの路面変位に基づいて路面状態指標Iを求めているので、車両Caが通過する路面における路面状態指標Iを走行前に先んじて得られる。このように、車両Caが通過する路面における路面状態指標Iが走行前に先んじて得られ、この路面状態指標Iに基づいてポンプ4の回転数を制御するので、車両Caが実際にこの路面を通過する際にアクチュエータACで要する流量を確保できる。よって、このサスペンション装置Sによれば、アクチュエータACの推力が狙い通りに発揮されるので、車両Caにおける乗り心地も非常に良好となる。また、車両走行中における突起乗り上げや窪みを通過する際に、アクチュエータACの推力発揮に要する流量が急激に増加するような場合でも、先んじて、車両Caの前方の路面変位を検知できるので、流量不足に陥らず、アクチュエータACに適切な推力を発揮させ得る。
【0057】
さらに、このサスペンション装置Sにあっては、プレビューセンサ41が検知する前方路面RSから車両Caまでの距離Lを車速Vsに基づいて決定するので、車速Vsの変化に対応して、プレビューセンサ41が検知する前方路面RSの位置を変更できる。よって、このサスペンション装置Sによれば、車速Vsによらず車両Caがある路面を通過する際に当該路面における路面状態指標Iを先んじて確実に得られ、アクチュエータACが流量不足に陥るのを確実に阻止し、アクチュエータACに最適な推力を発揮させ得る。
【0058】
また、サスペンション装置Sにあっては、路面変位のサンプリング時間Tとポンプ4の応答遅れ時間τを加算した値に車速Vsを乗じて距離Lを求めるようになっている。よって、車速Vsの変化に対応して、プレビューセンサ41が検知する前方路面RSの位置を最適化できる。このように構成すると、プレビューセンサ41が検知する前方路面RSを得てコントローラCが指示する回転数通りにポンプ4が制御されるタイミングで車輪が前方路面RSを通過するようになる。したがって、本例のサスペンション装置Sによれば、アクチュエータACにて要する流量の確保が高精度に行われるので、車両Caに対する制振精度が向上する。
【0059】
さらに、本例のサスペンション装置Sにあっては、横方向加速度Glatが横加速度閾値αを超えるか、或いは、前後方向加速度Glongが前後加速度閾値βを超える場合、必要最低回転数Nbを0を超える規定値Nb1に設定する。このようにすると、車体Bがノーズダイブや、スクォートおよびロールを抑制するためにアクチュエータACが必要とする流量を確保でき、アクチュエータACの推力不足も招かない。
【0060】
そして、本例の形態のサスペンション装置Sにあっては、横方向加速度Glatが横加速度閾値α以下であって、かつ、前後方向加速度Glongが前後加速度閾値β以下である場合には、ポンプ4の必要最低回転数Nbが0に設定される。よって、ポンプ4の目標回転数Nrefが極低い回転数に設定され、消費エネルギをより一層効果的に削減することができる。
【0061】
また、本例の形態のサスペンション装置Sにあっては、車速Vsが速度閾値γ以下である場合、ポンプ4の目標回転数を0に設定するので、アクチュエータACでポンプ4からの流量供給が不要な状況ではポンプ4を停止させる。よって、常に一定回転速度でポンプを駆動する従来のサスペンション装置に比較して、大幅に消費エネルギを削減することができる。
【0062】
<第一の実施の形態>
サスペンション装置Sの基本構成は、以上に説明したとおりである。以下では、具体的な液圧回路を備えたサスペンション装置の構成例を説明する。第一の実施の形態におけるサスペンション装置S1では、
図8に示した液圧回路FC1を備えている。
【0063】
液圧回路FC1は、ポンプ4の吐出側に接続される供給路5と、リザーバRに接続される排出路6と、伸側室R1に接続される伸側通路7と、圧側室R2に接続される圧側通路8と、伸側通路7に設けた伸側減衰弁15と、圧側通路8に設けた圧側減衰弁17と、供給路5、排出路6、伸側通路7および圧側通路8の間に設けられて伸側通路7と圧側通路8の一方を供給路5へ選択的に接続するとともに伸側通路7と圧側通路8の他方を排出路6に接続する切換弁9と、供給電流に応じて供給路5の圧力を調整可能な制御弁Vと、供給路5と排出路6とを接続する吸込通路10と、吸込通路10の途中に設けられて排出路6から供給路5へ向かう液体の流れのみを許容する吸込チェック弁11と、供給路5の途中であって制御弁Vとポンプ4との間に設けられてポンプ4側から制御弁V側へ向かう流れのみを許容する供給側チェック弁12とを備えて構成されている。この液圧回路FC1の場合、電磁弁として切換弁9と制御弁Vを備えており、両者がコントローラCによって制御される。
【0064】
ポンプ4の吸込側はポンプ通路14によってリザーバRに接続されており、吐出側は供給路5に接続されている。したがって、ポンプ4は、モータ13によって駆動されると、リザーバRから液体を吸い込んで供給路5へ液体を吐出するようになっている。排出路6は、前述の通り、リザーバRに連通されている。
【0065】
伸側通路7の途中には、伸側室R1から切換弁9に向かう液体の流れに対し抵抗を与える伸側減衰弁15の他に、当該伸側減衰弁15に並列されて切換弁9から伸側室R1へ向かう液体の流れのみを許容する伸側チェック弁16が設けられている。よって、伸側室R1から切換弁9へ向けて移動する液体の流れに対しては、伸側チェック弁16は閉じた状態に維持されるため、液体は、伸側減衰弁15のみを通過して切換弁9側へ向かって流れる。切換弁9から伸側室R1へ向けて移動する液体の流れに対して伸側チェック弁16が開き、伸側チェック弁16は伸側減衰弁15に比較して液体の流れに与える抵抗が小さいので、液体は、伸側チェック弁16を優先的に通過して伸側室R1側へ向かって流れる。伸側減衰弁15は、双方向流れを許容する絞り弁とされてもよいし、伸側室R1から切換弁9に向かう流れのみを許容するリーフバルブやポペット弁といった減衰弁とされてもよい。
【0066】
圧側通路8の途中には、圧側室R2から切換弁9に向かう流れに対し抵抗を与える圧側減衰弁17の他に、当該圧側減衰弁17に並列されて切換弁9から圧側室R2へ向かう液体の流れのみを許容する圧側チェック弁18が設けられている。よって、圧側室R2から切換弁9へ向けて移動する液体の流れに対しては、圧側チェック弁18は閉じた状態に維持されるため、液体は、圧側減衰弁17のみを通過して切換弁9側へ向かって流れる。切換弁9から圧側室R2へ向けて移動する液体の流れに対して圧側チェック弁18が開き、圧側チェック弁18は圧側減衰弁17に比較して液体の流れに与える抵抗が小さいので、液体は、圧側チェック弁18を優先的に通過して圧側室R2側へ向かって流れる。圧側減衰弁17は、双方向流れを許容する絞り弁とされてもよいし、圧側室R2から切換弁9に向かう流れのみを許容するリーフバルブやポペット弁といった減衰弁とされてもよい。
【0067】
さらに、供給路5と排出路6とを接続する吸込通路10が設けられている。この吸込通路10の途中には、排出路6から供給路5へ向かう液体の流れのみを許容する吸込チェック弁11が設けられており、吸込通路10が排出路6から供給路5へ向かう液体の流れのみを許容する一方通行の通路に設定されている。
【0068】
切換弁9は、4ポート2位置の電磁切換弁とされており、伸側通路7と供給路5とを連通するとともに圧側通路8と排出路6を連通する伸側供給ポジション9bと、伸側通路7と排出路6とを連通するとともに圧側通路8と供給路5を連通する圧側供給ポジション9cとを備えたスプール9aと、スプール9aを附勢するばね9dと、前記ばね9dに対抗する推力をスプール9aに与えるソレノイド9eとを備えている。そして、ソレノイド9eへ電力供給しない非通電時には、スプール9aはばね9dによって附勢されて伸側供給ポジション9bを採り、ソレノイド9eへ通電するとスプール9aはソレノイド9eの推力で押されて、圧側供給ポジション9cを採るようになっている。
【0069】
したがって、切換弁9が伸側供給ポジション9bを採る場合、供給路5が伸側通路7を通じて伸側室R1に連通されるとともに、排出路6が圧側通路8を通じて圧側室R2に連通される。この状態でポンプ4が駆動されると伸側室R1に液体が供給されて圧側室R2からリザーバRへ液体が排出されるので、アクチュエータACは収縮できる。他方、切換弁9が圧側供給ポジション9cを採る場合、供給路5が圧側通路8を通じて圧側室R2に連通されるとともに、排出路6が伸側通路7を通じて伸側室R1に連通される。この状態でポンプ4が駆動されると圧側室R2に液体が供給されて伸側室R1からリザーバRへ液体が排出されるので、アクチュエータACは伸長できる。
【0070】
また、ポンプ4から供給路5へ液体が吐出されるが、この供給路5の圧力を制御するために、液圧回路FCには、制御弁Vが設けられている。制御弁Vは、具体的には、供給路5と排出路6を接続する制御通路19の途中に設けられており、開弁圧を調節して制御弁Vの上流側である供給路5の圧力を制御できるようになっている。
【0071】
制御弁Vは、この例では、電磁圧力制御弁とされており、制御通路19の途中に設けた弁体20aと、弁体20aに供給路5側である上流側の圧力をパイロット圧として弁体20aを開弁方向に作用させるパイロット通路20bと、弁体20aに推力を与えるソレノイド20cとを備えている。ソレノイド20cは、図示しないばねとコイルとで構成されている。ソレノイド20cにおけるばねは、常に弁体20aを開弁方向へ附勢しており、対して、ソレノイド20cは、通電時には、弁体20aを附勢するばねに対抗する推力を発生できるようになっている。よって、ソレノイド20cへの通電量を調節して制御弁Vの開弁圧を高低調節でき、供給路5の圧力を制御弁Vの開弁圧に制御できる。このように、制御弁Vは、供給電流に応じて供給路5の圧力を調整可能となっているが、前記した制御弁Vの具体的構成は一例であってこれに限定されるものではない。
【0072】
この制御弁Vにあっては、ソレノイド20cへ供給する電流量に比例した開弁圧を得られるようになっており、電流量を大きくすればするほど開弁圧が大きくなり、電流を供給しない場合には開弁圧が最小になるようになっている。また、制御弁Vは、サスペンション装置S1の実用領域において流量に比例して圧力損失が大きくなる圧力オーバーライドがない特性となっている。なお、実用領域とは、たとえば、アクチュエータACを
図3に示すように車両Caの車体Bと車輪Wとの間に介装して使用する場合において、アクチュエータACが秒速1mの範囲内で伸縮する領域とすればよい。実用領域において流量に比例して圧力損失が大きくなる圧力オーバーライドがない特性とは、アクチュエータACが秒速1mの範囲内で伸縮する場合に制御弁Vを通過し得る流量に対して圧力オーバーライドを無視できる程度の特性を指す。また、制御弁Vは、本実施の形態では、非通電時における開弁圧がごく小さく、非通電時において通過する液体の流れに対してほとんど抵抗を与えないようになっている。
【0073】
さらに、供給路5と排出路6とを接続する吸込通路10が制御通路19に対して並列に設けられている。この吸込通路10の途中には、排出路6から供給路5へ向かう液体の流れのみを許容する吸込チェック弁11が設けられており、吸込通路10が排出路6から供給路5へ向かう液体の流れのみを許容する一方通行の通路に設定されている。
【0074】
供給路5の途中であって制御弁Vとポンプ4との間には供給側チェック弁12が設けられている。より詳しくは、供給路5の途中であって制御通路19および吸込通路10の接続点よりもポンプ4側に供給側チェック弁12が設けられており、供給側チェック弁12は、ポンプ4側から制御弁V側へ向かう流れのみを許容し、その反対の流れを阻止する。よって、ポンプ4の吐出圧より切換弁9側の圧力が高圧となっても、供給側チェック弁12が閉じてポンプ4側へ液体の逆流が阻止される。
【0075】
サスペンション装置S1は、以上のように構成されており、続いて、その作動について説明する。まず、モータ13、ポンプ4、切換弁9および制御弁Vを正常に動作できる通常時における作動を説明する。
【0076】
基本的には、ポンプ4をモータ13によって駆動し、切換弁9によって伸側室R1と圧側室R2のうちポンプ4に接続する室にポンプ4が吐出する液体を供給しつつ排出路6を通じて他方の室をリザーバRに連通させる。このようにすると、アクチュエータACは、積極的に伸長或いは収縮して、アクチュエータとして機能できる。アクチュエータACに発生させる推力がアクチュエータACの伸長方向である場合には、切換弁9を圧側供給ポジション9cとして、圧側室R2を供給路5へ接続し伸側室R1をリザーバRへ接続する。反対に、アクチュエータACに発生させる推力がアクチュエータACの収縮方向である場合には、切換弁9を伸側供給ポジション9bとして、伸側室R1を供給路5へ接続し圧側室R2をリザーバRへ接続する。そして、制御弁Vによって供給路5の圧力を調節してアクチュエータACの伸長方向或いは収縮方向の推力の大きさを制御できる。
【0077】
目標推力の演算、制御弁Vおよび切換弁9に与える電流量の演算と電流量の供給については、モータ13を制御するコントローラCが実行するようになっているが、コントローラCの上位の制御装置が実行してもよい。このサスペンション装置S1におけるドライバDrは、たとえば、制御弁Vおよび切換弁9におけるソレノイド20cおよびソレノイド9eをPWM駆動する駆動回路と、モータ13をPWM駆動する駆動回路を備えている。そして、ドライバDrは、コントローラCで決定した通りにソレノイド20c、ソレノイド9eおよびモータ13へ電流を供給する。ドライバDrにおける各駆動回路は、PWM駆動を行う駆動回路以外の駆動回路であってもよい。
【0078】
そして、アクチュエータACに発生させる目標推力がアクチュエータACの伸長方向では、コントローラCは切換弁9について圧側供給ポジション9cを選択すればよい。また、アクチュエータACに発生させる目標推力がアクチュエータACの収縮方向では、コントローラCは切換弁9について伸側供給ポジション9bを選択する。ドライバDrは、切換弁9に前記のように選択されたポジションへ切換えるべく、ソレノイド9eへ電流の供給或いは停止する。具体的には、本例では、アクチュエータACを収縮作動させる場合には、伸側室R1へ液体を供給し圧側室R2から液体をリザーバRへ排出させるために、伸側供給ポジション9bを採るように切換弁9におけるソレノイド9eへは電流を供給せず非通電とする。反対に、アクチュエータACを伸長作動させる場合には、圧側室R2へ液体を供給し伸側室R1から液体をリザーバRへ排出させるために、圧側供給ポジション9cを採るように切換弁9におけるソレノイド9eへ電流を供給すればよい。サスペンション装置S1における推力の制御に用いる制御則については、車両Caに適するものを選択すればよく、たとえば、スカイフック制御等といった車両Caの振動抑制に優れる制御則を採用するとよい。また、コントローラCに入力する情報は、コントローラCで採用する制御則に適した情報であればよく、図示はしないが、当該情報についてはセンサ等で検知してコントローラCに入力すればよい。なお、制御弁Vおよび切換弁9の制御にあっては、コントローラCとは別にコントローラを備えていてもよい。
【0079】
以上、アクチュエータACを積極的に伸縮させる場合の作動について説明したが、車両走行中には、アクチュエータACが路面の凹凸により外乱を受けて伸縮する。以下に、外乱を受けたアクチュエータACの伸縮を踏まえた作動について説明する。
【0080】
最初に、ポンプ4を駆動して供給路5へ液体を吐出している状態についての作動を説明する。アクチュエータACが外乱を受けて伸縮する場合、アクチュエータACが推力を発生する方向とアクチュエータACの伸縮方向で場合分けすると、四つのケースが考えられる。
【0081】
まず、第一のケースとして、ピストン2を下方に押し下げる推力をサスペンション装置S1に発揮させる場合であって、アクチュエータACが外力によって伸長作動している場合について説明する。アクチュエータACに発生させる推力の方向は、ピストン2を下方に押し下げる方向であり、伸側室R1へ液体を供給する必要がある。この場合、伸側供給ポジション9bを採るように切換弁9を切換えて、伸側室R1を供給路5へ接続するとともに、排出路6を通じて圧側室R2をリザーバRへ連通させる。
【0082】
アクチュエータACが伸長作動しているときには、伸側室R1の容積が減少するため、減少分の液体は、伸側減衰弁15を通じて伸側室R1から排出され、さらに、供給路5を介して制御弁Vを通過してリザーバRへ流れる。ポンプ4の回転数は、前述のように求められる目標回転数Nrefに制御される。なお、供給側チェック弁12が設けられているので、動的に供給路5の圧力がポンプ4の吐出圧よりも高くなっても、液体は、ポンプ4側に逆流しない。他方、容積が増大する圧側室R2には、排出路6を介してリザーバRから容積拡大分に見合う液体が供給される。
【0083】
供給路5の圧力は、制御弁Vによって、制御弁Vの開弁圧に制御されているため、伸側室R1の圧力は、伸側室R1から排出される液体が伸側減衰弁15を通過する際に生じる圧力損失分だけ供給路5の圧力よりも高くなる。したがって、この場合の伸側室R1は、制御弁Vの開弁圧に伸側減衰弁15による圧力損失分を重畳した圧力分だけリザーバRの圧力よりも高くなる。他方、圧側室R2はリザーバRと等圧であり、伸側室R1の圧力は、リザーバRの圧力との差圧として捉えられる。よって、伸側室R1の圧力は、制御弁Vの開弁圧に伸側減衰弁15で生じる圧力損失分の圧力を加えた値だけ圧側室R2よりも高くなり、アクチュエータACは、伸長を抑制する推力を発揮する。制御弁Vの開弁圧を最大としたときのアクチュエータACの伸縮速度と発揮される推力の特性は、
図9に示した、縦軸にアクチュエータACの推力を採り、横軸にアクチュエータACの伸縮速度を採ったグラフでは、
図9中の線(1)で示す特性となる。
【0084】
続いて、第二のケースとして、ピストン2を下方に押し下げる推力をサスペンション装置S1に発揮させる場合であって、アクチュエータACが外力によって収縮作動している場合について説明する。アクチュエータACに発生させる推力の方向は、ピストン2を下方に押し下げる方向であるので、伸側室R1へ液体を供給する必要がある。この場合も伸側供給ポジション9bを採るように切換弁9を切換えて、伸側室R1を供給路5へ接続するとともに、排出路6を通じて圧側室R2をリザーバRへ連通させる。
【0085】
アクチュエータACが収縮作動しているときには、伸側室R1の容積が増大する。ポンプ4の吐出流量は、単位時間当たりの伸側室R1の容積増大量以上に制御され、伸側室R1で必要となる必要流量Qよりポンプ4の吐出流量は多い。この場合、ポンプ4から吐出された液体は、伸側チェック弁16を通じて伸側室R1へ流入するとともに、ポンプ4の吐出流量のうち伸側室R1で吸収されずに余った液体が制御弁Vを通じてリザーバRへ流れる。したがって、伸側室R1の圧力は、供給路5の圧力と等圧となり、制御弁Vの開弁圧に制御される。他方の容積が減少する圧側室R2には、圧側減衰弁17および排出路6を介して圧側室R2から容積減少分の液体がリザーバRへ排出される。圧側室R2の圧力は、圧側室R2から排出される液体が圧側減衰弁17を通過する際の生じる圧力損失分だけリザーバRの圧力よりも高くなる。したがって、このような状況では、伸側室R1の圧力は制御弁Vの開弁圧に等しくなるが、圧側室R2の圧力は圧側減衰弁17による圧力損失分だけリザーバRの圧力よりも高くなり、圧側室R2から排出される流量が多くなるとそれだけ圧力損失も大きくなる。よって、伸側室R1の圧力は、制御弁Vによって調節される差圧から圧側減衰弁17で生じる圧力損失分の圧力を差し引いた値だけ圧側室R2よりも高くなり、アクチュエータACは、収縮を助成する推力を発揮する。そして、制御弁Vの開弁圧を最大としたときのアクチュエータACの推力の特性は、
図9中の線(2)で示す特性となる。
【0086】
これに対して、アクチュエータACの収縮速度が高く、ポンプ4の吐出流量が最大に制御されても単位時間当たりの伸側室R1の容積増大量を下回ると、ポンプ4からの液体供給が伸側室R1の単位時間当たりの容積増大量に追いつかなくなる。そして、ポンプ4から吐出される液体が全て伸側室R1で吸収されてしまうようになると、制御弁Vには液体が流れなくなり、伸側室R1で不足する量の液体は、吸込チェック弁11が開いて、リザーバRから排出路6および吸込通路10を介して供給される。このような状況となると、伸側室R1の圧力はほぼリザーバRの圧力に等しくなるが、圧側室R2の圧力は圧側減衰弁17による圧力損失分だけリザーバRの圧力よりも高くなる。そのため、アクチュエータACは、ピストン2を下方に押し下げる方向へは推力を発揮できなくなり、反対の方向へ、つまり、ピストン2を上方へ押し上げる方向へ推力を発揮する。以上、ピストン2を押し下げる推力をサスペンション装置S1に発揮させる際に、アクチュエータACが外力によって収縮作動して、ポンプ4の吐出流量が伸側室R1の単位時間当たりの容積増大量未満であると、ピストン2を押下げる推力を発揮できなくなる。このような状況では、制御弁Vの開弁圧とは無関係にアクチュエータACの推力は、
図9中の線(3)で示す特性となる。制御弁Vの開弁圧を最大にする場合、ポンプ4の吐出流量が伸側室R1の単位時間当たりの容積増大量以上では
図9中の線(2)の特性となり、ポンプ4の吐出流量が伸側室R1の単位時間当たりの容積増大量未満となると
図9中の線(3)の特性へ変化する。
【0087】
次に、第三のケースとして、ピストン2を上方に押し上げる推力をサスペンション装置S1に発揮させる場合であって、アクチュエータACが外力によって収縮作動している場合について説明する。アクチュエータACに発生させる推力の方向は、ピストン2を上方に押し上げる方向である。この場合、圧側室R2へ液体を供給する必要があるので、圧側供給ポジション9cを採るように切換弁9を切換えて、圧側室R2を供給路5へ接続するとともに、排出路6を通じて伸側室R1をリザーバRへ連通させる。
【0088】
アクチュエータACが収縮作動しているときには、圧側室R2の容積が減少するため、減少分の液体は、圧側減衰弁17を通じて圧側室R2から排出され、さらに、供給路5を介して制御弁Vを通過してリザーバRへ流れる。ポンプ4の回転数は、前述のように求められる目標回転数Nrefに制御される。なお、供給側チェック弁12が設けられているので、動的に供給路5の圧力がポンプ4の吐出圧よりも高くなっても、液体は、ポンプ4側に逆流しない。他方、容積が増大する伸側室R1には、排出路6を介してリザーバRから容積拡大分に見合う液体が供給される。
【0089】
供給路5の圧力は、制御弁Vによって、制御弁Vの開弁圧に制御されているため、圧側室R2の圧力は、圧側室R2から排出される液体が圧側減衰弁17を通過する際に生じる圧力損失分だけ供給路5の圧力よりも高くなる。他方の伸側室R1の圧力は、リザーバRと等圧となる。よって、圧側室R2の圧力は、制御弁Vの開弁圧に圧側減衰弁17で生じる圧力損失分の圧力を加えた値だけ伸側室R1よりも高くなり、アクチュエータACは、収縮を抑制する推力を発揮する。そして、制御弁Vの開弁圧を最大としたときのアクチュエータACの推力の特性は、
図9中の線(4)で示す特性となる。
【0090】
さらに、第四のケースとして、ピストン2を上方に押し上げる推力をサスペンション装置S1に発揮させる場合であって、アクチュエータACが外力によって伸長作動している場合について説明する。アクチュエータACに発生させる推力の方向は、ピストン2を上方に押し上げる方向であるので、圧側室R2へ液体を供給する必要がある。よって、この場合、圧側供給ポジション9cを採るように切換弁9を切換えて、圧側室R2を供給路5へ接続するとともに、排出路6を通じて伸側室R1をリザーバRへ連通させる。
【0091】
アクチュエータACが伸長作動しているときには、圧側室R2の容積が増大する。ポンプ4の吐出流量は、単位時間当たりの圧側室R2の容積増大量以上に制御され、圧側室R2で必要となる必要流量Qよりポンプ4の吐出流量は多い。そのため、ポンプ4から吐出された液体は、圧側チェック弁18を通じて圧側室R2へ流入するとともに、ポンプ4の吐出流量のうち圧側室R2で吸収されずに余った液体が制御弁Vを通じてリザーバRへ流れる。したがって、圧側室R2の圧力は、供給路5の圧力と等圧となり、制御弁Vの開弁圧に制御される。他方の容積が減少する伸側室R1には、伸側減衰弁15および排出路6を介して伸側室R1から容積減少分の液体がリザーバRへ排出される。伸側室R1の圧力は、伸側室R1から排出される液体が伸側減衰弁15を通過する際の生じる圧力損失分だけリザーバRの圧力よりも高くなる。このような状況では、圧側室R2の圧力は制御弁Vの開弁圧に等しくなるが、伸側室R1の圧力は伸側減衰弁15による圧力損失分だけリザーバRの圧力よりも高くなり、伸側室R1から排出される流量が多くなるとそれだけ圧力損失も大きくなる。よって、圧側室R2の圧力は、制御弁Vによって調節される差圧から伸側減衰弁15で生じる圧力損失分の圧力を差し引いた値だけ伸側室R1よりも高くなり、アクチュエータACは、伸長を助成する推力を発揮する。そして、制御弁Vの開弁圧を最大としたときのアクチュエータACの推力の特性は、
図9中の線(5)で示す特性となる。
【0092】
これに対して、アクチュエータACの伸長速度が高く、ポンプ4の吐出流量が最大に制御されても単位時間当たりの圧側室R2の容積増大量を下回ると、ポンプ4からの液体供給が圧側室R2の単位時間当たりの容積増大量に追いつかなくなる。そして、ポンプ4から吐出される液体が全て圧側室R2で吸収されるようになると、制御弁Vには液体が流れなくなり、圧側室R2で不足する量の液体は、吸込チェック弁11が開いて、リザーバRから排出路6および吸込通路10を介して供給される。このような状況では、圧側室R2の圧力はほぼリザーバRの圧力に等しくなるが、伸側室R1の圧力は伸側減衰弁15による圧力損失分だけリザーバRの圧力よりも高くなる。そのため、アクチュエータACは、ピストン2を上方に押し上げる方向へは推力を発揮できなくなり、反対の方向へ、つまり、ピストン2を下方へ押し下げる方向へ推力を発揮する。以上から、ピストン2を押し上げる推力をサスペンション装置S1に発揮させる際に、アクチュエータACが外力によって伸長作動している場合、ポンプ4の吐出流量が圧側室R2の単位時間当たりの容積増大量未満となると、ピストン2を押し上げる方向へ推力を発揮できない。よって、制御弁Vの開弁圧とは無関係にアクチュエータACの推力は、
図9中の線(6)で示す特性となる。制御弁Vの開弁圧を最大にする場合、ポンプ4の吐出流量が圧側室R2の単位時間当たりの容積増大量以上では
図9中の線(5)の特性となり、ポンプ4の吐出流量が圧側室R2の単位時間当たりの容積増大量未満となると
図9中の線(6)の特性へ変化する。なお、アクチュエータACは、収縮側では
図9中線(2)から線(3)へ推力が変化する特性を示し、伸長側では
図9中線(5)から線(6)へ推力が変化する特性を示すが、特性の変化はごく瞬間的に生じるものであり、乗り心地に与える影響は軽微である。
【0093】
以上から、制御弁Vの開弁圧の調節により、
図9中、線(1)から線(3)をつなげたラインから線(4)から線(6)までをつなげたラインまでの間の範囲でアクチュエータACの推力を可変にできる。また、ポンプ4の駆動によって、ポンプ4の吐出流量を伸側室R1と圧側室R2のうち拡大する側の室へ供給する場合、ポンプ4の吐出流量が拡大する室の容積増大量以上であると、アクチュエータACは伸縮方向と同方向に推力を発揮できる。
【0094】
引き続き、ポンプ4を駆動しない停止状態にした場合のサスペンション装置S1の作動を説明する。この場合についても、アクチュエータACが外乱を受けて伸縮する方向とアクチュエータACが推力を発生する方向とで場合分けすると、四つのケースが考えられる。
【0095】
まず、ピストン2を押し下げる推力をサスペンション装置S1に発揮させる場合であって、アクチュエータACが外力によって伸長作動している場合について説明する。アクチュエータACに発生させる推力の方向は、ピストン2を押し下げる方向であるので、伸側供給ポジション9bを採るように切換弁9を切換えて、伸側室R1を供給路5へ接続するとともに、排出路6を通じて圧側室R2をリザーバRへ連通させる。
【0096】
アクチュエータACが伸長作動しているときには、伸側室R1の容積が減少するため、減少分の液体は、伸側減衰弁15を通じて伸側室R1から排出され、供給路5を介して制御弁Vを通過してリザーバRへ流れる。なお、供給側チェック弁12が設けられているので、液体は、ポンプ4側に流れない。他方、容積が増大する圧側室R2には、排出路6を介してリザーバRから容積拡大分に見合う液体が供給される。
【0097】
供給路5の圧力は、制御弁Vによって、制御弁Vの開弁圧に制御されているため、伸側室R1の圧力は、伸側室R1から排出される液体が伸側減衰弁15を通過する際に生じる圧力損失分だけ供給路5の圧力よりも高くなる。したがって、この場合の伸側室R1は、制御弁Vの開弁圧に伸側減衰弁15による圧力損失分を重畳した圧力分だけ圧側室R2の圧力よりも高くなる。縦軸にアクチュエータACの推力の方向を採り、横軸にアクチュエータACの伸縮速度を採った
図10に示したグラフでは、制御弁Vの開弁圧を最大としたときのアクチュエータACの推力の特性は、
図10中の線(1)で示す特性となる。
【0098】
続いて、ピストン2を下方に押し下げる推力をサスペンション装置S1に発揮させる場合であって、アクチュエータACが外力によって収縮作動している場合について説明する。ポンプ4が停止状態であってポンプ4から液体は供給されないが、アクチュエータACに発生させる推力の方向は、ピストン2を下方に押し下げる方向である。そのため、伸側供給ポジション9bを採るように切換弁9を切換えて、伸側室R1を供給路5へ接続するとともに、排出路6を通じて圧側室R2をリザーバRへ連通させる。
【0099】
アクチュエータACが収縮作動しているときには、伸側室R1の容積が増大するが、ポンプ4が液体を吐出していないので、制御弁Vには液体が流れなくなり、伸側室R1で不足する量の液体は、吸込チェック弁11が開いて、リザーバRから排出路6および吸込通路10を介して供給される。この状況では、伸側室R1の圧力はほぼリザーバRの圧力に等しくなる。他方の容積が減少する圧側室R2は、圧側減衰弁17および排出路6を介して圧側室R2から容積減少分の液体がリザーバRへ排出される。圧側室R2の圧力は、圧側室R2から排出される液体が圧側減衰弁17を通過する際の生じる圧力損失分だけ伸側室R1の圧力よりも高くなる。そのため、アクチュエータACは、ピストン2を下方に押し下げる方向へは推力を発揮できず、反対の方向へ、つまり、ピストン2を上方へ押し上げる方向へ推力を発揮する。以上から、ピストン2を下方に押し下げる推力をサスペンション装置S1に発揮させようとする場合で、アクチュエータACが外力によって収縮作動している場合にあって、ポンプ4が停止している場合、ピストン2を押し下げる方向へ推力を発揮できない。よって、制御弁Vの開弁圧とは無関係にアクチュエータACの推力は、
図10中の線(2)で示す特性となる。これは、減衰力可変ダンパにおいて、圧側減衰力を最も低い減衰力に制御しているのと同等の効果をもたらしている。
【0100】
次に、ピストン2を上方に押し上げる推力をサスペンション装置S1に発揮させる場合であって、アクチュエータACが外力によって収縮作動している場合について説明する。アクチュエータACに発生させる推力の方向は、ピストン2を上方に押し上げる方向である。そのため、圧側供給ポジション9cを採るように切換弁9を切換えて、圧側室R2を供給路5へ接続するとともに、排出路6を通じて伸側室R1をリザーバRへ連通させる。
【0101】
アクチュエータACが収縮作動しているときには、圧側室R2の容積が減少するため、減少分の液体は、圧側減衰弁17を通じて圧側室R2から排出され、供給路5を介して制御弁Vを通過してリザーバRへ流れる。なお、供給側チェック弁12が設けられているので、液体は、ポンプ4側に流れない。他方、容積が増大する伸側室R1には、排出路6を介してリザーバRから容積拡大分に見合う液体が供給される。
【0102】
供給路5の圧力は、制御弁Vによって、制御弁Vの開弁圧に制御されているため、圧側室R2の圧力は、圧側室R2から排出される液体が圧側減衰弁17を通過する際に生じる圧力損失分だけ供給路5の圧力よりも高くなる。したがって、この場合の圧側室R2は、制御弁Vの開弁圧に圧側減衰弁17による圧力損失分を重畳した圧力分だけ伸側室R1の圧力よりも高くなる。よって、制御弁Vの開弁圧を最大としたときのアクチュエータACの推力の特性は、
図10中の線(3)で示す特性となる。
【0103】
続いて、ピストン2を上方に押し上げる推力をサスペンション装置S1に発揮させる場合であって、アクチュエータACが外力によって伸長作動している場合について説明する。ポンプ4が停止状態であってポンプ4から液体は供給されないが、アクチュエータACに発生させる推力の方向は、ピストン2を上方に押し上げる方向である。そのため、圧側供給ポジション9cを採るように切換弁9を切換えて、圧側室R2を供給路5へ接続するとともに、排出路6を通じて伸側室R1をリザーバRへ連通させる。
【0104】
アクチュエータACが伸長作動しているときには、圧側室R2の容積が増大するが、ポンプ4が液体を吐出していないので、制御弁Vには液体が流れなくなる。圧側室R2で不足する量の液体は、吸込チェック弁11が開いて、リザーバRから排出路6および吸込通路10を介して供給される。この状況では、圧側室R2の圧力はほぼリザーバRの圧力に等しくなる。他方の容積が減少する伸側室R1には、伸側減衰弁15および排出路6を介して伸側室R1から容積減少分の液体がリザーバRへ排出される。伸側室R1の圧力は、伸側室R1から排出される液体が伸側減衰弁15を通過する際の生じる圧力損失分だけリザーバRの圧力よりも高くなる。そのため、アクチュエータACは、ピストン2を上方に押し上げる方向へは推力を発揮できず、反対の方向へ、つまり、ピストン2を下方へ押し下げる方向へ推力を発揮する。以上から、ピストン2を上方に押し上げる推力をサスペンション装置S1に発揮させようとする場合で、アクチュエータACが外力によって伸長作動している場合にあって、ポンプ4が停止している場合、ピストン2を上方に押し上げる方向へ推力を発揮できない。よって、制御弁Vの開弁圧とは無関係にアクチュエータACの推力は、
図10中の線(4)で示す特性となる。これは、減衰力可変ダンパにおいて、伸側減衰力を最も低い減衰力に制御しているのと同等の効果をもたらしている。
【0105】
このようにポンプ4の停止中は、制御弁Vの開弁圧を調整すると、
図10中第一象限内では、線(4)から線(1)までの範囲で、第三象限内では、線(2)から線(3)の範囲で、アクチュエータACの推力を可変にできる。
【0106】
ここで、セミアクティブサスペンションにあっては、減衰力可変ダンパを用いてカルノップ則に従ってスカイフック制御を実行する場合を考える。伸側減衰力(ピストンを押し下げる方向の力)が必要である場合、伸長作動時には減衰力可変ダンパの減衰力が目標推力を得られる減衰力に制御され、収縮作動時には、伸側減衰力が得られないから圧側へ最も低い減衰力を発揮するように制御される。他方、圧側減衰力(ピストンを押し上げる方向の力)が必要な場合、収縮作動時には減衰力可変ダンパの減衰力が目標推力を得られる減衰力に制御され、伸長作動時には、圧側減衰力が得られないから伸側へ最も低い減衰力を発揮するように制御される。本発明のサスペンション装置S1では、ポンプ4を停止した状態でアクチュエータACにピストン2を押し下げる推力を発揮させる場合、伸長時にはアクチュエータACの推力が切換弁9によって出力可能範囲内で制御され、収縮時には、アクチュエータACは最も低い推力を発揮する。反対に、本発明のサスペンション装置S1では、ポンプ4を停止した状態でアクチュエータACにピストン2を押し上げる推力を発揮させる場合、収縮時にはアクチュエータACの推力が制御弁Vによって出力可能範囲内で制御され、伸長時には、アクチュエータACは最も低い推力を発揮する。したがって、本発明のサスペンション装置S1では、ポンプ4を停止中である場合、自動的に、セミアクティブサスペンションと同じ機能を発揮ができる。よって、ポンプ4が駆動中であってもポンプ4の吐出流量が拡大する伸側室R1或いは圧側室R2の容積増大量未満となると、自動的に、サスペンション装置S1がセミアクティブサスペンションとして機能できる。
【0107】
最後に、サスペンション装置S1のモータ13、切換弁9および制御弁Vへの通電が何らかの異常により通電不能な失陥時におけるサスペンション装置S1の作動について説明する。こうした失陥には、たとえば、モータ13、切換弁9および制御弁Vへの通電ができない場合のほか、コントローラCやドライバDrに異常が見られた場合にモータ13、切換弁9および制御弁Vへの通電を停止する場合も含まれる。
【0108】
失陥時には、モータ13、切換弁9および制御弁Vへの通電が停止されるか、或いは通電不能な状態であり、ポンプ4は停止し、制御弁Vは開弁圧が最小となり、切換弁9は、ばね9dに附勢されて伸側供給ポジション9bを採った状態となる。
【0109】
この状態で、アクチュエータACが外力によって伸長作動する場合、伸側室R1の容積が減少するため、減少分の液体は、伸側減衰弁15を通じて伸側室R1から排出され、供給路5を介して制御弁Vを通過してリザーバRへ流れる。なお、供給側チェック弁12が設けられているので、ポンプ4側に液体が流れない。他方、容積が増大する圧側室R2には、排出路6を介してリザーバRから容積拡大分に見合う液体が供給される。
【0110】
伸側室R1から排出された液体は制御弁Vを通過するが、制御弁Vが非通電時に通過する流れに対しほとんど抵抗を与えない特性になっているため、供給路5の圧力は、ほぼリザーバRの圧力と等圧となる。よって、伸側室R1の圧力は、伸側室R1から排出される液体が伸側減衰弁15を通過する際に生じる圧力損失分だけ供給路5の圧力よりも高くなるから、当該圧力損失分だけ圧側室R2の圧力よりも高くなる。したがって、アクチュエータACの推力の特性は、
図11に示したグラフでは、
図11中の線(1)で示す特性となる。
【0111】
反対に、アクチュエータACが外力によって収縮作動する場合、圧側室R2の容積が減少するため、減少分の液体は、圧側減衰弁17を通じて圧側室R2から排出され、リザーバRへ流れる。他方、容積が増大する伸側室R1には、排出路6を介してリザーバRから吸込通路10、吸込チェック弁11を通じて容積拡大分に見合う液体が供給される。なお、供給側チェック弁12が設けられているので、液体はポンプ4側に液体が流れない。よって、圧側室R2の圧力は、圧側室R2から排出される液体が圧側減衰弁17を通過する際に生じる圧力損失分だけ伸側室R1の圧力よりも高くなる。したがって、アクチュエータACの推力の特性は、
図11中の線(2)で示す特性となる。
【0112】
このようにサスペンション装置S1が失陥した状態では、アクチュエータACはパッシブなダンパとして機能でき、車体Bおよび車輪Wの振動を抑制するので、失陥時にはフェールセーフ動作が確実に行われる。なお、失陥時に、切換弁9が圧側供給ポジション9cを採るようにしても、
図11に示した特性を実現でき、フェールセーフ動作を行える。
【0113】
このように、本発明のサスペンション装置S1では、アクチュエータACを積極的に伸縮させてアクティブサスペンションとして機能できるだけでなく、セミアクティブサスペンションとして機能できる。また、セミアクティブサスペンションとしての推力の発揮が期待される場面では、ポンプ4の駆動が必須ではなく、ポンプ4の駆動が必要なときにのみ駆動すればよいので、エネルギ消費が少なくなる。よって、本発明のサスペンション装置S1では、アクティブサスペンションとして機能できるとともに、エネルギ消費が少なくなる。
【0114】
また、制御弁Vが流量に対する圧力オーバーライドが少ない特性である場合には、ポンプ4に作用する圧力が小さくなるため、ポンプ4で消費するエネルギ量も少なくなり、より効果的にエネルギ消費を抑制できる。
【0115】
さらに、サスペンション装置S1が失陥した状態では、アクチュエータACはパッシブなダンパとして機能して、車体Bおよび車輪Wの振動を抑制するので、失陥時にはフェールセーフ動作が確実に行われる。
【0116】
また、本実施の形態のサスペンション装置S1にあっては、伸側室R1から切換手段としての切換弁9に向かう流れに対し抵抗を与える伸側減衰弁15と、伸側減衰弁15に並列されて切換弁9から伸側室R1へ向かう流れのみを許容する伸側チェック弁16とを有し、圧側室R2から切換弁9に向かう流れに対し抵抗を与える圧側減衰弁17と、圧側減衰弁17に並列されて切換弁9から圧側室R2へ向かう流れのみを許容する圧側チェック弁18とを有している。よって、ポンプ4から伸側室R1或いは圧側室R2へ液体を供給する際には、伸側チェック弁16或いは圧側チェック弁18を介してほとんど抵抗なく液体を伸側室R1或いは圧側室R2へ供給でき、アクチュエータACの伸縮方向と発生させる推力の方向とが一致する際にポンプ4の負荷を軽減できる。また、伸側室R1或いは圧側室R2から液体が排出される場合には、伸側減衰弁15或いは圧側減衰弁17が通過する液体の流れに抵抗を与えるので、伸側室R1或いは圧側室R2の圧力を制御弁Vの開弁圧以上にして大きな推力が得られる。よって、制御弁Vにおけるソレノイド20cの推力を小さくしてもサスペンション装置S1は大きな推力を発生できる。このことから、制御弁Vを小型化でき、コストを低減できる。なお、伸側減衰弁15および圧側減衰弁17が双方向流れを許容するものであってもよく、その場合、伸側チェック弁16および圧側チェック弁18の省略も可能である。その場合でも、サスペンション装置S1がセミアクティブサスペンションとしての推力の発揮が期待される場面ではポンプ4の駆動が必須ではないからエネルギ消費が少なくなるという本発明の効果は失われない。
【0117】
<第二の実施の形態>
具体的な液圧回路を備えたサスペンション装置の他の構成例を説明する。第二の実施の形態におけるサスペンション装置S2では、
図12に示した液圧回路FC2を備えている。
【0118】
液圧回路FC2は、
図12に示すように、制御弁Vと切換弁9によって伸側室R1と圧側室R2の圧力を制御する液圧回路FC1に対して、供給路5、排出路6、伸側通路7および圧側通路8の間に4ポート3位置の差圧制御弁DP1を設けている点で異なっている。具体的には、液圧回路FC2は、液圧回路FC1において制御通路19、制御弁Vおよび切換弁9を廃止する代わりに、切換弁9を設けていた位置に差圧制御弁DP1を設けている。その他の液圧回路FC2の構成は、液圧回路FC1と同様であるので、説明の重複を避けるため、同一の部材については同一の符号を付して詳しい説明を省略する。
【0119】
差圧制御弁DP1は、伸側通路7に接続されるAポートと、圧側通路8に接続されるBポートと、供給路5に接続されるPポートと、排出路6に接続されるTポートの4ポートを有して伸側通路7と圧側通路8の差圧を制御する4ポート3位置の電磁差圧制御弁とされている。
【0120】
具体的には、伸側通路7と供給路5とを連通するとともに圧側通路8と排出路6を連通する伸側供給ポジションA1と、全ポートを連通して供給路5、排出路6、伸側通路7および圧側通路8を相互に連通させるニュートラルポジションN1と、伸側通路7と排出路6とを連通するとともに圧側通路8と供給路5を連通する圧側供給ポジションB1と、スプールSP1を両側から挟んで附勢する一対のばねCs1,Cs2と、スプールSP1を駆動するプッシュプル型のソレノイドSol1とを備えている。スプールSP1は、ソレノイドSol1から推力を受けないと、ばねCs1,Cs2による附勢力により、ニュートラルポジションN1を採る中立位置に位置決めされる。なお、伸側供給ポジションA1、ニュートラルポジションN1および圧側供給ポジションB1は、スプールSP1の移動により、連続的に切換わるようになっている。
【0121】
また、伸側通路7からの圧力をパイロット圧としてスプールSP1の一端側へ導いており、伸側通路7の圧力でスプールSP1を
図12中下方へ附勢できるようになっている。さらに、圧側通路8からの圧力をパイロット圧としてスプールSP1の他端側へ導いており、圧側通路8の圧力でスプールSP1を
図12中上方へ附勢できるようになっている。伸側通路7の圧力によってスプールSP1を
図12中下方へ押す力と、圧側通路8の圧力によってスプールSP1を
図12中上方へ押す力は、互いにスプールSP1を反対に向けて押す力であり、これらの合力を液圧フィードバック力として利用している。ソレノイドSol1へ通電すると、スプールSP1は、前記ポジションA1,B1のうち、ソレノイドSol1からの推力、伸側通路7および圧側通路8の圧力による液圧フィードバック力と、ばねCs1,Cs2の附勢力が釣り合うポジションに切換わる。ソレノイドSol1の推力の大小によって、この推力と前記液圧フィードバック力とばねCs1,Cs2の附勢力が釣り合うスプールSP1の位置が変化するので、ソレノイドSol1の推力調整によって、伸側通路7と圧側通路8の差圧を制御できる。他方、ソレノイドSol1へ電力供給しない非通電時には、スプールSP1は、ばねCs1,Cs2によって附勢されて中立位置のニュートラルポジションN1を採る。
【0122】
よって、ソレノイドSol1へ供給する電流量の調整によって、伸側通路7の圧力と圧側通路8の圧力の差圧を制御できる。なお、アクチュエータACが伸縮するとアクチュエータACの伸側室R1と圧側室R2へ液体が出入りするため、差圧制御弁DP1を通過する流量は、ポンプ流量からアクチュエータACの伸縮による流量分だけ増減する。このようにアクチュエータACの伸縮によって流量が増減しても、液圧フィードバック力によってスプールSP1が自動的に移動して、前記差圧は、ソレノイドSol1へ供給する電流量によって一意的に決められた差圧に制御される。
【0123】
コントローラCは、この場合、差圧制御弁DP1およびモータ13へ供給する電流を制御すればよい。なお、差圧制御弁DP1の制御にあっては、コントローラCとは別にコントローラを備えていてもよい。
【0124】
なお、伸側通路7の圧力と圧側通路8の圧力の差圧を適切に制御できるのは、高圧側の圧力がリザーバ圧より高く保たれる場合であって、ポンプ流量が不足、或いは、ポンプ4が停止状態でリザーバRから吸込チェック弁11を介して液体の供給を受けなければならない状態では、差圧は0となる。
【0125】
サスペンション装置S2は、以上のように構成されており、続いて、その作動について説明する。まず、モータ13、ポンプ4、差圧制御弁DP1を正常に動作させられる通常時における作動を説明する。
【0126】
基本的には、ポンプ4をモータ13によって駆動し、差圧制御弁DP1によって伸側室R1と圧側室R2との差圧を制御すれば、アクチュエータACが積極的に伸長或いは収縮するアクチュエータとして機能できる。アクチュエータACに発生させる推力がアクチュエータACの伸長方向である場合には、差圧制御弁DP1を圧側供給ポジションB1として、圧側室R2を供給路5へ接続し伸側室R1をリザーバRへ接続する。反対に、アクチュエータACに発生させる推力がアクチュエータACの収縮方向である場合には、差圧制御弁DP1を伸側供給ポジションA1として、伸側室R1を供給路5へ接続し圧側室R2をリザーバRへ接続する。そして、差圧制御弁DP1によって伸側室R1と圧側室R2の差圧を調節すれば、アクチュエータACの伸長方向或いは収縮方向の推力の大きさを制御できる。
【0127】
以上、アクチュエータACを積極的に伸縮させる場合の作動について説明したが、車両走行中には、アクチュエータACが路面の凹凸により外乱を受けて伸縮するので、以下に、アクチュエータACが外乱を受けて伸縮する点を踏まえた作動について説明する。
【0128】
アクチュエータACが外乱を受けて伸縮する場合、アクチュエータACが推力を発生する方向とアクチュエータACの伸縮方向で場合分けすると、四つのケースが考えられる。Aポートの圧力をPaとし、Bポートの圧力をPbとすると、第一のケースとして、Pa>Pbとなるように制御し、ピストン2を下方に押し下げる推力をサスペンション装置S2に発揮させる場合で、アクチュエータACが外力によって伸長作動する場合について説明する。アクチュエータACの伸長により伸側室R1の容積が減少し、伸側室R1から排出された液体は伸側減衰弁15を通り、差圧制御弁DP1のAポートに流れる。他方、アクチュエータACの伸長により圧側室R2の容積が膨張し、ポンプ4の回転数が前述のように求められる目標回転数Nrefに制御されて、圧側室R2には、ポンプ4からBポートを経て圧側チェック弁18を通り、液体が補充される。
【0129】
伸長速度が速くなり、ポンプ4の回転数が目標回転数Nrefに制御されても圧側室R2に補充されるべき液体流量がポンプ4の吐出流量を上回ると、吸込チェック弁11を介してリザーバRからも液体が供給される。Aポートの圧力PaとBポートの圧力Pbの差圧は、差圧制御弁DP1により一定に保たれるので、伸側室R1の圧力は伸側減衰弁15で生じる圧力損失分だけAポートの圧力よりも高くなる。よって、伸側室R1の圧力は、差圧制御弁DP1によって調節される差圧に伸側減衰弁15で生じる圧力損失分の圧力を加えた値だけ圧側室R2よりも高くなり、アクチュエータACは、伸長を抑制する推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、
図13に示した、縦軸にアクチュエータACの推力を採り、横軸にアクチュエータACの伸縮速度を採ったグラフでは、
図13中の線(1)で示す特性となる。
【0130】
第二のケースとして、Pa>Pbとなるように制御し、ピストン2を下方に押し下げる推力をサスペンション装置S2に発揮させる場合であって、アクチュエータACが外力によって収縮作動している場合について説明する。アクチュエータACの収縮により圧側室R2の容積が減少し、圧側室R2から排出された液体は圧側減衰弁17を通り、差圧制御弁DP1のBポートに流れる。他方、アクチュエータACの収縮により伸側室R1の容積が膨張し、ポンプ4の回転数が前述のように求められる目標回転数Nrefに制御されて、伸側室R1には、ポンプ4からAポートを経て伸側チェック弁16を通り、液体が補充される。Aポートの圧力PaとBポートの圧力Pbの差圧は、差圧制御弁DP1により一定に保たれるので、圧側室R2の圧力は、圧側減衰弁17で生じる圧力損失分だけBポートの圧力よりも高くなる。よって、伸側室R1の圧力は、差圧制御弁DP1によって調節される差圧から圧側減衰弁17で生じる圧力損失分の圧力を差し引いた値だけ圧側室R2よりも高くなり、アクチュエータACは、収縮を助成する推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、
図13中の線(2)で示す特性となる。
【0131】
さらに、収縮速度が速くなり、目標回転数Nrefが上限に達しても伸側室R1に補充されるべき液体流量がポンプ4の最大吐出流量を上回ると、吸込チェック弁11を介してリザーバRからも液体が供給される。このような状態となると、ポンプ4の吐出流量ではAポートを加圧できず、Aポートの圧力Paは、リザーバRの圧力よりも若干低くなり、差圧制御弁DP1によってはAポートの圧力PaとBポートの圧力Pbの差圧を制御できなくなって両者の差圧は0となる。すると、アクチュエータACは、圧側室R2から排出される液体が圧側減衰弁17を通過する際に生じる圧力損失によって生じる伸側室R1と圧側室R2の差圧で推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、
図13中の線(3)で示す特性となり、線(2)で示した特性とは不連続となる。このように、伸側室R1に補充されるべき液体流量がポンプ4の吐出流量を上回るとアクチュエータACがパッシブなダンパとして機能し、収縮速度に依存して推力が変化する特性となる。
【0132】
次に、第三のケースとして、Pb>Paとなるように制御し、ピストン2を上方に押し上げる推力をサスペンション装置S2に発揮させる場合であって、アクチュエータACが外力によって収縮作動している場合について説明する。アクチュエータACの収縮により圧側室R2の容積が減少し、圧側室R2から排出された液体は圧側減衰弁17を通り、差圧制御弁DP1のBポートに流れる。他方、アクチュエータACの収縮により伸側室R1の容積が膨張し、ポンプ4の回転数が前述のように求められる目標回転数Nrefに制御されて、伸側室R1には、ポンプ4からAポートを経て伸側チェック弁16を通り、液体が補充される。
【0133】
伸長速度が速くなり、ポンプ4の回転数が目標回転数Nrefに制御されても伸側室R1に補充されるべき液体流量がポンプ4の吐出流量を上回ると、吸込チェック弁11を介してリザーバRからも液体が供給される。Aポートの圧力PaとBポートの圧力Pbの差圧は、差圧制御弁DP1により一定に保たれるので、圧側室R2の圧力は圧側減衰弁17で生じる圧力損失分だけBポートの圧力よりも高くなる。よって、圧側室R2の圧力は、差圧制御弁DP1によって調節される差圧に圧側減衰弁17で生じる圧力損失分の圧力を加えた値だけ伸側室R1よりも高くなり、アクチュエータACは、収縮を抑制する推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、
図13中の線(4)で示す特性となる。
【0134】
第四のケースとして、Pb>Paとなるように制御し、ピストン2を上方に押し上げる推力をサスペンション装置S2に発揮させる場合であって、アクチュエータACが外力によって伸長作動している場合について説明する。アクチュエータACの伸長により伸側室R1の容積が減少し、伸側室R1から排出された液体は伸側減衰弁15を通り、差圧制御弁DP1のAポートに流れる。他方、アクチュエータACの伸長により圧側室R2の容積が膨張し、ポンプ4の回転数が前述のように求められる目標回転数Nrefに制御されて、圧側室R2には、ポンプ4からBポートを経て圧側チェック弁18を通り、液体が補充される。Aポートの圧力PaとBポートの圧力Pbの差圧は、差圧制御弁DP1により一定に保たれるので、伸側室R1の圧力は、伸側減衰弁15で生じる圧力損失分だけAポートの圧力よりも高くなる。よって、圧側室R2の圧力は、差圧制御弁DP1によって調節される差圧から伸側減衰弁15で生じる圧力損失分の圧力を差し引いた値だけ伸側室R1よりも高くなり、アクチュエータACは、伸長を助成する推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、
図13中の線(5)で示す特性となる。
【0135】
さらに、伸長速度が速くなり、目標回転数Nrefが上限に達しても圧側室R2に補充されるべき液体流量がポンプ4の最大吐出流量を上回ると、吸込チェック弁11を介してリザーバRからも液体が供給される。このような状態となると、ポンプ4の吐出流量ではBポートを加圧できず、Bポートの圧力Pbは、リザーバRの圧力よりも若干低くなり、差圧制御弁DP1によってはAポートの圧力PaとBポートの圧力Pbの差圧を制御できなくなって両者の差圧は0となる。すると、アクチュエータACは、伸側室R1から排出される液体が伸側減衰弁15を通過する際に生じる圧力損失によって生じる伸側室R1と圧側室R2の差圧で推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、
図13中の線(6)で示す特性となり、線(5)で示した特性とは不連続となる。このように、圧側室R2に補充されるべき液体流量がポンプ4の吐出流量を上回るとアクチュエータACがパッシブなダンパとして機能し、伸長速度に依存して推力が変化する特性となる。
【0136】
なお、アクチュエータACは、収縮側では
図13中線(2)から線(3)へ推力が変化する特性を示し、伸長側では
図13中線(5)から線(6)へ推力が変化する特性を示すが、特性の変化はごく瞬間的に生じるものであり、乗り心地に与える影響は軽微である。
【0137】
以上から、差圧制御弁DP1による差圧制御により、
図13中、線(1)から線(3)をつなげたラインから線(4)から線(6)までをつなげたラインまでの間の範囲でアクチュエータACの推力を可変にできる。また、ポンプ4の駆動によって、ポンプ4の吐出流量を伸側室R1と圧側室R2のうち拡大する側の室へ供給する場合には、ポンプ4の吐出流量が拡大する室の容積増大量以上である場合には、アクチュエータACの伸縮方向と同方向に推力を発揮させられる。
【0138】
引き続き、ポンプ4を駆動しない停止状態にした場合のサスペンション装置S2の作動を説明する。この場合についても、アクチュエータACが外乱を受けて伸縮する方向とアクチュエータACが推力を発生する方向とで場合分けすると、四つのケースが考えられる。
【0139】
第一のケースとして、Pa>Pbとなるように制御し、ピストン2を下方に押し下げる推力をサスペンション装置S2に発揮させる場合で、アクチュエータACが外力によって伸長作動する場合について説明する。アクチュエータACの伸長により伸側室R1の容積が減少し、伸側室R1から排出された液体は伸側減衰弁15を通り、差圧制御弁DP1のAポートに流れる。他方、アクチュエータACの伸長により圧側室R2の容積が膨張し、圧側室R2には、リザーバRからBポートを経て圧側チェック弁18を通り、液体が補充される。
【0140】
Aポートの圧力PaとBポートの圧力Pbの差圧は、差圧制御弁DP1により一定に保たれるので、伸側室R1の圧力は伸側減衰弁15で生じる圧力損失分だけAポートの圧力よりも高くなる。よって、伸側室R1の圧力は、差圧制御弁DP1によって調節される差圧に伸側減衰弁15で生じる圧力損失分の圧力を加えた値だけ圧側室R2よりも高くなり、アクチュエータACは、伸長を抑制する推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、
図14に示した、縦軸にアクチュエータACの推力を採り、横軸にアクチュエータACの伸縮速度を採ったグラフでは、
図14中の線(1)で示す特性となる。
【0141】
第二のケースとして、Pa>Pbとなるように制御し、ピストン2を下方に押し下げる推力をサスペンション装置S2に発揮させる場合であって、アクチュエータACが外力によって収縮作動している場合について説明する。アクチュエータACの収縮により圧側室R2の容積が減少し、圧側室R2から排出された液体は圧側減衰弁17を通り、差圧制御弁DP1のBポートに流れる。他方、アクチュエータACの収縮により伸側室R1の容積が膨張し、伸側室R1には、リザーバRから吸込チェック弁11、Aポートを経て伸側チェック弁16を通り、液体が補充される。Aポートの圧力Paは、リザーバRの圧力よりも若干低くなり、差圧制御弁DP1によってAポートの圧力PaとBポートの圧力Pbの差圧を制御できなくなって両者の差圧は0となる。すると、アクチュエータACは、圧側室R2から排出される液体が圧側減衰弁17を通過する際に生じる圧力損失によって生じる伸側室R1と圧側室R2の差圧で推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、
図14中の線(2)で示す特性となる。
【0142】
次に、第三のケースとして、Pb>Paとなるように制御し、ピストン2を上方に押し上げる推力をサスペンション装置S2に発揮させる場合であって、アクチュエータACが外力によって収縮作動している場合について説明する。アクチュエータACの収縮により圧側室R2の容積が減少し、圧側室R2から排出された液体は圧側減衰弁17を通り、差圧制御弁DP1のBポートに流れる。他方、アクチュエータACの収縮により伸側室R1の容積が膨張し、伸側室R1には、リザーバRからAポートを経て伸側チェック弁16を通り、液体が補充される。
【0143】
Aポートの圧力PaとBポートの圧力Pbの差圧は、差圧制御弁DP1により一定に保たれるので、圧側室R2の圧力は圧側減衰弁17で生じる圧力損失分だけBポートの圧力よりも高くなる。よって、圧側室R2の圧力は、差圧制御弁DP1によって調節される差圧に圧側減衰弁17で生じる圧力損失分の圧力を加えた値だけ伸側室R1よりも高くなり、アクチュエータACは、収縮を抑制する推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、
図14中の線(3)で示す特性となる。
【0144】
第四のケースとして、Pb>Paとなるように制御し、ピストン2を上方に押し上げる推力をサスペンション装置S2に発揮させる場合であって、アクチュエータACが外力によって伸長作動している場合について説明する。アクチュエータACの伸長により伸側室R1の容積が減少し、伸側室R1から排出された液体は伸側減衰弁15を通り、差圧制御弁DP1のAポートに流れる。他方、アクチュエータACの伸長により圧側室R2の容積が膨張し、圧側室R2には、リザーバRから吸込チェック弁11、Bポートを経て圧側チェック弁18を通り、液体が補充される。Bポートの圧力Pbは、リザーバRの圧力よりも若干低くなり、差圧制御弁DP1によってAポートの圧力PaとBポートの圧力Pbの差圧を制御できなくなって両者の差圧は0となる。すると、アクチュエータACは、伸側室R1から排出される液体が伸側減衰弁15を通過する際に生じる圧力損失によって生じる伸側室R1と圧側室R2の差圧で推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、
図14中の線(4)で示す特性となる。
【0145】
よって、ポンプ4を停止した状態では、差圧制御弁DP1による差圧制御により、
図14中において、第一象限内では、線(1)から線(4)までの範囲で、第三象限内では、線(3)から線(2)までの範囲でアクチュエータACの推力を可変にできる。
【0146】
また、ポンプ4が停止状態では、ピストン2を下方に押し下げる推力をサスペンション装置S2に発揮させようとする場合、アクチュエータACが外力によって収縮作動すると、差圧制御弁DP1の差圧制御によらず、アクチュエータACの推力は、
図14中の線(2)で示す特性となる。これは、減衰力可変ダンパにおいて、圧側減衰力を最も低い減衰力に制御しているのと同等の効果をもたらしている。さらに、ポンプ4が停止状態では、ピストン2を上方に押し上げる推力をサスペンション装置S2に発揮させようとする場合、アクチュエータACが外力によって伸長作動すると、差圧制御弁DP1の差圧制御によらず、アクチュエータACの推力は、
図14中の線(4)で示す特性となる。これは、減衰力可変ダンパにおいて、伸側減衰力を最も低い減衰力に制御しているのと同等の効果をもたらしている。
【0147】
本発明のサスペンション装置S2では、ポンプ4を停止した状態でアクチュエータACにピストン2を押し下げる推力を発揮させる場合、伸長時にはアクチュエータACの推力が差圧制御弁DP1によって出力可能範囲内で制御され、収縮時には、アクチュエータACは最も低い推力を発揮する。反対に、本発明のサスペンション装置S2では、ポンプ4を停止した状態でアクチュエータACにピストン2を押し上げる推力を発揮させる場合、収縮時にはアクチュエータACの推力が差圧制御弁DP1によって出力可能範囲内で制御され、伸長時には、アクチュエータACは最も低い推力を発揮する。したがって、本発明のサスペンション装置S2では、ポンプ4を停止中である場合、自動的に、セミアクティブサスペンションと同じ機能を発揮ができる。よって、ポンプ4が駆動中であってもポンプ4の吐出流量が拡大する伸側室R1或いは圧側室R2の容積増大量未満となると、自動的に、サスペンション装置S2がセミアクティブサスペンションとして機能できる。
【0148】
最後に、サスペンション装置S2のモータ13および差圧制御弁DP1への通電が何らかの異常により通電不能な失陥時におけるサスペンション装置S2の作動について説明する。こうした失陥には、たとえば、モータ13および差圧制御弁DP1への通電ができない場合のほか、コントローラCやドライバDrに異常が見られた場合にモータ13および差圧制御弁DP1への通電を停止する場合も含まれる。
【0149】
失陥時には、モータ13および差圧制御弁DP1への通電が停止されるか、或いは通電不能な状態であり、ポンプ4は停止し、差圧制御弁DP1は、ばねCs1,Cs2に附勢されてニュートラルポジションN1を採る状態となる。具体的な差圧制御弁DP1にあっては、ばねCs1,Cs2によって附勢されてニュートラルポジションN1を採る状態となる。
【0150】
この状態で、アクチュエータACが外力によって伸長作動する場合、伸側室R1の容積が減少するため、減少分の液体は、伸側減衰弁15を通じて伸側室R1から排出される。容積が膨張する圧側室R2に対しては、伸側室R1およびリザーバRから液体が補充される。
【0151】
よって、伸側室R1の圧力は、伸側室R1から排出される液体が伸側減衰弁15を通過する際に生じる圧力損失分だけ圧側室R2の圧力よりも高くなり、アクチュエータACは、伸側室R1と圧側室R2の差圧で推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、
図15中の線(1)で示す特性となる。
【0152】
反対に、アクチュエータACが外力によって収縮作動する場合、圧側室R2の容積が減少するため、減少分の液体は、圧側減衰弁17を通じて圧側室R2から排出される。容積が膨張する伸側室R1に対しては、圧側室R2およびリザーバRから液体が補充される。
【0153】
よって、圧側室R2の圧力は、圧側室R2から排出される液体が圧側減衰弁17を通過する際に生じる圧力損失分だけ伸側室R1の圧力よりも高くなり、アクチュエータACは、伸側室R1と圧側室R2の差圧で推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、
図15中の線(2)で示す特性となる。
【0154】
このようにサスペンション装置S2が失陥した状態では、アクチュエータACはパッシブなダンパとして機能して、車体Bおよび車輪Wの振動を抑制するので、失陥時にはフェールセーフ動作が確実に行われる。
【0155】
このように、本発明のサスペンション装置S2では、アクチュエータACを積極的に伸縮させてアクティブサスペンションとして機能できるだけでなく、セミアクティブサスペンションとしての推力の発揮が期待される場面では、ポンプ4の駆動が必須ではなく、ポンプ4の駆動が必要なときにのみ駆動すればよいので、エネルギ消費が少なくなる。よって、本発明のサスペンション装置S2によれば、アクティブサスペンションとして機能できるとともに、エネルギ消費が少なくなる。
【0156】
そして、本発明のサスペンション装置S2にあっては、アクチュエータACの推力の制御を差圧制御弁DP1のみで行えるので、電磁弁が二つ必要であった第一の実施の形態のサスペンション装置S1に比較して、装置全体のコストが安価となるだけでなく、液圧回路の配管の取り回しも簡素化できる。
【0157】
さらに、このサスペンション装置S2にあっては、アクティブサスペンションとして機能できるだけでなく、ソレノイドを搭載した差圧制御弁DP1を一つ設けるだけで、失陥時におけるフェールセーフ動作を行える。
【0158】
また、本実施の形態のサスペンション装置S2にあっては、伸側室R1から差圧制御弁DP1に向かう流れに対し抵抗を与える伸側減衰弁15と、伸側減衰弁15に並列されて差圧制御弁DP1から伸側室R1へ向かう流れのみを許容する伸側チェック弁16と、圧側室R2から差圧制御弁DP1に向かう流れに対し抵抗を与える圧側減衰弁17と、圧側減衰弁17に並列されて差圧制御弁DP1から圧側室R2へ向かう流れのみを許容する圧側チェック弁18とを有している。よって、ポンプ4から伸側室R1或いは圧側室R2へ液体を供給する際には、伸側チェック弁16或いは圧側チェック弁18を介してほとんど抵抗なく液体を伸側室R1或いは圧側室R2へ供給でき、アクチュエータACの伸縮方向と発生させる推力の方向とが一致する際にポンプ4の負荷を軽減できる。また、伸側室R1或いは圧側室R2から液体が排出される場合には、伸側減衰弁15或いは圧側減衰弁17が通過する液体の流れに抵抗を与えるので、伸側室R1と圧側室R2の差圧を差圧制御弁DP1で設定可能な差圧以上にして大きな推力を得られ、差圧制御弁DP1におけるソレノイドSol1の推力を小さくしてもサスペンション装置S2に大きな推力を発生させられる。よって、差圧制御弁DP1を小型化できるとともにコストをより安価にできる。なお、伸側減衰弁15および圧側減衰弁17が液体の流れる方向にかかわりなく液体の流れに抵抗を与えるものであってもよく、伸側減衰弁15および圧側減衰弁17が双方向流れを許容するものであれば伸側チェック弁16および圧側チェック弁18を省略できる。
【0159】
<第三の実施の形態>
具体的な液圧回路を備えたサスペンション装置の他の構成例を説明する。第三の実施の形態におけるサスペンション装置S3では、
図16に示した液圧回路FC3を備えている。
【0160】
液圧回路FC3は、
図16に示すように、液圧回路FC2の差圧制御弁DP1を4ポート4位置の差圧制御弁DP2に変更した点で異なっている。その他の液圧回路FC3の構成は、液圧回路FC2と同様であるので、説明の重複を避けるため、同一の部材については同一の符号を付して詳しい説明を省略する。
【0161】
差圧制御弁DP2は、伸側通路7に接続されるAポートと、圧側通路8に接続されるBポートと、供給路5に接続されるPポートと、排出路6に接続されるTポートの4ポートを有してAポートとBポートの差圧を制御するともに、非通電時に伸側通路7、圧側通路8、供給路5および排出路6を互いに連通するフェールポジションを採る4ポート4位置の電磁差圧制御弁とされている。
【0162】
具体的には、AポートとPポートとを連通するとともにBポートとTポートを連通する伸側供給ポジションA2と、Aポート、Bポート、PポートおよびTポートの全ポートを相互に連通させるニュートラルポジションN2と、AポートとTポートとを連通するとともにBポートとPポートを連通する圧側供給ポジションB2と、全ポートを相互に連通させるフェールポジションF2とを備えたスプールSP2と、スプールSP2を附勢するばねCs3と、前記ばねCs3に対抗する推力をスプールSP2に与えるソレノイドSol2とを備えている。つまり、伸側供給ポジションA2では、供給路5を伸側通路7へ連通し、かつ、排出路6を圧側通路8へ連通させ、ニュートラルポジションN2およびフェールポジションF2では、供給路5、排出路6、伸側通路7および圧側通路8を相互に連通し、圧側供給ポジションB2では、供給路5を圧側通路8へ連通し、かつ、排出路6を伸側通路7へ連通させる。なお、伸側供給ポジションA2、ニュートラルポジションN2および圧側供給ポジションB2は、スプールSP2の移動により、連続的に切換わるようになっている。
【0163】
また、伸側通路7からの圧力をパイロット圧としてスプールSP2の一端側へ導いており、伸側通路7の圧力でスプールSP2を
図16中下方へ附勢できるようになっている。さらに、圧側通路8からの圧力をパイロット圧としてスプールSP2の他端側へ導いており、圧側通路8の圧力でスプールSP2を
図16中上方へ附勢できるようになっている。伸側通路7の圧力によってスプールSP2を
図16中下方へ押す力と、圧側通路8の圧力によってスプールSP2を
図16中上方へ押す力は、互いにスプールSP2を反対に向けて押す力であり、これらの合力を流体圧フィードバック力として利用している。ソレノイドSol2へ通電すると、スプールSP2は、前記ポジションA2,B2,N2のうち、ソレノイドSol2からの推力、伸側通路7および圧側通路8の圧力による流体圧フィードバック力と、ばねCs3の附勢力が釣り合うポジションに切換わる。ソレノイドSolの推力の大小によって、この推力と前記流体圧フィードバック力とばねCs3の附勢力が釣り合うスプールSP2の位置が変化するので、ソレノイドSol2の推力調整によって、伸側通路7と圧側通路8の差圧を制御できる。他方、ソレノイドSol2へ電力供給しない非通電時には、スプールSP2は、ばねCs3によって押されてフェールポジションF2を採る。なお、本例では、伸側通路7をAポートに接続し、圧側通路8をBポートに接続しているが、伸側通路7をBポートに接続し、圧側通路8をAポートに接続してもよい。
【0164】
よって、ソレノイドSol2へ供給する電流量の調整によって、伸側通路7の圧力と圧側通路8の圧力の差圧を制御できる。なお、アクチュエータACが伸縮するとアクチュエータACの伸側室R1と圧側室R2へ液体が出入りするため、差圧制御弁DP2を通過する流量は、ポンプ流量からアクチュエータACの伸縮による流量分だけ増減する。このようにアクチュエータACの伸縮によって流量が増減しても、流体圧フィードバック力によってスプールSP2が自動的に移動して、前記差圧は、ソレノイドSol2へ供給する電流量によって一意的に決められた差圧に制御される。
【0165】
なお、伸側通路7の圧力と圧側通路8の圧力の差圧を適切に制御できるのは、高圧側の圧力がリザーバ圧より高く保たれる場合であって、ポンプ流量が不足、或いは、ポンプ4が停止状態でリザーバRから吸込チェック弁11を介して液体の供給を受けなければならない状態では、差圧は0となる。
【0166】
サスペンション装置S3は、以上のように構成されており、液圧回路FC2を備えたサスペンション装置S2と同様に差圧制御弁DP2によって、アクチュエータACの推力を制御できる。よって、このサスペンション装置S3は、サスペンション装置S2と同様に、ポンプ4をモータ13によって駆動し、差圧制御弁DP2によって伸側室R1と圧側室R2の差圧を制御すれば、アクチュエータACが積極的に伸長或いは収縮するアクチュエータとして機能できる。アクチュエータACに発生させる推力がアクチュエータACの伸長方向である場合には、差圧制御弁DP2を圧側供給ポジションB2として、圧側室R2を供給路5へ接続し伸側室R1をリザーバRへ接続する。反対に、アクチュエータACに発生させる推力がアクチュエータACの収縮方向である場合には、差圧制御弁DP2を伸側供給ポジションA2として、伸側室R1を供給路5へ接続し圧側室R2をリザーバRへ接続する。そして、差圧制御弁DP2によって伸側室R1と圧側室R2の差圧を調節すれば、アクチュエータACの伸長方向或いは収縮方向の推力の大きさを制御できる。
【0167】
また、車両走行中には、アクチュエータACが路面の凹凸により外乱を受けて伸縮する場合における作動についても、サスペンション装置S3は、サスペンション装置S2と同様の作動を呈する。つまり、サスペンション装置S3におけるアクチュエータACの伸縮速度に対する推力の特性は、サスペンション装置S2と同じく、
図13に示した線(1)から線(6)の特性となる。よって、サスペンション装置S3にあっても、線(1)から線(3)をつなげたラインから線(4)から線(6)までをつなげたラインまでの間の範囲でアクチュエータACの推力を可変にできる。また、ポンプ4の駆動によって、ポンプ4の吐出流量を伸側室R1と圧側室R2のうち拡大する側の室へ供給する場合には、ポンプ4の吐出流量が拡大する室の容積増大量以上である場合には、アクチュエータACの伸縮方向と同方向に推力を発揮させられる。
【0168】
さらに、ポンプ4を駆動しない停止状態にした場合の作動についても、サスペンション装置S3は、サスペンション装置S2と同様の作動を呈する。つまり、サスペンション装置S3におけるアクチュエータACの伸縮速度に対する推力の特性は、サスペンション装置S2と同じく、
図14に示した線(1)から線(4)の特性となる。よって、サスペンション装置S3にあっても、ポンプ4を停止すると、差圧制御弁DP2による差圧制御により、
図14中の第一象限内では、線(1)から線(4)までの範囲で、第三象限内では、線(3)から線(2)までの範囲でアクチュエータACの推力を可変にできる。
【0169】
なお、サスペンション装置S3の液圧回路FC3における差圧制御弁DP2は、液圧回路FC2における差圧制御弁DP1と異なり、ニュートラルポジションN2の他にフェールポジションF2を備えている。このフェールポジションF2は、差圧制御弁DP1におけるニュートラルポジションNと同様に、供給路5、排出路6、伸側通路7および圧側通路8を相互に連通する。よって、失陥時にあっても、サスペンション装置S3は、サスペンション装置S2と同様の作動を呈する。つまり、サスペンション装置S3におけるアクチュエータACの伸縮速度に対する推力の特性は、サスペンション装置S2と同じく、
図15に示した線(1)、線(2)で示した特性となる。よって、サスペンション装置S3にあっても、失陥時には、アクチュエータACをパッシブなダンパとして機能させて、車体Bおよび車輪Wの振動を抑制するので、フェールセーフ動作が確実に行われる。
【0170】
このように、本発明のサスペンション装置S3では、アクチュエータACを積極的に伸縮させてアクティブサスペンションとして機能できるだけでなく、セミアクティブサスペンションとしての推力の発揮が期待される場面では、ポンプ4の駆動が必須ではなく、ポンプ4の駆動が必要なときにのみ駆動すればよいので、エネルギ消費が少なくなる。よって、本発明のサスペンション装置S3によれば、アクティブサスペンションとして機能できるとともに、エネルギ消費が少なくなる。
【0171】
そして、本発明のサスペンション装置S3にあっては、アクチュエータACの推力の制御を差圧制御弁DP2のみで行えるので、電磁弁が二つ必要であったサスペンション装置S1に比較して、装置全体のコストが安価となるだけでなく、流体圧回路の配管の取り回しも簡素化できる。
【0172】
さらに、このサスペンション装置S3にあっては、アクティブサスペンションとして機能できるだけでなく、ソレノイドを搭載した差圧制御弁DP2を一つ設けるだけで、失陥時におけるフェールセーフ動作を行える。
【0173】
加えて、差圧制御弁DP2を駆動するためのドライバDrにあっても、ソレノイドSol2を駆動する駆動回路を備えていれば足りるので、従来の電磁弁が二つ必要なサスペンション装置に比し、ドライバDrで保有する駆動回路数が少なくて済む。よって、サスペンション装置S3を駆動するドライバDrのコストも低減される。
【0174】
また、本実施の形態のサスペンション装置S3にあっては、伸側室R1から差圧制御弁DP2に向かう流れに対し抵抗を与える伸側減衰弁15と、伸側減衰弁15に並列されて差圧制御弁DP2から伸側室R1へ向かう流れのみを許容する伸側チェック弁16と、圧側室R2から差圧制御弁DP2に向かう流れに対し抵抗を与える圧側減衰弁17と、圧側減衰弁17に並列されて差圧制御弁DP2から圧側室R2へ向かう流れのみを許容する圧側チェック弁18とを有している。よって、ポンプ4から伸側室R1或いは圧側室R2へ流体を供給する際には、伸側チェック弁16或いは圧側チェック弁18を介してほとんど抵抗なく流体を伸側室R1或いは圧側室R2へ供給でき、アクチュエータACの伸縮方向と発生させる推力の方向とが一致する際にポンプ4の負荷を軽減できる。また、伸側室R1或いは圧側室R2から流体が排出される場合には、伸側減衰弁15或いは圧側減衰弁17が通過する流体の流れに抵抗を与えるので、伸側室R1と圧側室R2の差圧を差圧制御弁DP2で設定可能な差圧以上にして大きな推力を得られ、差圧制御弁DP2におけるソレノイドSol2の推力を小さくしてもサスペンション装置S3に大きな推力を発生させられる。よって、差圧制御弁DP2を小型化できるとともにコストをより安価にできる。なお、伸側減衰弁15或いは圧側減衰弁17が流体の流れる方向にかかわりなく流体の流れに抵抗を与えるものであってもよく、伸側減衰弁15および圧側減衰弁17が双方向流れを許容するものであれば伸側チェック弁16および圧側チェック弁18を省略できる。
【0175】
以上で、本発明の実施の形態についての説明を終えるが、本発明の範囲は図示されまたは説明された詳細そのものには限定されない。