(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6700902
(24)【登録日】2020年5月8日
(45)【発行日】2020年5月27日
(54)【発明の名称】熱音響機関
(51)【国際特許分類】
F03G 7/00 20060101AFI20200518BHJP
F25B 9/00 20060101ALI20200518BHJP
F02G 5/00 20060101ALI20200518BHJP
F01D 1/04 20060101ALI20200518BHJP
【FI】
F03G7/00 B
F03G7/00 C
F25B9/00 Z
F02G5/00 B
F02G5/00 Z
F01D1/04
【請求項の数】4
【全頁数】9
(21)【出願番号】特願2016-65846(P2016-65846)
(22)【出願日】2016年3月29日
(65)【公開番号】特開2017-180920(P2017-180920A)
(43)【公開日】2017年10月5日
【審査請求日】2018年12月3日
(73)【特許権者】
【識別番号】000000284
【氏名又は名称】大阪瓦斯株式会社
(74)【代理人】
【識別番号】110001818
【氏名又は名称】特許業務法人R&C
(72)【発明者】
【氏名】金内 健
【審査官】
西中村 健一
(56)【参考文献】
【文献】
特開2014−234949(JP,A)
【文献】
特開2012−112621(JP,A)
【文献】
特開2006−214406(JP,A)
【文献】
特開平10−325625(JP,A)
【文献】
中国特許出願公開第101539124(CN,A)
【文献】
中国特許出願公開第101539125(CN,A)
【文献】
特許第4652822(JP,B2)
【文献】
特開2015−055438(JP,A)
【文献】
特開2016−183844(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F03G 7/00
F25B 9/00
F02G 1/053−1/055
F02G 5/00
F01D 1/04
Japio−GPG/FX
JSTPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
作動媒体が充填され音波が伝播する音響筒に、前記作動媒体を外部から加熱する加熱器と前記作動媒体を外部から冷却する冷却器と前記加熱器と前記冷却器との間で音波を増幅する再生器とから成る原動機を少なくとも1つ設けると共に、音波の振動から電力を発生させる電力発生機を設ける熱音響部を少なくとも1つ以上備える熱音響機関であって、
前記電力発生機は、前記音響筒内での前記作動媒体の流動を減衰する流動減衰機構を備え、
前記音響筒の筒軸心方向において、前記原動機の前記加熱器側の近傍に、前記電力発生機を備え、
前記電力発生機は、前記音響筒の筒軸心方向において、前記原動機の前記加熱器側の近傍で、且つ前記加熱器から前記音波の1/4波長と半波長の整数倍の距離離れた位置に備えられている熱音響機関。
【請求項2】
前記電力発生機は、前記音響筒の筒軸心方向において、前記原動機の前記加熱器側の近傍で、且つ前記加熱器から前記音波の1/4波長の距離離れた位置に備えられている請求項1に記載の熱音響機関。
【請求項3】
前記電力発生機の前記流動減衰機構は、前記音響筒の筒内部に設けられる一の回転翼と、当該回転翼を挟む状態で設けられている一対の固定翼とから構成されている請求項1又は2に記載の熱音響機関。
【請求項4】
前記電力発生機の出力電力を導出する出力電力導出部を備え、
前記出力電力導出部にて導出される出力電力に基づいて、前記電力発生機にて発生する電力を供給する電力負荷の大きさを制御する制御機構を備える請求項1〜3の何れか一項に記載の熱音響機関。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、作動媒体が充填され音波が伝播する音響筒に、前記作動媒体を外部から加熱する加熱器と前記作動媒体を外部から冷却する冷却器と前記加熱器と前記冷却器との間で音波を増幅する再生器とから成る原動機を少なくとも1つ設けると共に、音波の振動から電力を発生させる電力発生機を設ける熱音響部を少なくとも1つ以上備える熱音響機関に関する。
【背景技術】
【0002】
従来、音響筒の軸心方向において、異なる温度の媒体により再生器の一端側と他端側との間で温度勾配を発生させることで、熱エネルギを音波の振動エネルギへ変換する技術として、熱音響機関が知られている(特許文献1を参照)。
当該特許文献1に開示の熱音響機関では、例えば、ヘリウム等の作動媒体が充填され音波が伝播する音響筒に、作動媒体を外部から加熱する加熱器と作動媒体を外部から冷却する冷却器と加熱器と冷却器との間で音波の振動エネルギを増幅する再生器とから成る原動機と、音波の振動から電力を発生させる電力発生機とを設けて構成されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2013−096387号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上記特許文献1に示す熱音響機関にあっては、音響筒の内部において、作動媒体が、比較的低温の冷却器の側から比較的高温の加熱器の側へ向けて流動し、当該流動した作動媒体が加熱器へ接触して加熱器の熱を奪うことにより、原動機での冷却器と加熱器との間の温度差が小さくなり、原動機での音波の増幅を十分に行えなくなるという問題があった。
【0005】
本発明は、上述の課題に鑑みてなされたものであり、その目的は、原動機にて加熱器と冷却器との間の温度差の低減を良好に抑制して、原動機にて音波を適切に増幅し、更には、当該増幅した音波により電力発生機にて良好に電力を発生できる熱音響機関を提供することにある。
【課題を解決するための手段】
【0006】
上記目的を達成するための熱音響機関は、作動媒体が充填され音波が伝播する音響筒に、前記作動媒体を外部から加熱する加熱器と前記作動媒体を外部から冷却する冷却器と前記加熱器と前記冷却器との間で音波を増幅する再生器とから成る原動機を少なくとも1つ設けると共に、音波の振動から電力を発生させる電力発生機を設ける熱音響部を少なくとも1つ以上備える熱音響機関であって、その特徴構成は、
前記電力発生機は、前記音響筒内での前記作動媒体の流動を減衰する流動減衰機構を備え、
前記音響筒の筒軸心方向において、前記原動機の前記加熱器側の近傍に、前記電力発生機を備え
、
前記電力発生機は、前記音響筒の筒軸心方向において、前記原動機の前記加熱器側の近傍で、且つ前記加熱器から前記音波の1/4波長と半波長の整数倍の距離離れた位置に備えられている点にある。
尚、音波の1/4波長と半波長の整数倍の距離とは、波長をλとすると、(1+2n)×λ/4(n=0,1,2・・・)で表される距離である。
【0007】
上記特徴構成によれば、音響筒の筒軸心方向において、原動機の加熱器側の近傍に電力発生機を設けているから、低温側から高温側へ向けて流れる作動媒体の流動を、加熱器の近傍にて減衰でき、低温の作動媒体が加熱器に接触し、加熱器が降温することを防止できる。これにより、原動機において加熱器と冷却器との間の温度勾配を大きく保つことができ、原動機にて適切に音波を増幅できる。
因みに、本明細書において、音響筒の筒軸心方向において、原動機の加熱器側の近傍とは、原動機の加熱器からの距離が、原動機の冷却器からの距離よりも短い領域を意味するものとする。尚、当該定義は、原動機を複数設ける場合も同様である。
以上より、原動機にて加熱器と冷却器との間の温度差の低減を良好に抑制して、原動機にて音波を適切に増幅し、更には、当該増幅した音波により電力発生機にて良好に電力を発生できる熱音響機関を実現できる。
【0009】
更に、発明者らは、
図2、3に示すように、音響筒Cが、ループ管と当該ループ管に連結される直管から成り、ループ管に2つの原動機10が設けられている場合において、当該音響筒Cのループ管の内部において、ループ管の管軸方向の各位置において、発生する音波の圧力振幅と作動媒体である分子の速度とをシミュレーションにより求めた。
ここで、原動機10は、作動媒体の分子の速度が小さく、且つ圧力振幅の大きい位置(以下、音響インピーダンスが高い位置、と言うことがある)に配置することで、熱エネルギから音響エネルギへの変換効率が高くなる。一方で、電力発生機は、作動媒体の分子の速度が速い位置において、電力出力が大きくなる。
図3に示すシミュレーションに示すように、原動機10が音響インピーダンスの高い位置に配置された場合、分子速度が最も大きくなる位置は、原動機10から音波の1/4波長と半波長の整数倍の距離離れた位置に発生する。
上記特徴構成によれば、電力発生機は、音響筒の筒軸心方向において、原動機10の加熱器11側で、且つ加熱器11から音波の1/4波長と半波長の整数倍の距離離れた位置に備えることで、分子速度が最も大きくなる分子速度の腹において、音響エネルギを効率良く電力へ変換することができる。
【0010】
熱音響機関の更なる特徴構成は、
前記電力発生機は、前記音響筒の筒軸心方向において、前記原動機の前記加熱器側の近傍で、且つ前記加熱器から前記音波の1/4波長の距離離れた位置に備えられている点にある。
【0011】
音響筒の内部において、作動媒体は、温度の低い側から温度の高い側へ流動する。従って、原動機の加熱器側に位置する音響筒からは、何れの位置からも作動媒体が、加熱器の側へ流動する可能性がある。
上記特徴構成によれば、まずもって、電力発生機は、音響筒の筒軸心方向において、原動機の加熱器側で、且つ加熱器から音波の1/4波長の距離離れた位置に設けられているから、分子速度が最も大きくなる分子速度の腹において、音響エネルギを効率良く電力へ変換することができる。
しかも、電力発生機は、音響筒の筒軸心方向において、原動機の加熱器側で、且つ加熱器から音波の1/4波長と半波長の整数倍の距離離れた位置のうち、最も加熱器に近い位置である、加熱器から音波の1/4波長の距離離れた位置に備えられるから、少なくとも、加熱器から音波の1/4波長の距離以上離れた位置から、加熱器側への作動媒体の流動を、良好に低減することができる。
【0012】
熱音響機関の更なる特徴構成は、
前記電力発生機の前記流動減衰機構は、前記音響筒の筒内部に設けられる一の回転翼と、当該回転翼を挟む状態で設けられている一対の固定翼とから構成されている点にある。
【0013】
例えば、音響筒の内部に、音響筒の筒軸心方向で作動媒体の流動を阻止する膜体を備えて、作動媒体の流動を阻害する場合、原動機の加熱器と冷却器との温度差を大きくしたときには、膜体への負荷が大きくなり、膜体が破損して、作動媒体の流動を適切に抑制できないという問題があった。
上記特徴構成によれば、音響筒の内部にて発生する作動媒体の流動を、原動機の加熱器と冷却器との温度差が大きくなった場合にも、当該流動に伴う運動エネルギを回転翼の回転エネルギに変換する形態で、良好に抑制できる。
【0014】
熱音響機関の更なる特徴構成は、
前記電力発生機の出力電力を導出する出力電力導出部を備え、
前記出力電力導出部にて導出される出力電力に基づいて、前記電力発生機にて発生する電力を供給する電力負荷の大きさを制御する制御機構を備える点にある。
【0015】
上記特徴構成によれば、電力発生機の出力電力に応じて、電力負荷の大きさを適切に切り換え可能に構成されているから、電力発生機にて発生した電力を、その電力に見合った電力負荷へ適切に供給できる。
【図面の簡単な説明】
【0016】
【
図3】シミュレーションにより算出された音響筒の筒軸方向での圧力振幅及び作動媒体としての分子の速度を示すグラフ図
【発明を実施するための形態】
【0017】
当該実施形態に係る熱音響機関100は、原動機にて加熱器と冷却器との間の温度差の低減を良好に抑制して、原動機にて音波を適切に増幅し、更には、当該増幅した音波により電力発生機にて良好に電力を発生できるものに関する。
当該熱音響部は、
図1に示すように、作動媒体が充填され音波が伝播するループ管から成る円筒状の音響筒Cと、作動媒体を外部から加熱する加熱器11と、作動媒体を外部から冷却する冷却器12と、当該冷却器12と加熱器11との間で音波を増幅する再生器13とから成る原動機10を少なくとも1つ以上(当該実施形態では、1つ)有すると共に、音波の振動から電力を発生する電力発生機20を有する。
【0018】
詳細な図示は省略するが、加熱器11は、外部から導かれ温熱を有する第2熱媒HW(例えば、エンジン冷却水)を通流するジャケット部(図示せず)と、当該ジャケット部から音響筒Cの内部に延びるフィン(図示せず)とから成る。加熱器11は、フィンがジャケット部を通流する第2熱媒HWにて加熱され、当該フィンから音響筒Cの内部の作動流体へ温熱を伝導する形態で、作動流体を加熱する。
【0019】
同様に、冷却器12は、外部から導かれる冷熱を有する第1熱媒CW(例えば、LNG)を通流するジャケット部(図示せず)と、当該ジャケット部から音響筒Cの内部に延びるフィン(図示せず)とから成る。冷却器12は、フィンがジャケット部を通流する第1熱媒CWにて冷却され、当該フィンから音響筒Cの内部の作動流体へ冷熱を伝導する形態で、作動流体が冷却される。
【0020】
加熱器11と冷却器12との間に設けられる再生器13は、例えば、音響筒Cの筒軸心方向に直交する方向に板面を沿わせた状態で、当該筒軸心方向に沿って複数並べられる薄板状部材(図示せず)から構成されている。
当該薄板状部材は、例えば、厚さが50μm以上100μm以下で、300枚〜600枚程度設けられる。当該薄板状部材には、筒軸心方向に沿う方向に貫通する多数の貫通孔(図示せず)が、その直径が200μm〜300μm程度で、設けられる。
【0021】
作動流体は、音響筒Cの内部において、その筒軸心方向で、微小な揺らぎを生じる状態で、存在している。換言すると、作動流体は、加熱器11と冷却器12との両者間において、一方側から他方側への進行波と、他方側から一方側への進行波とを形成する形態で、揺らいでいる。
作動流体は、冷却器12から加熱器11の側への進行波を形成する場合、加熱器11近傍での再生器13としての薄板状部材の複数の貫通孔を通過するときに当該貫通孔の内壁に接触して加熱されると共に、加熱器11のフィンにて直接加熱されることで、膨張する。一方、作動流体は、加熱器11から冷却器12の側への進行波を形成する場合、冷却器12の近傍での再生器13としての薄板状部材の複数の貫通孔を通過するときに当該貫通孔の内壁に接触して冷却されると共に、冷却器12のフィンにて直接冷却されることで、収縮する。
これにより、進行波としての音波が自己励起振動を起こし、その振動エネルギが増幅される形態で、熱エネルギが音波の振動エネルギに変換される。
【0022】
作動媒体としては、酸素や窒素等からなる空気から構成することができる。ここで、再生器13での熱交換が迅速になされることが望ましいため、作動媒体としては、熱拡散係数の高いヘリウム、水素が望ましい。また、発電を目的とする場合には、分子量の高い気体が望ましいため、アルゴン等の気体を混合しても良い。尚、熱的に安定していることから、当該実施形態では、作動媒体としてヘリウムを用いている。
【0023】
以上の如く、原動機10にて増幅された音波の振動エネルギは、音響筒Cにおいて、音波の振動から電力を発生させる電力発生機20にて電力へ変換される。
当該電力発生機20は、
図1に示すように、音響筒Cの筒内部において、一の回転翼23と、当該回転翼23を挟む状態で設けられる一対の固定翼21、22を備えている。当該構成においては、回転翼23は、一方の固定翼21にて旋回され回転翼23へ向かう音波と、他方の固定翼22にて旋回され回転翼23へ向かう音波との双方により、回転力を付与されることとなるが、一対の固定翼21、22は、両者により旋回される音波が回転翼23へ付与する回転力の回転方向が同様方向となるように設けられている。
更に、回転翼23には、誘導発電機としての回転子(図示せず)が設けられると共に、音響筒Cの筒軸心方向で回転翼23が設けられている部位で音響筒Cの筒外径部位には、誘導発電機としての固定子24が設けられており、回転翼23と共に回転子が回転することで固定子24としてのコイルにて誘導起電力Eを発生する。
当該構成を採用することにより、音響筒Cの内部で発生する音波の振動エネルギが、電気エネルギに変換される。
【0024】
さて、以上の構成を有する熱音響機関100にあっては、音響筒Cの内部(より具体的には、再生器13が設けられていない音響筒Cの内部)において、作動媒体が、比較的低温の冷却器12の側から比較的高温の加熱器の側(
図1で矢印Xの基端側から先端側)へ向けて流動し、当該流動した作動媒体が加熱器11に接触して加熱器11の熱を奪うことにより、原動機10での加熱器11と冷却器12との間の温度差が小さくなり、原動機10での音波の増幅を十分に行えなくなる虞がある。
説明を追加すると、当該作動媒体の流動は、冷却器12側から加熱器11側のみならず、低温側から高温側へ向けて流動するため、音響筒Cの内部において、冷却器12と加熱器11との間の部位から、加熱器11の側へ向けて流動する。
そこで、当該実施形態に係る熱音響機関100にあっては、音響筒Cの内部にて作動媒体の流動を減衰する流動減衰機構としての一の回転翼23と当該回転翼23を挟む状態で設けられている一対の固定翼21、22とを有する電力発生機20を、音響筒Cの筒軸心方向において、原動機10の加熱器11側の近傍に設けている。
因みに、当該実施形態において、音響筒Cの筒軸心方向において、原動機10の加熱器11側の近傍とは、原動機10の加熱器11からの距離が、原動機10の冷却器12からの距離よりも短い領域を意味するものとする。尚、当該定義は、原動機10を複数設ける場合も同様である。
【0025】
当該構成により、音響筒Cの内部において、冷却器12側から加熱器11側、より具体的には、音響筒Cの内部で再生器13を通過しない領域を通過する作動媒体の流れを、加熱器11の近傍にて減衰できるから、加熱器11に比較的低温の作動媒体が接触することを抑制して、加熱器11の温度が低下し、原動機10にて加熱器11と冷却器12との温度差を十分に確保して、音波を良好に増幅することができる。
【0026】
発明者らは、
図2、3に示すように、音響筒Cが、ループ管と当該ループ管に連結される直管から成り、ループ管に2つの原動機10が設けられている場合において、当該音響筒Cのループ管の内部において、ループ管の管軸方向(
図2で矢印X方向)の各位置において、発生する音波の圧力振幅と作動媒体である分子の速度とをシミュレーションにより求めた。
ここで、原動機10は、作動媒体の分子の速度が小さく、且つ圧力振幅の大きい位置(以下、音響インピーダンスが高い位置、と言うことがある)に配置することで、熱エネルギから音響エネルギへの変換効率が高くなる。そこで、原動機10は、作動媒体の分子の速度が小さく、且つ圧力振幅の大きい位置、即ち、音響インピーダンスの高い位置に設けられる。
【0027】
一方で、電力発生機20は、作動媒体の分子の速度が速い位置において、電力出力が大きくなる。そして、
図3に示すシミュレーションに示すように、原動機10が音響インピーダンスの高い位置に配置された場合、分子速度が最も大きくなる位置は、原動機10から音波の1/4波長と半波長の整数倍の距離離れた位置に発生する。
そこで、音響筒Cに電力発生機20を備える構成にあっては、音響筒Cの内部を伝播する音波の一部が、当該電力発生機20の固定翼21、22等にて反射し、定常波が発生する。当該定常波が発生している状況においては、定常波の分子速度が最大となる腹の位置に電力発生機20を設けるべく、電力発生機20は、音響筒Cの筒軸心方向において、原動機10の加熱器11の近傍で、且つ加熱器11から音波の1/4波長と半波長の整数倍の距離(波長をλとすると、(1+2n)×λ/4(n=0,1,2・・・)で表される距離)離れた位置に備えられ
る。
【0028】
更に、加熱器11への比較的低温の作動媒体の流動をより効果的に低減する意味からは、電力発生機20は、音響筒Cの筒軸心方向において、原動機10の加熱器11の近傍で、且つ加熱器11から音波の1/4波長の距離離れた位置(
図1で矢印Lで示される距離だけ離れた位置)に備えられていることが好ましい。
【0029】
以上の構成によれば、例えば、音響筒Cの内部にて、作動媒体の流動を阻止するジェットポンプ等の流動阻害部材を配設する場合に比べ、音波の減衰を低減した状態で、作動媒体の流動を抑制できる。
【0030】
さて、以上の如く構成された熱音響機関100にあっては、電力発生機20にて発生する出力電力に応じて、電力負荷の大きさを適切に切り換え可能に構成されていることが好ましい。
そこで、当該実施形態にあっては、電力発生機20の出力電力を導出する制御ユニットS(出力電力導出部の一例)を備え、当該制御ユニットSにて導出する出力電力に基づいて、電力発生機20にて発生する電力を供給する電力負荷の大きさを制御する制御機構を備える。
【0031】
電力発生機20は、固定子24が回転翼23に固定される回転子(図示せず)の回転数に応じた周波数の三相交流を発電する形態で、電力を出力する。
制御機構は、電力発生機20にて出力された三相交流を直流に変換するコンバータS1と、当該コンバータS1から出力された直流を所定の三相交流に変換するインバータS2と、インバータS2から出力された三相交流の電流値を検出する電流検出手段S3と、インバータS2から出力された三相交流を波形成形する波形成形部S4と、当該波形成形部S4から出力された三相交流を負荷S7に対して出力する出力端子台S6と、電流検出手段S3の測定結果に基づいてインバータS2等を制御する制御ユニットSとから構成されている。因みに、波形成形部S4と出力端子台S6との間には、ブレーカS5が設けられている。
【0032】
説明を追加すると、電力発生機20により出力された三相交流は、コンバータS1としての複数のトランジスタ(図示せず)をスイッチング動作することにより直流に整流された後、コンバータS1としてのコンデンサによって平滑化される。
コンバータS1から出力された直流は、予め設定された周波数及び出力電圧値となるように、インバータS2としての複数のトランジスタをスイッチング動作することにより、PWM(パルス幅変調)方式により三相交流に変換される。
制御ユニットSは、電流検出手段S3と、予め設定された電圧出力値とに基づいて、出力電力を導出し、当該出力電力に対応した電力負荷S7を設定するように構成されている。当該構成により、電力発生機20からの出力電力に対応した電力負荷S7を設定することができる。
【0033】
〔別実施形態〕
(1)上記実施形態において、音響筒Cは、ループ管からなる円筒形状であるとした。
しかしながら、音響筒Cは、内部に音波が減衰が少ない状態で伝播できる形状であれば、種々の形状を採用することができ、例えば、円筒形状のループ管から成る一対の音響筒を、直管形状の音響筒にて連通接続する形状のものや、円筒形状のループ管から成る音響筒と直管形状の音響筒とを連通接続したもの等から構成することができる。
【0034】
(2)上記実施形態にあっては、音響筒Cに対し一つの原動機10と、一つの電力発生機20とを備える構成例を示した。
しかしながら、2つ以上の原動機10と、2つ以上の電力発生機20を備える構成を採用しても構わない。この場合、作動媒体の流動にて加熱器11と冷却器12との温度差が低減することを抑制する意味からは、電力発生機20は、音響筒Cの筒軸心方向において、原動機10の加熱器11の近傍で、且つ加熱器11から音波の1/4波長と半波長の整数倍だけ離れた位置に設けることが好ましい。
即ち、作動媒体の流動にて加熱器11と冷却器12との温度差が低減することを適切に抑制する意味からは、一の原動機10に対して、一の電力発生機20を備えることが好ましい。
【0035】
尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
【産業上の利用可能性】
【0036】
本発明の熱音響機関は、原動機にて加熱器と冷却器との間の温度差の低減を良好に抑制して、原動機にて音波を適切に増幅し、更には、当該増幅した音波により電力発生機にて良好に電力を発生できる熱音響機関として、有効に利用可能である。
【符号の説明】
【0037】
10 :原動機
11 :加熱器
12 :冷却器
13 :再生器
20 :電力発生機
21、22:固定翼
23 :回転翼
24 :固定子
100 :熱音響機関
C :音響筒
S :制御ユニット
S7 :電力負荷