(58)【調査した分野】(Int.Cl.,DB名)
ストランド弾性率が360GPa以上の炭素繊維であって、ストランド強度が3.5GPa以上かつ単繊維直径が6.0μm以上であり、片方の端を固定端、もう一方の端を繊維束の軸に対する回転が可能な自由端としたとき、残存する撚り数が2ターン/m以上である炭素繊維。
単繊維直径が6.0μm以上であり、ストランド弾性率E(GPa)と450℃における加熱減量率が0.15%以下で評価した結節強度B(MPa)との関係が式(2)を満たし、撚り数が20〜80ターン/mである、請求項1または2に記載の炭素繊維。
B≧6.7×109×E−2.85 ・・・式(2)
単繊維直径が6.0μm以上であり、ストランド弾性率E(GPa)と450℃における加熱減量率が0.15%以下で評価した結節強度B(MPa)との関係が式(2)を満たし、撚り数が5〜80ターン/mである炭素繊維。
B≧6.7×109×E−2.85 ・・・式(2)
炭素繊維前駆体繊維束を空気雰囲気中において、200〜300℃の温度範囲で耐炎化処理を行い、得られた耐炎化繊維束を、不活性雰囲気中で最高温度500〜1000℃において、密度1.5〜1.8g/cm3になるまで熱処理する予備炭素化を行い、さらに得られた予備炭素化繊維束を、不活性雰囲気中で熱処理する炭素化を行う炭素繊維の製造方法であって、炭素繊維前駆体繊維束の単繊維繊度が0.9dtex以上であり、炭素化処理に供する繊維束の撚り数を2ターン/m以上とし、炭素化処理中の張力を5mN/dtex以上に制御する、ストランド弾性率が360GPa以上である炭素繊維の製造方法。
ストランド弾性率が360GPa以上の炭素繊維であって、ストランド強度が3.5GPa以上かつ単繊維直径が6.0μm以上であり、炭素繊維としての単繊維繊度(g/km)とフィラメント数(本)の積である総繊度が740g/km以上であり、ストランド弾性率E(GPa)と450℃における加熱減量率が0.15%以下で評価した結節強度B(MPa)との関係が式(2)を満たし、撚り数が20〜80ターン/mである炭素繊維。
B≧6.7×109×E−2.85 ・・・式(2)
ストランド弾性率が360GPa以上の炭素繊維であって、ストランド強度が3.5GPa以上かつ単繊維直径が6.0μm以上であり、炭素繊維としての単繊維繊度(g/km)とフィラメント数(本)の積である総繊度が740g/km以上であり、炭素繊維束表層の撚り角が2.0〜30.5°である炭素繊維。
ストランド弾性率が360GPa以上の炭素繊維であって、ストランド強度が3.5GPa以上かつ単繊維直径が6.0μm以上であり、炭素繊維としての単繊維繊度(g/km)とフィラメント数(本)の積である総繊度が740g/km以上であり、
炭素繊維束表層の撚り角が4.8〜10.0°である炭素繊維。
【発明を実施するための形態】
【0025】
本発明において、炭素繊維の単繊維およびその集合体のことを、単に炭素繊維と呼称する。本発明における炭素繊維の単繊維の集合体としては、束状、ウェブ状、あるいはそれらが複合化されたものなど、種々の形態が含まれる。本発明の炭素繊維の製造方法は後述する。
【0026】
本発明において、引張弾性率とは、炭素繊維の単繊維引張試験により評価した単繊維弾性率、ならびに後述する方法で評価したストランド弾性率を指す総称である。単繊維弾性率とストランド弾性率の関係は後述する。
【0027】
本発明の炭素繊維の第1の態様は、ストランド弾性率が360GPa以上の炭素繊維であって、ストランド強度が3.5GPa以上かつ単繊維直径が6.0μm以上であり、さらに以下の要件(イ)または(ロ)を満たす炭素繊維である。なお、(イ)および(ロ)の両方を満たせばより好ましい。
(イ)片方の端を固定端、もう一方の端を繊維束の軸に対する回転が可能な自由端としたとき、残存する撚り数が2ターン/m以上である
(ロ)炭素繊維としての単繊維繊度(g/km)とフィラメント数(本)の積である総繊度が740g/km以上である。
以下、それぞれの要件について説明する。
【0028】
本発明の炭素繊維の第1の態様において、ストランド弾性率は360GPa以上である。ストランド弾性率は370GPa以上であることが好ましく、380GPa以上であることがより好ましく、400GPa以上であることがさらに好ましく、440GPa以上であることがさらに好ましい。ストランド弾性率が高いほど、炭素繊維強化複合材料とした際に炭素繊維による剛性の向上効果が大きく、高剛性な炭素繊維強化複合材料を得やすい。ストランド弾性率が360GPa以上であれば、炭素繊維強化複合材料の剛性を大幅に高めることができるため、工業的な価値が大きい。炭素繊維強化複合材料の剛性を高める観点では、炭素繊維のストランド弾性率は高いほど好ましいが、従来はストランド弾性率があまり高すぎると、炭素繊維複合材料を得る際の成形加工性の低下につながったり、不連続繊維として用いる場合は繊維長の低下につながったりしやすかった。ストランド弾性率はJIS R7608:2004に記載の、樹脂含浸ストランドの引張試験に従って評価することができる。ストランド弾性率の評価法の詳細は後述する。ストランド弾性率は種々の公知の方法で制御することができるが、本発明においては、炭素化処理における張力により制御することが好ましい。
【0029】
本発明の炭素繊維の第1の態様において、ストランド強度は3.5GPa以上である。ストランド強度は3.7GPa以上であることが好ましく、3.9GPa以上であることがより好ましく、4.3GPa以上であることがさらに好ましい。ストランド強度が高いほど、通常は炭素繊維強化複合材料の引張強度も高くなりやすいため、高性能な炭素繊維強化複合材料を得ることができる。ストランド強度が極端に低い炭素繊維は、炭素繊維強化複合材料とする際の成形加工性の低下につながる場合があるが、3.5GPa以上であれば大きな問題とはならないことが多い。ストランド強度はJIS R7608:2004に記載の、樹脂含浸ストランドの引張試験に従って評価することができる。ストランド強度の評価法の詳細は後述する。ストランド強度は種々の公知の方法で制御することができるが、通常の炭素化温度を高める手法においては、ストランド弾性率を高めるにつれてストランド強度は低下傾向を示すことが多い。ストランド弾性率が高くても、ストランド強度が3.5GPa以上となる炭素繊維は、後述する本発明の炭素繊維の製造方法により得ることができる。
【0030】
本発明の炭素繊維の第1の態様において、単繊維直径は6.0μm以上である。単繊維直径は6.5μm以上であることが好ましく、6.9μm以上であることがより好ましい。単繊維直径が大きいほど、通常はストランド弾性率とストランド強度をどちらも高いレベルで両立することが困難となる場合が多いが、本発明の炭素繊維の第1の態様によると、単繊維直径が6.0μm以上であっても両者を先述の高いレベルで両立することができる。また、単繊維直径が大きいほど、炭素繊維強化複合材料とする際に、ボビンから巻き出す際の炭素繊維同士の摩擦やローラーなどガイド部材との摩擦による毛羽立ちや、ガイド部材への毛羽の堆積が抑制されやすく、成形加工性を高めやすい。本発明の炭素繊維の第1の態様において、単繊維直径の上限に特に制限はないが、大きすぎるとストランド強度やストランド弾性率が低下しやすいため、15μm程度が一応の上限と考えればよい。また、ストランド弾性率とストランド強度を高いレベルで両立しやすい観点で、単繊維直径は7.4μm以下であることも好ましい。単繊維直径の評価方法は後述するが、繊維束の比重・目付・フィラメント数から計算してもよいし、走査電子顕微鏡観察により評価してもよい。用いる評価装置が正しく校正されていれば、いずれの方法で評価しても同等の結果が得られる。走査電子顕微鏡観察により評価する際に、単繊維の断面形状が真円でない場合、円相当直径で代用する。円相当直径は単繊維の実測の断面積と等しい断面積を有する真円の直径のことを指す。単繊維直径は炭素繊維前駆体繊維束の紡糸時の口金からの吐出量や各工程における延伸比などにより制御できる。
【0031】
本発明の炭素繊維の第1の態様は、前記したストランド弾性率およびストランド強度、単繊維直径に関する要件に加えて、以下の要件のうち一つ以上を満たす炭素繊維である。
(イ)片方の端を固定端、もう一方の端を繊維束の軸に対する回転が可能な自由端としたとき、残存する撚り数が2ターン/m以上である
(ロ)炭素繊維としての単繊維繊度(g/km)とフィラメント数(本)の積である総繊度が740g/km以上である
これらの要件(イ)または(ロ)のいずれか、または両方を満たすことで、ストランド弾性率が高くても、成形加工性の低下を効果的に抑制でき、工業的な価値が大きい。
【0032】
本発明の炭素繊維の第1の態様において、残存する撚り数は2ターン/m以上であることが好ましく、5ターン/m以上であることがより好ましく、10ターン/m以上であることがさらに好ましく、16ターン/m以上であることがさらに好ましく、20ターン/m以上であることがさらに好ましく、30ターン/m以上であることがさらに好ましく、46ターン/m以上であることがさらに好ましい。
【0033】
本発明において固定端とは、繊維束の長手方向を軸とした回転ができないように固定された繊維束上の任意の部分であり、粘着テープなどを用いて繊維束の回転を拘束することなどによって実現できる。本発明において自由端とは、連続した繊維束をその長手方向に垂直な断面で切断したときに出現する端部のことを指し、何にも固定されておらず、繊維束の長手方向を軸とした回転が可能な端部のことである。本発明において、片端を固定端、もう一方を自由端としたとき、残存する撚り数とは、炭素繊維の繊維束が有する永久的な撚りの、1m当たりの撚り数のことを指す。半永久的な撚りとは、外力の作用なしには勝手に解けることのない撚りのことを指す。本発明においては、片端を固定端、もう一方を自由端として、実施例に記載する特定の配置で5分間静置したのちに解けずに残存している撚りのことを、半永久的な撚り、すなわち残存する撚りと定義する。残存する撚り数が2ターン/m以上であれば、ストランド弾性率が高くても成形加工性を高く維持しやすい。この理由については、定量的に明らかにできたわけではないが、定性的には次のように理解される。すなわち、残存する撚り数が2ターン/m以上である炭素繊維は、撚りのために繊維束内の単繊維の相対位置が固定されやすいため、繊維束の内部の単繊維が、繊維束同士やガイド部材などとの摩擦によるダメージを受けることなく温存されやすいと考えられる。また、残存する撚り数が5ターン/m以上であれば、毛羽が抑制されるため、炭素化工程において高い張力を付与可能となり、ストランド弾性率を効果的に高めやすい。また、残存する撚り数が20ターン/m以上であれば、毛羽が少なく繊維束のアライメントが制御されるため、結果として繊維束間の応力伝達がスムーズとなり、後述する結節強度が高まりやすい。かかる片端を固定端、もう一方を自由端としたとき、残存する撚り数は、公知の方法で制御することができる。具体的には、残存する撚り数は、炭素化処理の工程における繊維束の撚り数を調整することにより制御することができる。
【0034】
前述の通り、本発明の炭素繊維の第1の態様において、総繊度は740g/km以上であることが好ましく、850g/km以上であることがより好ましく、1300g/km以上であることがより好ましく、1600g/km以上であることがさらに好ましく、2000g/km以上であることがさらに好ましい。総繊度が740g/km以上であれば、ストランド弾性率が高くても成形加工性を高く維持しやすい。この理由については、定量的に明らかにできたわけではないが、定性的には次のように理解される。すなわち、総繊度が740g/km以上である炭素繊維は、前記した摩擦によるダメージを受けやすい繊維束の最表層に存在する単繊維の、繊維束を構成する単繊維の総数に対する存在割合が小さくなるため、繊維束全体として、前記した摩擦によるダメージが軽減されやすいと考えられる。かかる総繊度は、単繊維繊度(g/km)とフィラメント数(本)の積であり、単繊維繊度およびフィラメント数を変更することにより制御できる。
【0035】
本発明の炭素繊維の第2の態様は、単繊維弾性率Es(GPa)とループ破断荷重A(N)が式(1)の関係を満たす炭素繊維である。
A≧−0.0017×Es+1.02 ・・・式(1)
式(1)における定数項は1.04であることが好ましく、1.06であることがより好ましく、1.08であることがさらに好ましく、1.10であることが特に好ましい。ループ破断荷重とは、単繊維をループ状に曲げていったとき破断が生じる際の荷重に相当し、後述の方法で評価する。また、単繊維弾性率とは、炭素繊維の単繊維としての引張弾性率のことであり、前記のストランド弾性率と一定の相関がある。本発明において、単繊維弾性率は、詳しい評価方法は後述するが、複数の試長で単繊維引張試験を行い、各試長における応力−歪み曲線の傾きを算出し、試長依存性を考慮することにより装置系のコンプライアンスの影響を除去することにより得ることができる。通常、単繊維弾性率を高めると、ループ破断荷重は低下傾向を示すことが多い。ループ破断荷重が低いと、不連続繊維としての成形加工時に、曲げ方向の力により炭素繊維が折れやすく、繊維長が短くなることにより炭素繊維強化複合材料の剛性向上効果が小さくなる。ループ破断荷重が高いほど、単繊維に曲げ方向の力がかかった際でも破損しにくいため、大きな曲げ方向の力がかかる不連続繊維としての成形加工時などに繊維長が維持されやすいため、炭素繊維強化複合材料の剛性を高めやすい。ループ破断荷重Aと単繊維弾性率Esが、式(1)の関係を満たすと、単繊維弾性率が高い割に曲げ方向の力に対して折れにくい炭素繊維となり、不連続繊維として用いた場合、炭素繊維強化複合材料の剛性を効率的に高められる。式(1)の関係を満たす炭素繊維は、後述する本発明の炭素繊維の製造方法により得ることができる。また、本発明の第1の態様である炭素繊維は、同時に第2の態様も満たすことが好ましい。かかる炭素繊維は、ストランド弾性率が高くても、成形加工性の低下を効果的に抑制できるだけでなく、不連続繊維として利用する場合に繊維長を維持しやすいため、高性能な炭素繊維強化複合材料を得やすい。
【0036】
本発明の炭素繊維の第2の態様において、単繊維弾性率が360GPa以上であることが好ましく、370GPa以上であることがより好ましく、380GPa以上であることがさらに好ましく、400GPa以上であることがさらに好ましく、440GPa以上であることがさらに好ましい。従来は単繊維弾性率が高いほど、ループ破断荷重が低下し、不連続繊維としての成形加工時に繊維長が短くなりやすかったが、本発明の炭素繊維の第2の態様においては、単繊維弾性率に対してループ破断荷重が高めであるため、単繊維弾性率を高めても炭素繊維強化複合材料の剛性を効果的に高めることができる。単繊維弾性率の向上方法は、ストランド弾性率と同様である。
【0037】
本発明の炭素繊維の第3の態様は、単繊維直径が6.0μm以上であり、ストランド弾性率E(GPa)と450℃における加熱減量率が0.15%以下で評価した結節強度B(MPa)とが式(2)の関係を満たし、撚り数が5〜80ターン/mである、炭素繊維である。
B≧6.7×10
9×E
−2.85 ・・・式(2)
本発明の炭素繊維の第3の態様において、単繊維直径は6.0μm以上である。単繊維直径は6.5μm以上であることが好ましく、6.9μm以上であることがより好ましい。単繊維直径が大きいほど、通常はストランド弾性率と結節強度をどちらも高いレベルで両立することが困難となる場合が多いが、本発明の炭素繊維の第3の態様によると、単繊維直径が6.0μm以上であっても両者を高いレベルで両立することができる。また、単繊維直径が大きいほど、炭素繊維強化複合材料とする際に、ボビンから巻き出す際の炭素繊維同士の摩擦やローラーなどガイド部材との摩擦による毛羽立ちをより抑制することができ、成形加工性を高めることができる。本発明の炭素繊維の第3の態様において、単繊維直径の上限に特に限定されないが、大きすぎると結節強度やストランド弾性率が低下しやすいため、15μm程度が一応の上限と考えればよい。また、ストランド弾性率と結節を高いレベルで両立しやすい観点で、単繊維直径は7.4μm以下であることも好ましい。
【0038】
本発明の炭素繊維の第3の態様において、ストランド弾性率E(GPa)と450℃における加熱減量率が0.15%以下で評価した結節強度B(MPa)とが式(2)の関係を満たす。
B≧6.7×10
9×E
−2.85 ・・・式(2)
本発明において、450℃における加熱減量率とは、詳しくは後述するが、炭素繊維を温度450℃の窒素雰囲気のオーブン中で15分間加熱したときの加熱前後での質量変化から算出する。結節強度とは、繊維軸方向以外の繊維束の力学的性質を反映する指標となるものである。複合材料を製造する際、炭素繊維束へ繊維軸方向以外の曲げ応力が負荷されており、結節強度は複合材料の製造過程で発生する繊維破断である毛羽の生成に影響する。複合材料を効率良く製造しようと、複合材料の製造時の繊維束の走行速度を高めると毛羽が発生するが、結節強度を高くすることで繊維束の走行速度が高い条件でも品位良く複合材料を得ることができる。かかる結節強度は炭素繊維束にサイジング剤が付与されると向上する傾向にある。一方、成形温度の高いマトリックスを用いる場合など、サイジング剤の熱分解物による炭素繊維とマトリックスとの接着強度低下が懸念される場合、サイジング剤を付与しないことが接着強度向上の観点から好ましい場合がある。そこで、本発明では、サイジングが付与されていない状態での炭素繊維束の結節強度を評価指標として用いる。すなわち、450℃における加熱減量率が0.15%以下で評価したとは、サイジング材が付与されていない、または、サイジング材が付与されていて450℃における加熱減量率が0.15%を超える場合にはサイジング材を除去した上で評価することを示している。サイジング剤の除去は、公知の方法で行えばよく、例えばサイジング剤が可溶な溶媒で除去する方法などが挙げられる。かかる結節強度が低いと、炭素繊維強化複合材料への成形加工時に毛羽が発生しやすく、成形加工性が低下傾向を示す。通常、ストランド弾性率を高めるほど、結節強度は低下傾向を示す。ストランド弾性率と結節強度が式(2)の関係を満たす場合には、ストランド弾性率と結節強度を高いバランスで両立することができる。式(2)における比例定数は6.9×10
9であることが好ましく、7.2×10
9であることがより好ましい。ストランド弾性率と結節強度が式(2)の関係を満たす炭素繊維は、後述する本発明の炭素繊維の製造方法により得ることができる。
【0039】
また、本発明の第1の態様である炭素繊維は、同時に第3の態様および/または第2の態様も満たすことが好ましい。かかる炭素繊維は、ストランド弾性率が高くても、成形加工性の低下を効果的に抑制できる。特に、成形加工時に糸繋ぎが必要になる場合、糸繋ぎ部分が破断しにくくなるため、連続生産に有利となる。
【0040】
本発明の炭素繊維の第3の態様において、撚り数は5〜80ターン/mである。撚り数が上記範囲であれば、毛羽が少なく繊維束のアライメントが制御できるため結果として繊維束間の応力伝達がスムーズとなり結節強度が高まりやすい。成形加工時の取り扱い性を高める観点で、第3の態様における撚り数は20〜80ターン/mであることが好ましい。
【0041】
本発明の炭素繊維は、炭素繊維束の形態を採る場合において、炭素繊維束表層の撚り角が2.0〜30.5°であることが好ましい。炭素繊維束表層の撚り角とは、炭素繊維束の最表層に存在する単繊維の繊維軸方向が、炭素繊維束の束としての長軸方向に対して成す角のことであり、直接観察してもよいが、より高精度には、撚り数とフィラメント数、単繊維直径から後述のように算出することができる。かかる撚り角を上記範囲内に制御すれば、毛羽が抑制されるため、炭素化工程において高い張力を付与可能となり、ストランド弾性率を効果的に高めやすい。本発明における炭素繊維束表層の撚り角は4.8〜30.5°であることが好ましく、4.8〜24.0°であることがより好ましく、4.8〜12.5°であることがさらに好ましく、4.8〜10.0°であることがさらに好ましい。撚り角が上記範囲を満たす炭素繊維束は、後述する本発明の炭素繊維の製造方法に従って作製することができる。具体的には、炭素繊維束表層の撚り角は、繊維束の撚り数を調整することに加えて、炭素化工程におけるフィラメント数と単繊維直径を調整することにより制御することができる。炭素繊維束のフィラメント数と単繊維直径が大きいほど同じ撚り数の繊維束に対して撚り角を大きく保つことができるため、撚りの効果を更に高めることができる。
【0042】
本発明の炭素繊維において、結晶子サイズLc(nm)と結晶配向度π
002(%)は式(3)の関係を満たすことが好ましい。
π
002≧4.0×Lc+73.2 ・・・式(3)
結晶子サイズLcとは、炭素繊維中に存在する結晶子のc軸方向の厚みを表す指標である。通常、繊維束の広角X線回折により評価されることが多いが、マイクロビーム広角X線回折により単繊維1本に対して評価し、3本の単繊維に対する測定値の平均をとり、平均結晶子サイズLc(s)としてもよい。マイクロビームの大きさが単繊維直径以下である場合、平均結晶子サイズLc(s)は、単繊維の直径方向に対して複数点評価した値を平均化した値を単繊維の評価値とし、3本の単繊維について同様にして得た評価値の平均値を採用する。詳しい評価手法は後述する。なお、単繊維の広角X線回折データと一般に知られる繊維束の広角X線回折データは同等であり、平均結晶子サイズLc(s)と結晶子サイズLcとは、ほぼ同等の値をとる。発明者らが検討したところ、結晶子サイズLcが高まるほど結晶配向度π
002が高まっていく傾向があり、式(3)は既知の炭素繊維のデータからその関係の上限を経験的に示している。通常、結晶子サイズLcが大きいほど、ストランド弾性率は向上する一方で、ストランド強度や結節強度、ループ破断荷重、炭素繊維強化複合材料への成形加工性は低下傾向となることが多い。また、結晶配向度π
002はストランド弾性率に強く影響し、結晶配向度が高いほどストランド弾性率も高くなる。結晶配向度π
002が式(3)の関係を満たすことは、結晶子サイズLcの割には結晶配向度π
002が大きいことを意味しており、ストランド弾性率が高くても、ストランド強度や結節強度、ループ破断荷重、成形加工性の低下を効果的に抑制でき、工業的な価値が大きい。本発明において、式(3)における定数項は73.5であることがより好ましく、74.0であることがさらに好ましい。式(3)の関係を満たす炭素繊維は、炭素化工程における延伸張力を高めることにより得ることができる。
【0043】
本発明の炭素繊維において、結晶子サイズLcは2.2〜3.5nmであることが好ましく、2.4〜3.3nm以上であることがより好ましく、2.6〜3.1nm以上であることがさらに好ましく、2.8〜3.1nmであることが特に好ましい。結晶子サイズLcが2.2nm以上であれば炭素繊維内部の応力負担が効果的に行われるため、単繊維弾性率を高めやすく、結晶子サイズLcが3.5nm以下であれば、応力集中原因となりにくいため、ストランド強度や結節強度、ループ破断荷重、成形加工性が高いレベルとなりやすい。結晶子サイズLcは、主に炭素化工程の処理時間や最高温度によって制御することができる。
【0044】
本発明の炭素繊維において、結晶配向度π
002は80.0〜95.0%であることが好ましく、80.0〜90.0%であることがより好ましく、82.0〜90.0%であることがさらに好ましい。結晶配向度π
002とは、炭素繊維中に存在する結晶子の繊維軸を基準とした配向角を表す指標である。結晶子サイズ同様、マイクロビーム広角X線回折により単繊維1本に対して評価し、3本の単繊維に対する測定値の平均をとり平均結晶配向度π
002(s)としてもよい。マイクロビームの大きさが単繊維直径以下である場合、平均結晶配向度π
002(s)は、単繊維の直径方向に対して複数点評価した値を平均化した値を単繊維の評価値とし、3本の単繊維について同様にして得た評価値の平均値を採用する。詳しい評価手法は後述する。なお、単繊維の広角X線回折データと一般に知られる繊維束の広角X線回折データは同等であり、平均結晶配向度π
002(s)と結晶配向度π
002とは、ほぼ同等の値をとる。結晶配向度が80.0%以上であれば、ストランド弾性率が高いものとなりやすい。結晶配向度π
002(s)は、炭素化工程における温度や時間に加えて、延伸張力によって制御することができる。
【0045】
本発明の炭素繊維において、ストランド弾性率E(GPa)と結晶子サイズLc(nm)が式(4)の関係を満たすことが好ましい。
E×Lc
−0.5≧200(GPa/nm
0.5) ・・・式(4)
本発明者らが検討した結果、炭素繊維がかかる式(4)を満たすときに、ストランド弾性率と成形加工性が特に高いレベルで両立されやすいことを見いだした。かかる式(4)を満たすことでストランド弾性率と成形加工性を高いレベルで両立しやすい理由は完全に明確になったわけではないが、次のように考えられる。すなわち、多結晶材料の分野で広く用いられているホール−ペッチの式にみられるように、結晶子サイズLcの−0.5乗が、材料のある種の強さを意味する指標であると捉えると、Lc
−0.5が大きいほど材料が強靱であり、小さいほどもろいことを表すものと解釈できる。したがって、式(4)を満たすことは、ストランド弾性率と、材料の強靱さの積が、一定値以上であることを意味し、ストランド弾性率と材料の強靱さが高いレベルで両立されていることを意味するものと考えられる。かかる式(4)を満たす炭素繊維は、炭素化工程における延伸張力を高めることにより得ることができる。
【0046】
本発明の炭素繊維において、表面酸素濃度O/Cは0.05〜0.50であることが好ましい。表面酸素濃度とは、炭素繊維の表面への酸素原子を含む官能基の導入量を表す指標であり、後述する光電子分光法により評価することができる。表面酸素濃度が高いほど炭素繊維とマトリックスとの接着性が向上し、炭素繊維強化複合材料の力学特性を向上しやすい。表面酸素濃度O/Cは0.07〜0.30であることがより好ましい。表面酸素濃度O/Cが0.05以上であれば、マトリックスとの接着性が十分なレベルとなり、0.50以下であれば過剰な酸化による炭素繊維表面の剥離が抑制され、炭素繊維複合材料の力学特性が向上する。表面酸素濃度O/Cを前記の範囲にするための方法は後述する。
【0047】
本発明の炭素繊維は、炭素繊維束の形態を採る場合において、フィラメント数が10,000本以上であることが好ましい。フィラメント数は15,000本以上であることがより好ましく、20,000本以上であることがさらに好ましい。撚り数が同じであれば、フィラメント数が大きいほど撚りの中心軸と繊維束の外周との距離が大きくなるため、撚りが安定しやすく、炭素化工程において高い張力をかけても毛羽発生や破断を抑制しやすく、ストランド弾性率を効果的に高めることができるほか、成形加工性を高いものとすることができる。
【0048】
以下、本発明の炭素繊維の製造方法を説明する。
【0049】
本発明の炭素繊維のもととなる炭素繊維前駆体繊維束は、ポリアクリロニトリル共重合体の紡糸溶液を紡糸して得ることができる。
【0050】
ポリアクリロニトリル共重合体としては、アクリロニトリルのみから得られる単独重合体だけではなく、主成分であるアクリロニトリルに加えて他の単量体を用いてもよい。具体的に、ポリアクリロニトリル共重合体は、アクリロニトリルを90〜100質量%、共重合可能な単量体を10質量%未満含有することが好ましい。
【0051】
アクリロニトリルと共重合可能な単量体としては、例えば、アクリル酸、メタクリル酸、イタコン酸およびそれらアルカリ金属塩、アンモニウム塩および低級アルキルエステル類、アクリルアミドおよびその誘導体、アリルスルホン酸、メタリルスルホン酸およびそれらの塩類またはアルキルエステル類などを用いることができる。
【0052】
前記したポリアクリロニトリル共重合体を、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、硝酸、塩化亜鉛水溶液、ロダンソーダ水溶液などポリアクリロニトリル共重合体が可溶な溶媒に溶解し、紡糸溶液とする。ポリアクリロニトリル共重合体の製造に溶液重合を用いる場合、重合に用いられる溶媒と紡糸溶媒を同じものにしておくと、得られたポリアクリロニトリル共重合体を分離し、紡糸溶媒に再溶解する工程が不要となり、好ましい。
【0053】
先述のようにして得た紡糸溶液を湿式、または乾湿式紡糸法により紡糸することにより、炭素繊維前駆体繊維束を製造することができる。
【0054】
紡糸溶液を凝固浴中に導入して凝固させ、得られた凝固繊維束を、水洗工程、浴中延伸工程、油剤付与工程および乾燥工程を通過させることにより、炭素繊維前駆体繊維束が得られる。凝固繊維束は、水洗工程を省略して直接浴中延伸を行ってもよいし、溶媒を水洗工程により除去した後に浴中延伸を行ってもよい。浴中延伸は、通常、30〜98℃の温度に温調された単一または複数の延伸浴中で行うことが好ましい。また、上記の工程に乾熱延伸工程や蒸気延伸工程を加えてもよい。
【0055】
炭素繊維前駆繊維束の単繊維繊度は、0.9dtex以上であることが好ましく、1.0dtex以上であることがより好ましく、1.1dtex以上であることがさらに好ましい。炭素繊維前駆体繊維束の単繊維繊度が高いほど、ローラーやガイドとの接触による繊維束の破断の発生を抑え、製糸工程および炭素繊維の耐炎化ならびに予備炭素化、炭素化工程のプロセス安定性を維持しやすい。炭素繊維前駆体繊維束の単繊維繊度が0.9dtex以上であれば、プロセス安定性を維持しやすい。炭素繊維前駆体繊維束の単繊維繊度が高すぎると、耐炎化工程において均一に処理することが難しくなる場合があり、製造プロセスが不安定となったり、得られる炭素繊維束および炭素繊維の力学的特性が低下したりすることがある。炭素繊維前駆体繊維束の単繊維繊度は、口金からの紡糸溶液の吐出量や延伸比など、公知の方法により制御できる。
【0056】
得られる炭素繊維前駆体繊維束は、通常、連続繊維の形態である。また、その1糸条あたりのフィラメント数は、1,000〜80,000本であることが好ましい。本発明において炭素繊維前駆体繊維束は、必要に応じて合糸して、得られる炭素繊維の1糸条あたりのフィラメント数を調整してもよい。
【0057】
本発明の炭素繊維は、前記した炭素繊維前駆体繊維束を耐炎化処理した後、予備炭素化処理、炭素化処理を順に行うことにより得ることができる。
【0058】
炭素繊維前駆体繊維束の耐炎化処理は、空気雰囲気中において、200〜300℃の温度範囲で行うことが好ましい。炭素繊維前駆体繊維束は耐炎化処理され、耐炎化繊維束となる。
【0059】
本発明では、前記耐炎化に引き続いて、耐炎化繊維束の予備炭素化を行う。予備炭素化工程においては、耐炎化処理により得られた耐炎化繊維束を、不活性雰囲気中、最高温度500〜1000℃において、密度1.5〜1.8g/cm
3になるまで熱処理することが好ましい。耐炎化繊維束は予備炭素化処理され、予備炭素化繊維束となる。
【0060】
さらに、前記予備炭素化に引き続いて、予備炭素化繊維束の炭素化を行う。炭素化工程においては、予備炭素化処理により得られた予備炭素化繊維束を、不活性雰囲気中において炭素化処理を行う。炭素化処理の最高温度は1500℃以上とすることが好ましく、2300℃以上とすることがより好ましい。炭素化工程における最高温度は、得られる炭素繊維のストランド弾性率ならびに単繊維弾性率を高める観点からは高い方が好ましく、1500℃以上であればストランド弾性率ならびに単繊維弾性率と結節強度ならびにループ破断荷重を高いレベルで両立した炭素繊維が得られる。一方、炭化温度が高すぎると結節強度やループ破断荷重が低下する傾向にあるため、炭素化工程における最高温度は、必要とするストランド弾性率ならびに単繊維弾性率と、結節強度ならびにループ破断荷重のバランスを勘案して決定するのがよい。本発明の炭素繊維は、炭素化工程における最高温度を2300℃としても、これらの物性バランスを維持しやすい。
【0061】
また、本発明において、炭素化工程における張力は5mN/dtex以上であり、5〜18mN/dtexとすることが好ましく、7〜18mN/dtexとすることがより好ましく、9〜18mN/dtexとすることが特に好ましい。炭素化工程における張力は、炭素化炉出側で測定した張力(mN)を、用いた炭素繊維前駆体繊維束の単繊維繊度(dtex)とフィラメント数との積である総繊度(dtex)で除したものとする。該張力を上記の数値範囲に制御することで、得られる炭素繊維の結晶子サイズLcに大きな影響を与えることなく、結晶配向度π
002を制御することができ、先述の式(1)または/および式(2)の関係を満たす炭素繊維が得られる。炭素繊維のストランド弾性率および単繊維弾性率を高める観点からは、該張力は高い方が好ましいが、高すぎると炭素化工程の通過性や、得られる炭素繊維の品位が低下する場合があり、両者を勘案して設定するのがよい。
【0062】
本発明の炭素繊維の製造方法において、さらに以下の要件以下の(ハ)または(二)を満たす炭素繊維の製造方法であればより好ましい。なお、(ハ)および(ニ)の両方を満たせばさらに好ましい。
(ハ)炭素化処理に供する繊維束の撚り数を2ターン/m以上とする
(ニ)得られる炭素繊維の単繊維繊度(g/km)とフィラメント数(本)の積である総繊度を740g/km以上とする
これらの(ハ)または(二)を満たすことで、ストランド弾性率が高くても、成形加工性に優れた炭素繊維となる。
【0063】
本発明の炭素繊維は、炭素化処理中の繊維束の撚り数が2ターン/m以上である。かかる撚り数は5ターン/m以上であることが好ましく、10ターン/m以上であることがより好ましく、16ターン/m以上であることがさらに好ましく、30ターン/m以上であることがさらに好ましく、46ターン/m以上であることがさらに好ましい。撚り数の上限は特に制限はないが、概ね60ターン/m以下とすることが生産性や炭素化工程における延伸限界を高めるためには有効である。かかる撚り数を上記範囲に制御することで、炭素繊維の製造プロセスにおいては毛羽の発生が抑制されるため、高い張力を付与することが可能となりストランド弾性率および単繊維弾性率の高い炭素繊維を得やすい。炭素化処理中の繊維束の撚り数とは、炭素化処理されている繊維束が有する撚り数のことである。撚りを付与せずに炭素化工程における張力を高めると、単繊維破断が生じ、毛羽が増加することにより、炭素化工程の通過性が低下したり、繊維束全体が破断することにより、必要な張力を維持できなかったりする場合がある。かかる撚り数は、炭素繊維前駆体繊維束または耐炎化繊維束、予備炭素化繊維束を一旦ボビンに巻き取った後、該繊維束を巻き出す際にボビンを巻き出し方向に対して直交する面に旋回させる方法や、ボビンに巻き取らず走行中の繊維束に対して回転するローラーやベルトを接触させて撚りを付与する方法などにより制御することができる。
【0064】
本発明において、炭素化処理中の繊維束のフィラメント数は10,000本以上であることが好ましく、15,000本以上であることがより好ましく、20,000本以上であることがさらに好ましい。炭素化処理中の繊維束の撚り数が同じであれば、フィラメント数が大きいほど撚りの中心軸と繊維束の外周との距離が大きくなるため、前記した撚りによる毛羽抑制効果が発現しやすく、得られる炭素繊維の単繊維弾性率を効果的に高めることができる。フィラメント数の上限に特に制限はなく、目的の用途に応じて設定すればよい。
【0065】
本発明において、不活性雰囲気に用いられる不活性ガスとしては、例えば、窒素、アルゴンおよびキセノンなどが好ましく例示され、経済的な観点からは窒素が好ましく用いられる。
【0066】
前記製造方法で得られた炭素繊維束は、さらに最高3000℃までの不活性雰囲気において追加の黒鉛化処理を行い、用途に応じて単繊維弾性率を適宜調整してもよい。
【0067】
以上のようにして得られた炭素繊維束は、炭素繊維とマトリックスとの接着強度を向上させるために、炭素化処理後に表面処理を施し、酸素原子を含む官能基を導入することが好ましい。表面処理方法としては、気相酸化、液相酸化および液相電解酸化が用いられるが、生産性が高く、均一処理ができるという観点から、液相電解酸化が好ましく用いられる。本発明において、液相電解酸化の方法については特に制約はなく、公知の方法で行えばよい。液相電解酸化を行う電解表面処理時の電流量としては、2〜100c/gが好ましく、2〜80c/gがより好ましい。電解表面処理時の電流量が2c/g以上であれば、炭素繊維表面に十分な酸素含有官能基が導入され樹脂との接着性が得られやすく複合材料の弾性率低下が抑制でき、100c/g以下であれば電解表面処理による炭素繊維表面の欠陥形成が抑制でき、ループ破断荷重の低下が抑制できる。
【0068】
かかる電解表面処理などの表面処理を施すことで、炭素繊維束に酸素原子を含む官能基を導入することができ、炭素繊維束の表面酸素濃度O/Cを調整することができる。表面酸素濃度O/Cを本発明の好ましい範囲に制御するためには、表面処理における電流量や処理時間を公知の方法で調節すればよい。
【0069】
かかる電解処理の後、得られた炭素繊維束の取り扱い性や高次加工性をさらに高めるため、あるいは炭素繊維とマトリックスとの接着強度を高めるため、サイジング剤を付着させることもできる。サイジング剤は、炭素繊維強化複合材料に使用されるマトリックスの種類に応じて適宜選択することができる。また、取り扱い性や高次加工性の観点から、付着量などを微調整してもよい。さらに、成形温度の高いマトリックスを用いる場合など、サイジング剤の熱分解物による炭素繊維とマトリックスとの接着強度低下が懸念される場合については、サイジング付着量を可能な限り低減することや、サイジング処理を行わなくてもよい。
【0070】
本明細書に記載の各種物性値の測定方法は以下の通りである。なお、特に記載のないものは測定n数1で評価を行った。
【0071】
<炭素繊維のストランド強度およびストランド弾性率>
炭素繊維のストランド強度およびストランド弾性率は、JIS R7608:2004の樹脂含浸ストランド試験法に従い、次の手順に従い求める。ただし、炭素繊維の繊維束が撚りを有する場合、撚り数と同数の逆回転の撚りを付与することにより解撚してから評価する。樹脂処方としては、“セロキサイド(登録商標)”2021P(ダイセル化学工業社製)/3フッ化ホウ素モノエチルアミン(東京化成工業(株)製)/アセトン=100/3/4(質量部)を用い、硬化条件としては、常圧、温度125℃、時間30分を用いる。炭素繊維束のストランド10本を測定し、その平均値をストランド強度およびストランド弾性率とする。なお、ストランド弾性率を算出する際の歪み範囲は0.1〜0.6%とする。
【0072】
<炭素繊維の平均単繊維直径>
評価したい炭素繊維の単繊維断面を走査電子顕微鏡観察し、断面積を評価する。かかる断面積と同じ断面積を有する真円の直径を算出し、単繊維直径とする。単繊維直径の算出のN数は50とし、その平均値を採用する。なお、加速電圧は5keVとする。
【0073】
なお、本実施例では、走査電子顕微鏡として日立ハイテクノロジーズ社製の走査電子顕微鏡(SEM)“S−4800”を用いた。
【0074】
<片端を固定端、もう一方を自由端としたときに残存する撚り数>
水平面から60cmの高さの位置にガイドバーを設置し、炭素繊維束の任意の位置をガイドバーにテープで貼り付けることによって固定端とした後、固定端から50cm離れた箇所で炭素繊維束を切断し、自由端を形成する。自由端はテープに挟み込むように封入して、単繊維単位にほどけないように処理する。半永久的な撚り以外の一時的、あるいは時間と共に戻っていく撚りを排除するため、この状態で5分間静置したのち、回数を数えながら自由端を回転させてゆき、完全に解撚されるまでに回転させた回数n(ターン)を記録する。以下の式により、残存する撚り数を算出する。上記測定を3回実施した平均を、本発明における残存する撚り数とする。
【0075】
残存する撚り数(ターン/m)=n(ターン)/0.5(m)。
【0076】
<炭素繊維の単繊維弾性率>
炭素繊維の単繊維弾性率は、JIS R7606:2000を参考とし、以下の通りにして求める。まず、20cm程度の炭素繊維の束をほぼ4等分し、4つの束から順番に単繊維をサンプリングして束全体からできるだけまんべんなくサンプリングする。サンプリングした単繊維を、10、25、50mmの穴あき台紙に固定する。固定にはニチバン株式会社製のエポキシ系接着剤“アラルダイト(登録商標)”速硬化タイプを用い、塗布後、室温で24時間静置して硬化させる。単繊維を固定した台紙を 引張試験装置に取り付け、10、25、50mmの各ゲージ長にて、歪速度40%/分、試料数15で引張試験をおこなう。各単繊維の応力(MPa)−歪み(%)曲線において、歪み0.3−0.7%の範囲の傾き(MPa/%)から、次の式により、見かけの単繊維弾性率を算出する。
【0077】
見かけの単繊維弾性率(GPa)=歪み0.3〜0.7%の範囲の傾き(MPa/%)/10
次いで、ゲージ長10、25、50mmのそれぞれについて、見かけの単繊維弾性率の平均値E
app(GPa)を計算し、その逆数1/E
app(GPa
−1)を縦軸(Y軸)、ゲージ長L
0(mm)の逆数1/L
0(mm
−1)を横軸(X軸)としてプロットする。かかるプロットにおけるY切片を読み取り、その逆数をとったものがコンプライアンス補正後の単繊維弾性率であり、本発明における単繊維弾性率は、この値を採用する。
【0078】
なお、本実施例では、引張試験装置として株式会社エー・アンド・デイ製の引張試験機“テンシロンRTF−1210”を用いた。
【0079】
<ループ破断荷重>
長さ約10cmの単繊維をスライドガラス上に置き、中央部にグリセリンを1〜2滴たらして単繊維両端部を繊維周方向に軽くねじることで単繊維中央部にループを作り、その上にカバーガラスを置く。これを顕微鏡のステージに設置し、トータル倍率が100倍、フレームレートが15フレーム/秒の条件で動画撮影を行う。ループが視野から外れないようにステージを都度調節しながら、ループさせた繊維の両端を指でスライドガラス方向に押しつけつつ逆方向に一定速度で引っ張ることで、単繊維が破断するまで歪をかける。コマ送りにより破断直前のフレームを特定し、画像解析により破断直前のループの横幅Wを測定する。単繊維直径dをWで除してd/Wを算出する。試験のn数は20とし、d/Wの平均値に単繊維弾性率Esをかけ算することによりループ強度Es×d/Wを求める。さらに、単繊維直径から求まる断面積πd
2/4を乗じ、πEs×d
3/4Wをループ破断荷重とする。
【0080】
<炭素繊維束の450℃における加熱減量率>
評価対象となる炭素繊維束を質量2.5gとなるよう切断したものを直径3cm程度のカセ巻きにし、熱処理前の質量w
0(g)を秤量する。次いで、温度450℃の窒素雰囲気のオーブン中で15分間加熱し、デシケーター中で室温になるまで放冷した後に加熱後質量w
1(g)を秤量する。以下の式により、450℃における加熱減量率を計算する。なお、評価は3回行い、その平均値を採用する。
450℃における加熱減量率(%)=(w
0−w
1)/w
0×100(%)。
【0081】
<炭素繊維束の結節強度>
結節強度の測定は450℃における加熱時の減量率が0.15%以下の炭素繊維束を用いた。サイジングが付与された炭素繊維束を評価する場合は、アセトン中で洗浄することでサイジング剤を除去し、乾燥後の炭素繊維束を用いる。乾燥後に炭素繊維束の450℃における加熱時の減量率を評価し、0.15%以下となるまで繰り返し洗浄を行う。
【0082】
炭素繊維束が撚りを有する場合、撚り数と同数の逆回転の撚りを付与することにより解撚してから評価する。長さ150mmの上記炭素繊維束を炭素繊維束の総繊度が7000〜8500dtexとなるように分割または合糸して測定に供する炭素繊維束とする。なお、炭素繊維束の総繊度は炭素繊維束の単繊維の平均繊度(dtex)とフィラメント数との積とする。かかる炭素繊維束の両端に長さ25mmの把持部を取り付け試験体とし、試験体作製の際、0.1×10
−3N/デニールの荷重をかけて炭素繊維束の引き揃えを行う。試験体の中点部分に結び目を1カ所作製し、引張時のクロスヘッド速度を100mm/分として束引張試験を行う。測定は計12本の繊維束に対して行い、最大値、最小値の2つの値を除した10本の平均値を測定値として用い、10本の標準偏差を結節強度の標準偏差として用いる。結節強度には、引張試験で得られた最大荷重値を、炭素繊維束の平均断面積値で除した値を用いる。
【0083】
<炭素繊維束表層の撚り角>
前記単繊維直径(μm)およびフィラメント数から以下の式により炭素繊維束全体の直径(μm)を算出した後、撚り数(ターン/m)を用いて以下の式により、炭素繊維束表層の撚り角(°)を算出する。
【0084】
炭素繊維束全体の直径(μm)={(単繊維直径)
2×フィラメント数}
0.5
炭素繊維束表層の撚り角(°)=atan(繊維束全体の直径×10
−6×π×撚り数)。
<炭素繊維束の結晶子サイズLcおよび結晶配向度π
002>
測定に供する炭素繊維束を引き揃え、コロジオン・アルコール溶液を用いて固めることにより、長さ4cm、1辺の長さが1mmの四角柱の測定試料を用意する。用意された測定試料について、広角X線回折装置を用いて、次の条件により測定を行う。
【0085】
1.結晶子サイズLcの測定
・X線源:CuKα線(管電圧40kV、管電流30mA)
・検出器:ゴニオメーター+モノクロメーター+シンチレーションカウンター
・走査範囲:2θ=10〜40°
・走査モード:ステップスキャン、ステップ単位0.02°、計数時間2秒。
【0086】
得られた回折パターンにおいて、2θ=25〜26°付近に現れるピークについて、半値幅を求め、この値から、次のシェラー(Scherrer)の式により結晶子サイズを算出する。
【0087】
結晶子サイズ(nm)=Kλ/β
0cosθ
B
但し、
K:1.0、λ:0.15418nm(X線の波長)
β
0:(β
E2−β
12)
1/2
β
E:見かけの半値幅(測定値)rad、β
1:1.046×10
−2rad
θ
B:Braggの回析角。
【0088】
2.結晶配向度π
002の測定
上述した結晶ピークを円周方向にスキャンして得られる強度分布の半値幅から次式を用いて計算して求める。
π
002=(180−H)/180
但し、
H:見かけの半値幅(deg)
上記測定を3回行い、その算術平均を、その炭素繊維束の結晶子サイズおよび結晶配向度とする。
【0089】
なお、後述の実施例および比較例においては、上記広角X線回折装置として、島津製作所製XRD−6100を用いた。
【0090】
<炭素繊維単繊維の平均結晶子サイズLc(s)および平均結晶配向度π
002(s)>
炭素繊維束から単繊維を無作為に抜き取り、X線μビームが利用可能な装置を用いて、広角X線回折測定を行う。測定は繊維軸方向に3μm、繊維直径方向に1μmの形状に整えられた波長0.1305nmのマイクロビームを用い、単繊維を繊維直径方向に1μmステップで走査しながら行う。各ステップあたりの照射時間は2秒とする。検出器と試料との間の距離であるカメラ長は40〜200mmの範囲内に収まるように設定する。カメラ長とビームセンターの座標は、酸化セリウムを標準試料として測定することにより求める。検出された2次元回折パターンから、試料を取り外して測定した2次元回折パターンを差し引きすることで、検出器起因のダークノイズと空気由来の散乱ノイズをキャンセルし、補正後の2次元回折パターンを得る。単繊維の繊維直径方向各位置における補正後の2次元回折パターンを足し合わせることで、単繊維の繊維直径方向の平均2次元回折パターンを得る。かかる平均2次元回折パターンにおいて、繊維軸直交方向を中心として±5°の角度で扇形積分を行い、2θ方向の回折強度プロファイルを取得する。2θ方向の回折強度プロファイルを2つのガウス関数を用いて最小自乗フィッティングし、回折強度が最大となる2θの角度2θ
m(°)と、2つのガウス関数の合成関数の半値全幅FWHM(°)を算出する。さらに、2θ方向の回折強度プロファイルが最大となるときの角度2θ
m(°)を中心として±5°の幅で円周積分を行い、円周方向の回折強度プロファイルを取得する。円周方向の回折強度プロファイルを1つのガウス関数を用いて最小自乗フィッティングすることにより、半値全幅FWHM
β(°)を算出する。単繊維の結晶子サイズLc(s)および結晶配向度π
002(s)を以下の式により求め、各3本の単繊維に対する結果を平均して、平均結晶子サイズLc(s)および平均結晶配向度π
002(s)を算出する。
【0091】
Lc(s)(nm)=Kλ/FWHMcos(2θ
m/2)
ここで、Scherrer係数Kは1.0、X線波長λは0.1305nmであり、半値全幅FWHMと2θ
mは単位を角度(°)からラジアン(rad)に変換して用いる。
【0092】
π
002(s)(%)=(180−FWHM
β)/180×100(%)。
【0093】
なお、本実施例では、X線μビームが利用可能な装置としてSPring−8のビームラインBL03XU(FSBL)第2ハッチを、検出器として浜松ホトニクス株式会社製のフラットパネルディテクター“C9827DK−10”(ピクセルサイズ50μm×50μm)を用いた。
【0094】
<炭素繊維の表面酸素濃度O/C>
炭素繊維の表面酸素濃度O/Cは、次の手順に従いX線光電子分光法により求める。まず、溶媒を用いて表面に付着している汚れを除去した炭素繊維を、約20mmにカットし、銅製の試料支持台に拡げる。次に、試料支持台を試料チャンバー内にセットし、試料チャンバー中を1×10
−8Torrに保つ。続いて、X線源としてAlKα
1,2 を用い、光電子脱出角度を90°として測定を行う。なお、測定時の帯電に伴うピークの補正値としてC
1sのメインピーク(ピークトップ)の結合エネルギー値を286.1eVに合わせ、C
1sピーク面積は282〜296eVの範囲で直線のベースラインを引くことにより求める。また、O
1sピーク面積は528〜540eVの範囲で直線のベースラインを引くことにより求める。ここで、表面酸素濃度とは、上記のO
1sピーク面積とC
1sピーク面積の比から装置固有の感度補正値を用いて原子数比として算出されるものである。なお、本実施例では、X線光電子分光法装置として、アルバック・ファイ(株)製ESCA−1600を用い、上記装置固有の感度補正値は2.33であった。
【0095】
<走行安定性>
成形加工性のモデル評価として、走行安定性を次のように評価する。直径50mm、溝幅10mm、溝深さ10mmのV溝ローラー5個を、300mm間隔で直線上に固定した走行安定性評価ユニットを準備する。評価する炭素繊維束を、サイジング剤が付与されていない状態で、走行安定性評価ユニットの各V溝ローラーに対し上面、下面、上面、下面、上面と接触するようにジグザグ状に通し、ダンサーウェイトで1kgの張力を作用させながら、線速度10m/分で30分間走行させる。その後、炭素繊維束を取り除いたあとのV溝ローラー5つを目視点検した際のローラーの状態に応じて、以下のように等級をつける。
A:ローラーへの炭素繊維の付着がみられない。なお、Aのうち、150分間走行させてもローラーへの炭素繊維の付着がみられなかったものを、特にAAとする。
B:ローラーへの炭素繊維のわずかな巻き付きがみられる(5つ中1つまたは2つのローラーに巻き付きがみられる)。
C:ローラーへの炭素繊維の巻き付きがみられる。(5つ中3つまたは4つのローラーに巻き付きが見られる)
D:ローラーへの炭素繊維の巻き付きが顕著である。(5つのローラー全てに巻き付きが見られる)
【実施例】
【0096】
以下、本発明を実施例に基づき詳細に説明するが、本発明はこれらに限定されるものではない。
【0097】
以下に記載する実施例1〜11および比較例1〜16は、次の包括的実施例に記載の実施方法において、表1または表2に記載の各条件を用いて行ったものである。
【0098】
[包括的実施例]
アクリロニトリルおよびイタコン酸からなるモノマー組成物を、ジメチルスルホキシドを溶媒として溶液重合法により重合させ、ポリアクリロニトリル共重合体を含む紡糸溶液を得た。得られた紡糸溶液を濾過したのち、紡糸口金から一旦空気中に吐出し、ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡糸法により凝固糸条を得た。また、その凝固糸条を水洗した後、90℃の温水中で3倍の浴中延伸倍率で延伸し、さらにシリコーン油剤を付与し、160℃の温度に加熱したローラーを用いて乾燥を行い、4倍の延伸倍率で加圧水蒸気延伸を行い、単繊維繊度1.1dtexの炭素繊維前駆体繊維束を得た。次に、得られた炭素繊維前駆体繊維束を4本合糸し、単繊維本数12,000本とし、空気雰囲気240〜280℃のオーブン中で延伸比を1として熱処理し、耐炎化繊維束に転換した。
【0099】
[実施例1]
包括的実施例記載の方法で耐炎化繊維束を得たのち、得られた耐炎化繊維束に加撚処理を行い、75ターン/mの撚りを付与し、温度300〜800℃の窒素雰囲気中において、延伸比0.97として予備炭素化処理を行い、予備炭素化繊維束を得た。次いで、かかる予備炭素化繊維束に、表1に示す条件で炭素化処理を施したのち、硫酸水溶液を電解液として、電気量を炭素繊維1g当たり30クーロンで電解表面処理して、表面酸素濃度(O/C)が0.09の炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はAAと、非常に高いレベルにあった。得られた炭素繊維の評価結果を表1に記載する。
【0100】
[実施例2]
撚り数を50ターン/m、炭素化処理時の張力を5.2mN/dtexとした以外は、実施例1と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はAAと、非常に高いレベルにあった。得られた炭素繊維の評価結果を表1に記載する。
【0101】
[実施例3]
炭素化処理時の張力を10.2mN/dtexとした以外は、実施例2と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はAAと、非常に高いレベルにあった。得られた炭素繊維の評価結果を表1に記載する。
【0102】
[実施例4]
撚り数を20ターン/m、炭素化処理時の張力を10.3mN/dtexとした以外は、実施例1と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はAAと、非常に高いレベルにあった。得られた炭素繊維の評価結果を表1に記載する。
【0103】
[実施例5]
包括的実施例において前駆体繊維束の合糸本数を8本とし、単繊維本数を24,000本とした以外は実施例3と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はAAと、非常に高いレベルにあった。得られた炭素繊維の評価結果を表1に記載する。
【0104】
[実施例6]
炭素化処理の最高温度を2350℃、炭素化処理時の張力を6.5mN/dtexとした以外は、実施例2と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はAと、高いレベルにあった。得られた炭素繊維の評価結果を表1に記載する。
【0105】
[実施例7]
炭素化処理時の張力を9.1mN/dtexとした以外は、実施例6と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はAと、高いレベルにあった。得られた炭素繊維の評価結果を表1に記載する。
【0106】
[実施例8]
炭素化処理時の張力を11.6mN/dtexとした以外は、実施例6と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はAと、高いレベルにあった。得られた炭素繊維の評価結果を表1に記載する。
【0107】
[実施例9]
撚り数を20ターン/m、炭素化処理時の張力を11.0mN/dtexとした以外は実施例5と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はAAと、非常に高いレベルにあった。得られた炭素繊維の評価結果を表1に記載する。
【0108】
[実施例10]
撚り数を5ターン/mとした以外は実施例9と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はAAと、非常に高いレベルにあった。得られた炭素繊維の評価結果を表1に記載する。
【0109】
[実施例11]
包括的実施例において前駆体繊維束の合糸本数を2本とし、単繊維本数を6,000本とした以外は実施例3と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はAと、高いレベルにあった。得られた炭素繊維の評価結果を表1に記載する。
【0110】
[比較例1]
撚り数を0ターン/m、炭素化処理時の張力を5.3mN/dtexとした以外は、実施例1と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。残存する撚り数が本発明の範囲を外れるため、成形加工性の等級はBと、実施例1と比較して低下した。得られた炭素繊維の評価結果を表2に記載する。
【0111】
[比較例2]
撚り数を0ターン/m、炭素化処理時の張力を5.4mN/dtex、最高温度を1400℃とした以外は、実施例3と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。残存する撚り数が本発明の範囲を外れるため、成形加工性の等級はBと、実施例1と比較して低下した。得られた炭素繊維の評価結果を表2に記載する。
【0112】
[比較例3]
炭素化処理時の張力を1.0mN/dtexとした以外は、実施例2と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。また、成形加工性の等級はAと、高いレベルにあったが、炭素化処理時の張力が本発明の範囲を外れるため、得られた炭素繊維の弾性率は実施例1と比較して低下した。得られた炭素繊維の評価結果を表2に記載する。
【0113】
[比較例4]
単繊維繊度0.8dtexの炭素繊維前駆体繊維束を用いて、炭素化処理時の張力を10.3mN/dtex、最高温度を1400℃とした以外は、実施例2と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。単繊維繊度が小さい炭素繊維前駆体繊維束を用いたため、成形加工性の等級はBと、実施例2と比較して低下した。得られた炭素繊維の評価結果を表2に記載する。
【0114】
[比較例5]
炭素化処理時の張力を1.0mN/dtexとし、無撚りとした以外は、実施例2と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はBと、やや低めであった。得られた炭素繊維束の評価結果を表2に記載する。
【0115】
[比較例6]
単繊維繊度0.8dtexの炭素繊維前駆体繊維束を用いて、炭素化処理時の張力を10.3mN/dtex、最高温度を1900℃とした以外は、実施例2と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。残存する撚り数が本発明の範囲を外れるため、成形加工性の等級はBと、実施例2と比較して低下した。得られた炭素繊維束の評価結果を表2に記載する。
【0116】
[比較例7]
炭素化処理時の張力を1.6mN/dtexとした以外は、実施例6と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はBと、やや低めであった。得られた炭素繊維の評価結果を表2に記載する。
【0117】
[比較例8]
撚り数を0ターン/mとした以外は、実施例3と同様にして炭素繊維化を行った。炭素化工程において処理中の糸条が破断する現象が繰り返し起こり、炭素繊維束を採取することが困難であった。
【0118】
[比較例9]
撚り数を0ターン/mとした以外は、実施例2と同様にして炭素繊維束を得た。炭素化工程において毛羽が若干みられたが、炭素繊維束を採取することができた。得られた炭素繊維束には毛羽が存在し、品位は低めであった。残存する撚り数が本発明の範囲を外れるため、成形加工性の等級はBと、実施例2と比較して低下した。評価結果を表2に記載する。
【0119】
[比較例10]
炭素化処理時の張力を3.4mN/dtexとした以外は、比較例9と同様にして炭素繊維束を得た。炭素化工程の通過性は良好であり、得られた炭素繊維束の品位も良好であった。炭素化処理時の張力が本発明の範囲を外れるため、得られた炭素繊維の弾性率は実施例2と比較して低下した。また、残存する撚り数が本発明の範囲を外れるため、成形加工性の等級はBと、実施例2と比較して低下した。評価結果を表2に記載する。
【0120】
[比較例11]
包括的実施例において前駆体繊維束の合糸本数を2本として単繊維本数を6,000本とすると共に、撚り数を0ターン/mとし、炭素化処理時の張力を3.4mN/dtexとした以外は、実施例2と同様にして炭素繊維束を得た。炭素化工程の通過性は良好であり、得られた炭素繊維束の品位も良好であった。炭素化処理時の張力が本発明の範囲を外れるため、得られた炭素繊維の弾性率は実施例2と比較して低下した。残存する撚り数と総繊度が本発明の範囲を外れるため、成形加工性の等級はCと、実施例2と比較して低下した。評価結果を表2に記載する。
【0121】
[比較例12]
撚り数を50ターン/mとした以外は、比較例11と同様にして炭素繊維束を得た。炭素化工程の通過性は良好であり、得られた炭素繊維束の品位も良好であった。炭素化処理時の張力が本発明の範囲を外れるため、得られた炭素繊維の弾性率は実施例2と比較して、低下した。総繊度が本発明の範囲を外れるため、成形加工性の等級はBと、実施例2と比較して低下した。評価結果を表2に記載する。
【0122】
[比較例13]
包括的実施例において前駆体繊維束の単繊維繊度を0.8dtexとすると共に、炭素化処理時の張力を3.4mN/dtexとした以外は、実施例2と同様にして炭素繊維束を得た。炭素化工程の通過性は良好であり、得られた炭素繊維束の品位も良好であった。炭素化処理時の張力が本発明の範囲を外れるため、得られた炭素繊維の弾性率は実施例2と比較して低下した。単繊維繊度が小さい炭素繊維前駆体繊維束を用いたため、成形加工性の等級はBと、実施例2と比較して低下した。評価結果を表2に記載する。
【0123】
[比較例14]
撚り数を0ターン/mとした以外は、比較例13と同様にして炭素繊維束を得た。炭素化工程の通過性は良好であり、得られた炭素繊維束の品位も良好であった。炭素化処理時の張力が本発明の範囲を外れるため、得られた炭素繊維の弾性率は実施例2と比較して低下した。単繊維繊度が小さい炭素繊維前駆体繊維束を用いたことと、残存する撚り数が本発明の範囲を外れるため、成形加工性の等級はDとなり、実施例2と比較して、安定性がさらに低下した。評価結果を表2に記載する。
【0124】
[比較例15]
包括的実施例において前駆体繊維束の合糸本数を2本として単繊維本数を6,000本とした以外は、比較例13と同様にして炭素繊維束を得た。炭素化工程の通過性は良好であり、得られた炭素繊維束の品位も良好であった。炭素化処理時の張力が本発明の範囲を外れるため、得られた炭素繊維の弾性率は実施例2と比較して低低下した。単繊維繊度が小さい炭素繊維前駆体繊維束を用いたことと、総繊度が本発明の範囲を外れるため、成形加工性の等級はCと、実施例2と比較して低下した。評価結果を表2に記載する。
【0125】
[比較例16]
撚り数を0ターン/mとした以外は、比較例15と同様にして炭素繊維束を得た。炭素化工程の通過性は良好であり、得られた炭素繊維束の品位も良好であった。炭素化処理時の張力が本発明の範囲を外れるため、得られた炭素繊維の弾性率は実施例2と比較して低下した。単繊維繊度が小さい炭素繊維前駆体繊維束を用いたことと、残存する撚り数と総繊度が本発明の範囲を外れるため、成形加工性の等級はDと、実施例2と比較して安定性がさらに低下した。評価結果を表2に記載する。
【0126】
[参考例1]
東レ株式会社製“トレカ(登録商標)”T700Sの評価結果を表2に記載する。また、サイジングが付与された状態での結節強度は826MPaであった。成形加工性の等級はBと、やや低めであった。
【0127】
[参考例2]
東レ株式会社製“トレカ(登録商標)”M35Jの評価結果を表2に記載する。
【0128】
[参考例3]
東レ株式会社製“トレカ(登録商標)”M40Jの評価結果を表2に記載する。
【0129】
[参考例4]
東レ株式会社製“トレカ(登録商標)”M46Jの評価結果を表2に記載する。
【0130】
[参考例5]
東レ株式会社製“トレカ(登録商標)”M40の評価結果を表2に記載する。
【0131】
【表1-1】
【0132】
【表1-2】
【0133】
【表2-1】
【0134】
【表2-2】
ストランド弾性率が360GPa以上の炭素繊維であって、ストランド強度が3.5GPa以上かつ単繊維直径が6.0μm以上であり、さらに以下の要件のうち一つ以上を満たす炭素繊維である。
また、単繊維直径が6.0μm以上であり、ストランド弾性率E(GPa)と450℃における加熱減量率が0.15%以下で評価した結節強度B(MPa)との関係が式(2)を満たし、撚り数が20〜80ターン/mである炭素繊維である。