【実施例】
【0689】
以下の実施例を、本発明の種々の実施形態を説明する目的のために挙げ、それらは本発明をいかなる様式にも限定することを意味しない。本実施例は、本明細書に記載の方法とともに、目下好ましい実施形態の代表例であり、例示であり、本発明の範囲に対する限定を意図するものではない。特許請求の範囲の範囲により定義される本発明の趣旨に包含されるその変更および他の使用は、当業者が行う。
【0690】
実施例1:真核細胞の核中のCRISPR複合体活性
例示的なII型CRISPR系は、4つの遺伝子Cas9、Cas1、Cas2、およびCsn1のクラスター、ならびに2つの非コードRNAエレメント、tracrRNAおよび非反復配列の短いストレッチ(スペーサー、それぞれ約30bp)により間隔が空いている反復配列の特徴的アレイ(ダイレクトリピート)を含有する化膿性連鎖球菌(Streptococcus pyogenes)SF370からのII型CRISPR遺伝子座である。この系において、ターゲティングされるDNA二本鎖切断(DSB)を4つの連続ステップにおいて生成する(
図2A)。第1に、2つの非コードRNA、プレcrRNAアレイおよびtracrRNAがCRISPR遺伝子座から転写される。第2に、tracrRNAがプレcrRNAのダイレクトリピートにハイブリダイズし、次いでそれが個々のスペーサー配列を含有する成熟crRNAにプロセシングされる。第3に、成熟crRNA:tracrRNA複合体がCas9を、crRNAのスペーサー領域とプロトスペーサーDNAとの間のヘテロ二本鎖形成を介してプロトスペーサーおよび対応するPAMからなるDNA標的に指向する。最後に、Cas9は、PAMの上流の標的DNAの開裂を媒介してプロトスペーサー内でDSBを創成する(
図2A)。この例は、このRNAプログラマブルヌクレアーゼ系を適応させて真核細胞の核中のCRISPR複合体活性を指向する例示プロセスを記載する。
【0691】
細胞培養および形質移入
ヒト胚腎臓(HEK)細胞系HEK293FT(Life Technologies)を、10%のウシ胎仔血清(HyClone)、2mMのGlutaMAX(Life Technologies)、100U/mLのペニシリン、および100μg/mLのストレプトマイシンが補給されたダルベッコ改変イーグル培地(DMEM)中で37℃において5%のCO
2インキュベーションで維持した。マウスneuro2A(N2A)細胞系(ATCC)を、5%のウシ胎仔血清(HyClone)、2mMのGlutaMAX(Life Technologies)、100U/mLのペニシリン、および100μg/mLのストレプトマイシンが補給されたDMEMにより、37℃、5%のCO
2で維持した。
【0692】
HEK293FTまたはN2A細胞を24ウェルプレート(Corning)中に、形質移入1日前に1ウェル当たり200,000個の細胞の密度において播種した。Lipofectamine2000(Life Technologies)を製造業者の推奨プロトコルに従って使用して細胞を形質移入した。24ウェルプレートのそれぞれのウェルについて、合計800ngのプラスミドを使用した。
【0693】
ゲノム改変についてのSurveyorアッセイおよびシーケンシング分析
HEK293FTまたはN2A細胞を、上記プラスミドDNAにより形質移入した。形質移入後、細胞を37℃において72時間インキュベートしてからゲノムDNAを抽出した。ゲノムDNAは、QuickExtractDNA抽出キット(Epicentre)を製造業者のプロトコルに従って使用して抽出した。手短に述べると、細胞をQuickExtract溶液中で再懸濁させ、65℃において15分間および98℃において10分間インキュベートした。抽出されたゲノムDNAを直ちに処理または−20℃において貯蔵した。
【0694】
それぞれの遺伝子についてのCRISPR標的部位周囲のゲノム領域をPCR増幅し、QiaQuick Spin Column(Qiagen)を製造業者のプロトコルに従って使用して産物を精製した。合計400ngの精製PCR産物を2μlの10×TaqポリメラーゼPCR緩衝液(Enzymatics)と混合し、超純水で20μlの最終容量とし、リアニーリングプロセスに供してヘテロ二本鎖形成を可能とした:95℃において10分間、−2℃/秒における傾斜で95℃から85℃、−0.25℃/秒における85℃から25℃、および25℃において1分間維持。リアニーリング後、産物をSurveyorヌクレアーゼおよびSurveyorエンハンサーS(Transgenomics)により製造業者の推奨プロトコルに従って処理し、4〜20%のNovex TBEポリアクリルアミドゲル(Life Technologies)上で分析した。ゲルをSYBR Gold DNA染色(Life Technologies)により30分間染色し、Gel Docゲルイメージングシステム(Bio−rad)によりイメージングした。定量は、開裂したDNAの率の尺度としての相対バンド強度に基づくものであった。
図7は、このSurveyorアッセイの模式的説明を提供する。
【0695】
相同組換えの検出のための制限断片長多型アッセイ
HEK293FTおよびN2A細胞を、プラスミドDNAにより形質移入し、37℃において72時間インキュベートしてから上記のとおりゲノムDNAを抽出した。相同組換え(HR)テンプレートのホモロジーアーム外側のプライマーを使用して標的ゲノム領域をPCR増幅した。PCR産物を1%のアガロースゲル上で分離し、MinElute GelExtraction Kit(Qiagen)により抽出した。精製産物をHindIII(Fermentas)により消化し、6%のNovex TBEポリアクリルアミドゲル(Life Technologies)上で分析した。
【0696】
RNA二次構造予測および分析
RNA二次構造予測は、Institute for Theoretical Chemistry at the University of Viennaにおいて開発されたオンラインウェブサーバーRNAfoldを使用し、セントロイド構造予測アルゴリズムを使用して実施した(例えば、A.R.Gruber et al.,2008,Cell 106(1):23−24;およびPA Carr and GM Church,2009,Nature Biotechnology 27(12):1151−62参照)。
【0697】
RNA精製
HEK293FT細胞を上記のとおり維持および形質移入した。細胞をトリプシン処理により回収し、次いでリン酸緩衝生理食塩水(PBS)中で洗浄した。トータル細胞RNAをTRI試薬(Sigma)により製造業者のプロトコルに従って抽出した。抽出されたトータルRNAをNaonodrop(Thermo Scientific)を使用して定量し、同一濃度に正規化した。
【0698】
哺乳動物細胞中のcrRNAおよびtracrRNA発現のノザンブロット分析
RNAを等容量の2×ローディング緩衝液(Ambion)と混合し、95℃に5分間加熱し、氷上で1分間冷蔵し、次いで8%の変性ポリアクリルアミドゲル(SequaGel,National Diagnostics)上に、少なくとも30分間のゲルのプレラン後にロードした。試料を40W限界において1.5時間電気泳動した。その後、RNAをHybond N+メンブレン(GE Healthcare)に300mAにおいてセミドライ転写装置(Bio−rad)中で室温において1.5時間転写した。Stratagene UV CrosslinkerのStratalinker(Stratagene)上のオートクロスリンクボタンを使用してRNAをメンブレンに架橋させた。メンブレンをULTRAhyb−オリゴハイブリダイゼーション緩衝液(Ambion)中で回転させながら42℃において30分間プレハイブリダイズさせ、次いでプローブを添加し、一晩ハイブリダイズさせた。プローブはIDTに発注し、T4ポリヌクレオチドキナーゼ(New England Biolabs)を用いて[ガンマ−
32P]ATP(Perkin Elmer)により標識した。メンブレンを予備加温(42℃)された2×SSC、0.5%のSDSにより1分間1回洗浄し、次いで42℃において30分間2回洗浄した。メンブレンを蛍光スクリーンに室温において1時間または一晩曝露させ、次いでphosphorimager(Typhoon)によりスキャンした。
【0699】
細菌CRISPR系構築および評価
tracrRNA、Cas9、およびリーダーを含むCRISPR遺伝子座エレメントを、化膿性連鎖球菌(Streptococcus pyogenes)SF370ゲノムDNAから、ギブソン・アセンブリ(Gibson Assembly)のためのフランキングホモロジーアームを用いてPCR増幅した。2つのBsaI IIS型部位を2つのダイレクトリピート間に導入してスペーサーの容易な挿入を促進した(
図8)。Gibson Assembly Master Mix(NEB)を使用してPCR産物をEcoRV消化pACYC184中にtetプロモーターの下流でクローニングした。Csn2の最後の50bpは除き、他の内因性CRISPR系エレメントは除外した。相補的オーバーハングを有するスペーサーをコードするオリゴ(Integrated DNA Technology)をBsaI消化ベクターpDC000(NEB)中にクローニングし、次いでT7リガーゼ(Enzymatics)によりライゲートしてpCRISPRプラスミドを生成した。哺乳類細胞におけるPAM発現を有するスペーサーを含有するチャレンジプラスミド(発現構築物は、
図6Bに示すSurveyorアッセイの結果により決定されるとおりの機能と共に
図6Aに示す)。転写開始部位を+1として標識し、転写ターミネーターおよびノザンブロットによりプロ―ビングされる配列も示す。プロセシングされたtracrRNAの発現もノザンブロットにより確認した。
図6Cは、長鎖または短鎖tracrRNA、ならびにSpCas9およびDR−EMX1(1)−DRを担持するU6発現構築物により形質移入された293FT細胞から抽出されたトータルRNAのノザンブロット分析の結果を示す。左および右側のパネルは、それぞれSpRNアーゼIIIを用いず、または用いて形質移入された293FT細胞からのものである。U6は、ヒトU6snRNAをターゲティングするプローブによりブロットされたローディング対照を示す。短鎖tracrRNA発現構築物の形質移入は、十分なレベルのプロセシング形態のtracrRNA(約75bp)をもたらした。極めて少量の長鎖tracrRNAがノザンブロット上で検出される。
【0700】
正確な転写開始を促進するため、RNAポリメラーゼIIIベースU6プロモーターを選択してtracrRNAの発現をドライブした(
図2C)。同様に、U6プロモーターベース構築物を開発して2つのダイレクトリピート(DR、用語「tracrメイト配列」にも包含される;
図2C)によりフランキングされている単一スペーサーからなるプレcrRNAアレイを発現させた。最初のスペーサーは、大脳皮質の発達におけるキー遺伝子であるヒトEMX1遺伝子座中の33塩基対(bp)標的部位(30bpのプロトスペーサーと、Cas9のNGG認識モチーフを満たす3bpのCRISPRモチーフ(PAM)配列)をターゲティングするように設計した(
図2C)。
【0701】
哺乳動物細胞中のCRISPR系(SpCas9、SpRNアーゼIII、tracrRNA、およびプレcrRNA)の異種発現がターゲティングされる哺乳動物染色体の開裂を達成し得るか否かを試験するため、HEK293FT細胞をCRISPR成分の組合せにより形質移入した。哺乳動物核中のDSBは部分的には、インデルの形成をもたらす非相同末端結合(NHEJ)経路により修復されるため、Surveyorアッセイを使用して標的EMX1遺伝子座における潜在的な開裂活性を検出した(
図7)(例えば、Guschin et al.,2010,Methods Mol Biol 649:247参照)。4つ全てのCRISPR成分の同時形質移入は、プロトスペーサーの最大5.0%の開裂を誘導し得た(
図2D参照)。SpRNアーゼIIIを除く全てのCRISPR成分の同時形質移入も、プロトスペーサーの最大4.7%のインデルを誘導し、このことはcrRNA成熟を支援し得る内因性哺乳動物RNアーゼ、例えば、関連DicerおよびDrosha酵素などが存在し得ることを示唆した。残り3つの成分のいずれかを除去すると、CRISPR系のゲノム開裂活性は停止する(
図2D)。標的遺伝子座を含有するアンプリコンのサンガーシーケンシングにより開裂活性を確認し;43個のシーケンシングされたクローンのうち5つの突然変異アレル(11.6%)が見出された。種々のガイド配列を使用する同様の実験は、29%と高いインデル割合を生じさせた(
図3〜6、10、および11参照)。これらの結果は、哺乳動物細胞中の効率的なCRISPR媒介ゲノム改変のための3成分系を定義する。開裂効率を最適化するため、本出願人らは、tracrRNAの異なるアイソフォームが開裂効率に影響するか否かも試験し、この例示的系において、短鎖(89bp)転写物形態のみがヒトEMX1ゲノム遺伝子座の開裂を媒介し得ることを見出した(
図6B)。
【0702】
図12は、哺乳動物細胞中のcrRNAプロセシングの追加のノザンブロット分析を提供する。
図12Aは、2つのダイレクトリピートによりフランキングされている単一スペーサー(DR−EMX1(1)−DR)についての発現ベクターを示す模式図を説明する。ヒトEMX1遺伝子座プロトスペーサー1をターゲティングする30bpのスペーサー(
図6参照)およびダイレクトリピート配列を、
図12Aの下方の配列中に示す。線は、逆相補配列を使用してEMX1(1)crRNA検出のためのノザンブロットプローブを生成する領域を示す。
図12Bは、DR−EMX1(1)−DRを担持するU6発現構築物により形質移入された293FT細胞から抽出されたトータルRNAのノザンブロット分析を示す。左および右側のパネルは、それぞれSpRNアーゼIIIを用いず、または用いて形質移入された293FT細胞からのものである。DR−EMX1(1)−DRは、SpCas9が存在する場合のみ成熟crRNAにプロセシングされ、短鎖tracrRNAはSpRNアーゼIIIの存在に依存的でなかった。形質移入293FTトータルRNAから検出された成熟crRNAは、約33bpであり、化膿性連鎖球菌(S.pyogenes)からの39〜42bpの成熟crRNAよりも短かった。これらの結果は、CRISPR系を真核細胞中に移植し、リプログラミングして内因性哺乳動物標的ポリヌクレオチドの開裂を促進することができることを実証する。
【0703】
図2は、本実施例に記載の細菌CRISPR系を説明する。
図2Aは、化膿性連鎖球菌(Streptococcus pyogenes)SF370からのCRISPR遺伝子座1およびこの系によるCRISPR媒介DNA開裂の提案される機序を示す模式図を説明する。ダイレクトリピート−スペーサーアレイからプロセシングされた成熟crRNAは、Cas9を、相補的プロトスペーサーおよびプロトスペーサー隣接モチーフ(PAM)からなるゲノム標的に指向する。標的−スペーサー塩基対形成時、Cas9は標的DNA中の二本鎖切断を媒介する。
図2Bは、化膿性連鎖球菌(S.pyogenes)Cas9(SpCas9)およびRNアーゼIII(SpRNアーゼIII)の、哺乳動物核中への輸送を可能とするための核局在化シグナル(NLS)によるエンジニアリングを説明する。
図2Cは、構成的EF1aプロモーターによりドライブされるSpCas9およびSpRNアーゼIIIならびに正確な転写開始および終結を促進するためのRNAPol3プロモーターU6によりドライブされるtracrRNAおよびプレcrRNAアレイ(DR−スペーサー−DR)の哺乳動物発現を説明する。十分なPAM配列を有するヒトEMX1遺伝子座からのプロトスペーサーを、プレcrRNAアレイ中のスペーサーとして使用する。
図2Dは、SpCas9媒介少数挿入および欠失についてのsurveyorヌクレアーゼアッセイを説明する。SpCas9を、SpRNアーゼIII、tracrRNA、およびEMX1標的スペーサーを担持するプレcrRNAアレイを用いてまたは用いずに発現させた。
図2Eは、標的遺伝子座とEMX1ターゲティングcrRNAとの間の塩基対形成の模式的表示、ならびにSpCas9開裂部位に隣接する微小欠失を示す例示的クロマトグラムを説明する。
図2Fは、種々の微小挿入および欠失を示す43個のクローンアンプリコンのシーケンシング分析から同定された突然変異アレルを説明する。点線は、欠失塩基を示し、アラインされず、またはミスマッチの塩基は挿入または突然変異を示す。スケールバー=10μm。
【0704】
3成分系をさらに簡略化するため、ステム−ループを介して成熟crRNA(ガイド配列を含む)を部分tracrRNAに融合させて天然crRNA:tracrRNA二本鎖を模倣するキメラcrRNA−tracrRNAハイブリッド設計を適応させた。同時送達効率を増加させるため、形質移入細胞中のキメラRNAおよびSpCas9の同時発現をドライブするバイシストロニック発現ベクターを創成した。並行して、バイシストロニックベクターを使用してプレcrRNA(DR−ガイド配列−DR)をSpCas9とともに発現させてcrRNAへのプロセシングを誘導し、tracrRNAを別個に発現させた(
図11Bの上図および下図を比較)。
図8は、hSpCas9を有するプレcrRNAアレイ(
図8A)またはキメラcrRNA(
図8B中のガイド配列挿入部位の下流およびEF1αプロモーターの上流の短い線により表わされる)のためのバイシストロニック発現ベクターの模式的説明を提供し、種々のエレメントの局在およびガイド配列挿入の場所を示す。
図8B中のガイド配列挿入部位の局在周囲の拡大された配列は、部分DR配列(GTTTAGAGCTA)および部分tracrRNA配列(TAGCAAGTTAAAATAAGGCTAGTCCGTTTTT)も示す。ガイド配列は、アニールされたオリゴヌクレオチドを使用してBbsI部位間に挿入することができる。オリゴヌクレオチドについての配列設計を
図8の模式的説明の下方に示し、適切なライゲーションアダプターを示す。WPREは、ウッドチャック肝炎ウイルス転写後調節エレメントを表す。キメラRNA媒介開裂の効率を、上記の同一のEMX1遺伝子座をターゲティングすることにより試験した。Surveyorアッセイおよびアンプリコンのサンガーシーケンシングの両方を使用して、本出願人らは、キメラRNA設計がヒトEMX1遺伝子座の開裂を約4.7%の改変比率で促進することを確認した(
図3)。
【0705】
真核細胞中のCRISPR媒介開裂の一般化可能性を、ヒトEMX1およびPVALB、ならびにマウスTh遺伝子座中の複数部位をターゲティングするキメラRNAを設計することによりヒトおよびマウス細胞の両方において追加のゲノム遺伝子座をターゲティングすることにより試験した。
図13は、いくつかの追加のターゲティングされるヒトPVALB(
図13A)およびマウスTh(
図13B)遺伝子座中のプロトスペーサーの選択を説明する。遺伝子座およびそれぞれの最後のエキソン内の3つのプロトスペーサーの局在の模式図を提供する。下線付き配列は、30bpのプロトスペーサー配列およびPAM配列に対応する3’末端における3bpを含む。センスおよびアンチセンス鎖上のプロトスペーサーを、それぞれDNA配列の上方および下方に示す。ヒトPVALBおよびマウスTh遺伝子座についてそれぞれ6.3%および0.75%の改変比率が達成され、このことは複数の生物にわたる異なる遺伝子座の改変におけるCRISPR系の幅広い適用可能性を実証した(
図5)。開裂はキメラ構築物を使用してそれぞれの遺伝子座について3つのスペーサーのうち1つについてのみ検出された一方、同時発現されるプレcrRNA配置を使用した場合、全ての標的配列が27%に達するインデル生成の効率で開裂された(
図6および13)。
【0706】
図11は、SpCas9をリプログラミングして哺乳動物細胞中の複数のゲノム遺伝子座をターゲティングすることができることのさらなる説明を提供する。
図11Aは、下線付き配列により示される5つのプロトスペーサーの局在を示すヒトEMX1遺伝子座の模式図を提供する。
図11Bは、プレcrRNAおよびtracrRNAのダイレクトリピート領域間のハイブリダイゼーションを示すプレcrRNA/trcrRNA複合体の模式図(上図)および20bpのガイド配列、ならびにヘアピン構造にハイブリダイズしている部分ダイレクトリピートおよびtracrRNA配列からなるtracrメイトおよびtracr配列を含むキメラRNA設計の模式図(下図)を提供する。ヒトEMX1遺伝子座中の5つのプロトスペーサーにおけるCas9媒介開裂の効力を比較するSurveyorアッセイの結果を、
図11Cに説明する。プロセシングされたプレcrRNA/tracrRNA複合体(crRNA)またはキメラRNA(chiRNA)のいずれかを使用してそれぞれのプロトスペーサーをターゲティングする。
【0707】
RNAの二次構造は分子間相互作用に重要であり得るため、最小自由エネルギーおよびボルツマン加重構造アンサンブルに基づく構造予測アルゴリズムを使用してゲノムターゲティング実験に使用される全てのガイド配列の推定二次構造を比較した(例えば、Gruber et al.,2008,Nucleic Acids Research,36:W70参照)。分析により、ほとんどの場合、キメラcrRNAコンテクスト中の有効なガイド配列は二次構造モチーフを実質的に含まない一方、無効なガイド配列は標的プロトスペーサーDNAとの塩基対形成を妨害し得る内部二次構造を形成する可能性がより高いことが明らかになった。したがって、スペーサー二次構造の変動性は、キメラcrRNAを使用する場合にCRISPR媒介干渉の効率に影響し得ることが考えられる。
【0708】
SpCas9のためのさらなるベクター設計を
図22に示し、それはガイドオリゴのための挿入部位に結合しているU6プロモーター、およびSpCas9コード配列に結合しているCbhプロモーターを取り込む単一発現ベクターを説明する。
図22bに示されるベクターは、H1プロモーターに結合しているtracrRNAコード配列を含む。
【0709】
細菌アッセイでは、全てのスペーサーが効率的なCRISPR干渉を促進した(
図3C)。これらの結果は、哺乳類細胞におけるCRISPR活性の効率に影響を与えるさらなる因子が存在し得ることを示唆している。
【0710】
CRISPR媒介開裂の特異性を調査するため、哺乳動物ゲノム中のプロトスペーサー開裂に対するガイド配列中の単一ヌクレオチド突然変異の効果を、単一点突然変異を有する一連のEMX1ターゲティングキメラcrRNAを使用して分析した(
図3A)。
図3Bは、異なる突然変異体キメラRNAと対形成した場合のCas9の開裂効率を比較するSurveyorヌクレアーゼアッセイの結果を説明する。PAMの5’側の最大12bpの単一塩基ミスマッチは、SpCas9によるゲノム開裂を実質的に停止させた一方、さらなる上流位置に突然変異を有するスペーサーは元のプロトスペーサー標的に対する活性を保持した(
図3B)。PAMの他、SpCas9は、スペーサーの最後の12bp内の単一塩基特異性を有する。さらに、CRISPRは、同一EMX1プロトスペーサーをターゲティングするTALEヌクレアーゼ(TALEN)のペアと同程度に効率的にゲノム開裂を媒介し得る。
図3Cは、EMX1をターゲティングするTALENの設計を示す模式図を提供し、
図3Dは、TALENおよびCas9の効率を比較するSurveyorゲルを示す(n=3)。
【0711】
エラープローンNHEJ機序を通した哺乳動物細胞中のCRISPR媒介遺伝子編集を達成するための成分のセットを樹立したため、相同組換え(HR)、ゲノム中の正確な編集を作製するための高フィデリティ遺伝子修復経路を刺激するCRISPRの能力を試験した。野生型SpCas9は、NHEJおよびHRの両方を通して修復され得る部位特異的DSBを媒介し得る。さらに、SpCas9のRuvC I触媒ドメイン中のアスパラギン酸からアラニンへの置換(D10A)をエンジニアリングしてヌクレアーゼをニッカーゼに変換し(SpCas9n;
図4Aに説明)(例えば、Sapranausaks et al.,2011,Nucleic Acids Research,39:9275;Gasiunas et al.,2012,Proc.Natl.Acad.Sci.USA,109:E2579参照)、その結果、ニック形成されたゲノムDNAが高フィデリティ相同性組換え修復(HDR)を受ける。Surveyorアッセイにより、SpCas9nはEMX1プロトスペーサー標的におけるインデルを生成しないことを確認した。
図4Bに説明されるとおり、EMX1ターゲティングキメラcrRNAとSpCas9との同時発現は標的部位中のインデルを生じさせた一方、SpCas9nとの同時発現は生じさせなかった(n=3)。さらに、327個のアンプリコンのシーケンシングは、SpCas9nにより誘導されるいかなるインデルも検出しなかった。同一の遺伝子座を選択し、HEK293FT細胞をEMX1をターゲティングするキメラRNA、hSpCas9またはhSpCas9n、およびプロトスペーサー付近に制限部位のペア(HindIIIおよびNheI)を導入するためのHRテンプレートにより同時形質移入することによりCRISPR媒介HRを試験した。
図4Cは、HR方針の模式的説明を、組換え場所の相対局在およびプライマーアニーリング配列(矢印)とともに提供する。SpCas9およびSpCas9nは、実際、EMX1遺伝子中へのHRテンプレートのインテグレーションを触媒した。標的領域のPCR増幅とそれに続くHindIIIによる制限消化により、予測断片サイズ(
図4Dに示される制限断片長多型ゲル分析中の矢印)に対応する開裂産物が明らかになり、SpCas9およびSpCas9nは類似レベルのHR効率を媒介した。本出願人らは、ゲノムアンプリコンのサンガーシーケンシングを使用してHRをさらに確認した(
図4E)。これらの結果は、哺乳動物ゲノム中のターゲティングされる遺伝子挿入を促進するためのCRISPRの有用性を実証する。野生型SpCas9の14bp(スペーサーからの12bpおよびPAMからの2bp)の標的特異性を考慮すると、ニッカーゼの利用可能性は、一本鎖分解物がエラープローンNHEJ経路のための基質でないため、オフターゲット改変の可能性を顕著に低減させ得る。
【0712】
アレイスペーサーを有するCRISPR遺伝子座の天然アーキテクチャーを模倣する発現構築物(
図2A)を構築して多重化配列ターゲティングの可能性を試験した。EMX1およびPVALBターゲティングスペーサーのペアをコードする単一のCRISPRアレイを使用して、両方の遺伝子座における効率的な開裂が検出された(
図4F、crRNAアレイの模式的設計および開裂の効率的な媒介を示すSurveyorブロットの両方を示す)。119bpにより間隔が空いているEMX1内の2つの標的に対するスペーサーを使用する同時DSBを通したより大きいゲノム領域のターゲティングされる欠失も試験し、1.6%の欠失効力(182個のアンプリコンのうち3つ;
図4G)が検出された。このことは、CRISPR系が単一ゲノム内の多重化編集を媒介し得ることを実証する。
【0713】
実施例2
CRISPR系改変および代替例
配列特異的DNA開裂をプログラミングするためにRNAを使用する技能は、種々の研究および産業用途のための新たなクラスのゲノムエンジニアリングツールを定義する。CRISPR系のいくつかの態様は、CRISPRターゲティングの効率および多用途性を増加させるようにさらに改善することができる。最適なCas9活性は、哺乳動物核中に存在するものよりも高いレベルにおけるフリーMg
2+の利用可能性に依存し得(例えば、Jinek et al.,2012,Science,337:816参照)、プロトスペーサーのすぐ下流のNGGモチーフについての優先性は、ヒトゲノム中で平均12bpごとでターゲティング能を制限する(
図9、ヒト染色体配列のプラスおよびマイナス鎖の両方を評価)。これらの拘束の一部は、微生物メタゲノムにわたるCRISPR遺伝子座の多様性を利用することにより克服することができる(例えば、Makarova et al.,2011,Nat Rev Microbiol,9:467参照)。他のCRISPR遺伝子座を、実施例1に記載のものと同様の方法により哺乳動物細胞環境中に移植することができる。例えば、
図10は、CRISPR媒介ゲノム編集を達成するための哺乳動物細胞中の異種発現のためのストレプトコッカス・サーモフィラス(Streptococcus thermophilus)LMD−9のCRISPR1からのII型CRISPR系の適応を説明する。
図10Aは、S.サーモフィラス(S.thermophilus)LMD−9のCRISPR1の模式的説明を提供する。
図10Bは、S.サーモフィラス(S.thermophilus)CRISPR系のための発現系の設計を説明する。ヒトコドン最適化hStCas9を、構成的EF1αプロモーターを使用して発現させる。tracrRNAおよびcrRNAの成熟バージョンを、U6プロモーターを使用して発現させて正確な転写開始を促進する。成熟crRNAおよびtracrRNAからの配列を説明する。crRNA配列中の小文字「a」により示される単一塩基を使用してRNApolIII転写ターミネーターとして機能するポリU配列を除去する。
図10Cは、ヒトEMX1遺伝子座ターゲティングするガイド配列を示す模式図を提供する。
図10Dは、Surveyorアッセイを使用する標的遺伝子座中のhStCas9媒介開裂の結果を示す。RNAガイドスペーサー1および2は、それぞれ14%および6.4%を誘導した。これらの2つのプロトスペーサー部位における生物学的複製物にわたる開裂活性の統計分析も
図5に提供する。
図14は、ヒトEMX1遺伝子座中のS.サーモフィラス(S.thermophilus)CRISPR系の追加のプロトスペーサーおよび対応するPAM配列標的の模式図を提供する。2つのプロトスペーサー配列を強調し、NNAGAAWモチーフを満たすそれらの対応するPAM配列を対応する強調配列に対して3’側で下線を付けることにより示す。両方のプロトスペーサーは、アンチセンス鎖をターゲティングする。
【0714】
実施例3
試料標的配列選択アルゴリズム
規定のCRISPR酵素についての所望のガイド配列長およびCRISPRモチーフ配列(PAM)に基づきインプットDNA配列の両方の鎖上の候補CRISPR標的配列を同定するためのソフトウェアプログラムを設計する。例えば、化膿性連鎖球菌(S.pyogenes)からのCas9についての標的部位は、PAM配列NGGを用いて、インプット配列およびインプットの逆相補鎖の両方の上の5’−N
x−NGG−3’を探索することにより同定することができる。同様に、S.サーモフィラス(S.thermophilus)CRISPR1のCas9についての標的部位は、PAM配列NNAGAAWを用いて、インプット配列およびインプットの逆相補鎖の両方の上の5’−N
x−NNAGAAW−3’を探索することにより同定することができる。同様に、S.サーモフィラス(S.thermophilus)CRISPR3のCas9についての標的部位は、PAM配列NGGNGを用いて、インプット配列およびインプットの逆相補鎖の両方の上の5’−N
x−NGGNG−3’を探索することにより同定することができる。N
x中の値「x」は、プログラムにより固定し、または使用者により規定することができ、例えば、20である。
【0715】
DNA標的部位のゲノム中の複数の発生は、非特異的ゲノム編集をもたらし得るため、全ての潜在的な部位を同定した後、プログラムは配列が関連参照ゲノム中で出現する回数に基づき配列をフィルタリング除去する。配列特異性が「シード」配列、例えば、PAM配列自体を含め、PAM配列から5’側の11〜12bpにより決定されるそれらのCRISPR酵素について、フィルタリングステップはシード配列に基づき得る。したがって、追加のゲノム遺伝子座における編集を回避するため、結果を関連ゲノム中のシード:PAM配列の発生数に基づきフィルタリングする。使用者に、シード配列の長さを選択させることができる。使用者に、フィルタ通過の目的のためにゲノム中のシード:PAM配列の発生数を規定させることもできる。デフォルトは、ユニーク配列をスクリーニングすることである。フィルトレーションレベルは、シード配列の長さおよびゲノム中の配列の発生数の両方を変えることにより変更する。プログラムは、さらにまたは代替的に、同定された標的配列の逆相補鎖を提供することにより、報告された標的配列に相補的なガイド配列の配列を提供し得る。
【0716】
配列選択を最適化する方法およびアルゴリズムのさらなる詳細は、参照により本明細書に組み込まれる米国特許出願第61/064,798号明細書(代理人整理番号44790.11.2022;Broad参照番号BI−2012/084)に見出すことができる。
【0717】
実施例4
複数のキメラcrRNA−tracrRNAハイブリッドの評価
本実施例は、異なる長さの野生型tracrRNA配列を取り込むtracr配列を有するキメラRNA(chiRNA;ガイド配列、tracrメイト配列、およびtracr配列を単一転写物中で含む)について得られた結果を記載する。
図16aは、キメラRNAおよびCas9のためのバイシストロニック発現ベクターの模式図を説明する。Cas9はCBhプロモーターによりドライブされ、キメラRNAはU6プロモーターによりドライブされる。キメラガイドRNAは、からなる。示される種々の位置においてトランケートされたtracr配列(下方の鎖の最初の「U」から転写物の末端に及ぶ)に結合している20bpのガイド配列(N)からなる。ガイドおよびtracr配列は、tracrメイト配列GUUUUAGAGCUAと、それに続くループ配列GAAAにより離隔している。ヒト遺伝子座EMX1およびPVALB遺伝子座におけるCas9媒介インデルについてのSURVEYORアッセイの結果を、それぞれ
図16bおよび16cに説明する。矢印は、予測SURVEYOR断片を示す。chiRNAをそれらの「+n」表記により示し、crRNAは、ガイドおよびtracr配列が別個の転写物として発現されるハイブリッドRNAを指す。トリプリケートで実施されたこれらの結果の定量を、
図17aおよび17bにヒストグラムにより示し、それぞれ
図16bおよび16cに対応する(「N.D.」は、インデルが検出されなかったことを示す)。プロトスペーサーIDおよびそれらの対応するゲノム標的、プロトスペーサー配列、PAM配列、および鎖局在を表Dに提供する。ガイド配列は、ハイブリッド系における別個の転写物の場合、プロトスペーサー配列全体に相補的であるように、またはキメラRNAの場合、下線部にのみ相補的であるように設計した。
【0718】
【表30】
[この文献は図面を表示できません]
【0719】
ガイド配列を最適化するためのさらなる詳細は、米国仮特許出願第61/836,127号明細書(代理人整理番号44790.08.2022;Broad参照番号BI−2013/004G)(参照により本明細書に組み込まれる)を参照することができる。
【0720】
最初に、ヒトHEK293FT細胞中のEMX1遺伝子座内の3つの部位をターゲティングした。それぞれのchiRNAのゲノム改変効率は、DNA二本鎖切断(DSB)および非相同末端結合(NHEJ)DNA損傷修復経路によるその後続の修復から生じる突然変異を検出するSURVEYORヌクレアーゼアッセイを使用して評価した。chiRNA(+n)と表記される構築物は、野生型tracrRNAの最大+n個のヌクレオチドがキメラRNA構築物中に含まれることを示し、nについては48、54、67、および85の値が使用される。野生型tracrRNAのより長い断片を含有するキメラRNA(chiRNA(+67)およびchiRNA(+85))は、3つ全てのEMX1標的部位におけるDNA開裂を媒介し、特にchiRNA(+85)は、ガイドおよびtracr配列を別個の転写物中で発現する対応するcrRNA/tracrRNAハイブリッドよりも顕著に高いレベルのDNA開裂を実証した(
図16bおよび17a)。ハイブリッド系(別個の転写物として発現されるガイド配列およびtracr配列)を検出可能な開裂を生じなかったPVALB遺伝子座中の2つの部位も、chiRNAを使用してターゲティングした。chiRNA(+67)およびchiRNA(+85)は、2つのPVALBプロトスペーサーにおける顕著な開裂を媒介し得た(
図16cおよび17b)。EMX1およびPVALB遺伝子座中の5つ全ての標的について、tracr配列長さの増加に伴うゲノム改変効率の一貫した増加が観察された。いかなる理論によっても拘束されるものではないが、tracrRNAの3’末端により形成される二次構造は、CRISPR複合体形成の比率の向上における役割を担い得る。
【0721】
実施例5:Cas9多様性
CRISPR−Cas系は、細菌から古細菌にわたる多様な種により用いられる侵入外因性DNAに対する適応免疫機序である。II型CRISPR−Cas9系は、CRISPR遺伝子座中への外来DNAの「獲得」を担うタンパク質をコードする遺伝子のセット、およびDNA開裂機序の「実行」をコードする遺伝子のセットからなり;これらは、DNAヌクレアーゼ(Cas9)、非コードトランス活性化crRNA(tracrRNA)、およびダイレクトリピートによりフランキングされている外来DNA由来スペーサーのアレイ(crRNA)を含む。Cas9による成熟時、tracRNAおよびcrRNA二本鎖は、Cas9ヌクレアーゼをスペーサーガイド配列により規定される標的DNA配列にガイドし、開裂に要求され、それぞれのCRISPR−Cas系に特異的な標的DNA中の短鎖配列モチーフ付近のDNAの二本鎖切断を媒介する。II型CRISPR−Cas系は、細菌界全体にわたり見出されており、Cas9タンパク質配列およびサイズ、tracrRNAおよびcrRNAダイレクトリピート配列、それらのエレメントのゲノム構成、および標的開裂のためのモチーフ要件は高度に多様である。ある種は、複数の区別されるCRISPR−Cas系を有し得る。
【0722】
本出願人らは、公知のCas9との配列相同性および公知のサブドメイン、例として、HNHエンドヌクレアーゼドメインおよびRuvCエンドヌクレアーゼドメイン[Eugene KooninおよびKira Makarovaからの情報]とオルソロガスな構造に基づき同定された細菌種から207個の推定Cas9を評価した。このセットのタンパク質配列保存に基づく系統発生分析により、大型Cas9(約1400アミノ酸)の3つの群および小型Cas9(約1100アミノ酸)の2つの群を含むCas9の5つのファミリーが明らかになった(
図19および20A〜F)。
【0723】
Cas9およびニッカーゼまたはDNA結合タンパク質に転換するCas9酵素の突然変異および変化した機能を有するそれの使用のさらなる詳細は、米国仮特許出願第61/836,101号明細書および同第61/835,936号明細書(それぞれ代理人整理番号44790.09.2022および4790.07.2022およびBroad参照番号BI−2013/004EおよびBI−2013/004F)(参照により本明細書に組み込まれる)を参照することができる。
【0724】
実施例6:Cas9オルソログ
本出願人らは、関連性のあるPAM配列および対応するキメラガイドRNAを同定するためCas9オルソログを分析した。拡張したPAMセットを有することにより、全ゲノムにわたるより幅広いターゲティングが提供され、またユニークな標的部位の数が大幅に増加し、かつゲノムにおいて高い特異性レベルで新規Cas9を同定できる可能性がもたらされる。
【0725】
Cas9オルソログの特異性は、各Cas9がガイドRNAとそのDNA標的との間のミスマッチを許容する能力を試験することにより評価し得る。例えば、ガイドRNAにおける突然変異が開裂効率に及ぼす効果を試験することにより、SpCas9の特異性が特徴付けられている。ガイド配列と標的DNAとの間の単一または複数のミスマッチを含むガイドRNAのライブラリが作製された。これらの知見に基づき、以下の指針に基づきSpCas9の標的部位を選択することができる:
【0726】
特定の遺伝子の編集に対するSpCas9の特異性を最大化するため、目的の遺伝子座内の標的部位は、潜在的な「オフターゲット」ゲノム配列が以下の4つの制約条件に従うように選択しなければならない:まず第一に、それらの配列の後に5’−NGGまたはNAG配列のいずれかを有するPAMが続いてはならない。第二に、標的配列とのそれらの配列の大域的な配列類似性が最小化されなければならない。第三に、最大数のミスマッチがPAM−オフターゲット部位の近位領域内になければならない。最後に、最大数のミスマッチが連続しているかまたは離れていても4塩基未満でなければならない。
【0727】
同様の方法を用いて他のCas9オルソログの特異性を評価し、標的種のゲノム内にある特定の標的部位を選択するための基準を確立することができる。既述のとおり、このセットのタンパク質配列保存に基づく系統発生解析から、3群の大型Cas9(約1400アミノ酸)および2群の小型Cas9(約1100アミノ酸)を含む5つのCas9ファミリーが明らかとなった(
図19および
図20A〜
図20Fを参照)。Casオルソログに関するさらなる詳細は、参照により本明細書に組み込まれる米国仮特許出願第61/836,101号明細書および同第61/835,936号明細書(それぞれ代理人整理番号44790.09.2022および4790.07.2022およびBroad参照番号BI−2013/004EおよびBI−2013/004F)を参照することができる。
【0728】
実施例7:クローニングおよび送達を単純化する方法論的改良。
プラスミド上のU6プロモーターおよびガイドRNAをコードするよりむしろ、本出願人らはU6プロモーターをDNAオリゴと共に増幅してガイドRNAを付加した。得られたPCR産物を細胞に形質移入してガイドRNAの発現をドライブすることができる。
【0729】
U6プロモーター::ヒトEmx1遺伝子座を標的にするガイドRNAからなるPCR産物の生成を可能にする例示的プライマー対:
フォワードプライマー:
【化2】
[この文献は図面を表示できません]
リバースプライマー(ガイドRNA(下線)を有する):
【化3】
[この文献は図面を表示できません]
【0730】
実施例8:活性を向上させる方法論的改良:
真核細胞でガイドRNAを発現させるためにpol3プロモーター、詳細にはRNAポリメラーゼIII(例えばU6またはH1プロモーター)を使用するよりむしろ、本出願人らは真核細胞でT7ポリメラーゼを発現させることにより、T7プロモーターを使用してガイドRNAの発現をドライブする。
【0731】
この系の一例は、3つのDNA断片の導入を伴い得る:
1.Cas9の発現ベクター
2.T7ポリメラーゼの発現ベクター
3.T7プロモーターと融合したガイドRNAを含む発現ベクター
【0732】
実施例9:Cas9の毒性を低下させる方法論的改良:mRNA形態のCas9の送達。
Cas9をmRNAの形態で送達することにより、細胞でのCas9の一過性発現が可能となり、毒性が低下する。例えば、ヒト化SpCas9は、以下のプライマー対を使用して増幅し得る:
フォワードプライマー(インビトロ転写用にT7プロモーターを付加するため):
【化4】
[この文献は図面を表示できません]
リバースプライマー(ポリAテールを付加するため):
【化5】
[この文献は図面を表示できません]
【0733】
本出願人らは、真核細胞におけるガイドRNA発現をドライブするようにRNAまたはDNAカセットの形態のいずれかのガイドRNAと共にCas9 mRNAを細胞に形質移入する。
【0734】
実施例10:Cas9の毒性を低下させる方法論的改良:誘導性プロモーターの使用
本出願人らは、ゲノム改変を実行するのに必要となった場合に限りCas9発現を一過性にオンにする。誘導性システムの例には、テトラサイクリン誘導性プロモーター(Tet−OnまたはTet−Off)、小分子2ハイブリッド転写活性化システム(FKBP、ABA等)、または光誘導性システム(フィトクロム、LOVドメイン、またはクリプトクロム)が含まれる。
【0735】
実施例11:インビボ適用のためのCas9系の改良
本出願人らは、低分子量のCas9に対してメタゲノム検索を行った。多くのCas9ホモログはかなり大きい。例えばSpCas9は約1368アミノ酸長であり、これは大き過ぎるため送達用のウイルスベクターへのパッケージングが容易でない。GenBankに寄託されている配列からCas9ホモログの長さ分布を表すグラフが作成される(
図23)。配列の中には誤って注釈されているものもあり、従って各長さについての正確な度数は必ずしも正しいとは限らない。それでもなお、これによりCas9タンパク質の分布の概観が得られ、より短いCas9ホモログの存在が示唆される。
【0736】
本出願人らは、コンピュータ解析により、細菌株カンピロバクター属(Campylobacter)に1000アミノ酸未満のCas9タンパク質が2つあることを見出した。カンピロバクター・ジェジュニ(Campylobacter jejuni)由来の1つのCas9の配列を以下に提供する。この長さでは、CjCas9は、初代細胞へのおよび動物モデルにおけるインビボでのロバストな送達のためAAV、レンチウイルス、アデノウイルス、および他のウイルスベクターに容易にパッケージングすることができる。本発明の好ましい実施形態では、黄色ブドウ球菌(S.aureus)由来のCas9タンパク質が使用される。
【0737】
>カンピロバクター・ジェジュニ(Campylobacter jejuni)Cas9(CjCas9)
【化6】
[この文献は図面を表示できません]
【0738】
このCjCas9に対する推定tracrRNAエレメントは以下である:
【化7】
[この文献は図面を表示できません]
ダイレクトリピート配列は以下である:
【化8】
[この文献は図面を表示できません]
CjCas9に対するキメラガイドRNAの例は以下である:
【化9】
[この文献は図面を表示できません]
【0739】
実施例12:Cas9最適化
機能強化のためまたは新規機能を開発するため、本出願人らは異なるCas9ホモログの断片を組み合わせることにより、キメラCas9タンパク質を作成する。例えば、2つの例示的なキメラCas9タンパク質:
例えば、本出願人らは、St1Cas9(このタンパク質からの断片は太字とする)のN末端を、SpCas9(このタンパク質からの断片には下線を引く)のC末端と融合した。
>St1(N)Sp(C)Cas9
【化10】
[この文献は図面を表示できません]
>Sp(N)St1(C)Cas9
【化11】
[この文献は図面を表示できません]
【0740】
キメラCas9を作製することの利益には、以下が含まれる:
毒性が低下する
真核細胞における発現が向上する
特異性が強化される
タンパク質の分子量が低下し、異なるCas9ホモログからの最も小さいドメインを組み合わせることによりタンパク質が小さくなる。
PAM配列要件の変更
【0741】
実施例13:汎用DNA結合タンパク質としてのCas9の利用
本出願人らは、DNA標的の両鎖の開裂に関与する2つの触媒ドメイン(D10およびH840)を突然変異させることにより、Cas9を汎用DNA結合タンパク質として使用した。標的遺伝子座における遺伝子転写を上方制御するため、本出願人らはCas9に転写活性化ドメイン(VP64)を融合した。本出願人らは、転写因子活性化強度が標的で費やされる時間の関数であるため、Cas9−VP64融合タンパク質の強力な核局在を認めることが重要であるという仮説を立てた。従って、本出願人らは一組のCas9−VP64−GFP構築物をクローニングし、それらを293細胞に形質移入し、形質移入後12時間でその局在を蛍光顕微鏡下で評価した。
【0742】
嵩高いGFPの存在が妨げとなることなく構築物を機能的に試験するため、同じ構築物を、直接的な融合ではなく、2A−GFPとしてクローニングした。Sox2遺伝子座は細胞の再プログラム化に有用となり得るとともに、この遺伝子座はTALE−TF媒介性転写活性化の標的として既に検証されているため、本出願人らはSox2遺伝子座をCas9トランス活性化因子による標的とすることにした。Sox2遺伝子座について、本出願人らは転写開始部位(TSS)近傍の8つの標的を選んだ。各標的は20bp長であり、隣接するNGGプロトスペーサー隣接モチーフ(PAM)を有した。各Cas9−VP64構築物を各PCR生成キメラcrispr RNA(chiRNA)と293細胞に同時形質移入した。形質移入後72時間でRT−qPCRを使用して転写活性化を評価した。
【0743】
転写活性化因子をさらに最適化するため、本出願人らは、chiRNA(Sox2.1およびSox2.5)とCas9(NLS−VP64−NLS−hSpCas9−NLS−VP64−NLS)との比率をタイトレートし、293細胞に形質移入し、およびRT−qPCRを使用して定量化した。これらの結果は、Cas9を汎用DNA結合ドメインとして使用して標的遺伝子座における遺伝子転写を上方制御し得ることを示している。
【0744】
本出願人らは、第2世代の構築物を設計した(下表)。
【0745】
【表31】
[この文献は図面を表示できません]
【0746】
本出願人らはこれらの構築物を使用して転写活性化(VP64融合構築物)および抑制(Cas9のみ)をRT−qPCRにより評価する。本出願人らは抗His抗体を使用して各構築物の細胞局在を評価し、Surveyorヌクレアーゼアッセイを使用してヌクレアーゼ活性を評価し、およびゲルシフトアッセイを使用してDNA結合親和性を評価する。本発明の好ましい実施形態において、ゲルシフトアッセイはEMSAゲルシフトアッセイである。
【0747】
実施例14:Cas9トランスジェニックおよびノックインマウス
Cas9ヌクレアーゼを発現するマウスを作成するため、本出願人らは2つの一般的戦略、トランスジェニックとノックインとを提示する。これらの戦略は、目的とする任意の他のモデル生物の作成、例えばラットに適用し得る。これらの一般的戦略の各々について、本出願人らは、構成的に活性なCas9と、条件的に発現する(Creリコンビナーゼ依存性の)Cas9とを作製する。構成的に活性なCas9ヌクレアーゼは以下のコンテクストで発現する:pCAG−NLS−Cas9−NLS−P2A−EGFP−WPRE−bGHpolyA。pCAGはプロモーターであり、NLSは核局在化シグナルであり、P2Aはペプチド開裂配列であり、EGFPは高感度緑色蛍光タンパク質であり、WPREはウッドチャック肝炎ウイルス転写後調節エレメントであり、およびbGHpolyAはウシ成長ホルモンポリAシグナル配列である(
図25A〜
図25B)。条件的バージョンは、プロモーターの後ろおよびNLS−Cas9−NLSの前に1つのさらなる終止カセットエレメント、loxP−SV40 polyA x3−loxPを有する(すなわち pCAG−loxP−SV40polyAx3−loxP−NLS−Cas9−NLS−P2A−EGFP−WPRE−bGHpolyA)。重要な発現エレメントは
図26のとおり可視化することができる。構成的構築物は開発全体を通して全ての細胞型で発現しなければならないが、条件的構築物は、同じ細胞がCreリコンビナーゼを発現するときに限りCas9発現を可能にし得る。この後者のバージョンは、Creが組織特異的プロモーターの発現下にあるときCas9の組織特異的発現を可能にし得る。さらに、CreをTET onまたはoffシステムなどの誘導性プロモーターの発現下に置くことにより、Cas9発現を成体マウスで誘導することができる。
【0748】
Cas9構築物の検証:各プラスミドを3つの方法で機能検証した:1)293細胞における一過性形質移入と、続くGFP発現の確認;2)293細胞における一過性形質移入と、続くP2A配列を認識する抗体を使用した免疫蛍光法;および3)一過性形質移入と、続くSurveyorヌクレアーゼアッセイ。293細胞は、目的の細胞に応じて293FT細胞または293 T細胞であってもよい。好ましい実施形態では、細胞は293FT細胞である。Surveyorの結果は、条件的および構成的構築物についてゲルのそれぞれ最上列および最下列で実施した。各々を、hEMX1遺伝子座を標的にするキメラRNA(キメラRNA hEMX1.1)の存在下および非存在下で試験した。結果は、この構築物がキメラRNA(および条件的の場合にはCre)の存在下においてのみhEMX1遺伝子座のターゲティングに成功し得ることを示している。ゲルを定量化した。結果は3試料の平均切断効率および標準偏差として提供する。
【0749】
トランスジェニックCas9マウス:構築物を有するトランスジェニックマウスを作成するため、本出願人らは純粋な線状DNAを偽妊娠CB56雌由来の接合体の前核に注入する。ファウンダーを同定し、遺伝子型を決定し、CB57マウスと戻し交配させる。構築物がクローニングが成功し、これはサンガーシーケンシングによって確認された。
【0750】
ノックインCas9マウス:Cas9ノックインマウスを作成するため、本出願人らは同じ構成的および条件的構築物をRosa26遺伝子座にターゲティングする。本出願人らはこれを、以下のエレメントを有するRosa26ターゲティングベクターに各々をクローニングすることにより行った:Rosa26ショート相同性アーム−構成的/条件的Cas9発現カセット−pPGK−Neo−Rosa26ロング相同性アーム−pPGK−DTA。pPGKは、PGKによりドライブされる、ネオマイシンに対する耐性を付与するポジティブ選択マーカーNeo、1kbショートアーム、4.3kbロングアーム、およびネガティブ選択ジフテリア毒素(DTA)に対するプロモーターである。
【0751】
2つの構築物をR1 mESCにエレクトロポレートし、2日間成長させておいた後、ネオマイシン選択を適用した。5〜7日目まで生存していた個々のコロニーを取り、個別のウェルで成長させた。5〜7日後にコロニーを回収し、半分は凍結し、残りの半分は遺伝子タイピングに使用した。遺伝子タイピングはゲノムPCRにより行い、ここでは一方のプライマーをドナープラスミド(AttpF)内にアニールし、他方のプライマーをショート相同性アーム(Rosa26−R)の外側にアニールした。条件的ケース用に回収した22個のコロニーのうち、7個が陽性であった(左)。構成的ケース用に回収した27個のコロニーのうち、陽性は0個であった(右)。Cas9がmESCにおいてあるレベルの毒性を引き起こし、そのため陽性クローンがなかったものと思われる。これを試験するため、本出願人らは正しくターゲティングされる条件的Cas9細胞にCre発現プラスミドを導入し、培養下で何日も経った後にも極めて低毒性であることを認めた。正しくターゲティングされる条件的Cas9細胞におけるCas9のコピー数の低下(細胞当たり1〜2コピー)は、安定発現および相対的な無細胞毒性を可能にするのに十分である。さらに、このデータはCas9コピー数が毒性を決定することを示している。エレクトロポレーション後、各細胞は数コピーのCas9を得るはずで、これが、構成的Cas9構築物の場合に陽性コロニーが認められなかった理由であると思われる。これは、条件的Cre依存戦略を利用すると毒性の低下が示されるはずであるという強力なエビデンスを提供する。本出願人らは、正しくターゲティングされる細胞を胚盤胞に注入して雌マウスに移植する。キメラを同定し、戻し交配させる。ファウンダーを同定し、遺伝子型を決定する。
【0752】
条件的Cas9マウスの有用性:本出願人らは、293細胞において、Creとの同時発現によりCas9条件的発現構築物を活性化し得ることを示している。本出願人らはまた、Creが発現するとき正しくターゲティングされるR1 mESCが活性Cas9を有し得ることも示す。Cas9の後にはP2Aペプチド開裂配列と、次にEGFPが続くため、本出願人らはEGFPを観察することにより発現の成功を特定する。この同じ概念が、条件的Cas9マウスを極めて有用にするものである。本出願人らはそれらの条件的Cas9マウスを、Creを遍在的に発現するマウス(ACTB−Cre系統)と交配させることができ、あらゆる細胞でCas9を発現するマウスが得られ得る。胎仔または成体マウスにおいてゲノム編集を誘導するために必要なことはキメラRNAの送達のみであるはずである。興味深いことに、条件的Cas9マウスを組織特異的プロモーターの制御下でCreを発現するマウスと交配させる場合、同様にCreを発現する組織にのみCas9が存在するはずである。この手法を用いて正確な組織に限ったゲノムの編集を、同組織にキメラRNAを送達することにより行い得る。
【0753】
実施例15:Cas9の多様性およびキメラRNA
CRISPR−Cas系は、細菌および古細菌にわたる多様な種により用いられる侵入外来性DNAに対する適応免疫機構である。II型CRISPR−Cas系は、CRISPR遺伝子座への外来DNAの「獲得」に関与するタンパク質をコードする一組の遺伝子、ならびにDNA開裂機構の「遂行」をコードする一組の遺伝子からなる;これらには、DNAヌクレアーゼ(Cas9)、非コードトランス活性化cr−RNA(tracrRNA)、および外来DNA由来のスペーサーにダイレクトリピートが隣接したアレイ(crRNA)が含まれる。Cas9による成熟時、tracrRNAおよびcrRNA二重鎖が、スペーサーガイド配列により特定されるCas9ヌクレアーゼを標的DNA配列にガイドし、開裂に必要でかつ各CRISPR−Cas系に特異的な、標的DNAの短鎖配列モチーフ近傍でのDNAの二本鎖切断を媒介する。II型CRISPR−Cas系は細菌界全体にわたり見られ、Cas9タンパク質配列およびサイズ、tracrRNAおよびcrRNAダイレクトリピート配列、これらのエレメントのゲノム構成、および標的開裂のモチーフ要件の点で高度に多様である。1つの種が複数の異なるCRISPR−Cas系を有し得る。
【0754】
本出願人らは、既知のCas9との配列相同性および既知のサブドメイン、例えばHNHエンドヌクレアーゼドメインおよびRuvCエンドヌクレアーゼドメイン[Eugene KooninおよびKira Makarovaからの情報]とオルソロガスな構造に基づき同定された細菌種から207個の推定Cas9を評価した。このセットのタンパク質配列保存に基づく系統発生解析から、3群の大型Cas9(約1400アミノ酸)および2群の小型Cas9(約1100アミノ酸)を含む5つのCas9ファミリーが明らかとなった(
図19A〜
図19Dおよび
図20A〜
図20F)。
【0755】
本出願人らはまた、インビトロ方法を用いてCas9ガイドRNAの最適化も行っている。
【0756】
実施例16:Cas9突然変異
本実施例において、本出願人らは、以下の突然変異がSpCas9をニック形成酵素に変換し得ることを示す:D10A、E762A、H840A、N854A、N863A、D986A。
【0757】
本出願人らは、突然変異点がSpCas9遺伝子内のどこに局在するかを示す配列を提供する(
図24A〜M)。本出願人らは、ニッカーゼが相同組換えを依然として媒介し得ることも示す。さらに、本出願人らは、これらの突然変異を有するSpCas9が(個々に)二本鎖切断を誘導しないことを示す。
【0758】
Cas9オルソログは全て、3〜4個のRuvCドメインおよびHNHドメインの一般的構成を共有する。最も5’側のRuvCドメインが非相補鎖を開裂し、HNHドメインが相補鎖を開裂する。表記は全てガイド配列を参照する。
【0759】
5’RuvCドメインの触媒残基は、目的のCas9を他のCas9オルソログ(化膿性連鎖球菌(S.pyogenes)II型CRISPR遺伝子座、S.サーモフィルス(S.thermophilus)CRISPR遺伝子座1、S.サーモフィルス(S.thermophilus)CRISPR遺伝子座3、およびフランシセラ・ノビシダ(Franciscilla novicida)II型CRISPR遺伝子座由来)と相同性比較することによって同定され、保存されたAsp残基をアラニンに突然変異させることにより、Cas9が相補鎖ニッキング酵素に変換される。同様に、HNHドメインの保存されたHisおよびAsn残基をアラニンに突然変異させることにより、Cas9が非相補鎖ニッキング酵素に変換される。
【0760】
実施例17:Cas9転写活性化およびCas9リプレッサー
Cas9転写活性化
第2世代の構築物を設計して試験した(表1)。これらの構築物を使用して転写活性化(VP64融合構築物)および抑制(Cas9のみ)をRT−qPCRにより評価する。本出願人らは、抗His抗体を使用して各構築物の細胞局在を評価し、Surveyorヌクレアーゼアッセイを使用してヌクレアーゼ活性を評価し、およびゲルシフトアッセイを使用してDNA結合親和性を評価する。
【0761】
Casリプレッサー
dCas9を汎用DNA結合ドメインとして使用して遺伝子発現を抑制し得ることがこれまでに示されている。本出願人らは、改良されたdCas9設計ならびにリプレッサードメインKRABおよびSID4xに対するdCas9融合を報告する。表1におけるCas9を使用して転写を調節するため作成されたプラスミドライブラリから、以下のリプレッサープラスミドがqPCRにより機能的に特徴付けられた:pXRP27、pXRP28、pXRP29、pXRP48、pXRP49、pXRP50、pXRP51、pXRP52、pXRP53、pXRP56、pXRP58、pXRP59、pXRP61、およびpXRP62。
【0762】
各dCas9リプレッサープラスミドを、β−カテニン遺伝子のコード鎖にターゲティングされた2つのガイドRNAと共に同時形質移入した。形質移入後72時間でRNAを単離し、RT−qPCRによって遺伝子発現を定量化した。内在性対照遺伝子はGAPDHであった。2つのバリデートされたshRNAを陽性対照として使用した。陰性対照はgRNAなしに形質移入した特定のプラスミド(これらは「pXRP##対照」と表される)であった。プラスミドpXRP28、pXRP29、pXRP48、およびpXRP49は、指定される標的化戦略を用いるときβ−カテニン遺伝子を抑制することができた。このようなプラスミドは、機能ドメインを有しないdCas9(pXRP28およびpXRP28)、およびSID4xに融合したdCas9(pXRP48およびpXRP49)に対応する。
【0763】
さらなる研究では以下を調べる:上記の実験の反復、種々の遺伝子のターゲティング、他のgRNAを利用した最適なターゲティング位置の決定、および多重抑制。
【0764】
【表32】
[この文献は図面を表示できません]
【0765】
【表33】
[この文献は図面を表示できません]
【0766】
【表34】
[この文献は図面を表示できません]
【0767】
実施例18:コレステロール生合成、脂肪酸生合成、および他の代謝疾患に関与する遺伝子、アミロイド病および他の疾患に関与する誤って折り畳まれたタンパク質をコードする遺伝子、細胞形質転換を引き起こす癌遺伝子、潜伏ウイルス遺伝子、および数ある障害の中でも特にドミナントネガティブ障害を引き起こす遺伝子の標的欠失。
本出願人らは、ウイルス送達系あるいはナノ粒子送達系を用いた、代謝疾患、アミロイドーシスおよびタンパク質凝集関連疾患、遺伝子突然変異および転座により生じる細胞形質転換、遺伝子突然変異のドミナントネガティブ効果、潜伏ウイルス感染、および他の関連症状に罹患した、必要性のある対象または患者における肝組織、脳組織、眼組織、上皮組織、造血組織、または別の組織でのCRISPR−Cas系の遺伝子送達を実証する。
【0768】
研究設計:代謝疾患、アミロイドーシスおよびタンパク質凝集関連疾患に罹患した、必要性のある対象または患者としては、限定はされないが、ヒト、非ヒト霊長類、イヌ、ネコ、ウシ、ウマ、他の家畜および関連哺乳動物が含まれる。CRISPR−Cas系はキメラガイドRNAにガイドされ、開裂しようとするヒトゲノム遺伝子座の特定の部位を標的にする。開裂および非相同末端結合媒介性修復の後、フレームシフト突然変異により遺伝子のノックアウトがもたらされる。
【0769】
本出願人らは、上述の障害に関わる遺伝子を標的にするガイドRNAを、最小限のオフターゲット活性で内因性遺伝子座に特異的であるように選択する。2つ以上のガイドRNAを単一のCRISPRアレイにコードすることによりDNAに同時の二本鎖切断を誘導し、罹患した遺伝子または染色体領域の微小欠失を生じさせてもよい。
【0770】
遺伝子標的の同定および設計
各候補疾患遺伝子について、本出願人らは目的のDNA配列を選択し、それにはタンパク質コードエクソン、既知のドミナントネガティブ突然変異部位を含みかつそれに隣接する配列、病的反復配列を含みかつそれに隣接する配列が含まれる。遺伝子ノックアウト手法に関して、開始コドンに最も近接した初期コードエクソンが、完全なノックアウトを達成し、かつ部分的な機能を保持するトランケート型タンパク質産物となる可能性を最小限に抑えるのに最良の選択肢を提供する。
【0771】
本出願人らは、NGGモチーフ(SpCas9系について)またはNNAGAAW(St1Cas9系について)の直ちに5’側にある可能な全てのターゲティング可能20bp配列に関して目的の配列を分析する。本出願人らは、特異性を決定する計算アルゴリズムに基づきオフターゲット効果が最小限に抑えられるように、ゲノムにおけるRNAによってガイドされるユニークな単一のCas9認識用配列を選択する。
【0772】
送達系へのガイド配列のクローニング
ガイド配列は二本鎖20〜24bpオリゴヌクレオチドとして合成される。オリゴを5’−リン酸化処理し、アニーリングにより二重鎖を形成した後、オリゴを送達方法に応じた好適なベクターにライゲートする:
【0773】
ウイルスベースの送達方法
AAVベースのベクター(PX260、330、334、335)が他の部分に記載されている。
レンチウイルスベースのベクターは、U6プロモーターによってドライブされるキメラRNA足場と、EF1aプロモーターによってドライブされるCas9またはCas9ニッカーゼとを担持する単一のベクターにガイド配列を直接ライゲートする同様のクローニング戦略を用いる。
【0774】
ウイルス産生については他の部分に記載される。
【0775】
ナノ粒子ベースのRNA送達方法
1.T7プロモーター−ガイド配列キメラRNAをコードするオリゴヌクレオチド二重鎖としてガイド配列を合成する。T7プロモーターをCas9の5’にPCR方法によって付加する。
【0776】
2.T7によりドライブされるCas9およびガイドキメラRNAをインビトロで転写し、市販のキットを使用してCas9 mRNAをさらにキャッピングし、Aテールを付加する。キットの説明書に従いRNA産物を精製する。
【0777】
流体力学的尾静脈送達方法(マウスに対して)
ガイド配列を、上記および本出願の他の部分に記載するとおりAAVプラスミドにクローニングする。
【0778】
細胞系に関するインビトロ検証
形質移入
1.DNAプラスミド形質移入
ガイド配列を担持するプラスミドをヒト胎児腎臓(HEK293T)細胞またはヒト胚性幹(hES)細胞、他の関連性のある細胞型に、脂質ベース、化学ベースまたはエレクトロポレーションベースの方法を使用して形質移入する。HEK293T細胞の24ウェル形質移入(約260,000細胞)に対しては、500ngの総DNAを、リポフェクタミン2000を使用して各ウェルに形質移入する。hES細胞の12ウェル形質移入に対しては、1ugの総DNAを、Fugene HDを使用して単一のウェルに形質移入する。
【0779】
2.RNA形質移入
上記に記載する精製RNAを、HEK293T細胞への形質移入に使用する。1〜2ugのRNAを、製造者の指示に従いリポフェクタミン2000を使用して約260,000個に形質移入し得る。Cas9およびキメラRNAのRNA送達を
図28に示す。
【0780】
インビトロインデル形成アッセイ
形質移入後72時間で細胞を回収し、二本鎖切断の指標としてのインデル形成に関してアッセイする。
【0781】
簡潔に言えば、標的配列の周りのゲノム領域を、高フィデリティポリメラーゼを使用してPCR増幅する(約400〜600bpアンプリコンサイズ)。産物を精製し、等濃度に標準化し、95℃から4℃まで徐々にアニーリングしてDNAヘテロ二本鎖を形成させる。アニーリング後、Cel−I酵素を使用してヘテロ二本鎖を開裂し、得られた産物をポリアクリルアミドゲル上で分離し、インデル効率を計算する。
【0782】
動物におけるインビボ原理証明
送達機構
AAVまたはレンチウイルス作製については他の部分に記載される。
【0783】
ナノ粒子製剤:ナノ粒子製剤にRNAを混合する
市販のキットを使用して、マウスにおけるDNAプラスミドの流体力学的尾静脈注射を実施する。
Cas9およびガイド配列は、ウイルス、ナノ粒子コーティングRNA混合物、またはDNAプラスミドとして送達され、被験動物に注射される。並行する一組の対照動物に、滅菌生理食塩水、Cas9およびGFP、またはガイド配列およびGFP単独を注射する。
【0784】
注射後3週間で症状の改善に関して動物を調べて犠牲にする。関係する臓器系のインデル形成を分析する。表現型アッセイには、HDL、LDL、脂質の血中濃度が含まれる。
【0785】
インデル形成アッセイ
市販キットを使用して組織からDNAを抽出する;インデルアッセイは、インビトロ実証について記載されるとおり実施し得る。
【0786】
CRISPR−Cas系の治療適用は、候補疾患遺伝子の組織特異的かつ時間的に制御された標的欠失の達成に適している。例としては、数ある障害の中でも特に、コレステロールおよび脂肪酸代謝、アミロイド病、ドミナントネガティブ疾患、潜伏ウイルス感染症に関与する遺伝子が挙げられる。
【0787】
遺伝子座に標的インデルを導入するためのシングルガイドRNAの例
【0788】
【表35】
[この文献は図面を表示できません]
遺伝子座に染色体微小欠失を導入するためのガイドRNA対の例
【0789】
【表36】
[この文献は図面を表示できません]
【0790】
実施例19:疾患原因突然変異を有する遺伝子に対する修復の標的インテグレーション;酵素欠損症および他の関連疾患の再現
研究設計
I.遺伝子標的の同定および設計
・実施例22に記載される
II.送達系に対するガイド配列および修復テンプレートのクローニング
・上記の実施例22に記載される
・本出願人らは、罹患アレルを含む相同性アームを含めるためのDNA修復テンプレートならびに野生型修復テンプレートをクローニングする
III.細胞系に関するインビトロ検証
a.形質移入については、上記の実施例22に記載される;Ca9、ガイドRNA、および修復テンプレートを関連性のある細胞型に同時形質移入する。
b.インビトロ修復アッセイ
i.本出願人らは形質移入後72時間で細胞を回収し、修復に関してアッセイする
ii.簡潔に言えば、本出願人らは修復テンプレートの周りのゲノム領域を、高フィデリティポリメラーゼを使用してPCR増幅する。本出願人らは突然変異体アレルの発生率の低下に関して産物を配列決定する。
IV.動物におけるインビボ原理証明
a.送達機構については、上記の実施例22および34に記載される。
b.インビボ修復アッセイ
i.本出願人らは、インビトロ実証に記載するとおり修復アッセイを実施する。
V.治療適用
CRISPR−Cas系は、候補疾患遺伝子の組織特異的かつ時間的に制御された標的欠失の達成に適している。例としては、数ある障害の中でも特に、コレステロールおよび脂肪酸代謝、アミロイド病、ドミナントネガティブ疾患、潜伏ウイルス感染症に関与する遺伝子が挙げられる。
【0791】
修復テンプレートによる一つの単一ミスセンス突然変異の例:
【0792】
【表37】
[この文献は図面を表示できません]
【0793】
実施例20:緑内障、アミロイドーシス、およびハンチントン病におけるCRISPR−Cas系の治療適用
緑内障:本出願人らは、ミオシリン(mycilin)(MYOC)遺伝子の第1のエクソンをターゲティングするガイドRNAを設計する。本出願人らはアデノウイルスベクター(Ad5)を使用してCas9ならびにMYOC遺伝子をターゲティングするガイドRNAの両方をパッケージングする。本出願人らはこのアデノウイルスベクターを、細胞が緑内障の病態生理に関係付けられている小柱網に注入する。本出願人らは、初めにこれを、突然変異MYOC遺伝子を有するマウスモデルで試験して、アデノウイルスベクターが視力を改善し、および眼圧を低下させるかどうかを見る。ヒトにおける治療適用も同様の戦略を用いる。
【0794】
アミロイドーシス:本出願人らは、肝臓におけるトランスサイレチン(TTR)遺伝子の第1のエクソンをターゲティングするガイドRNAを設計する。本出願人らはAAV8を使用してCas9ならびにTTR遺伝子の第1のエクソンをターゲティングするガイドRNAをパッケージングする。AAV8は、効率的に肝臓をターゲティングすることが示されており、静脈内投与され得る。Cas9は、アルブミンプロモーターなどの肝臓特異的プロモーターを使用するか、あるいは構成的プロモーターを使用してドライブすることができる。pol3プロモーターがガイドRNAをドライブする。
【0795】
あるいは、本出願人らは、プラスミドDNAの流体力学的送達を利用してTTR遺伝子をノックアウトする。本出願人らは、Cas9とTTRのエクソン1をターゲティングするガイドRNAとをコードするプラスミドを送達する。
【0796】
さらなる代替的な手法として、本出願人らはRNAの組み合わせ(Cas9のmRNA、およびガイドRNA)を投与する。RNAはLife TechnologiesのInvivofectamineなどのリポソームを使用してパッケージングし、静脈内送達することができる。RNAによって誘発される免疫原性を低下させ、Cas9発現レベルおよびガイドRNAの安定性を高めるため、本出願人らは5’キャッピングを用いてCas9 mRNAを改変する。本出願人らはまた、改変されたRNAヌクレオチドをCas9 mRNAおよびガイドRNAに組み込むことにより、それらの安定性を高め、免疫原性を低下させる(例えばTLRの活性化)。効率を高めるため、本出願人らは複数回用量のウイルス、DNA、またはRNAを投与する。
【0797】
ハンチントン病:本出願人らは、患者のHTT遺伝子におけるアレル特異的突然変異に基づきガイドRNAを設計する。例えば、CAGリピートが伸長したHTTがヘテロ接合の患者において、本出願人らは、突然変異体HTTアレルに特有のヌクレオチド配列を同定し、それを使用してガイドRNAを設計する。本出願人らは、突然変異体塩基がガイドRNAの最後の9bpの範囲内に位置することを確実にする(これは標的サイズとガイドRNAとの間の単一のDNA塩基ミスマッチ間を識別する能力を有することが、本出願人らにより確認されている)。
【0798】
本出願人らは、突然変異体HTTアレル特異的ガイドRNAおよびCas9をAAV9にパッケージングし、ハンチントン病患者の線条体内に送達する。ウイルスは開頭術によって定位的に線条体に注入する。AAV9は、ニューロンを効率的に形質導入することが知られる。本出願人らはヒトシナプシンIなどのニューロン特異的プロモーターを使用してCas9をドライブする。
【0799】
実施例21:HIVにおけるCRISPR−Cas系の治療適用
慢性ウイルス感染症は、有意な罹患率および死亡率の原因である。これらのウイルスの多くに関しては、ウイルス複製の種々の側面を有効にターゲティングする従来の抗ウイルス治療薬が存在するが、現在の治療モダリティは、通常、「ウイルス潜伏」に起因して非治癒的な性質のものである。その性質上、ウイルス潜伏は、活性のあるウイルス産生のないウイルスのライフサイクルにおける休眠期により特徴付けられる。この期間中、ウイルスは大部分が免疫監視機構および従来の治療薬の両方を回避することができるため、ウイルスが宿主内に長期にわたるウイルスリザーバを構築することが可能となり、続いてそこから再活性化し、ウイルスの伝播および伝染を続行することができる。ウイルス潜伏の鍵は、ウイルスゲノムを安定的に維持する能力であり、これは、それぞれウイルスゲノムを細胞質に貯えるかまたはそれを宿主ゲノムにインテグレートするものであるエピソーム潜伏またはプロウイルス潜伏のいずれかによって達成される。初感染を防ぐ有効なワクチン接種がない場合、潜伏リザーバおよび溶菌作用のエピソードにより特徴付けられる慢性ウイルス感染症は重大な影響を及ぼし得る:ヒトパピローマウイルス(HPV)は子宮頸癌をもたらすことがあり、C型肝炎ウイルス(HCV)は肝細胞癌の原因となり、およびヒト免疫不全ウイルスは最終的には宿主免疫系を破壊して日和見感染に対する感受性をもたらす。このように、これらの感染症では、現在利用可能な抗ウイルス治療薬の生涯にわたる使用が必要となる。さらに問題を複雑にしているのは、これらのウイルスゲノムの多くの高い変異性であり、これが有効な治療の存在しない耐性株の進化につながっている。
【0800】
CRISPR−Cas系は、多重的能力のある配列特異的な形で二本鎖DNA切断(DSB)を誘導することが可能な細菌性適応免疫系であり、最近になって哺乳類細胞系内で再構成されている。1つまたは多数のガイドRNAによってDNAをターゲティングすると、介在配列にそれぞれインデルおよび欠失の両方がもたらされ得ることが示されている。このように、この新規技術は、高効率および高特異性で単一細胞内における標的化されかつ多重化されたDNA突然変異作成を達成し得る手段に相当する。結果的に、ウイルスDNA配列に対するCRISPR−Cas系の送達は、進行中のウイルス産生がない場合であっても、潜伏ウイルスゲノムの標的化した破壊および欠失を可能にし得る。
【0801】
例として、HIV−1による慢性感染症は、3300万人の感染者を抱え、毎年260万人の感染が発生している世界的な健康問題である。ウイルス複製の複数の側面を同時にターゲティングする集学的高活性抗レトロウイルス療法(HAART)の使用により、HIV感染の大部分を、末期的でない慢性の病気として管理することが可能となっている。治療しなければ、通常9〜10年以内にHIVからAIDSへの進行が起こり、宿主免疫系の枯渇および日和見感染症の発生がもたらされ、通常はその後間もなく死亡に至る。ウイルス潜伏に続発して、HAARTの中断は必然的にウイルスのリバウンドを引き起こす。さらに、一時的ではあっても治療の寸断により、利用可能な手段では制御不可能なHIV耐性株が選択され得る。加えて、HAART治療のコストは著しく高い:1年に1人当たり10,000〜15,0000米国ドルの範囲内である。このように、ウイルス複製のプロセスではなしに、HIVゲノムを直接ターゲティングする治療手法は、潜伏リザーバの根絶による治癒的な治療選択肢を可能にし得る手段に相当する。
【0802】
HIV−1ターゲティングCRISPR−Cas系の開発および送達は、既存の標的DNA突然変異生成手段、すなわちZFNおよびTALENとは区別され得るユニークな手法に相当し、数多くの治療的関連性を有する。HAARTと併せたCRISPR媒介性DSBおよびインデルによるHIV−1ゲノムの標的破壊および欠失は、宿主内での活性なウイルス産生ならびに潜伏ウイルスリザーバの枯渇を同時に防ぐことを可能にし得る。
【0803】
宿主免疫系にインテグレートされると、CRISPR−Cas系によりHIV−1抵抗性亜集団の生成が可能となり、この亜集団は、ウイルスが完全には根絶されていない場合であっても、宿主免疫活性の維持および再構成を可能にし得る。これは、ウイルスゲノムの破壊によりウイルスの産生およびインテグレーションを妨げることで潜在的に初感染を予防するもので、「ワクチン接種」の手段に相当し得る。CRISPR−Cas系の多重化した性質により、個々の細胞内においてゲノムの複数の側面を同時に標的化することが可能となる。
【0804】
HAARTなどでは、複数の適応突然変異を同時に獲得する必要があるため、突然変異生成によるウイルスのエスケープが最小限に抑えられる。複数のHIV−1株を同時にターゲティングすることができ、従って重感染の可能性が最小限に抑えられ、かつ続く新規組換え株の作成が妨げられる。CRISPR−Cas系の、タンパク質媒介性よりむしろヌクレオチド媒介性の配列特異性により、送達機構を大幅に変更することなく治療薬を迅速に作成することが可能となる。
【0805】
これを達成するため、本出願人らは、有効範囲および有効性を最大化するためのHIV−1株変異体を考慮しながら大多数のHIV−1ゲノムを標的とするCRISPR−CasガイドRNAを作成する。HIV−1サブタイプと変異体との間のゲノム保存の配列解析から、介在するウイルス配列を欠失させるかまたはウイルスの遺伝子機能を破壊し得るフレームシフト突然変異を導入することを目的としたゲノムの隣接保存領域のターゲティングが可能になるはずである。
【0806】
本出願人らは、従来どおり宿主免疫系のアデノウイルスまたはレンチウイルス媒介性感染によるCRISPR−Cas系の送達を達成する。手法に応じて、宿主免疫細胞は、a)単離され、CRISPR−Casが形質導入され、選択され、および宿主に再導入されてもよく、またはb)CRISPR−Cas系の全身送達によりインビボで形質導入されてもよい。第1の手法は、抵抗性免疫集団の作成を可能にする一方、第2の手法は宿主内の潜伏ウイルスリザーバを標的にする傾向が強い。
【0807】
【表38】
[この文献は図面を表示できません]
【0808】
実施例22:嚢胞性線維症におけるΔF508または他の突然変異の標的補修
本発明の態様は、CRISPR−Cas遺伝子治療粒子と生体適合性医薬担体とを含み得る医薬組成物を提供する。別の態様によれば、CFTR遺伝子に突然変異を有する対象を治療するための遺伝子治療方法は、対象の細胞に治療有効量のCRISPR−Cas遺伝子治療粒子を投与することを含む。
【0809】
本実施例は、嚢胞性線維症または嚢胞性線維症関連症状に罹患した、必要性がある対象または患者の気道における、アデノ随伴ウイルス(AAV)粒子を使用したCRISPR−Cas系の遺伝子導入または遺伝子送達を実証する。
【0810】
研究設計:必要性がある対象または患者:関連するヒト、非ヒト霊長類、イヌ、ネコ、ウシ、ウマおよび他の家畜。この研究は、AAVベクターによるCRISPR−Cas系の遺伝子導入の有効性を試験する。本出願人らは、遺伝子発現に十分な導入遺伝子レベルを決定し、Cas9酵素を含むCRISPR−Cas系を利用してΔF508または他のCFTR誘導突然変異をターゲティングする。
【0811】
治療対象は、自発呼吸下に各肺につき薬学的に有効な量のエアロゾル化したAAVベクター系の気管支内送達を受ける。対照対象は、内在性の対照遺伝子を含む同量の偽型AAVベクター系の投与を受ける。ベクター系は、薬学的に許容可能なまたは生体適合性の医薬担体と共に送達され得る。ベクター投与後3週間または適切なインターバルを置いて、嚢胞性線維症関連症状の改善に関して治療対象を調べる。
【0812】
本出願人らは、アデノウイルスまたはAAV粒子を使用する。
【0813】
本出願人らは、各々が1つ以上の調節配列(Cas9用のCbhまたはEF1aプロモーター、キメラガイドRNA用のU6またはH1プロモーター)に作動可能に結合している以下の遺伝子構築物を、1つ以上のアデノウイルスまたはAAVベクターまたは任意の他の適合性ベクターにクローニングする:CFTRΔ508ターゲティングキメラガイドRNA(
図31B)、ΔF508突然変異の修復テンプレート(
図31C)および場合により1つ以上の核局在化シグナルまたは配列(NLS)、例えば2つのNLSを有するコドン最適化Cas9酵素。
【0814】
Cas9標的部位の同定
本出願人らはヒトCFTRゲノム遺伝子座を解析し、Cas9標的部位を同定した(
図31A)。(PAMはNGGまたはNNAGAAW(配列番号___)モチーフを含み得る)。
【0815】
遺伝子修復戦略
本出願人らは、Cas9(またはCas9ニッカーゼ)およびガイドRNAを含むアデノウイルス/AAVベクター系を、F508残基を含有する相同性修復テンプレートを含むアデノウイルス/AAVベクター系と共に対象に、先に考察した送達方法の一つによって導入する。CRISPR−Cas系はCFTRΔ 508キメラガイドRNAによりガイドされ、ニックを入れられるかあるいは開裂されるCFTRゲノム遺伝子座の特定の部位を標的にする。開裂後、嚢胞性線維症をもたらしまたは嚢胞性線維症関連症状を引き起こす欠失を補修する相同組換えによって開裂部位に修復テンプレートが挿入される。適切なガイドRNAでCRISPR系を直接送達し、その全身性の導入を提供するこの戦略を用いて遺伝子突然変異をターゲティングし、表Bにあるような代謝、肝臓、腎臓およびタンパク質の疾患および障害を引き起こす遺伝子を編集または他の方法で操作することができる。
【0816】
実施例23:遺伝子ノックアウト細胞ライブラリの作成
本実施例は、各細胞がノックアウトされた単一遺伝子を有する細胞ライブラリを作成する方法を実証する:
本出願人らは、ES細胞のライブラリであって、各細胞はノックアウトされた単一遺伝子を有し、かつES細胞のライブラリ全体はあらゆる単一遺伝子がノックアウトされているライブラリを作製する。このライブラリは、細胞プロセスならびに疾患における遺伝子機能のスクリーニングに有用である。
【0817】
この細胞ライブラリを作成するため、本出願人らは、誘導性プロモーター(例えばドキシサイクリン誘導性プロモーター)によりドライブされるCas9をES細胞にインテグレートする。加えて、本出願人らは、ES細胞において特定の遺伝子を標的にする単一のガイドRNAをインテグレートする。ES細胞ライブラリを作成するため、本出願人らは、単純に、ヒトゲノムにおける各遺伝子を標的にするガイドRNAをコードする遺伝子のライブラリとES細胞を混合する。本出願人らは、初めに、単一のBxB1 attB部位をヒトES細胞のAAVS1遺伝子座に導入する。次に本出願人らは、BxB1インテグラーゼを使用して、AAVS1遺伝子座のBxB1 attB部位に対する個々のガイドRNA遺伝子のインテグレーションを促進する。インテグレーションを促進するため、各ガイドRNA遺伝子は単一のattP部位を担持するプラスミド上に含まれる。このようにしてBxB1がゲノムのattB部位をガイドRNA含有プラスミド上のattP部位と組み換え得る。
【0818】
細胞ライブラリを作成するため、本出願人らは、インテグレートされた単一のガイドRNAを有しかつCas9発現を誘導する細胞のライブラリを取る。誘導後、ガイドRNAによって指定された部位でCas9が二本鎖切断を媒介する。この細胞ライブラリの多様性を確認するため、本出願人らは全エクソンシーケンシングを実施し、本出願人らが単一の標的遺伝子毎に突然変異を観察可能であることを確実にする。この細胞ライブラリは、全ライブラリベースのスクリーニングを含めた種々の用途に使用することができ、または選別して個々の細胞クローンにし、個々のノックアウトヒト遺伝子を有するクローン細胞系の迅速作成を促進することができる。
【0819】
実施例24:Cas9を使用する微細藻類のエンジニアリング
Cas9を送達する方法
方法1:本出願人らは、構成的プロモーター、例えば、Hsp70A−Rbc S2またはベータ2−チューブリンの制御下でCas9を発現するベクターを使用してCas9およびガイドRNAを送達する。
【0820】
方法2:本出願人らは、構成的プロモーター、例えば、Hsp70A−Rbc S2またはベータ2−チューブリンの制御下でCas9およびT7ポリメラーゼを発現するベクターを使用してCas9およびT7ポリメラーゼを送達する。ガイドRNAは、ガイドRNAをドライブするT7プロモーターを含有するベクターを使用して送達する。
【0821】
方法3:本出願人らは、Cas9mRNAおよびインビトロで転写されたガイドRNAを藻類細胞に送達する。RNAは、インビトロで転写させることができる。Cas9mRNAは、Cas9についてのコード領域およびCas9mRNAの安定化を確保するためのCop1からの3’UTRからなる。
【0822】
相同組換えのため、本出願人らは、追加の相同組換え修復テンプレートを提供する。
【0823】
ベータ−2チューブリンプロモーターの制御下でCas9の発現をドライブするカセットと、それに続くCop1の3’UTRについての配列。
【化12】
[この文献は図面を表示できません]
【化13】
[この文献は図面を表示できません]
【化14】
[この文献は図面を表示できません]
【化15】
[この文献は図面を表示できません]
【0824】
ベータ−2チューブリンプロモーターの制御下でT7ポリメラーゼの発現をドライブするカセットと、それに続くCop1の3’UTRについての配列:
【化16】
[この文献は図面を表示できません]
【化17】
[この文献は図面を表示できません]
【0825】
T7プロモーターによりドライブされるガイドRNAの配列(T7プロモーター、Nは、ターゲティング配列を表す):
【化18】
[この文献は図面を表示できません]
遺伝子送達:
Chlamydomonas Resource Centerからのコナミドリムシ(Chlamydomonas reinhardtii)株CC−124およびCC−125を、エレクトロポレーションに使用する。エレクトロポレーションプロトコルは、GeneArt Chlamydomonas Engineeringキットからの標準的な推奨プロトコルに従う。
【0826】
また、本出願人らは、Cas9を構成的に発現するコナミドリムシ(Chlamydomonas reinhardtii)の系統を生成する。このことは、pChlamy1(PvuIを使用して線形化)を使用し、ハイグロマイシン耐性コロニーを選択することにより行うことができる。Cas9を含有するpChlamy1についての配列を以下に示す。遺伝子ノックアウトを達成するためのこの手法において、ガイドRNAのためのRNAを送達することが必要なだけである。相同組換えのため、本出願人らは、ガイドRNAおよび線形化相同組換えテンプレートを送達する。
【0827】
pChlamy1−Cas9:
【化19】
[この文献は図面を表示できません]
【化20】
[この文献は図面を表示できません]
【化21】
[この文献は図面を表示できません]
【化22】
[この文献は図面を表示できません]
【化23】
[この文献は図面を表示できません]
【化24】
[この文献は図面を表示できません]
【0828】
全ての改変コナミドリムシ(Chlamydomonas reinhardtii)細胞について、本出願人らは、PCR、SURVEYORヌクレアーゼアッセイ、およびDNAシーケンシングを使用して良好な改変を確認した。
【0829】
実施例25:Cas9を使用して種々の疾患型をターゲティングする
タンパク質コード配列の突然変異が関与する疾患:
優性障害は、ドミナントネガティブアレルを不活性化することによりターゲティングされ得る。本出願人らは、Cas9を使用してドミナントネガティブアレルにおけるユニーク配列をターゲティングし、NHEJによって突然変異を導入する。NHEJによって誘導されるインデルは、ドミナントネガティブアレルにフレームシフト突然変異を導入してドミナントネガティブタンパク質を除去することが可能であり得る。これは遺伝子がハプロ不全でない(haplo−sufficient)場合に機能し得る(例えばMYOC突然変異によって生じる緑内障およびハンチントン病)。
【0830】
劣性遺伝疾患は、両方のアレルで疾患突然変異を修復することによりターゲティングされ得る。分裂細胞について、本出願人らはCas9を使用して突然変異部位の近傍に二本鎖切断を導入し、外来性組換えテンプレートを使用して相同組換え速度を増加させる。分裂細胞について、これは多重ニッカーゼ活性を用いて達成されてもよく、それにより、相補的なオーバーハングを有する外来性DNA断片のNHEJ媒介性ライゲーションによる両方のアレルの突然変異配列の置換が触媒される。
【0831】
本出願人らはまた、Cas9を使用して保護突然変異も導入する(例えばHIV感染を防ぐためのCCR5の不活性化、コレステロールを減少させるためのPCSK9の不活性化、またはアルツハイマー病の可能性を低下させるAPPへのA673Tの導入)。
【0832】
非コード配列が関与する疾患
本出願人らは、Cas9を使用してプロモーター領域の非コード配列を破壊し、転写因子結合部位を変化させ、およびエンハンサーまたはリプレッサーエレメントを変化させる。例えば、Cas9を使用して造血幹細胞のKlf1エンハンサーEHS1を切り出すことにより、BCL11aレベルを低下させ、分化した赤血球における胎児グロビン遺伝子発現を再活性化し得る。
【0833】
本出願人らはまた、Cas9を使用して5’または3’非翻訳領域の機能性モチーフを破壊する。例えば、筋強直性ジストロフィーの治療のため、Cas9を使用してDMPK遺伝子のCTGリピート伸長を除去し得る。
【0834】
実施例26:多重化ニッカーゼ
本出願に詳説されるCas9の最適化の態様および教示を使用してCas9ニッカーゼもまた作成し得る。本出願人らは、Cas9ニッカーゼをガイドRNAのペアと組み合わせて使用して、規定のオーバーハングを有するDNA二本鎖切断を作成する。ガイドRNAの2つのペアが使用されるとき、介在するDNA断片を切り出すことが可能である。2つのガイドRNAペアで外来性DNA断片を開裂することによってゲノムDNAと適合性のオーバーハングを作成する場合、外来性DNA断片をゲノムDNAにライゲートして切り出された断片を置き換え得る。例えば、これを用いてハンチンチン(huntintin)(HTT)遺伝子のトリヌクレオチドリピート伸長を除去し、ハンチントン病を治療し得る。
【0835】
より少数のCAGリピートを有する外来性DNAが提供される場合、同じオーバーハングを有するDNA断片を作成することが可能であり得るとともに、HTTゲノム遺伝子座にライゲートして、切り出された断片を置き換えることができる。
【化25】
[この文献は図面を表示できません]
【0836】
これらは、それぞれ配列番号_〜_である。ゲノムへの外来性DNA断片のライゲーションは相同組換え機構を必要とせず、従ってこの方法はニューロンなどの分裂終了細胞で用いられ得る。
【0837】
実施例27:CRISPR系の送達
Cas9およびそのキメラガイドRNA、またはtracrRNAとcrRNAとの組み合わせは、DNAとしても、あるいはRNAとしても送達することができる。Cas9およびガイドRNAを両方ともにRNA(普通のまたは塩基もしくは骨格改変を含む)分子として送達することを用いて、Cas9タンパク質が細胞内に留まる時間を低減することができる。これにより標的細胞におけるオフターゲット開裂活性のレベルが低下し得る。mRNAとしてのCas9の送達はタンパク質に翻訳されるまでに時間がかかるため、Cas9 mRNAを送達した数時間後にガイドRNAを送達して、Cas9タンパク質との相互作用に利用可能なガイドRNAのレベルを最大化することが有利であり得る。
【0838】
ガイドRNAの量が限られている状況では、Cas9をmRNAとして導入し、かつガイドRNAを、ガイドRNAの発現をドライブするプロモーターを含むDNA発現カセットの形態で導入することが望ましい場合もある。このようにして利用可能なガイドRNAの量を転写によって増幅し得る。
【0839】
Cas9(DNAまたはRNA)およびガイドRNA(DNAまたはRNA)を宿主細胞に導入するため種々の送達系を導入することができる。これには、リポソーム、ウイルスベクター、エレクトロポレーション、ナノ粒子、ナノワイヤ(Shalek et al.,Nano Letters,2012)、エキソソームの使用が含まれる。分子トロイの木馬リポソーム(Pardridge et al.,Cold Spring Harb Protoc;2010;doi:10.1101/pdb.prot5407)を使用して、Cas9およびガイドRNAを血液脳関門を越えて送達してもよい。
【0840】
実施例28:トリヌクレオチドリピート障害の治療戦略
本出願で既述したとおり、CRISPR複合体の標的ポリヌクレオチドは複数の疾患関連遺伝子およびポリヌクレオチドを含んでもよく、それらの疾患関連遺伝子の一部はトリヌクレオチドリピート障害と称される(またトリヌクレオチドリピート伸長障害、トリプレットリピート伸長障害またはコドン反復障害とも称される)一連の遺伝的障害に属し得る。
【0841】
これらの疾患は、特定の遺伝子のトリヌクレオチドリピートが正常な安定閾値(通常は遺伝子の点で異なり得る)を超える突然変異により引き起こされる。リピート伸長障害の発見が増えるにつれ、これらの障害を、根底にある類似した特性に基づきいくつかのカテゴリーに分類することが可能となっている。特定の遺伝子のタンパク質コード部分におけるCAGリピート伸長によって引き起こされるハンチントン病(HD)および脊髄小脳失調症は、カテゴリーIに含められる。伸長を有する疾患または障害であって、その表現型が多様になる傾向のある、かつ伸長が通常は規模が小さく、遺伝子のエクソンにも認められるものは、カテゴリーIIに含められる。カテゴリーIIIは、カテゴリーIまたはIIと比べてはるかに大きいリピート伸長によって特徴付けられ、かつ概してタンパク質コード領域の外側に位置する障害または疾患を含む。カテゴリーIII疾患または障害の例には、限定はされないが、脆弱X症候群、筋強直性ジストロフィー、脊髄小脳失調症と、若年性ミオクローヌスてんかんと、フリードライヒ失調症とのうちの2つが含まれる。
【0842】
以下でフリードライヒ失調症に関して言及するものなどの、同様の治療戦略を取り入れて、さらに他のトリヌクレオチドリピートまたは伸長障害にも対処し得る。例えば、ほぼ同一の戦略を用いて治療することのできる別のトリプルリピート疾患は、3’UTRに伸長したCTGモチーフがある筋強直性ジストロフィー1型(DM1)である。フリードライヒ失調症においては、疾患はフラタキシン(FXN)の最初のイントロンにおけるGAAトリヌクレオチドの伸長により生じる。CRISPRを使用した一つの治療戦略は、最初のイントロンからGAAリピートを切り出すことである。伸長したGAAリピートはDNA構造に影響を及ぼすと考えられ、ヘテロクロマチンの形成の動員がもたらされてフラタキシン遺伝子がオフになる(
図32A)。
【0843】
他の治療戦略と比べて競争力のある利点を以下に列挙する:
疾患がフラタキシンの発現低下に起因するため、この場合にsiRNAノックダウンは適用できない。ウイルス遺伝子療法が現在調査されている。動物モデルにおいてHSV−1ベースのベクターを使用してフラタキシン遺伝子が送達され、治療効果が示されている。しかしながら、ウイルスベースのフラタキシン送達の長期有効性は、いくつかの問題を抱えている:第一に、フラタキシンの発現を健常者の天然レベルに一致するように調節することが困難であり、第二に、フラタキシンの長期過剰発現は細胞死を引き起こす。
【0844】
ヌクレアーゼを使用してGAAリピートを切り出すことにより健常な遺伝子型を回復し得るが、ジンクフィンガーヌクレアーゼおよびTALEN戦略は、高い有効性のヌクレアーゼの2つのペアを送達する必要があり、これは送達ならびにヌクレアーゼのエンジニアリングの両方にとって困難である(ZFNまたはTALENによるゲノムDNAの効率的な切り出しは達成が困難である)。
【0845】
上記の戦略とは対照的に、CRISPR−Cas系には明らかな利点がある。Cas9酵素は効率性が高く、かつ多重化し易い、つまり1つ以上の標的を同時に設定し得るということになる。これまでのところ、ゲノムDNAの効率的な切り出しはCas9によるとヒト細胞で30%を超え、30%もの高さであることもあり、将来改善され得る。さらに、ハンチントン病(HD)のような特定のトリヌクレオチドリピート障害に関しては、2つのアレル間に違いがある場合にコード領域におけるトリヌクレオチドリピートが対処され得る。具体的には、HD患者が突然変異体HTTに関してヘテロ接合であり、かつ野生型と突然変異体とのHTTアレル間にSNPなどのヌクレオチドの違いがある場合、Cas9を使用して突然変異体HTTアレルを特異的に標的化し得る。ZFNまたはTALENは、一塩基の違いに基づく2つのアレルを区別する能力を有しないであろう。
【0846】
CRISPR−Cas9酵素を使用してフリードライヒ失調症に対処する戦略を採るにおいて、本出願人らは、GAA伸長に隣接する部位を標的にする複数のガイドRNAを設計し、最も効率性および特異性が高いものを選択する(
図32B)。
【0847】
本出願人らは、FXNのイントロン1を標的にするガイドRNAとCas9との組み合わせを送達することにより、GAA伸長領域の切り出しを媒介する。AAV9を使用してCas9のおよび脊髄における効率的な送達を媒介し得る。
【0848】
GAA伸長に隣接するAluエレメントが重要であると考えられる場合、標的にすることのできる部位の数に制約があり得るが、本出願人らはAluエレメントの破壊を回避する戦略を採り得る。
【0849】
代替的戦略:
Cas9を使用してゲノムを改変するよりむしろ、本出願人らはまた、Cas9(ヌクレアーゼ活性欠損)ベースのDNA結合ドメインを使用して転写活性化ドメインをFXN遺伝子にターゲティングすることでFXN遺伝子を直接活性化し得る。本出願人らは、Cas9媒介性の人為的な転写活性化のロバスト性について取り組み、それが他の方法と比較して十分にロバストであることを確実にする必要があり得る(Tremblay et al.,Transcription Activator−Like Effector Proteins Induce the Expression of the Frataxin Gene;Human Gene Therapy.August 2012,23(8):883−890)。
【0850】
実施例29:Cas9ニッカーゼを使用してオフターゲット開裂を最小限に抑えるための戦略
本出願において既述したとおり、Cas9を、以下の1つ以上の突然変異を介して一本鎖開裂を媒介し得るように突然変異させ得る:D10A、E762A、およびH840A。
【0851】
NHEJによる遺伝子ノックアウトを媒介するため、本出願人らはニッカーゼバージョンのCas9を2つのガイドRNAと共に使用する。各個別のガイドRNAによるオフターゲットニッキングは主に突然変異を伴わず修復されてもよく、二本鎖切断(NHEJによる突然変異を生じさせ得る)は、標的部位が互いに隣接するときに限り起こる。二重ニッキングにより導入される二本鎖切断は平滑末端ではないため、TREX1などの末端プロセシング酵素の同時発現がNHEJ活性レベルを増加させ得る。
【0852】
以下の表形式の標的リストは、以下の疾患に関与する遺伝子に対するものである:
ラフォラ病−ニューロンにおけるグリコーゲンを低下させるための標的GSY1またはPPP1R3C(PTG)。
【0853】
高コレステロール血症−標的PCSK9
標的配列をペア(LおよびR)で列挙し、ここではスペーサーにおけるヌクレオチドの数は異なる(0〜3bp)。各スペーサーそれ自体を野生型Cas9と共に使用して標的遺伝子座に二本鎖切断を導入し得る。
【0854】
【表39】
[この文献は図面を表示できません]
【0855】
ガイドRNAの安定性を向上させかつ特異性を増加させるための代替的戦略
1.ガイドRNAの5’におけるヌクレオチドは、天然RNAのようなリン酸エステル結合よりむしろ、チオールエステル結合で連結され得る。チオールエステル結合は、内因性RNA分解機構によるガイドRNAの消化を防止し得る。
【0856】
2.ガイドRNAのガイド配列(5’20bp)におけるヌクレオチドは、結合特異性を改善するためのベースとして架橋核酸(bridged nucleic acid:BNA)を使用することができる。
【0857】
実施例30:迅速多重ゲノム編集用のCRISPR−Cas
本発明の態様は、標的設計後3〜4日以内に遺伝子改変の効率および特異性を試験することができ、かつ2〜3週間以内に改変されたクローン細胞系を得ることができるプロトコルおよび方法に関する。
【0858】
プログラム可能なヌクレアーゼは、ゲノムエンジニアリングを高精度で媒介するのに強力な技術である。微生物CRISPR適応免疫系由来のRNAガイドCas9ヌクレアーゼを使用して、単純にそのガイドRNAにおいて20ntターゲティング配列を指定することにより真核細胞における効率的なゲノム編集を促進することができる。本出願人らは、哺乳類細胞における効率的なゲノム編集を促進し、かつ下流機能性研究用の細胞系を作成するためCas9を応用する一組のプロトコルを記載する。標的設計から始めて3〜4日以内に効率的かつ特異的な遺伝子改変を達成することができ、かつ2〜3週間以内に改変されたクローン細胞系を得ることができる。
【0859】
生体系および生物をエンジニアリングする能力は、基礎科学、医薬、およびバイオテクノロジー全域にわたる非常に大きな適用可能性を有している。ここで、内在性ゲノム遺伝子座の正確な編集を促進するプログラム可能な配列特異的エンドヌクレアーゼが、これまで遺伝学的に扱い易くなかったものを含め、広範囲の種における遺伝的エレメントおよび原因遺伝子変異の体系的調査を可能にする。ジンクフィンガーヌクレアーゼ(ZFN)、転写活性化因子様エフェクターヌクレアーゼ(TALEN)、およびRNAガイドCRISPR−Casヌクレアーゼシステムを含め、多くのゲノム編集技術が近年出現している。最初の2つの技術は、エンドヌクレアーゼ触媒ドメインをモジュール式DNA結合タンパク質にテザー係留して、特定のゲノム遺伝子座に標的DNA二本鎖切断(DSB)を誘導するという共通した戦略を用いる。対照的に、Cas9は、標的DNAとのワトソン・クリック型塩基対合を介して小さいRNAにガイドされるヌクレアーゼであり、設計が容易で効率的な、かつ種々の細胞型および生物のハイスループットの多重化した遺伝子編集に良く適したシステムを呈する。ここで本出願人らは、最近開発されたCas9ヌクレアーゼを応用して哺乳類細胞における効率的なゲノム編集を促進し、かつ下流機能性研究用の細胞系を作成する一組のプロトコルを記載する。
【0860】
ZFNおよびTALENと同様に、Cas9は標的ゲノム遺伝子座におけるDSBを刺激することによりゲノム編集を促進する。Cas9によって開裂されると、標的遺伝子座は2つの主要なDNA損傷修復経路であるエラープローン非相同末端結合(NHEJ)経路または高フィデリティ相同性組換え修復(HDR)経路のうちの一方を経る。いずれの経路を利用しても所望の編集結果を達成し得る。
【0861】
NHEJ:修復テンプレートが存在しない場合、NHEJプロセスはDSBを再びライゲートし直し、これによりインデル突然変異の形態の傷跡が残り得る。コードエクソン内に現れるインデルはフレームシフト突然変異および未成熟終止コドンをもたらし得るため、このプロセスを利用して遺伝子ノックアウトを達成することができる。ゲノムにおいて大きい欠失を媒介するため複数のDSBも利用し得る。
【0862】
HDR:相同性組換え修復は、NHEJの代替となる主要なDNA修復経路である。HDRは典型的にはNHEJと比べて起こる頻度が低いが、HDRを利用すると、外因的に導入された修復テンプレートの存在下で標的遺伝子座に正確な定義付けられた改変を作成し得る。修復テンプレートは、二本鎖DNAの形態であって、挿入配列に隣接する相同性アームを含む従来のDNAターゲティング構築物と同様に設計されてもよく、あるいは一本鎖DNAオリゴヌクレオチド(ssODN)の形態であってもよい。後者は、原因遺伝子変異を探索するための単一のヌクレオチド突然変異の導入など、ゲノムに小さい編集を作製するための有効かつ単純な方法を提供する。NHEJと異なり、HDRは概して分裂細胞においてのみ活性であり、その効率は細胞型および細胞状態に応じて変化する。
【0863】
CRISPRの概要:CRISPR−Cas系は、対照的に、Cas9ヌクレアーゼと低分子ガイドRNAとからなる最小でも二成分系である。Cas9を異なる遺伝子座にターゲティングし直し、または複数の遺伝子を同時に編集するために必要なことは、単純に、異なる20bpオリゴヌクレオチドのクローニングである。Cas9ヌクレアーゼの特異性は未だ完全には解明されていないが、CRISPR−Cas系の単純なワトソン・クリック型塩基対合はZFNまたはTALENドメインのそれより予測可能性が高いように思われる。
【0864】
II型CRISPR−Cas(クラスター化等間隔短鎖回分リピート)は、Cas9を使用して外来性遺伝子エレメントを開裂する細菌適応免疫系である。Cas9は、可変的crRNAと必須の補助的tracrRNAとの非コードRNAのペアによりガイドされる。crRNAは、ワトソン・クリック型塩基対合で標的DNAの位置を特定することにより特異性を決定する20ntガイド配列を含む。天然の細菌系では複数のcrRNAが共転写され、Cas9を種々の標的に向けさせる。化膿性連鎖球菌(Streptococcus pyogenes)に由来するCRISPR−Cas系では、標的DNAが5’−NGG/NRGプロトスペーサー隣接モチーフ(PAM)(他のCRISPR系については異なり得る)の直前になければならない。
【0865】
CRISPR−Casは、哺乳類細胞ではヒトコドン最適化Cas9および必須のRNA成分の異種発現により再構成される。さらに、crRNAとtracrRNAとを融合してキメラの合成ガイドRNA(sgRNA)を作り出すことができる。このように、sgRNA内の20ntガイド配列を変えることにより、目的とするいかなる標的にもCas9を仕向け直すことができる。
【0866】
その実現の容易さおよび多重化可能性を所与として、Cas9は、NHEJおよびHDRの両方による特定の突然変異を担持するエンジニアリングされた真核細胞の作成に用いられてきた。加えて、sgRNAおよびCas9をコードするmRNAの胚への直接注入が、複数の改変アレルを有するトランスジェニックマウスの迅速な作成を可能にしている;これらの結果は、本来遺伝的に扱いが困難な生物の編集に有望である。
【0867】
その触媒ドメインの1つに破壊を有する突然変異体Cas9が、DNAを開裂するというよりむしろそれにニックを入れるようにエンジニアリングされており、一本鎖切断およびHDRによる優先的修復が可能となって、オフターゲットDSBによる望ましくないインデル突然変異が潜在的に改良されている。加えて、突然変異したDNA開裂触媒残基を両方ともに有するCas9突然変異体が、大腸菌(E.coli)における転写調節を可能にするように適合されており、多様な適用に合わせてCas9を機能性にし得る可能性を実証している。本発明の特定の態様は、ヒト細胞の多重編集用Cas9の構築および適用に関する。
【0868】
本出願人らは、真核生物遺伝子編集を促進するため核局在化配列が隣接するヒトコドン最適化Cas9を提供している。本出願人らは、20ntガイド配列を設計するに当たっての考慮点、sgRNAの迅速な構築および機能検証プロトコル、および最後に、Cas9ヌクレアーゼを使用したヒト胎児腎臓系(HEK−293FT)およびヒト幹細胞系(HUES9)におけるNHEJベースおよびHDRベースの両方のゲノム改変の媒介を記載する。このプロトコルは他の細胞型および生物にも同様に適用することができる。
【0869】
sgRNAの標的選択:遺伝子ターゲティング用の20ntガイド配列の選択には、2つの主な考慮点がある:1)化膿性連鎖球菌(S.pyogenes)Cas9については標的配列が5’−NGG PAMの前になければならず、および2)ガイド配列はオフターゲット活性を最小限に抑えるように選択されなければならない。本出願人らは、目的の入力配列を取り込み好適な標的部位を同定するオンラインCas9ターゲティング設計ツールを提供した。各sgRNAについてオフターゲット改変を実験的に評価するため、本出願人らはまた、塩基対合ミスマッチのアイデンティティ、位置、および分布の効果に関する本出願人らの定量的特異性分析に従い順位が付けられた、意図する各標的についての計算的に予測されたオフターゲット部位も提供する。
【0870】
計算的に予測されたオフターゲット部位に関する詳細情報は以下のとおりである:
オフターゲット開裂活性の考慮点:他のヌクレアーゼと同様に、Cas9は低い頻度でゲノムにおけるオフターゲットDNA標的を開裂し得る。所与のガイド配列がオフターゲット活性を呈する程度は、酵素濃度、用いられる特定のガイド配列の熱力学、および標的ゲノムにおける同様の配列の存在量を含めた複合的な要因に依存する。Cas9の常法の適用については、オフターゲット開裂の程度を最小限に抑えるとともに、オフターゲット開裂の存在を検出可能である方法を考慮することが重要である。
【0871】
オフターゲット活性の最小化:細胞系における適用について、本出願人らは、以下の2ステップでオフターゲットゲノム改変の程度を低下させることを推奨する。第一に、本発明者らのオンラインCRISPR標的選択ツールを使用して、所与のガイド配列がオフターゲット部位を有する可能性を計算的に評価することが可能である。このような分析は、ガイド配列と同様の配列であるオフターゲット配列に関してゲノムを網羅的に検索することにより実施される。sgRNAとその標的DNAとの間のミスマッチ塩基の効果の包括的な実験研究から、ミスマッチの許容範囲は、1)位置依存性−ガイド配列の3’末端側8〜14bpは、5’塩基と比べてミスマッチに対する許容度が低い、2)数量依存性−一般に3個より多いミスマッチは許容されない、3)ガイド配列依存性−一部のガイド配列は他と比べてミスマッチに対する許容度が低い、および4)濃度依存性−オフターゲット開裂は形質移入されたDNAの量に対する感度が極めて高いことが明らかになった。本出願人らの標的部位分析ウェブツール(ウェブサイトgenome−engineering.org/toolsで利用可能)は、これらの基準を統合し、標的ゲノムにおける推定オフターゲット部位の予測を提供する。第二に、本出願人らは、Cas9およびsgRNA発現プラスミドの量をタイトレートしてオフターゲット活性を最小限に抑えることを推奨する。
【0872】
オフターゲット活性の検出:本出願人らのCRISPRターゲティングウェブツールを使用して、最も可能性の高いオフターゲット部位ならびにそれらの部位のSURVEYORまたはシーケンシング分析を実施するプライマーのリストを作成することが可能である。Cas9を使用して作成されるアイソジェニッククローンについて、本出願人らは、これらの候補オフターゲット部位のシーケンシングにより任意の望ましくない突然変異を調べることを強く推奨する。予測された候補リストに含まれない部位にオフターゲット改変があり得ることは注記に値し、完全なゲノム配列を実施してオフターゲット部位がないことを完全に確かめるべきである。さらに、同じゲノム内にいくつかのDSBが誘導される多重アッセイでは、低率の転座イベントがあり得、ディープシーケンシングなどの種々の技法を用いて評価され得る。
【0873】
本オンラインツールは、1)sgRNA構築物の調製、2)標的改変効率のアッセイ、および3)潜在的なオフターゲット部位における開裂の評価に必要なあらゆるオリゴおよびプライマーの配列を提供する。sgRNAの発現に使用されるU6 RNAポリメラーゼIIIプロモーターは、その転写物の最初の塩基としてグアニン(G)ヌクレオチドを好むため、20ntガイド配列がGから始まらないsgRNAの5’に追加のGが付加されることは注記に値する。
【0874】
sgRNAの構築および送達手法:所望の適用に応じて、sgRNAは、1)発現カセットを含有するPCRアンプリコン、または2)sgRNA発現プラスミドのいずれかとして送達され得る。PCRベースのsgRNA送達は、U6プロモーターテンプレートの増幅に使用されるリバースPCRプライマーにカスタムのsgRNA配列を付加する。得られるアンプリコンが、Cas9含有プラスミド(PX165)と同時形質移入され得る。この方法は、sgRNAコードプライマーを得て僅か数時間後に機能性試験用の細胞形質移入を実施することができるため、複数の候補sgRNAの迅速スクリーニングに最適である。この単純な方法ではプラスミドベースのクローニングおよび配列検証が不要となるため、大規模なノックアウトライブラリの作成または他のスケールに影響される適用のため多数のsgRNAを試験しまたは同時形質移入することに良く適している。プラスミドベースのsgRNA送達に必要な約20bpオリゴと比較して、sgRNAコードプライマーが100bpを超える点は留意すべきである。
【0875】
sgRNA用の発現プラスミドの構築もまた単純かつ高速であり、部分的に相補的なオリゴヌクレオチドのペアによる単一のクローニングことを含む。オリゴペアのアニーリング後、得られるガイド配列が、Cas9およびsgRNA配列の残り部分を有する不変の足場の両方を有するプラスミド(PX330)に挿入され得る。形質移入プラスミドもまた、インビボ送達用のウイルス産生を可能にするように改変され得る。
【0876】
PCRおよびプラスミドベースの送達に加え、Cas9およびsgRNAの両方をRNAとして細胞に導入することができる。
【0877】
修復テンプレートの設計:従来、標的DNA改変は、変化させる部位に隣接する相同性アームを含むプラスミドベースのドナー修復テンプレートを使用する必要があった。両側の相同性アームの長さは様々であってもよいが、典型的には500bpより長い。この方法を使用して、蛍光タンパク質または抗生物質耐性マーカーなどのレポーター遺伝子の挿入を含む大きい改変を作成することができる。ターゲティングプラスミドの設計および構築は、他の部分に記載されている。
【0878】
最近になって、クローニングを含まない定義付けられた遺伝子座の範囲内の短い改変には、ターゲティングプラスミドの代わりに一本鎖DNAオリゴヌクレオチド(ssODN)が使用されている。高いHDR効率を達成するため、ssODNは標的領域と相同の少なくとも40bpのフランキング配列を両側に含み、標的遺伝子座に対してセンス方向にも、またはアンチセンス方向にも向くことができる。
【0879】
機能性試験
SURVEYORヌクレアーゼアッセイ:本出願人らは、SURVEYORヌクレアーゼアッセイ(またはPCRアンプリコンシーケンシングのいずれかによりインデル突然変異を検出した。本出願人らのオンラインCRISPR標的設計ツールは、両方の手法に推奨されるプライマーを提供する。しかしながら、SURVEYORまたはシーケンシングプライマーはまた、ゲノムDNAから目的の領域を増幅し、かつ非特異的なアンプリコンを回避するようにNCBIプライマーBlastを使用して手動で設計されてもよい。SURVEYORプライマーは、ゲル電気泳動による開裂バンドの明確な可視化を可能にするため、Cas9標的の両側で300〜400bp(600〜800bpの総アンプリコンに対して)を増幅するように設計されなければならない。過剰なプライマー二量体形成を防ぐため、SURVEYORプライマーは、典型的には融解温度が約60℃の25nt長未満であるように設計されなければならない。本出願人らは、特定のPCRアンプリコンに対する候補プライマーの各ペアを試験し、ならびにSURVEYORヌクレアーゼ消化プロセスの間に非特異的な開裂が存在しないことについても試験することを推奨する。
【0880】
プラスミド媒介性またはssODN媒介性HDR:HDRは改変領域のPCR増幅およびシーケンシングにより検出することができる。この目的上、PCRプライマーは、残存する修復テンプレート(HDR FwdおよびRev、
図30)の誤検出を回避するため相同性アームが広がる領域の外側にアニールしなければならない。ssODN媒介性HDRはSURVEYOR PCRプライマーを使用することができる。
【0881】
シーケンシングによるインデルまたはHDRの検出:本出願人らは、サンガー法または次世代ディープシーケンシング(NGS)のいずれかにより標的ゲノム改変を検出した。前者については、SURVEYORプライマーまたはHDRプライマーのいずれかを使用して改変領域からゲノムDNAを増幅することができる。アンプリコンは、形質転換のためpUC19などのプラスミドにサブクローニングしなければならない;個々のコロニーをシーケンシングすることによりクローン遺伝子型を明らかにすることができる。
【0882】
本出願人らは、より短いアンプリコン用の次世代シーケンシング(NGS)プライマーを、典型的には100〜200bpのサイズ範囲で設計した。NHEJ突然変異の検出には、より長いインデルの検出が可能であるように、プライミング領域とCas9標的部位との間が少なくとも10〜20bpのプライマーを設計することが重要である。本出願人らは、多重ディープシーケンシング用のバーコード付きアダプターを取り付ける二段階PCR法に関する指針を提供する。本出願人らは、偽陽性インデルレベルが全般的に低いことから、Illuminaプラットフォームを推奨する。次に、ClustalW、Geneious、または単純な配列解析スクリプトなどのリードアラインメントプログラムを用いてオフターゲット分析(先述した)を実施することができる。
【0883】
材料および試薬
sgRNA調製:
超高純度DNアーゼRNアーゼ不含蒸留水(Life Technologies、カタログ番号10977−023)
Herculase II融合ポリメラーゼ(Agilent Technologies、カタログ番号600679)
重要。標準Taqポリメラーゼ、これは3’−5’エキソヌクレアーゼ校正活性を欠いており、フィデリティが低く、増幅エラーをもたらし得る。Herculase IIは高フィデリティポリメラーゼ(Pfuと同等のフィデリティ)であり、最小限の最適化で高収率のPCR産物を生じる。他の高フィデリティポリメラーゼに代えてもよい。
【0884】
Herculase II反応緩衝液(5×;Agilent Technologies、ポリメラーゼと同梱)
dNTP溶液ミックス(各25mM;Enzymatics、カタログ番号N205L)
MgCl2(25mM;ThermoScientific、カタログ番号R0971)
QIAquickゲル抽出キット(Qiagen、カタログ番号28704)
QIAprep spinミニプレップキット(Qiagen、カタログ番号27106)
超高純度TBE緩衝液(10×;Life Technologies、カタログ番号15581−028)
SeaKem LEアガロース(Lonza、カタログ番号50004)
SYBR Safe DNA染色(10,000×;Life Technologies、カタログ番号S33102)
1kb Plus DNAラダー(Life Technologies、カタログ番号10787−018)
TrackIt CyanOrangeローディング緩衝液(Life Technologies、カタログ番号10482−028)
FastDigest BbsI(BpiI)(Fermentas/ThermoScientific、カタログ番号FD1014)
Fermentas Tango緩衝液(Fermentas/ThermoScientific、カタログ番号BY5)
DL−ジチオスレイトール(DTT;Fermentas/ThermoScientific、カタログ番号R0862)
T7 DNAリガーゼ(Enzymatics、カタログ番号L602L)
重要:より一般的に用いられるT4リガーゼを代用しないこと。T7リガーゼは付着末端で平滑末端と比べて1,000倍高い活性を有し、かつ市販の高濃度T4リガーゼと比べて全体的な活性が高い。
【0885】
T7 2×迅速ライゲーション緩衝液(T7 DNAリガーゼと同梱、Enzymatics、カタログ番号L602L)
T4ポリヌクレオチドキナーゼ(New England Biolabs、カタログ番号M0201S)
T4DNAリガーゼ反応緩衝液(10×;New England Biolabs、カタログ番号B0202S)
アデノシン5’−三リン酸(10mM;New England Biolabs、カタログ番号P0756S)
PlasmidSafe ATP依存性DNアーゼ(Epicentre、カタログ番号E3101K)
One Shot Stbl3化学的コンピテント大腸菌(Escherichia coli)(E.coli)(Life Technologies、カタログ番号C7373−03)
SOC培地(New England Biolabs、カタログ番号B9020S)
LB培地(Sigma、カタログ番号L3022)
LB寒天培地(Sigma、カタログ番号L2897)
アンピシリン、滅菌ろ過済み(100mg ml−1;Sigma、カタログ番号A5354)
哺乳類細胞培養:
HEK293FT細胞(Life Technologies、カタログ番号R700−07)
ダルベッコ最小イーグル培地(DMEM、1×、高グルコース;Life Technologies、カタログ番号10313−039)
ダルベッコ最小イーグル培地(DMEM、1×、高グルコース、フェノールレッド不含;Life Technologies、カタログ番号31053−028)
ダルベッコリン酸緩衝生理食塩水(DPBS、1×;Life Technologies、カタログ番号14190−250)
ウシ胎仔血清、適格品(qualified)かつ熱失活済み(Life Technologies、カタログ番号10438−034)
Opti−MEM I低血清培地(FBS;Life Technologies、カタログ番号11058−021)
ペニシリン−ストレプトマイシン(100×;Life Technologies、カタログ番号15140−163)
TrypLE(商標)Express(1×、フェノールレッド不含;Life Technologies、カタログ番号12604−013)
リポフェクタミン2000形質移入試薬(Life Technologies、カタログ番号11668027)
Amaxa SF細胞系4D−Nucleofector(登録商標)XキットS(32 RCT;Lonza、カタログ番号V4XC−2032)
HUES 9細胞系(HARVARD STEM CELL SCIENCE)
Geltrex LDEV不含低成長因子基底膜マトリックス(Life Technologies、カタログ番号A1413201)
mTeSR1培地(Stemcell Technologies、カタログ番号05850)
Accutase細胞剥離液(Stemcell Technologies、カタログ番号07920)
ROCK阻害薬(Y−27632;Millipore、カタログ番号SCM075)
Amaxa P3初代細胞4D−Nucleofector(登録商標)XキットS(32 RCT;Lonzaカタログ番号V4XP−3032)
【0886】
遺伝子型解析:
QuickExtract DNA抽出溶液(Epicentre、カタログ番号QE09050)
SURVEYOR、RFLP分析、またはシーケンシング用のPCRプライマー(プライマー表参照)
Herculase II融合ポリメラーゼ(Agilent Technologies、カタログ番号600679)
重要。Surveyorアッセイは一塩基ミスマッチの感度を有するため、高フィデリティポリメラーゼを使用することが特に重要である。他の高フィデリティポリメラーゼに代えてもよい。
【0887】
Herculase II反応緩衝液(5×;Agilent Technologies、ポリメラーゼと同梱)
dNTP溶液ミックス(各25mM;Enzymatics、カタログ番号N205L)
QIAquickゲル抽出キット(Qiagen、カタログ番号28704)
Taq緩衝液(10×;Genscript、カタログ番号B0005)
標準ゲル電気泳動用のSURVEYOR突然変異検出キット(Transgenomic、カタログ番号706025)
超高純度TBE緩衝液(10×;Life Technologies、カタログ番号15581−028)
SeaKem LEアガロース(Lonza、カタログ番号50004)
4〜20%TBEゲル 1.0mm、15ウェル(Life Technologies、カタログ番号EC62255BOX)
Novex(登録商標)高密度TBE試料緩衝液(5×;Life Technologies、カタログ番号LC6678)
SYBR Gold核酸ゲル染色(10,000×;Life Technologies、カタログ番号S−11494)
1kb Plus DNAラダー(Life Technologies、カタログ番号10787−018)
TrackIt CyanOrangeローディング緩衝液(Life Technologies、カタログ番号10482−028)
FastDigest HindIII(Fermentas/ThermoScientific、カタログ番号FD0504)
【0888】
機器
フィルター付き滅菌ピペットチップ(Corning)
標準1.5ml微量遠心管(Eppendorf、カタログ番号0030 125.150)
Axygen96ウェルPCRプレート(VWR、カタログ番号PCR−96M2−HSC)
Axygen 8ストリップPCRチューブ(Fischer Scientific、カタログ番号14−222−250)
Falconチューブ、ポリプロピレン、15ml(BD Falcon、カタログ番号352097)
Falconチューブ、ポリプロピレン、50ml(BD Falcon、カタログ番号352070)
細胞ストレーナーキャップ付き丸底チューブ、5ml(BD Falcon、カタログ番号352235)
ペトリ皿(60mm×15mm;BD Biosciences、カタログ番号351007)
組織培養プレート(24ウェル;BD Falcon、カタログ番号353047)
組織培養プレート(96ウェル、平底;BD Falcon、カタログ番号353075)
組織培養皿(100mm;BD Falcon、353003)
プログラム可能な温度ステッピング機能付き96ウェルサーモサイクラー(Applied Biosystems Veriti、カタログ番号4375786)。
【0889】
卓上微量遠心機5424、5804(Eppendorf)
ゲル電気泳動システム(PowerPac basic power supply、Bio−Rad、カタログ番号164−5050、およびSub−Cell GTシステムゲルトレー、Bio−Rad、カタログ番号170−4401)
Novex XCell SureLock Mini−Cell(Life Technologies、カタログ番号EI0001)
デジタルゲルイメージングシステム(GelDoc EZ、Bio−Rad、カタログ番号170−8270、および青色試料トレー、Bio−Rad、カタログ番号170−8273)
青色光トランスイルミネーターおよびオレンジフィルターゴーグル(SafeImager 2.0;Invitrogen、カタログ番号G6600)
ゲル定量化ソフトウェア(Bio−Rad、ImageLab、GelDoc EZと同梱、または国立衛生研究所(National Institutes of Health)のオープンソースImageJ、ウェブサイトrsbweb.nih.gov/ij/で利用可能)
紫外分光光度計(NanoDrop 2000c、Thermo Scientific)
【0890】
試薬セットアップ
トリス−ホウ酸EDTA(TBE)電気泳動溶液 TBE緩衝液を蒸留水に希釈し、アガロースゲルをキャスティングするためおよびゲル電気泳動用緩衝液として使用するための1×ワーキング溶液とする。緩衝液は室温(18〜22℃)で少なくとも1年間保存しておくことができる。
・ATP、10mM 10mM ATPを50μlアリコートに分け、−20℃で最長1年間保存する;凍結−融解サイクルを繰り返すことは避ける。
・DTT、10mM 蒸留水中に10mM DTT溶液を調製し、20μlアリコートとして−70℃で最長2年間保存する;DTTは酸化し易いため、反応毎に新しいアリコートを使用する。
・D10培養培地 HEK293FT細胞を培養するため、DMEMに1× GlutaMAXおよび10%(vol/vol)ウシ胎仔血清を補給することによりD10培養培地を調製する。プロトコルに示すとおり、この培地はまた1×ペニシリン−ストレプトマイシンを補給してもよい。D10培地は前もって作製しておき、4℃で最長1ヶ月間保存することができる。
・mTeSR1培養培地 ヒト胚性幹細胞の培養のため、5×サプリメント(mTeSR1基本培地と同梱)、および100ug/ml Normocinを補給してmTeSR1培地を調製する。
【0891】
手順
ターゲティング成分の設計およびオンラインツールの使用・タイミング1日
1|標的ゲノムDNA配列を入力する。本出願人らは、目的の入力配列を受け取り、好適な標的部位を同定してそれに順位を付け、および意図する標的毎にオフターゲット部位を計算的に予測するオンラインCas9ターゲティング設計ツールを提供する。あるいは、任意の5’−NGGの直ちに上流で20bp配列を同定することにより、ガイド配列を手動で選択してもよい。
【0892】
2|オンラインツールによって特定されるとおりの必要なオリゴおよびプライマーを注文する。部位を手動で選択する場合、オリゴおよびプライマーを設計しなければならない。
【0893】
sgRNA発現構築物の調製
3|sgRNA発現構築物を作成するため、PCRベースまたはプラスミドベースのいずれのプロトコルも用いることができる。
【0894】
(A)PCR増幅による・タイミング2時間
(i)本出願人らは希釈U6 PCRテンプレートを調製する。本出願人らはPX330をPCRテンプレートとして使用することを推奨するが、任意のU6含有プラスミドを同様にPCRテンプレートとして使用することができる。本出願人らはテンプレートを10ng/ulの濃度となるようにddH
2Oで希釈した。U6によってドライブされるsgRNAを既に含んでいるプラスミドまたはカセットがテンプレートとして使用される場合、ゲル抽出を実施して、産物が意図したsgRNAのみを含み、テンプレートからのsgRNAキャリーオーバーの痕跡を含まないことを確実にする必要がある点に留意されたい。
【0895】
(ii)本出願人らは希釈PCRオリゴを調製した。U6−FwdおよびU6−sgRNA−Revプライマーは、ddH
2O中10uMの最終濃度に希釈される(10ulの100uMプライマーを90ul ddH
2Oに添加する)。
【0896】
(iii)U6−sgRNA PCR反応。本出願人らは、各U6−sgRNA−Revプライマーおよび必要に応じてマスターミックスに対して以下の反応をセットアップした:
【0897】
【表40】
[この文献は図面を表示できません]
【0898】
(iv)本出願人らは、ステップ(iii)の反応物に対し、以下のサイクル条件を使用してPCR反応を実施した:
【0899】
【表41】
[この文献は図面を表示できません]
【0900】
(v)反応の完了後、本出願人らは産物をゲル上で泳動させて、シングルバンドの増幅の成功を確かめた。1×SYBR Safe色素を含む1×TBE緩衝液に2%(wt/vol)アガロースゲルをキャスティングする。5ulのPCR産物をゲル中15Vcm−1で20〜30分間泳動させる。成功したアンプリコンは、1つのシングル370bp産物を生じるはずであり、テンプレートは見えないはずである。PCRアンプリコンをゲル抽出する必要はないはずである。
【0901】
(vi)本出願人らは、製造者の指示に従いQIAquick PCR精製キットを使用してPCR産物を精製した。35ulの緩衝液EBまたは水中にDNAを溶出させる。精製したPCR産物は4℃または−20℃で保存しておくことができる。
【0902】
(B)Cas9含有バイシストロニック発現ベクターへのsgRNAのクローニング・タイミング3日
(i)sgRNAオリゴインサートを調製する。本出願人らは、各sgRNA設計について、100uMの最終濃度となるようにオリゴの上部鎖および下部鎖を再懸濁した。オリゴを以下のとおりリン酸化およびアニーリングする:
【0903】
【表42】
[この文献は図面を表示できません]
【0904】
(ii)以下のパラメータを使用してサーモサイクラーでアニーリングする:
37℃で30分
95℃で5分
毎分5℃で25℃まで下降させる。
【0905】
(iii)本出願人らは、1ulのオリゴを199ulの室温ddH
2Oに添加することにより、リン酸化およびアニーリングしたオリゴを1:200希釈した。
【0906】
(iv)sgRNAオリゴをPX330にクローニングする。本出願人らは、各sgRNAについてGolden Gate反応をセットアップする。本出願人らは、インサートのない、PX330のみの陰性対照を設定することを推奨する。
【0907】
【表43】
[この文献は図面を表示できません]
【0908】
(v)Golden Gate反応物を合計1時間インキュベートする:
【0909】
【表44】
[この文献は図面を表示できません]
【0910】
(vi)本出願人らはPlasmidSafeエキソヌクレアーゼでGolden Gate反応物を処理することにより、任意の残留する線状DNAを消化させた。このステップは任意選択であるものの、強く推奨される。
【0911】
【表45】
[この文献は図面を表示できません]
【0912】
(vii)本出願人らはPlasmidSafe反応物を37℃で30分間インキュベートし、続いて70℃で30分間不活性化した。休題:完了後、反応物を凍結させて後に続行してもよい。環状DNAは少なくとも1週間安定しているはずである。
【0913】
(viii)形質転換。本出願人らはPlasmidSafe処理したプラスミドを、細胞と共に提供されるプロトコルに従いコンピテントな大腸菌(E.coli)株に形質転換した。本出願人らは迅速な形質転換のためStbl3を推奨する。簡潔に言えば、本出願人らは、ステップ(vii)からの5ulの産物を20ulの化学的にコンピテントな氷冷Stbl3細胞に添加した。次にこれを氷上で10分間インキュベートし、42℃で30秒間熱ショックを与え、直ちに氷上に2分間戻し、100ulのSOC培地を添加し、これを100ug/mlアンピシリンを含有するLBプレートにプレーティングして37℃で一晩インキュベートする。
【0914】
(ix)2日目:本出願人らはコロニーの成長に関してプレートを調べた。典型的には、陰性対照プレート(BbsI消化PX330のみのライゲーション、アニーリングされたsgRNAオリゴなし)にはコロニーはなく、PX330−sgRNAクローニングプレートには数十個ないし数百個のコロニーがある。
【0915】
(x)本出願人らは各プレートから2〜3個のコロニーを取り、sgRNAが正しく挿入されていることを確かめた。本出願人らは、滅菌ピペットチップを使用して単一のコロニーを100ug/mlアンピシリン含有LB培地の3ml培養液に接種した。37℃で一晩インキュベートし、振盪する。
【0916】
(xi)3日目:本出願人らはQiAprep Spinミニプレップキットを製造者の指示に従い使用して、一晩培養物からプラスミドDNAを単離した。
【0917】
(xii)CRISPRプラスミドを配列検証する。本出願人らはU6プロモーターからU6−Fwdプライマーを使用してシーケンシングすることにより各コロニーの配列を検証した。任意選択:以下のプライマー表に掲載するプライマーを使用してCas9遺伝子を配列決定する。
【0918】
【表46】
[この文献は図面を表示できません]
【0919】
【表47】
[この文献は図面を表示できません]
【0920】
本出願人らはシーケンシングの結果をPX330クローニングベクター配列と照合し、U6プロモーターとsgRNA足場の残り部分との間に20bpガイド配列が挿入されたことを確かめた。GenBankベクターマップフォーマット(*.gb file)でのPX330マップの詳細および配列を、ウェブサイトcrispr.genome−engineering.orgで見ることができる。
【0921】
(任意選択)ssODNテンプレートの設計・タイミング3日 事前計画
3|ssODNを設計および注文する。センスまたはアンチセンスのいずれかのssODNを供給業者から直接購入することができる。本出願人らは、両側に少なくとも40bpおよび最適なHDR効率のためには90bpの相同性アームを設計することを推奨する。本出願人らの経験上、改変効率はアンチセンスオリゴの方がやや高い。
【0922】
4|本出願人らはssODNウルトラマー(ultramer)を10uMの最終濃度となるように再懸濁して希釈した。センスssODNとアンチセンス ssODNとを組み合わせない、またはアニーリングしないこと。−20℃で保存する。
【0923】
5|HDR適用に関する注記として、本出願人らはsgRNAをPX330プラスミドにクローニングすることを推奨する。
【0924】
sgRNAの機能検証:細胞培養および形質移入・タイミング3〜4日
CRISPR−Cas系は多くの哺乳類細胞系で使用されている。細胞系毎に条件が異なり得る。以下のプロトコルは、HEK239FT細胞の形質移入条件を詳説する。ssODN媒介性HDR形質移入に関する注記として、ssODNの最適な送達のためAmaxa SF細胞系Nucleofectorキットが使用される。これは次節に記載する。
【0925】
7|HEK293FTの維持。細胞は製造者の推奨に従い維持される。簡潔に言えば、本出願人らは、D10培地(10%ウシ胎仔血清を補給したGlutaMax DMEM)中、37℃および5%CO2で細胞を培養した。
【0926】
8|継代のため、本出願人らは培地を取り出し、細胞を押し退けないようDPBSを容器の側面に穏やかに加えることにより1回リンスした。本出願人らはT75フラスコに2mlのTrypLEを添加し、37℃で5分間インキュベートした。10mlの温D10培地を添加して失活させ、50ml Falconチューブに移した。本出願人らは細胞を穏やかに粉砕することにより解離させ、必要に応じて新しいフラスコに播種し直した。本出願人らは、典型的には2〜3日毎に1:4または1:8の分割比で細胞を継代し、細胞を70%を超えるコンフルエンシーに至らせることが絶対にないようにする。細胞系は継代数が15に達したところで再出発する。
【0927】
9|形質移入用細胞の調製。本出願人らは、形質移入の16〜24時間前に、十分に解離した細胞を24ウェルプレートの抗生物質不含D10培地にウェル当たり1.3×10
5細胞の播種密度および500ulの播種容積でプレーティングした。必要に応じて製造者のマニュアルに従いスケールアップまたはスケールダウンする。推奨される密度より多い細胞をプレーティングすることは、そうすることによって形質移入効率が低下し得るため勧められない。
【0928】
10|形質移入当日、細胞は70〜90%コンフルエンシーで最適である。細胞は、リポフェクタミン2000またはAmaxa SF細胞系Nucleofectorキットで製造者のプロトコルに従い形質移入し得る。
【0929】
(A)PX330にクローニングされるsgRNAについては、本出願人らは500ngの配列検証したCRISPRプラスミドを形質移入した;2つ以上のプラスミドを形質移入する場合、等モル比および合計500ng以下で混合する。
【0930】
(B)PCRによって増幅するsgRNAについては、本出願人らは以下を混合した:
【0931】
【表48】
[この文献は図面を表示できません]
【0932】
本出願人らは、信頼のおける定量化のため技術的トリプリケートで形質移入することおよび形質移入対照(例えばGFPプラスミド)を入れて形質移入効率をモニタすることを推奨する。加えて、下流機能アッセイの陰性対照としてPX330クローニングプラスミドおよび/またはsgRNAアンプリコンを単独で形質移入してもよい。
【0933】
11|本出願人らはリポフェクタミン複合体を細胞に添加し、ここでHEK293FT細胞はプレートから容易に剥がれ易く、形質移入効率の低下がもたらされ得るため、穏やかに添加した。
【0934】
12|本出願人らは、蛍光顕微鏡を使用して対照(例えばGFP)形質移入における蛍光細胞の割合を推定することにより、形質移入後24時間の細胞の効率を調べた。典型的には70%を超える細胞が形質移入される。
【0935】
13|本出願人らは、培養培地にさらに500ulの温D10培地を補給した。細胞が容易に剥がれ得るため、D10はウェルの側面に極めてゆっくりと加え、低温の培地は使用しないこと。
【0936】
14|細胞は形質移入後合計48〜72時間インキュベートしてからインデル分析のため回収する。48時間以降はインデル効率の著しい増加はない。
【0937】
(任意選択)HR用のCRISPRプラスミドとssODNまたはターゲティングプラスミドとの同時形質移入・タイミング3〜4日
15|ターゲティングプラスミドを線状化する。ターゲティングベクターは、可能な場合には、相同性アームの一方の近傍またはいずれかの相同性アームの遠位端におけるベクター骨格中の制限部位で1回切断することにより線状化する。
【0938】
16|本出願人らは、少量の線状化プラスミドを切断されていないプラスミドと共に0.8〜1%アガロースゲル上で泳動させて、線状化の成功を確認した。線状化プラスミドはスーパーコイルプラスミドより上に泳動するはずである。
【0939】
17|本出願人らはQIAQuick PCR精製キットで線状化プラスミドを精製した。
【0940】
18|形質移入用の細胞を調製する。本出願人らはT75またはT225フラスコでHEK293FTを培養した。形質移入当日までに十分な細胞数が計画される。Amaxaストリップキュベットフォーマットには、形質移入当たり2×10
6細胞が使用される。
【0941】
19|形質移入用のプレートを調製する。本出願人らは12ウェルプレートの各ウェルに1mlの温D10培地を添加した。プレートはインキュベーターに置かれ、培地が温かいまま保たれる。
【0942】
20|ヌクレオフェクション。本出願人らは、以下のステップに適合させて、Amaxa SF細胞系Nucleofector 4Dキットの製造者の指示に従いHEK293FT細胞を形質移入した。
【0943】
a.ssODNとCRISPRとの同時形質移入については、PCRチューブに以下のDNAを予め混合する:
【0944】
【表49】
[この文献は図面を表示できません]
【0945】
b.HDRターゲティングプラスミドとCRISPRとの同時形質移入については、PCRチューブに以下のDNAを予め混合する:
【表50】
[この文献は図面を表示できません]
【0946】
形質移入対照に関しては前節を参照されたい。加えて、本出願人らは、陰性対照としてssODNまたはターゲティングプラスミドを単独で形質移入することを推奨する。
【0947】
21|単一細胞に解離する。本出願人らは培地を取り出し、細胞を押し退けないよう注意しながらDPBSで1回穏やかにリンスした。2mlのTrypLEをT75フラスコに添加し、37℃で5分間インキュベートする。10mlの温D10培地を添加して失活させ、50ml Falconチューブにおいて穏やかに粉砕する。細胞は穏やかに粉砕して単一細胞に解離することが推奨される。大きい凝集塊は形質移入効率を低下させ得る。本出願人らは懸濁液から10ulアリコートを取り、カウントのため90ulのD10培地に希釈した。本出願人らは細胞をカウントし、形質移入に必要な細胞数および懸濁液の容積を計算した。本出願人らは、典型的にはAmaxa Nucleocuvetteストリップを使用して条件当たり2×10
5細胞を形質移入したとともに、後続のピペッティングステップでの容積損失を調整するため所要数より20%多い細胞を計算することを推奨する。必要な容積を新しいFalconチューブに移す。
【0948】
23|本出願人らはこの新しいチューブを200×gで5分間スピンダウンした。
【0949】
本出願人らは、SF溶液とS1サプリメントとをAmaxaが推奨するとおり混合して形質移入溶液を調製した。Amaxaストリップキュベットについては、形質移入当たり合計20ulの補給SF溶液が必要である。同様に、本出願人らは、所要量より20%多い容積を計算することを推奨する。
【0950】
25|本出願人らは、ステップ23のペレット化した細胞から培地を完全に取り除き、適切な容積(2×10
5細胞当たり20ul)のS1補給SF溶液に穏やかに再懸濁した。細胞をSF溶液中に長時間置いたままにしないこと。
【0951】
26|20ulの再懸濁した細胞をステップ20の各DNAプレミックスにピペッティングする。穏やかにピペッティングして混合し、Nucleocuvetteストリップチャンバに移す。これを形質移入条件毎に繰り返す。
【0952】
Amaxaが推奨するNucleofector 4DプログラムCM−130を使用して細胞をエレクトロポレートする。
【0953】
28|本出願人らは、100ulの温D10培地を各Nucleocuvetteストリップチャンバに穏やかにかつゆっくりとピペッティングし、全容積をステップ19の予め温めたプレートに移す。重要。この段階で細胞は極めて脆弱であり、苛酷なピペッティングは細胞死を引き起こし得る。24時間インキュベートする。この時点で、陽性形質移入対照における蛍光細胞の割合から形質移入効率を推定することができる。ヌクレオフェクションは、典型的には70〜80%より高い形質移入効率をもたらす。本出願人らは、各ウェルに1mlの温D10培地を、細胞を押し退けないようにしてゆっくりと添加した。細胞を合計72時間インキュベートする。
【0954】
ヒト胚性幹細胞(HUES 9)培養および形質移入・タイミング3〜4日
hESC(HUES9)株の維持。本出願人らはHUES9細胞系をmTeSR1培地による無フィーダー条件に常法で維持する。本出願人らは、基本培地と同梱の5×サプリメントおよび100ug/ml Normocinを添加することによりmTeSR1培地を調製した。本出願人らは、10uM Rock阻害薬をさらに補給したmTeSR1培地の10mlアリコートを調製した。組織培養プレートをコーティングする。冷GelTrexを冷DMEMに1:100希釈し、100mm組織培養プレートの表面全体をコーティングする。
【0955】
プレートをインキュベーターに37℃で少なくとも30分間置く。細胞のバイアルを15ml Falconチューブにおいて37℃で解凍し、5mlのmTeSR1培地を添加し、および200×gで5分間ペレット化する。GelTrexコーティングを吸い取り、Rock阻害薬を含有する10ml mTeSR1培地に約1×10
6細胞を播種する。形質移入後24時間で通常のmTeSR1培地に交換し、毎日リフィードする。細胞を継代する。細胞に新鮮なmTeSR1培地を毎日リフィードし、70%のコンフルエンシーに達するまで継代する。mTeSR1培地を吸い取り、細胞をDPBSで1回洗浄する。2mlのAccutaseを添加して37℃で3〜5分間インキュベートすることにより細胞を解離する。10ml mTeSR1培地を添加して細胞を剥がし、15ml Falconチューブに移して穏やかに再懸濁する。GelTrexをコーティングしたプレートの10uM Rock阻害薬含有mTeSR1培地に改めてプレーティングする。プレーティング後24時間で通常のmTeSR1培地に交換する。
【0956】
形質移入。本出願人らは、解凍後少なくとも1週間細胞を培養した後にAmaxa P3初代細胞4−D Nucleofectorキット(Lonza)を使用して形質移入することを推奨する。対数期増殖細胞に新鮮培地を2時間リフィードした後形質移入する。accutaseで単一細胞または10細胞以下の小さいクラスターに解離し、穏やかに再懸濁する。ヌクレオフェクションに必要な細胞の数をカウントし、200×gで5分間スピンダウンする。培地を完全に取り除き、推奨される容積のS1補給P3ヌクレオフェクション溶液に再懸濁する。1×Rock阻害薬の存在下で、コーティングされたプレートにエレクトロポレートした細胞を穏やかにプレーティングする。
【0957】
形質移入の成功を確かめ、通常のmTeSR1培地を毎日、ヌクレオフェクション後24時間目から始めてリフィードする。典型的には、本出願人らはAmaxaヌクレオフェクションで70%より高い形質移入効率を観察する。DNAを回収する。形質移入後48〜72時間でaccutaseを使用して細胞を解離し、5倍容積のmTeSR1を添加することにより失活させる。細胞を200×gで5分間スピンダウンする。ペレット化した細胞はQuickExtract溶液によるDNA抽出用に直接処理することができる。細胞をaccutaseを用いずに機械的に解離することは推奨されない。accutaseを失活させずにまたは推奨速度より高速で細胞をスピンダウンすることは推奨されない;それを行うと細胞の溶解が引き起こされ得る。
【0958】
FACSによるクローン細胞系の単離。タイミング・2〜3時間ハンズオン;2〜3週間拡大
形質移入後24時間でFACSによるかまたは段階希釈によりクローン単離を実施し得る。
【0959】
54|FACS緩衝液を調製する。有色の蛍光を使用して選別する必要のない細胞は、1×ペニシリン/ストレプトマイシン(streptinomycin)を補給した通常のD10培地で選別し得る。有色の蛍光選別もまた必要である場合、フェノール不含DMEMまたはDPBSが通常のDMEMに代用される。1×ペニシリン/ストレプトマイシン(streptinomycin)を補給し、0.22um Steriflipフィルターでろ過する。
【0960】
55|96ウェルプレートを調製する。本出願人らは、各ウェルにつき1×ペニシリン/ストレプトマイシン(streptinomycin)を補給した100ulのD10培地を添加し、所望の数のクローンに必要なとおりのプレート数を調製した。
【0961】
56|FACS用の細胞を調製する。本出願人らは培地を完全に吸い取り、24ウェルプレートのウェル当たり100ul TrypLEを添加することにより、細胞を解離した。5分間インキュベートし、400ulの温D10培地を添加した。
【0962】
57|再懸濁した細胞を15ml Falconチューブに移し、20回穏やかに粉砕する。確実に単一細胞に解離したことを顕微鏡下で確かめることが推奨される。
【0963】
58|細胞を200×gで5分間スピンダウンする。
【0964】
59|本出願人らは培地を吸引し、細胞を200ulのFACS培地に再懸濁した。
【0965】
60|細胞を35umメッシュフィルターでろ過し、ラベルを付したFACSチューブに入れる。本出願人らは、BD Falcon細胞ストレーナーキャップ付き12×75mmチューブを使用することを推奨する。選別時まで細胞を氷上に置く。
【0966】
61|本出願人らは単一細胞を、ステップ55で調製した96ウェルプレートに選別した。本出願人らは、各プレート上の一つの単一の指定されたウェルに100細胞を陽性対照として選別することを推奨する。
【0967】
注。残りの細胞をとっておき、集団レベルでの遺伝子タイピングに使用して全体的な改変効率を評価し得る。
【0968】
62|本出願人らは細胞をインキュベーターに戻して2〜3週間拡大させた。選別後5日で100ulの温D10培地を添加する。必要に応じて3〜5日おきに100ulの培地を交換する。
【0969】
63|選別後1週間でコロニーの「クローンのような」外観、すなわち中心点から放射状に広がる丸いコロニーについて調べる。空のウェル、またはダブレットまたはマルチプレットが播種された可能性のあるウェルに印を付ける。
【0970】
64|細胞が60%を上回ってコンフルエントになったとき、本出願人らは、継代用に一組のレプリカ平板を調製した。レプリカ平板の各ウェルに100ulのD10培地を添加する。本出願人らは上下に激しく20回ピペッティングすることにより細胞を直接解離した。調製したレプリカ平板に再懸濁容積の20%をプレーティングしてクローン株を維持した。その後培地を2〜3日おきに交換し、それに従い継代する。
【0971】
65|残りの80%の細胞はDNA単離および遺伝子タイピングに使用する。
【0972】
任意選択:希釈によるクローン細胞系の単離。タイミング・2〜3時間ハンズオン;2〜3週間拡大
66|本出願人らは上記に記載したとおり24ウェルプレートから細胞を解離した。確実に単一細胞に解離する。細胞ストレーナーを使用して細胞の凝集を防ぐことができる。
【0973】
67|条件毎に細胞の数をカウントする。各条件を100ul当たり0.5細胞の最終濃度となるようにD10培地に段階稀釈する。各96ウェルプレートについて、本出願人らは、12mlのD10中60細胞の最終カウントとなるように希釈することを推奨する。適切なクローン希釈のため細胞数を正確にカウントすることが推奨される。正確を期すため細胞を段階希釈の中間段階で再度カウントしてもよい。
【0974】
68|マルチチャンネルピペットを使用して100ulの希釈細胞を96ウェルプレートの各ウェルにピペッティングした。
【0975】
注。残りの細胞をとっておき、集団レベルでの遺伝子タイピングに使用して全体的な改変効率を評価し得る。
【0976】
69|本出願人らは、プレーティング後約1週間でコロニーの「クローンのような」外観、すなわち中心点から放射状に広がる丸いコロニーについて調べた。ダブレットまたはマルチプレットが播種された可能性のあるウェルに印を付ける。
【0977】
70|本出願人らは細胞をインキュベーターに戻して2〜3週間拡大させた。前節に詳説したとおり必要に応じて細胞にリフィードする。
【0978】
CRISPR開裂効率のSURVEYORアッセイ。タイミング・5〜6時間
形質移入細胞の開裂効率をアッセイする前に、本出願人らは、以下に記載するプロトコルを使用するSURVEYORヌクレアーゼ消化のステップにより陰性(形質移入されていない)対照試料でそれぞれの新規SURVEYORプライマーを試験することを推奨する。時折、シングルバンドのクリーンなSURVEYOR PCR産物であっても非特異的SURVEYORヌクレアーゼ開裂バンドを生じ、正確なインデル分析を妨げる可能性がある。
【0979】
71|DNA用の細胞を回収する。細胞を解離し、200×gで5分間スピンダウンする。注。形質移入細胞系をとっておく必要に応じてこの段階でレプリカ平板を作製する。
【0980】
72|上清を完全に吸引する。
【0981】
73|本出願人らはQuickExtract DNA抽出溶液を製造者の指示に従い使用した。本出願人らは典型的には24ウェルプレートの各ウェルに50ulの溶液を使用し、および96ウェルプレートについては10ulを使用した。
【0982】
74|本出願人らは抽出DNAをddH2Oで100〜200ng/ulの最終濃度となるように標準化した。休題:抽出DNAは−20℃で数ヶ月間保存しておくことができる。
【0983】
75|SURVEYOR PCRをセットアップする。本出願人らのオンライン/コンピュータアルゴリズムツールによって提供されるSURVEYORプライマーを使用して以下をマスターミックスする:
【0984】
【表51】
[この文献は図面を表示できません]
【0985】
76|本出願人らは、各反応について100〜200ngのステップ74からの標準化ゲノムDNAテンプレートを添加した。
【0986】
77|30回以下の増幅サイクルに対し、以下のサイクル条件を使用してPCR反応を実施した:
【0987】
【表52】
[この文献は図面を表示できません]
【0988】
78|本出願人らは2〜5ulのPCR産物を1%ゲル上で泳動させてシングルバンド産物を確認した。これらのPCR条件は多くのSURVEYORプライマー対で機能するように設計されているが、一部のプライマーは、テンプレート濃度、MgCl
2濃度、および/またはアニーリング温度を調整することによるさらなる最適化が必要になり得る。
【0989】
79|本出願人らはQIAQuick PCR精製キットを使用してPCR反応物を精製し、溶離液を20ng/ulに標準化した。休題:精製したPCR産物は−20℃で保存しておくことができる。
【0990】
80|DNAヘテロ二重鎖形成。アニーリング反応を以下のとおりセットアップした:
【0991】
【表53】
[この文献は図面を表示できません]
【0992】
81|以下の条件を用いて反応物をアニーリングする:
【0993】
【表54】
[この文献は図面を表示できません]
【0994】
82|SURVEYORヌクレアーゼS消化。本出願人らはマスターミックスを調製し、氷上で以下の成分を添加して、25ulの総最終容積についてステップ81のヘテロ二本鎖をアニーリングした:
【0995】
【表55】
[この文献は図面を表示できません]
【0996】
83|十分にボルテックスし、スピンダウンする。反応物を42℃で1時間インキュベートする。
【0997】
84|任意選択:SURVEYORキットの停止液2ulを添加してもよい。休題。消化産物は、後の分析のため−20℃で保存しておくことができる。
【0998】
85|SURVEYOR反応を可視化する。2%アガロースゲル上でSURVEYORヌクレアーゼ消化産物を可視化し得る。分解能を良くするため、産物を4〜20%勾配ポリアクリルアミドTBEゲル上で泳動させてもよい。本出願人らは推奨されるローディング緩衝液で10ulの産物をロードし、製造者の指示に従いゲルを泳動させた。典型的には、本出願人らはブロモフェノールブルー色素が移動してゲルの底に達するまで泳動させる。同じゲル上にDNAラダーおよび陰性対照を含める。
【0999】
86|本出願人らは、TBE中に希釈した1×SYBR Gold色素でゲルを染色した。ゲルを15分間穏やかに揺り動かした。
【1000】
87|本出願人らは、バンドを過度に露光することなく定量的イメージングシステムを使用してゲルをイメージングした。陰性対照は、PCR産物のサイズに対応する1つのバンドのみを有するはずであるが、時折、他のサイズの非特異的な開裂バンドを有し得る。これらは、標的の開裂バンドとサイズが異なる場合には分析を妨げない。本出願人らのオンライン/コンピュータアルゴリズムツールによって提供される標的開裂バンドのサイズの合計は、PCR産物のサイズと等しいはずである。
【1001】
88|開裂強度を推定する。本出願人らはImageJまたは他のゲル定量化ソフトウェアを使用して各バンドの面積強度を定量化した。
【1002】
89|各レーンについて、本出願人らは、以下の式を使用して開裂されたPCR産物の割合(f
cut)を計算した:f
cut=(b+c)/(a+b+c)(式中、aは消化されなかったPCR産物の面積強度であり、bおよびcは各開裂産物の面積強度である)。90|開裂効率は、二重鎖形成の二項確率分布に基づき、以下の式を使用して推定し得る:
91|
【数1】
[この文献は図面を表示できません]
CRISPR開裂効率を評価するためのサンガーシーケンシング。タイミング・3日
最初のステップは、SURVEYORアッセイのステップ71〜79と同じである。注:フォワードおよびリバースプライマーに適切な制限部位が付加される場合、サンガーシーケンシングにSURVEYORプライマーを用い得る。推奨されるpUC19骨格へのクローニングに関しては、フォワードプライマーにEcoRIおよびリバースプライマーにHindIIIを用い得る。
【1003】
92|アンプリコン消化。消化反応を以下のとおりセットアップする:
【1004】
【表56】
[この文献は図面を表示できません]
【1005】
93|pUC19骨格消化。消化反応を以下のとおりセットアップする:
【1006】
【表57】
[この文献は図面を表示できません]
【1007】
94|本出願人らは、QIAQuick PCR精製キットを使用して消化反応物を精製した。休題:精製したPCR産物は−20℃で保存しておくことができる。
【1008】
95|本出願人らは、消化したpUC19骨格およびサンガーアンプリコンを1:3のベクター:インサート比で以下のとおりライゲートした:
【1009】
【表58】
[この文献は図面を表示できません]
【1010】
96|形質転換。本出願人らは、細胞と共に供給されるプロトコルに従いPlasmidSafe処理したプラスミドをコンピテント大腸菌(E.coli)株に形質転換した。本出願人らは迅速な形質転換のためStbl3を推奨する。簡潔に言えば、5ulのステップ95の産物を20ulの氷冷化学コンピテントStbl3細胞に添加し、氷上で10分間インキュベートし、42℃で30秒間熱ショックを与え、直ちに氷に2分間戻し、100ulのSOC培地を添加し、100ug/mlアンピシリンを含有するLBプレートにプレーティングする。これを37℃で一晩インキュベートする。
【1011】
97|2日目:本出願人らはプレートのコロニー成長を調べた。典型的には、陰性対照プレート(EcoRI−HindIII消化pUC19のみのライゲーション、サンガーアンプリコンインサート無し)にはコロニーがなく、pUC19−サンガーアンプリコンクローニングプレートには数十個ないし数百個のコロニーがある。
【1012】
98|3日目:本出願人らは、QIAprep Spinミニプレップキットを製造者の指示に従い使用して、一晩培養物からプラスミドDNAを単離した。
【1013】
99|サンガーシーケンシング。本出願人らは、pUC19骨格からpUC19−フォワードプライマーを使用してシーケンシングすることにより各コロニーの配列を確かめた。本出願人らはシーケンシング結果を予想ゲノムDNA配列と照合し、Cas9誘発性のNHEJ突然変異の存在を調べた。%編集効率=(改変クローン数)/(総クローン数)。正確な改変効率を得るには、妥当な数のクローン(>24)を選ぶことが重要である。
【1014】
微小欠失のための遺伝子タイピング。タイミング・2〜3日ハンズオン;2〜3週間拡大
100|上記に記載したとおり、欠失させる領域を標的にするsgRNAのペアを細胞に形質移入した。
【1015】
101|形質移入後24時間で、クローン株を上記に記載したとおりFACSまたは段階希釈によって単離する。
【1016】
102|細胞を2〜3週間拡大させる。
【1017】
103|本出願人らは上記に記載したとおり10ul QuickExtract溶液を使用してクローン株からDNAを回収し、ゲノムDNAを50〜100ng/ulの最終濃度となるようにddH
2Oで標準化した。
【1018】
104|改変領域をPCR増幅する。PCR反応を以下のとおりセットアップする:
【1019】
【表59】
[この文献は図面を表示できません]
注:欠失サイズが1kbより大きい場合、内側フォワードプライマーおよび内側リバースプライマーを含む並行する一組のPCR反応をセットアップし、野生型アレルの存在についてスクリーニングする。
【1020】
105|逆位についてスクリーニングするため、PCR反応を以下のとおりセットアップする:
【1021】
【表60】
[この文献は図面を表示できません]
注:プライマーは、外側フォワード+内側フォワード、または外側リバース+内側リバースのいずれかとしてペアにされる。
【1022】
106|本出願人らは、各反応について100〜200ngのステップ103の標準化ゲノムDNAテンプレートを添加した。
【1023】
107|以下のサイクル条件を使用してPCR反応を実施した:
【1024】
【表61】
[この文献は図面を表示できません]
【1025】
108|本出願人らは2〜5ulのPCR産物を1〜2%ゲル上で泳動させて産物を確認した。これらのPCR条件は多くのプライマーで機能するように設計されるが、一部のプライマーは、テンプレート濃度、MgCl
2濃度、および/またはアニーリング温度を調整することによるさらなる最適化が必要となり得る。
【1026】
HDRによる標的改変のための遺伝子タイピング。タイミング・2〜3日、2〜3時間ハンズオン
109|本出願人らは上記に記載したとおりQuickExtract溶液を使用してDNAを回収し、ゲノムDNAを100〜200ng/ulの最終濃度となるようにTEで標準化した。
【1027】
110|改変領域をPCR増幅する。PCR反応を以下のとおりセットアップする:
【1028】
【表62】
[この文献は図面を表示できません]
【1029】
111|本出願人らは各反応について100〜200ngのステップ109のゲノムDNAテンプレートを添加し、以下のプログラムを実行した。
【1030】
【表63】
[この文献は図面を表示できません]
【1031】
112|本出願人らは5ulのPCR産物を0.8〜1%ゲル上で泳動させてシングルバンド産物を確認した。プライマーは、テンプレート濃度、MgCl
2濃度、および/またはアニーリング温度を調整することによるさらなる最適化が必要となり得る。
【1032】
113|本出願人らはQIAQuick PCR精製キットを使用してPCR反応物を精製した。
【1033】
114|HDRの例では、EMX1遺伝子にHindIII制限部位が挿入される。これらはPCRアンプリコンの制限酵素消化により検出される:
【1034】
【表64】
[この文献は図面を表示できません]
【1035】
i.DNAを37℃で10分間消化する:
【1036】
ii.本出願人らは、ローディング色素を含む10ulの消化産物を、4〜20%勾配ポリアクリルアミドTBEゲル上でキシレンシアノールバンドが移動してゲルの底に達するまで泳動させた。
【1037】
iii.本出願人らは15分間揺り動かしながら1×SYBR Gold色素でゲルを染色した。
【1038】
iv.上記でSURVEYORアッセイの節に記載したとおり開裂産物をイメージングして定量化する。HDR効率は以下の式により推定される:(b+c)/(a+b+c)(式中、aは消化されなかったHDR PCR産物の面積強度であり、bおよびcはHindIII切断断片の面積強度である)。
【1039】
115|あるいは、ステップ113の精製PCRアンプリコンをクローニングし、サンガーシーケンシングまたはNGSを用いて遺伝子型を決定してもよい。
【1040】
ディープシーケンシングおよびオフターゲット分析・タイミング1〜2日
オンラインCRISPR標的設計ツールは、同定された標的部位のそれぞれについて候補ゲノムオフターゲット部位を作成する。これらの部位でのオフターゲット分析は、SURVEYORヌクレアーゼアッセイ、サンガーシーケンシング、または次世代ディープシーケンシングにより実施することができる。これらの部位の多くで改変率が低いまたは検出不能である可能性を考えると、本出願人らは、高感度および高精度のためのIllumina Miseqプラットフォームによるディープシーケンシングを推奨する。プロトコルはシーケンシングプラットフォームによって異なり得る;ここで本出願人らは、シーケンシングアダプターをつなぎ合わせるための融合PCR方法について簡単に記載する。
【1041】
116|ディープシーケンシングプライマーを設計する。次世代シーケンシング(NGS)プライマーは、典型的には100〜200bpサイズ範囲の、より短いアンプリコン向けに設計される。プライマーはNCBIプライマーBlastを使用して手動で設計されてもよく、またはオンラインCRISPR標的設計ツール(genome−engineering.org/toolsにあるウェブサイト)で生成されてもよい。
【1042】
117|Cas9標的細胞からゲノムDNAを回収する。QuickExtractゲノムDNAをddH2Oで100〜200ng/ulに標準化する。
【1043】
118|初期ライブラリ調製PCR。ステップ116のNGSプライマーを使用して初期ライブラリ調製PCRを調製する。
【1044】
【表65】
[この文献は図面を表示できません]
【1045】
119|各反応につき100〜200ngの標準化したゲノムDNAテンプレートを加える。
【1046】
120|20回以下の増幅サイクルについて、以下のサイクル条件を使用してPCR反応を実施する:
【1047】
【表66】
[この文献は図面を表示できません]
【1048】
121|2〜5ulのPCR産物を1%ゲル上で泳動させてシングルバンド産物を確認する。あらゆるゲノムDNA PCRと同様に、NGSプライマーは、テンプレート濃度、MgCl
2濃度、および/またはアニーリング温度を調整することによるさらなる最適化が必要となり得る。
【1049】
122|PCR反応物をQIAQuick PCR精製キットを使用して精製し、溶離液を20ng/ulに標準化する。休題:精製したPCR産物は−20℃で保存しておくことができる。
【1050】
123|Nextera XT DNA試料調製キット。製造者のプロトコルに従い、各試料に対するユニークバーコードでMiseqシーケンシング準備ライブラリを作成する。
【1051】
124|シーケンシングデータを分析する。ClustalW、Geneious、または単純な配列解析スクリプトなどのリードアラインメントプログラムにより、オフターゲット分析を実施し得る。
【1052】
タイミング
ステップ1〜2 sgRNAオリゴおよびssODNの設計および合成:1〜5日、供給業者によって変動
ステップ3〜5 CRISPRプラスミドまたはPCR発現カセットの構築:2時間〜3日
ステップ6〜53 細胞系への形質移入:3日(1時間のハンズオン時間)
ステップ54〜70 任意選択のクローン株誘導:1〜3週間、細胞型によって変動
ステップ71〜91 SURVEYORによるNHEJの機能検証:5〜6時間
ステップ92〜124 サンガー法または次世代ディープシーケンシングによる遺伝子タイピング:2〜3日(3〜4時間のハンズオン時間)
【1053】
【表67】
[この文献は図面を表示できません]
【1054】
考察
CRISPR−Casは容易に多重化し得るため、いくつかの遺伝子の同時改変が促進され、かつ高効率で染色体微小欠失が媒介される。本出願人らは2つのsgRNAを使用することにより、HEK293FT細胞において最大68%の効率でのヒトGRIN2BおよびDYRK1A遺伝子座の同時標的化を実証した。同様に、sgRNAのペアを使用することによりエクソンの切り出しなどの微小欠失を媒介することができ、これはクローンレベルでPCRにより遺伝子型決定され得る。エクソン接合部の正確な位置は異なり得ることに留意されたい。本出願人らはまた、ssODNおよびターゲティングベクターを使用したHEK 293FT細胞およびHUES9細胞におけるCas9の野生型およびニッカーゼ突然変異体の両方によるHDRの媒介も実証した(
図30)。本出願人らはCas9ニッカーゼを使用したHUES9細胞でのHDRを検出できていないことに留意されたく、これはHUES9細胞における修復活性の低い効率または潜在的な違いに起因し得る。これらの値は典型的であるが、所与のsgRNAの開裂効率にはいくらかのばらつきがあり、まれにある種のsgRNAは、未だ解明されていない理由により機能しないこともある。本出願人らは、各遺伝子座につき2つのsgRNAを設計し、かつ意図される細胞型におけるそれらの効率を試験することを推奨する。
【1055】
実施例31:NLS
Cas9転写モジュレーター:本出願人らは、Cas9/gRNA CRISPR系を、DNA開裂の域を越える機能が遂行され得る汎用DNA結合システムに転換しようと試みた。例えば、1つまたは複数の機能ドメインを触媒的に不活性なCas9と融合することにより、本出願人らは新規機能、例えば転写活性化/抑制、メチル化/脱メチル化、またはクロマチン改変を付与している。この目標を達成するため、本出願人らは、ヌクレアーゼ活性に必須の2つの残基D10およびH840をアラニンに変えることにより、触媒的に不活性なCas9突然変異体を作製した。これらの2つの残基を突然変異させることにより、Cas9のヌクレアーゼ活性を消失させ、一方で標的DNAとの結合能は維持する。本出願人らが自らの仮説を検証するため着目することに決めた機能ドメインは、転写活性化因子VP64ならびに転写リプレッサーSIDおよびKRABである。
【1056】
Cas9核局在:本出願人らは、最も有効なCas9転写モジュレーターが、転写に対してその最も大きい影響を及ぼし得るところである核に強力に局在し得るという仮説を立てた。さらに、細胞質内に残る任意のCas9が望ましくない効果を有する可能性がある。本出願人らは、野生型Cas9が核に局在せず、複数の核局在化シグナル(NLS)を含まないことを決定した(CRISPR系が1つ以上のNLSを有する必要はないが、有利には少なくとも1つ以上のNLSを有する)。複数のNLS配列が必要であったため、Cas9を核に入れるのが困難であることは妥当であったとともに、Cas9と融合する任意のさらなるドメインが核局在を破壊する可能性があった。従って、本出願人らは、異なるNLS配列(pXRP02−pLenti2−EF1a−NLS−hSpCsn1(10A,840A)−NLS−VP64−EGFP、pXRP04−pLenti2−EF1a−NLS−hSpCsn1(10A,840A)−NLS−VP64−2A−EGFP−NLS、pXRP06−pLenti2−EF1a−NLS−EGFP−VP64−NLS−hSpCsn1(10A,840A)−NLS、pXRP08−pLenti2−EF1a−NLS−VP64−NLS−hSpCsn1(10A,840A)−NLS−VP64−EGFP−NLS)を有する4つのCas9−VP64−GFP融合構築物を作製した。これらの構築物をヒトEF1aプロモーターの発現下にあるレンチ骨格にクローニングした。よりロバストなタンパク質発現のため、WPREエレメントもまた加えた。各構築物を、リポフェクタミン2000(Lipofectame 2000)を使用してHEK293FT細胞に形質移入し、形質移入後24時間でイメージングした。融合タンパク質が融合タンパク質のN末端およびC末端の両方にNLS配列を有するとき、最良の核局在が得られる。観察された最も高い核局在は、4つのNLSエレメントを有する構築物で起こった。
【1057】
Cas9に対するNLSエレメントの影響をさらに確実に理解するため、本出願人らは同じαインポーチンNLS配列を、0〜3個のタンデムリピートを見てN末端またはC末端のいずれかに付加することにより、16個のCas9−GFP融合物を作製した。各構築物を、リポフェクタミン2000(Lipofectame 2000)を使用してHEK293FT細胞に形質移入し、形質移入後24時間でイメージングした。顕著なことに、NLSエレメントの数は核局在の程度と直接相関しない。C末端にNLSを付加する方が、N末端への付加と比べて核局在により大きい影響を及ぼす。
【1058】
Cas9転写活性化因子:本出願人らは、Sox2遺伝子座を標的にしてRT−qPCRで転写活性化を定量化することにより、Cas9−VP64タンパク質の機能試験を行った。Sox2のプロモーターに跨るように8個のDNA標的部位を選択した。各構築物を、リポフェクタミン2000(Lipofectame 2000)を使用してHEK293FT細胞に形質移入し、形質移入後72時間で細胞から全RNAを抽出した。1ugのRNAを40ul反応物でcDNAに逆転写した(qScript Supermix)。単一の20ul TaqManアッセイqPCR反応に2ulの反応産物を加えた。各実験は生物学的および技術的トリプリケートで実施した。RT対照反応およびテンプレート対照反応はいずれも増幅を示さなかった。強力な核局在を示さない構築物pXRP02およびpXRP04は、活性化が起こらない。実に強力な核局在を示した構築物、pXRP08については、中程度の活性化が観察された。ガイドRNASox2.4およびSox2.5の場合に統計的に有意な活性化が観察された。
【1059】
実施例32:インビボマウスデータ
材料および試薬
Herculase II融合ポリメラーゼ(Agilent Technologies、カタログ番号600679)
10× NE緩衝液 4(NEB、カタログ番号B7004S)
BsaI HF(NEB、カタログ番号R3535S)
T7 DNAリガーゼ(Enzymatics、カタログ番号L602L)
Fast Digest緩衝液、10×(ThermoScientific、カタログ番号B64)
FastDigest NotI(ThermoScientific、カタログ番号FD0594)
FastAPアルカリホスファターゼ(ThermoScientific、カタログ番号EF0651)
リポフェクタミン2000(Life Technologies、カタログ番号11668−019)
トリプシン(Life Technologies、カタログ番号15400054)
鉗子#4(Sigma、カタログ番号Z168777−1EA)
鉗子#5(Sigma、カタログ番号F6521−1EA)
10× ハンクス平衡塩類溶液(Sigma、カタログ番号H4641−500ML)
ペニシリン/ストレプトマイシン溶液(Life Technologies、カタログ番号P4333)
Neurobasal(Life Technologies、カタログ番号21103049)
B27サプリメント(Life Technologies、カタログ番号17504044)
L−グルタミン(Life Technologies、カタログ番号25030081)
グルタミン酸塩(Sigma、カタログ番号RES5063G−A7)
β−メルカプトエタノール(Sigma、カタログ番号M6250−100ML)
HAウサギ抗体(Cell Signaling、カタログ番号3724S)
LIVE/DEAD(登録商標)細胞イメージングキット(Life Technologies、カタログ番号R37601)
30G World Precision Instrumentシリンジ(World Precision Instruments、カタログ番号NANOFIL)
定位固定装置(Kopf Instruments)
UltraMicroPump3(World Precision Instruments、カタログ番号UMP3−4)
スクロース(Sigma、カタログ番号S7903)
塩化カルシウム(Sigma、カタログ番号C1016)
酢酸マグネシウム(Sigma、カタログ番号M0631)
トリス−HCl(Sigma、カタログ番号T5941)
EDTA(Sigma、カタログ番号E6758)
NP−40(Sigma、カタログ番号NP40)
フェニルメタンスルホニルフルオリド(Sigma、カタログ番号78830)
塩化マグネシウム(Sigma、カタログ番号M8266)
塩化カリウム(Sigma、カタログ番号P9333)
β−グリセロリン酸(Sigma、カタログ番号G9422)
グリセロール(Sigma、カタログ番号G9012)
Vybrant(登録商標)DyeCycle(商標)Ruby染色(Life technologies、カタログ番号S4942)
FACS Aria Flu−act−細胞選別機(Koch Institute of MIT、Cambridge、米国)
DNAeasy血液および組織キット(Qiagen、カタログ番号69504)
【1060】
手順
インビボで脳において使用されるgRNA多重体の構築
本出願人らは、マウスTETおよびDNMTファミリーメンバーを標的にする単一のgRNAを設計し、PCR増幅した(本明細書に記載されるとおり)。標的化効率をN2a細胞系で評価した(
図33)。インビボでいくつかの遺伝子の同時改変を達成するため、効率的なgRNAをAAVパッケージングベクターに多重化した(
図34)。系の効率のさらなる分析を促進するため、本出願人らは、ヒトシナプシンIプロモーターの制御下にあるGFP−KASHドメイン融合タンパク質からなる発現カセットを系に加えた(
図34)。この改変により、ニューロン集団における系の効率のさらなる分析が可能になる(さらに詳細な手順は「核の選別およびインビボ結果」の節にある)。
【1061】
系の4つ全てのパーツを、Herculase II融合ポリメラーゼを使用し、以下のプライマーを使用してPCR増幅した:
【化26】
[この文献は図面を表示できません]
(NNNNNNNNNNNNNNNNNNNN(配列番号))
は、標的ゲノム配列の逆相補体である)
【1062】
本出願人らは、Golden Gate戦略を用いて単一ステップ反応で系の全てのパーツを組み立てた(1:1分子比):
【1063】
【表68】
[この文献は図面を表示できません]
【1064】
Golden Gate反応産物を、Herculase II融合ポリメラーゼおよび以下のプライマーを使用してPCR増幅した:
【化27】
[この文献は図面を表示できません]
【1065】
PCR産物を、NotI制限部位を使用してAAV骨格のITR配列間にクローニングした:
PCR産物消化:
【1066】
【表69】
[この文献は図面を表示できません]
【1067】
AAV骨格消化:
【1068】
【表70】
[この文献は図面を表示できません]
【1069】
37℃で20分間インキュベートした後、QIAQuick PCR精製キットを使用して試料を精製した。標準化した試料を1:3のベクター:インサート比で以下のとおりライゲートした:
【1070】
【表71】
[この文献は図面を表示できません]
【1071】
細菌をライゲーション反応産物で形質転換した後、本出願人らは、得られたクローンをサンガーシーケンシングで確認した。
【1072】
Cas9構築物との同時形質移入後に陽性DNAクローンをN2a細胞で試験した(
図35および
図36)。
【1073】
AAV送達用新規Cas9構築物の設計
AAV送達系は、そのユニークな特徴にも関わらず、パッキングに限界がある−インビボでの発現カセットの送達を成功させるには、4.7kb未満のサイズでなければならない。SpCas9発現カセットのサイズを小さくして送達を促進するため、本出願人らはいくつかの変更を試験した:異なるプロモーター、より短いポリAシグナルおよび最後により小さいバージョンの黄色ブドウ球菌(Staphylococcus aureus)由来Cas9(SaCas9)(
図37および
図38)。試験した全てのプロモーターが、マウスMecp2(Gray et al.,2011)、ラットMap1bおよびトランケート型ラットMap1b(Liu and Fischer,1996)を含め、以前試験され、ニューロンにおいて活性であることが発表されたものである。代替的な合成ポリA配列は、同様に機能性であることが以前示されたものである(Levitt et al.,1989;Gray et al.,2011)。クローニングした全ての構築物を、リポフェクタミン2000による形質移入後にN2a細胞で発現させ、ウエスタンブロッティング法で試験した(
図39)。
【1074】
初代ニューロンでAAV多重系を試験する
開発した系のニューロンにおける機能性を確認するため、本出願人らはインビトロで初代ニューロン培養物を使用する。Banker and Goslin(Banker and Goslin,1988)により既発表のプロトコルに従いマウス皮質ニューロンを調製した。
【1075】
神経細胞は16日目の胚から得られる。安楽死させた妊娠中の雌から胚を摘出し、断頭し、頭部を氷冷HBSSに置く。次に頭蓋から鉗子(#4および#5)で脳を摘出し、別の交換した氷冷HBSSに移す。氷冷HBSSで満たしたペトリ皿において実体顕微鏡および#5鉗子の助けを借りてさらなるステップを実施する。半球を互いに分離し、脳幹から髄膜を取り除く。次に海馬を極めて慎重に解剖し、氷冷HBSSで満たした15mlの円錐管に入れる。海馬解剖後に残る皮質を、脳幹の残りの部分および嗅球を取り除いた後に類似のプロトコルを用いたさらなる細胞単離に使用することができる。単離された海馬は10ml氷冷HBSSで3回洗浄し、HBSS中トリプシン(海馬当たり10μl 2.5%トリプシンを添加した4ml HBSS)と共に37℃で15分間インキュベートして解離する。トリプシン処理後、海馬を37℃に予熱したHBSSで3回極めて慎重に洗浄して痕跡量のトリプシンを取り除き、温HBSS中に解離する。本出願人らは、通常、1ml HBSS中の10〜12個の胚から1mlピペットチップを使用して細胞を解離し、解離した細胞を4mlに至るまで希釈する。細胞を250細胞/mm2の密度でプレーティングし、37℃および5%CO2で最長3週間培養する。
HBSS
435ml H2O
50ml 10×ハンクス平衡塩類溶液
16.5ml 0.3M HEPES pH7.3
5ml ペニシリン−ストレプトマイシン溶液
ろ過(0.2μm)および保存4℃
ニューロンプレーティング培地(100ml)
97ml Neurobasal
2ml B27サプリメント
1ml ペニシリン−ストレプトマイシン溶液
250μl グルタミン
125μl グルタミン酸
【1076】
HEK293FT細胞のろ過培地からの濃縮AAV1/2ウイルスまたはAAV1ウイルスを、培養下で4〜7日間ニューロンに形質導入し、送達された遺伝子を発現させるため形質導入後少なくとも1週間培養下に保つ。
【1077】
系のAAVドライブ発現
本出願人らは、AAV送達後のニューロン培養物におけるSpCas9およびSaCas9の発現を、ウエスタンブロット法を用いて確認した(
図42)。形質導入後1週間でニューロンをβ−メルカプトエタノール含有NuPage SDSローディング緩衝液に回収し、タンパク質を95℃で5分間変性させた。試料をSDS PAGEゲル上で分離し、WBタンパク質検出用のPVDF膜に移した。HA抗体でCas9タンパク質を検出した。
【1078】
gRNA多重AAVからのSyn−GFP−kashの発現が蛍光顕微鏡法で確認された(
図50)。
【1079】
毒性
CRISPR系を含むAAVの毒性を評価するため、本出願人らはウイルス形質導入後1週間のニューロンの全体的な形態を調べた(
図45)。加えて、本出願人らは、設計した系の潜在的毒性を、培養下の生細胞と死細胞との区別を可能にするLIVE/DEAD(登録商標)細胞イメージングキットで調べた。これは、細胞内エステラーゼ活性の存在(非蛍光カルセインAMから強度に緑色の蛍光カルセインへの酵素変換により決定されるとおりの)に基づく。他方で、キットの赤色の細胞不透過性成分は、破損した膜を有する細胞に限り侵入し、DNAに結合して死細胞で蛍光を生じる。両方のフルオロフォアとも、生細胞では蛍光顕微鏡法で容易に可視化され得る。初代皮質ニューロンにおけるCas9タンパク質および多重gRNA構築物のAAVドライブ発現は十分な忍容性を有し、非毒性であった(
図43および
図44)ことから、設計されたAAV系がインビボ試験に好適であることを示している。
【1080】
ウイルス産生
McClure et al.,2011に記載される方法により濃縮ウイルスを作製した。HEK293FT細胞において上清ウイルス産生が生じた。
【1081】
脳手術
ウイルスベクター注入のため、10〜15週齢雄性C57BL/6Nマウスをケタミン/キシラジンカクテル(100mg/kgのケタミン用量および10mg/kgのキシラジン用量)で腹腔内注射により麻酔した。先制鎮痛薬(1mg/kg)としてブプレネックス(Buprenex)の腹腔内(intraperitonial)投与を使用した。動物を、耳内位置決めスタッドおよびトゥースバーを使用してKopf定位固定装置に固定化し、固定された頭蓋を維持した。手持形ドリルを使用して、ブレグマの−3.0mm後方および3.5mm側方に、海馬のCA1野における注入用の穴(1〜2mm)を開けた。30G World Precision Instrumentシリンジを2.5mmの深さで使用して、総容積1ulのAAVウイルス粒子の溶液を注入した。注入は「World Precision Instruments UltraMicroPump3」注入ポンプにより0.5ul/分の流量でモニタして組織損傷を防いだ。注入が完了した時点で注射針をゆっくりと、0.5mm/分の速度で取り出す。注入後、6−0 Ethilon縫合糸で皮膚を閉じた。動物を術後に1mLの乳酸加リンゲル液(皮下)で水分補給させ、歩行可能な回復に達するまで温度制御された(37℃)環境に収容した。術後3週間で深麻酔により動物を安楽死させ、続いて核選別のため組織を摘出するか、または免疫化学のため4%パラホルムアルデヒドを灌流させた。
【1082】
核の選別およびインビボ結果
本出願人らは、標識した細胞核の蛍光活性化細胞選別(FACS)ならびにDNA、RNAおよび核タンパク質の下流処理のためgRNA標的神経細胞核をGFPで特異的に遺伝的にタグ標識する方法を設計した。そのために、本出願人らの多重ターゲティングベクターが、GFPとマウス核膜タンパク質ドメインKASH(Starr DA,2011,Current biology)との間の融合タンパク質および目的の特異的遺伝子座を標的にする3つのgRNAの両方を発現するように設計された(
図34)。GFP−KASHはヒトシナプシンプロモーターの制御下で発現してニューロンを特異的に標識した。融合タンパク質GFP−KASHのアミノ酸は以下であった:
【化28】
[この文献は図面を表示できません]
【1083】
脳へのAAV1/2媒介性送達後1週間でGFP−KASHのロバストな発現が観察された。標識された核のFACSおよび下流処理のため、術後3週間で海馬を解剖し、勾配遠心ステップを用いて細胞核精製用に処理した。そのために、320mM スクロース、5mM CaCl、3mM Mg(Ac)2、10mM トリス pH7.8、0.1mM EDTA、0.1%NP40、0.1mM フェニルメタンスルホニルフルオリド(PMSF)、1mM β−メルカプトエタノール中で2ml Dounceホモジナイザー(Sigma)を使用して組織をホモジナイズした。ホモジナイズ処理物を、25%〜29%のOptiprep(登録商標)勾配で製造者のプロトコルに従い30分間3.500rpm、4℃で遠心した。核ペレットを、340mM スクロース、2mM MgCl2、25mM KCl、65mM グリセロリン酸、5%グリセロール、0.1mM PMSF、1mM β−メルカプトエタノール中に再懸濁し、Vybrant(登録商標)DyeCycle(商標)Ruby染色(Life technologies)を添加して細胞核を標識した(DNAに近赤外放射を提供する)。標識し精製した核を、Aria Flu−act細胞選別機およびBDFACS Divaソフトウェアを使用してFACSにより選別した。選別されたGFP+核およびGFP−核を最終的に使用することにより、標的ゲノム領域のSurveyorアッセイ分析のためDNAeasy血液および組織キット(Qiagen)を使用してゲノムDNAを精製した。同じ手法を、下流処理のための標的細胞からの核RNAまたはタンパク質の精製に容易に用いることができる。本出願人らがこの手法で用いているのが2ベクター系(
図34)であることに起因して、脳のごく一部の細胞(多重ターゲティングベクターおよびCas9コードベクターの両方を同時感染させた細胞)においてのみ効率的なCas9媒介性DNA開裂が起こることが予想された。ここに記載する方法は、本出願人らが目的の3つのgRNAを発現する細胞集団からDNA、RNAおよび核タンパク質を特異的に精製することを可能にし、従ってCas9媒介性DNA開裂を起こすはずである。この方法を用いることにより、本出願人らは、ごく一部の細胞においてのみ起こるインビボでの効率的なDNA開裂を可視化することができた。
【1084】
本質的に、本出願人らがここで示したものは、標的インビボ開裂である。さらに本出願人らは多重的手法を使用し、ここではいくつかの異なる配列が同時に、但し独立してターゲティングされる。提供される系は、脳の病的状態(遺伝子ノックアウト、例えばパーキンソン病)の研究に応用することができ、また脳におけるゲノム編集ツールのさらなる開発分野も切り開くことができる。ヌクレアーゼ活性を遺伝子転写調節因子または後成的調節因子に置き換えることにより、病的状態のみならず、学習および記憶形成のような生理学的過程における遺伝子調節および脳の後成的変化の役割に関するあらゆる種類の科学的問題に答えることが可能になる。最後に、提供される技術は、霊長類のようなより複雑な哺乳類系において応用することができ、これにより現在の技術の限界を乗り越えることが可能となる。
【1085】
実施例33:モデルデータ
いくつかの疾患モデルが特に研究されている。それらには、デノボ自閉症リスク遺伝子CHD8、KATNAL2、およびSCN2A;および症候性自閉症(アンジェルマン症候群)遺伝子UBE3Aが含まれる。これらの遺伝子および得られる自閉症モデルは当然ながら好ましいが、本発明を任意の遺伝子に適用することができ、従って任意のモデルが可能であることを示している。
【1086】
本出願人らは、ヒト胚性幹細胞(hESC)においてCas9ヌクレアーゼを使用してこれらの細胞系を作製した。これらの株は、hESCにCbh−Cas9−2A−EGFPおよびpU6−sgRNAを一過性に形質移入することにより作成された。ほとんどの場合に、自閉症患者の全エクソンシーケンシング研究から患者ナンセンス(ノックアウト)突然変異が最近になって記載されている同じエクソンを標的にして、各遺伝子につき2つのsgRNAが設計される。本計画のため特にCas9−2A−EGFPおよびpU6プラスミドを作成した。
【1087】
実施例34:AAV産生系またはプロトコル
本明細書には、ハイスループットスクリーニング用途のために開発された、かつそれで特に上手く機能するAAV産生系またはプロトコルが提供され、しかしながらこれは、本発明においても同様により広い適用性を有する。内因性遺伝子発現の操作は、発現速度が、調節エレメント、mRNAプロセシング、および転写物の安定性を含めた多くの要因に依存するため、種々の難題を突きつける。この難題を解消するため、本出願人らは、送達用のアデノ随伴ウイルス(AAV)ベースのベクターを開発した。AAVはssDNAベースのゲノムを有し、従って組換えを起こしにくい。
【1088】
AAV1/2(血清型AAV1/2、すなわち、ハイブリッドまたはモザイクAAV1/AAV2カプシドAAV)ヘパリン精製濃縮ウイルスプロトコル
培地:D10+HEPES
500mlボトルDMEM高グルコース+Glutamax(GIBCO)
50ml Hyclone FBS(熱失活)(Thermo Fischer)
5.5ml HEPES溶液(1M、GIBCO)
細胞:低継代HEK293FT(ウイルス産生時の継代数<10、ウイルス産生には継代数2〜4の新しい細胞を解凍し、3〜5代成長させる)
形質移入試薬:ポリエチレンイミン(PEI)「Max」
50ml滅菌超高純度H2Oに50mg PEI「Max」を溶解する
pHを7.1に調整する
0.22umフリップトップフィルターでろ過する
チューブを密閉し、パラフィルムで包む
アリコートを−20℃で凍結する(保存のため、また直ちに使用してもよい)
細胞培養
D10+HEPES中で低継代HEK293FTを培養する
毎日1:2〜1:2.5で継代する
有利には細胞を85%より高いコンフルエンシーに至らせない
T75について
−フラスコ当たり10ml HBSS(−Mg2+、−Ca2+、GIBCO)+1ml TrypLE Express(GIBCO)を37℃に温める(ウォーターバス)
培地を完全に吸引する
−10mlの温HBSSを穏やかに添加する(培地を完全に洗い流すため)
−フラスコ当たり1mlのTrypLEを添加する
−フラスコをインキュベーター(37℃)に1分間置く
−フラスコを揺り動かして細胞を剥がす
−9mlのD10+HEPES培地(37℃)を添加する
−上下に5回ピペッティングして単一細胞懸濁液を作成する
−1:2〜1:2.5(T75には12mlの培地)の比で分割する(細胞の成長が遅い場合、廃棄して新しいバッチを解凍する、それらは最適成長でない)
−十分な(大量の細胞の取り扱いが容易になるだけの)細胞が存在するようになったら直ちにT225に移す
AAV産生(構築物当たり5×15cmディッシュスケール):
1000万細胞を15cmディッシュ中21.5ml培地にプレーティングする
37℃で18〜22時間インキュベートする
80%コンフルエンスでの形質移入が理想的である
プレート当たり
22ml培地(D10+HEPES)を予熱する
DNA混合物を含むチューブを調製する(内毒素不含maxiprep DNAを使用する):
5.2ug 目的のベクターのプラスミド
4.35ug AAV血清型1プラスミド
4.35ug AAV血清型2プラスミド
10.4ug pDF6プラスミド(アデノウイルスヘルパー遺伝子)・ボルテックスして混合する
434uL DMEMを添加する(無血清!)
130ul PEI溶液を添加する
5〜10秒間ボルテックスする
DNA/DMEM/PEI混合物を予熱した培地に添加する
短時間ボルテックスして混合する
15cmディッシュ中の培地をDNA/DMEM/PEI混合物に交換する
37℃インキュベーターに戻す
48時間インキュベートした後回収する(培地が過度に酸性にならないようにすること)
【1089】
ウイルス回収:
1.15cmディッシュから培地を慎重に吸引する(有利には細胞を押し退けない)
【1090】
2.各プレートに25ml RT DPBS(Invitrogen)を添加し、細胞スクレーパーで細胞を穏やかに剥がし取る。50mlチューブに懸濁液を収集する。
【1091】
3.800×gで10分間細胞をペレット化する。
【1092】
4.上清を廃棄する。
【1093】
休題:必要に応じて細胞ペレットを−80℃で凍結する
5.ペレットを150mM NaCl、20mM トリス pH8.0中に再懸濁し、組織培養プレート当たり10mlを使用する。
【1094】
6.dH2O中に10%デオキシコール酸ナトリウムの新鮮な溶液を調製する。これを0.5%の最終濃度で組織培養プレート当たり1.25ml添加する。ベンゾナーゼ(benzonase)ヌクレアーゼを50単位/mlの最終濃度となるように添加する。チューブを徹底的に混合する。
【1095】
7.37℃で1時間(ウォーターバス)インキュベートする。
【1096】
8.3000×gで15分間遠心することにより細胞残屑を除去する。新鮮な50mlチューブに移し、ヘパリンカラムの詰まりを防ぐため、全ての細胞残屑が除去されたことを確実にする。
【1097】
AAV1/2のヘパリンカラム精製:
1.蠕動ポンプを使用して、溶液が毎分1mlでカラムを通って流れるようにHiTrapヘパリンカラムをセットアップする。ヘパリンカラム内に気泡が取り込まれないよう確実にすることが重要である。
【1098】
2.蠕動ポンプを使用して、10ml 150mM NaCl、20mM トリス、pH8.0でカラムを平衡化する。
【1099】
3.ウイルスの結合:50mlウイルス溶液をカラムに加え、中を通って流れさせる。
【1100】
4.洗浄ステップ1:カラムを20ml 100mM NaCl、20mM トリス、pH8.0で(蠕動ポンプを使用)。
【1101】
5.洗浄ステップ2:3mlまたは5mlシリンジを使用して、1ml 200mM NaCl、20mM トリス、pH8.0、続いて1ml 300mM NaCl、20mM トリス、pH8.0でカラムの洗浄を続ける。
【1102】
フロースルーは廃棄する。
(上記のウイルス溶液を50分間流す間、種々の緩衝液でシリンジを調製する)
【1103】
6.溶出 5mlシリンジおよび軽い圧力(<1ml/分の流量)を使用して、以下を加えることによりカラムからウイルスを溶出させる:
1.5ml 400mM NaCl、20mM トリス、pH8.0
3.0ml 450mM NaCl、20mM トリス、pH8.0
1.5ml 500mM NaCl、20mM トリス、pH8.0
これらを15ml遠心管に収集する。
【1104】
AAV1/2の濃縮:
1.濃縮ステップ1:100,000分子量カットオフのAmicon ultra 15ml遠心フィルターユニットを使用して、溶出したウイルスを濃縮する。カラム溶出物を濃縮機にロードし、2000×gで2分間遠心する(室温で。濃縮された容積を確認する−約500μlとなるはずである。必要であれば、正しい容積に達するまで1分間隔で遠心する。
【1105】
2.緩衝液交換:1mlの滅菌DPBSをフィルターユニットに添加し、正しい容積(500ul)に達するまで1分間隔で遠心する。
【1106】
3.濃縮ステップ2:500ulの濃縮物をAmicon Ultra 0.5ml 100Kフィルターユニットに添加する。6000gで2分間遠心する。濃縮された容積を確認する−約100μlとなるはずである。必要であれば、正しい容積に達するまで1分間隔で遠心する。
【1107】
4.回収:フィルターインサートを反転させ、新鮮な収集チューブに挿入する。1000gで2分間遠心する。
【1108】
アリコートに分け、−80℃で凍結する
典型的には注入部位当たり1ulが必要であり、従って少量のアリコート(例えば5ul)が推奨される(ウイルスの凍結融解を回避する)。
qPCRを使用してDNアーゼI耐性GC粒子力価を決定する(別個のプロトコルを参照)
【1109】
材料
Amicon Ultra、0.5ml、100K;MILLIPORE;UFC510024
Amicon Ultra、15ml、100K;MILLIPORE;UFC910024
Benzonaseヌクレアーゼ;Sigma−Aldrich、E1014
HiTrapヘパリンカートリッジ;Sigma−Aldrich;54836
デオキシコール酸ナトリウム;Sigma−Aldrich;D5670
【1110】
AAV1上清産生プロトコル
培地:D10+HEPES
500mlボトルDMEM高グルコース+Glutamax(Invitrogen)
50ml Hyclone FBS(熱失活)(Thermo Fischer)
5.5ml HEPES溶液(1M、GIBCO)
細胞:低継代HEK293FT(ウイルス産生時の継代数<10)
ウイルス産生には継代数2〜4の新しい細胞を解凍し、2〜5代成長させる
形質移入試薬:ポリエチレンイミン(PEI)「Max」
50ml滅菌超高純度H2Oに50mg PEI「Max」を溶解する
pHを7.1に調整する
0.22umフリップトップフィルターでろ過する
チューブを密閉し、パラフィルムで包む
アリコートを−20℃で凍結する(保存のため、また直ちに使用してもよい)
【1111】
細胞培養
D10+HEPES中で低継代HEK293FTを培養し、毎日1:2〜1:2.5で継代する
有利には細胞を85%より高いコンフルエンシーに至らせる
T75について
−フラスコ当たり10ml HBSS(−Mg2+、−Ca2+、GIBCO)+1ml TrypLE Express(GIBCO)を37℃に温める(ウォーターバス)
−培地を完全に吸引する
−10mlの温HBSSを穏やかに添加する(培地を完全に洗い流すため)
−フラスコ当たり1mlのTrypLEを添加する
−フラスコをインキュベーター(37℃)に1分間置く
−フラスコを揺り動かして細胞を剥がす
−9mlのD10+HEPES培地(37℃)を添加する
−上下に5回ピペッティングして単一細胞懸濁液を作成する
−1:2〜1:2.5(T75には12mlの培地)の比で分割する(細胞の成長が遅い場合、廃棄して新しいバッチを解凍する、それらは最適成長でない)
−十分な(大量の細胞の取り扱いが容易になるだけの)細胞が存在するようになったら直ちにT225に移す
AAV産生(単一15cmディッシュスケール)
1000万細胞を15cmディッシュ中21.5ml培地にプレーティングする
37℃で18〜22時間インキュベートする
プレート毎に80%コンフルエンスでの形質移入が理想的である
22ml培地(D10+HEPES)を予熱する
DNA混合物を含むチューブを調製する(内毒素不含maxiprep DNAを使用する):
5.2ug 目的ベクターのプラスミド
8.7ug AAV血清型1プラスミド
10.4ug DF6プラスミド(アデノウイルスヘルパー遺伝子)
ボルテックスして混合する
434uL DMEMを添加する(無血清!)130ul PEI溶液を添加する
5〜10秒間ボルテックスする
DNA/DMEM/PEI混合物を予熱した培地に添加する
短時間ボルテックスして混合する
15cmディッシュ中の培地をDNA/DMEM/PEI混合物に交換する
37℃インキュベーターに戻す
48時間インキュベートした後回収する(有利には、培地が過度に酸性にならないよう監視する)
【1112】
ウイルス回収:
15cmディッシュから上清を取り出す
0.45umフィルター(低タンパク質結合)でろ過し、アリコートに分け、−80℃で凍結する
形質導入(24ウェルフォーマット、5DIVでの初代ニューロン培養)
形質導入されるニューロンの各ウェル内の完全neurobasal培地を新鮮なneurobasalに交換する(通常、ウェルにつき500ul中400ulが交換される)
37℃のウォーターバスでAAV上清を解凍する
インキュベーターで30分間平衡化させる
各ウェルに250ul AAV上清を添加する
37℃で24時間インキュベートする
培地/上清を取り出し、新鮮な完全neurobasalに交換する
48時間後に発現が目に見え始め、感染後約6〜7日で飽和する
GOI(目的の遺伝子)を含むpAAVプラスミド用の構築物は、両方のITRSを含めて4.8kbを超えてはならない。
【1113】
ヒトコドン最適化配列(すなわちヒトでの発現に最適化されている)配列の例:SaCas9を以下に提供する:(配列番号___)
【化29】
[この文献は図面を表示できません]
【化30】
[この文献は図面を表示できません]
【化31】
[この文献は図面を表示できません]
【1114】
実施例35:Cas9ニッカーゼおよび2つのガイドRNAを使用したオフターゲット開裂の最小化
Cas9は、RNAにガイドされるDNAヌクレアーゼであり、20bp RNAガイドの助けによりゲノムにおける特定の位置にターゲティングされ得る。しかしながら、ガイド配列はガイド配列とDNA標的配列との間のいくらかのミスマッチを許容し得る。ガイドRNAによってCas9が、ガイド配列と数塩基の違いを有するオフターゲット配列をターゲティングするき、オフターゲット開裂が起こる可能性があるため、この柔軟性は望ましくない。全ての実験的応用(遺伝子ターゲティング、作物エンジニアリング、治療適用等)について、Cas9媒介性遺伝子ターゲティングの特異性を向上させ、かつCas9によるオフターゲット改変の可能性を低下させることが重要である。
【1115】
本出願人らは、Cas9ニッカーゼ突然変異体を2つのガイドRNAと組み合わせて使用して、オフターゲット改変なしにゲノム中の標的二本鎖切断を促進する方法を開発した。Cas9ニッカーゼ突然変異体は、Cas9ヌクレアーゼから、その開裂活性を無効にすることにより作成され、従ってDNA二重鎖の両鎖が開裂される代わりに一方の鎖のみが開裂される。Cas9ニッカーゼは、Cas9ヌクレアーゼの1つ以上のドメイン、例えばRuvc1またはHNHに突然変異を誘発することにより作成されてもよい。これらの突然変異には、限定はされないが、Cas9触媒ドメインの突然変異が含まれてもよく、例えばSpCas9では、これらの突然変異はD10位またはH840位にあり得る。これらの突然変異には、限定はされないが、SpCas9におけるD10A、E762A、H840A、N854A、N863AまたはD986Aが含まれ得るが、ニッカーゼは、他のCRISPR酵素またはCas9オルソログにおける対応する位置に突然変異を誘発することにより作成されてもよい。本発明の最も好ましい実施形態において、Cas9ニッカーゼ突然変異体は、D10A突然変異を有するSpCas9ニッカーゼである。
【1116】
これの機能の仕方は、Cas9ニッカーゼと組み合わせた各ガイドRNAが二重鎖DNA標的の標的一本鎖切断を誘導し得ることである。各ガイドRNAが1つの鎖にニックを入れるため、正味の結果は二本鎖切断となる。この方法でオフターゲット突然変異がなくなる理由は、両方のガイド配列に高度な類似性を有するオフターゲット部位を有する可能性が極めて低いためである(各ガイドにつき20bp+2bp(PAM)=22bpの特異性、および2つのガイドは、任意のオフターゲット部位が44bp近くの相同配列を有しなければならないことを意味する)。個々のガイドがオフターゲットを有し得る可能性はなおあるが、それらのオフターゲットはニッキングされるに過ぎず、それが突然変異誘発性のNHEJプロセスによって修復される可能性は低い。従ってDNA二本鎖ニッキングの多重化は、オフターゲットの突然変異誘発効果なしに標的DNA二本鎖切断を導入する強力な方法を提供する。
【1117】
本出願人らは、HEK293FT細胞と、Cas9(D10A)ニッカーゼならびに1つ以上のガイド用のDNA発現カセットをコードするプラスミドとの同時形質移入を含む実験を実施した。本出願人らは、リポフェクタミン2000を使用して細胞を形質移入し、形質移入後48時間または72時間で形質移入細胞を回収した。二重ニッキングにより誘導されるNHEJを、本明細書において先述したとおりSURVEYORヌクレアーゼアッセイを使用して検出した(
図51、
図52および
図53)。
【1118】
本出願人らはさらに、2つのガイドRNAと組み合わせたときのCas9ニッカーゼ突然変異体による効率的な開裂に関係するパラメータを特定しており、それらのパラメータには、限定はされないが、5’オーバーハングの長さが含まれる。少なくとも26塩基対の5’オーバーハングについて効率的な開裂が報告される。本発明の好ましい実施形態において、5’オーバーハングは少なくとも30塩基対およびより好ましくは少なくとも34塩基対である。最大200塩基対のオーバーハングが開裂に許容され得るが、100塩基対未満の5’オーバーハングが好ましく、および50塩基対未満の5’オーバーハングが最も好ましい(
図54および
図55)。
【1119】
実施例36:Cas9を使用した哺乳類脳における遺伝子機能のインビボ研究
インビボで脳内のニューロンのゲノムを正確に操作可能であることによって、正常なおよび疾患に関連する脳のプロセスにおける遺伝子機能の迅速な分析が可能となる。本出願者らは、微生物エンドヌクレアーゼCas9および単一ガイドRNAを成体マウス脳の特定の細胞型にAAVの媒介で送達することにより、単一のおよび多重化した遺伝子ノックアウトが促進されたことを示す。2週間以内にメチルCpG結合タンパク質(MeCP2)のCas9媒介性ノックアウトが標的ニューロンの形態学的変化を誘導し、DNAメチルトランスフェラーゼタンパク質ファミリー(Dnmt1、Dnmt3aおよびDnmt3b)の多重ノックアウトが文脈恐怖条件付けにおけるマウスの行動を変化させた。総合すると、本出願者らの結果は、脳内の遺伝子機能の迅速な逆遺伝学的研究を促進し、かつ時間のかかるトランスジェニック動物モデルの使用に代わる魅力的な選択肢を提供するCas9の可能性を実証している。
【1120】
疾患関連突然変異を有するトランスジェニック動物モデルは、神経精神疾患の研究に極めて有用であり、疾患の遺伝的および病態生理学的機構を解明する助けとなる。しかしながら、一部の精神神経障害は単一遺伝子欠損に関連することが知られているものの、統合失調症、自閉症および鬱病を含め、認知障害および精神障害の大部分は、複数の遺伝的変異に関連する。複数の遺伝子改変を同時に有する動物モデルの作成は特に労力を要し、何世代にもわたる時間のかかる育種が必要である。化膿性連鎖球菌(S.pyogenes)由来のCRISPR関連エンドヌクレアーゼCas9(SpCas9)は、複製真核細胞において単一および複数の遺伝子の正確かつ効率的なゲノム開裂を媒介することが示されている。Cas9ヌクレアーゼを、特定のゲノム遺伝子座を開裂するように指図して標的二本鎖切断を誘導することができ、それによりフレームシフト挿入/欠失(インデル)突然変異が生じる(
図59A)。本出願者らは、Cas9を使用して脳のプロセスにおける個々のまたは集団での遺伝子の機能を研究し、ならびに単一遺伝子および多遺伝子障害をインビボでモデル化する可能性を探索した。
【1121】
アデノ関連ウイルス(AAV)は、マウス脳への組換え遺伝子の送達によく用いられている。本出願者らは、デュアルベクターAAVベースのCas9およびsgRNA送達系を設計した(
図56A)。このAAV系の主な制約は、導入遺伝子カセットのパッケージングサイズ(ITRを除き約4.5kb)である。SpCas9のサイズは約4.2kbであるため、効率的かつ細胞型特異的な遺伝子発現に必要な他の遺伝エレメントに残されるのは0.3kb未満となる。本出願者らは、トランケート型のマウスMecp2プロモーター(235bp、sMecp2)およびショートポリアデニル化シグナル(48bp、spA)が培養マウス皮質ニューロンにおけるCas9のロバストな発現をドライブするのに十分であることを特定した(
図56B;
図59B〜
図59D)。ニューロンにおけるsgRNAの発現をドライブするため、本出願者らは第2のsgRNAコードベクターを使用した。加えて、本出願者らは、sgRNA送達を標的細胞核の同時蛍光標識と組み合わせた。緑色蛍光タンパク質(GFP)をKASH核膜貫通ドメインと融合すると、GFPが核外膜に仕向けられ、AAV形質導入細胞を容易に可視化することが可能となる(
図56B)。
【1122】
本出願者らは、初めに、初代マウス皮質ニューロンを使用してインビトロでのこのデュアルベクターCas9送達系の送達有効性を試験し、80%より高い同時形質導入効率を観察した(
図56C)。重要なことには、Cas9の発現は、形質導入されたニューロンの形態および生存率に悪影響を及ぼさなかった(
図59D、
図59E)。マウス初代ニューロンにおいてCas9媒介性ゲノム編集を試験するため、本出願者らは、レット症候群で主要な役割を果たすMecp2遺伝子をターゲティングした。MeCP2欠乏は、ニューロンの樹状突起樹異常および棘形態形成障害に関連することが示されており、両方の形態学的表現型とも、レット症候群の患者で観察される神経症状に寄与すると考えられている。
【1123】
Mecp2の効率的なターゲティングを達成するため、本出願者らは初めにいくつかのsgRNAを作成してマウスMecp2遺伝子座のエクソン3内の複数の部位をターゲティングし(
図S2A、
図S2B)、Neuro−2a細胞からのSURVEYOR(商標)ヌクレアーゼアッセイ結果に基づき最も効率的なsgRNAを選択した(
図56D、
図60)。本出願者らのデュアルベクター系のインビトロでのニューロンにおける編集効率を評価するため、本出願者らは、インビトロ7日目(7DIV)に初代マウス皮質ニューロンを形質導入し、形質導入の7日後にSURVEYOR(商標)ヌクレアーゼアッセイを用いてインデル率を測定した(
図56E)。注目すべきことに、Cas9およびsgRNAを同時形質導入したニューロン培養物は、Cas9単独を形質導入したニューロンと比較してMeCP2タンパク質レベルの約80%の低下を示した(
図56F;
図61)。さらに、Cas9およびsgRNAの同時形質導入ニューロンはまた、Cas9のみのニューロン集団と比較したとき樹状突起樹形態(
図56G〜
図56I)および棘密度(
図69J、
図69K)の変化も呈した。
【1124】
本出願者らは、次に、Cas9が生体マウスの脳内の特定の一部の細胞において安定したゲノム改変を媒介し得たかという問いを立てた。AAV形質導入細胞を特異的に分析するため、本出願者らは、蛍光活性化細胞選別(FACS)を用いてGFP−KASH標識核を精製する方法を開発した(
図57A、
図62)。培養下の初代ニューロンと同様に、本出願者らは、Cas9およびMecp2ターゲティングsgRNAを有する高力価AAV1/2の混合物(1:1比)を成体マウスの歯状回に同時送達した(
図57B)。本出願者らは、ウイルス送達後4週間で海馬顆粒細胞における両方のベクターの高い同時形質導入効率を観察した(
図57C)。インビボでのMecp2遺伝子座におけるゲノム改変効率を試験するため、本出願者らはGFP−KASH標識核を精製し、選別された核集団において最大34%のインデル頻度を検出した(
図57D)。Mecp2遺伝子座のCas9媒介性切断によって、MeCP2ノックアウトマウスで観察される効果と同程度に標的ニューロン集団におけるMeCP2タンパク質レベルが効率的に低下し(
図57E〜
図57G)、棘密度が減少した(
図57H、
図57I)。これらの結果は、インビボで哺乳類の脳における標的遺伝子ノックアウトを促進するためのCas9の多用途性を実証している。
【1125】
Cas9系の一つの主要な利点は、多重ゲノム編集を促進するその能力である。生きている動物の脳において複数の遺伝子の安定したノックアウトを導入することは、生理学的および神経病理学的病態における複遺伝子機構の原因調査など、潜在的に広範囲に及ぶ適用性を有し得る。脳における多重ゲノム編集の可能性を試験するため、本出願者らは、タンデムになった3つのsgRNAからなる多重sgRNA発現ベクターを、核標識用のGFP−KASHと共に設計した(
図58A)。本出願者らは、Dnmt1、Dnmt3aおよびDnmt3bからなるDNAメチルトランスフェラーゼ遺伝子ファミリー(DNMT)をターゲティングするsgRNAを選択した。Dnmt1および3aは成熟脳で発現するのに対し、Dnmt3bは主に神経発生の間に発現する。以前、DNMT活性が脳内のDNAメチル化を変化させること、ならびにDnmt3aおよびDnmt1がシナプス可塑性ならびに学習および記憶形成に必要であることが示された。本出願者らは、高い改変効率の個々のsgRNAを選択し、3つ全ての標的遺伝子について高率の同時的なDNA開裂となるようにガイドの組み合わせを最適化した(
図58B;
図63)。
【1126】
インビボでの多重ゲノム編集の有効性を試験するため、本出願者らは、高力価Cas9発現およびsgRNA発現AAV混合物を成体マウスの背側および腹側歯状回に定位的に送達した。4週間後、海馬を解剖し、FACSで標的細胞核を選別した。ディープシーケンシングを用いて、本出願者らは、3つ全ての標的遺伝子座で約20〜70%の範囲の高度なインデル形成を観察した(
図58C、
図64)。いずれも成熟脳で高度に発現するDnmt3aおよびDnmt1は、ウイルス送達の約12週間後に解剖した歯状回組織においてタンパク質レベルの大幅な低下を示す(
図58D)。Dnmt3bは成熟脳で発現が低いため、本出願者らはこの分析ではDnmt3bタンパク質を検出することができなかった。
【1127】
Cas9による先行研究は、sgRNAと部分的にマッチするゲノム遺伝子座がオフターゲットインデル形成をもたらし得ることを示している。上位の予測オフターゲット遺伝子座のインデル解析から、0〜1.6%のインデル形成率が明らかとなり、Cas9改変が極めて特異的であることが実証された(表2)。観察された低いオフターゲット率は、恐らくはsMecp2プロモーターおよびショートポリAシグナルがもたらす比較的弱いCas9発現レベルに起因するものと思われる。
【1128】
【表72】
[この文献は図面を表示できません]
【1129】
【表73】
[この文献は図面を表示できません]
【1130】
【表74】
[この文献は図面を表示できません]
【1131】
先行研究において、Dnmt3aおよびDnmt1のノックダウンが海馬依存性の記憶形成に影響を与え得ることが示唆されている。従って、本出願者らは文脈的恐怖条件付け行動試験を実施し、Cas9媒介性三重ノックアウト(Dnmt3a、Dnmt1およびDnmt3b)が記憶形成の獲得および固定に及ぼす効果を調べた。本出願者らは記憶獲得段階において対照と三重ノックアウトマウスとの間に差がないことを観察したが、ノックアウトマウスは、訓練文脈条件下で試験したとき記憶固定障害を示した(
図58E、
図58F)。この効果は、変化した文脈でマウスを試験したとき消失し、本出願者らのマウスモデルで文脈学習が障害されたことが実証された。本出願者らの結果は、歯状回ニューロンのDNMTファミリーメンバーのCRIPSR−Cas9媒介性ノックアウトが行動課題において遺伝子の機能を探索するのに十分であることを実証している。
【1132】
まとめると、本出願者らの結果は、CRISPR−Cas9系のインビボ送達が、多重ゲノム編集によって疾患モデルを作成し、およびマウス行動を操作するための正確で柔軟かつ極めて効率的な技術に相当することを実証している。ここで示されるCas9系のインビボ適用は、基礎科学、ならびにバイオテクノロジーおよび医学において幅広い適用を有し得る。
【1133】
DNA構築物:Cas9標的の選択および単一ガイドRNA(sgRNA)の作成のため、5’−NGG PAM配列に先行するように20nt標的配列を選択した。オフターゲット効果を最小限に抑えるため、CRIPSR設計ツールを使用した(ウェブサイトtools.genome−engineering.orgで利用可能)。U6プロモーターをテンプレートとして使用して、フォワードプライマー:5’−CGCACGCGTAATTCGAACGCTGACGTCATC−3’および20nt DNA標的部位を有するsgRNA(太字斜体)を含むリバースプライマー:
【化32】
[この文献は図面を表示できません]
でsgRNAをPCR増幅した。コーディングカセットをAAV骨格にヒトシナプシンプロモーター(hSyn)下にクローニングするため、EGFP−KASH構築物をPCRテンプレートとして使用した。次に、MluI部位を使用してU6−Mecp2_sgRNAコード配列を導入した。多重遺伝子ターゲティング戦略のため、個々のsgRNAを上記に記載したとおりPCR増幅した。3つ全てのsgRNAを、Golden Gateクローニング戦略を用いることにより、PCR増幅したhSyn−GFP−KASH−bGHpAカセット(
図58Aを参照)とライゲートした。PCR増幅後、3つのsgRNAおよびhSyn−GFP−KASH−bGH pAを含むGolden Gateライゲーション産物をAAV骨格にクローニングした。得られた全ての構築物をシーケンシングして確認した。ニューロンにおいてCas9発現をドライブするのに最適なプロモーター配列を見付けるため、本出願者らは以下を試験した:hSyn1、マウストランケートMecp2(sMecp2)、およびトランケートラットMap1b(rMap1b)プロモーター配列(
図59Bを参照)。以下のプライマーを使用してプロモーター領域を増幅した:
【化33】
[この文献は図面を表示できません]
ラットmap1bプロモーターの別のトランケーションを以下のオリゴでアセンブルした:
【化34】
[この文献は図面を表示できません]
ショート合成ポリアデニル化シグナル(spA)(3)を、以下のオリゴを使用してアセンブルした:
【化35】
[この文献は図面を表示できません]
EF1αプロモーターの制御下にある赤色蛍光タンパク質(mCherry)をコードするプラスミドを、Lipofectamine(登録商標)2000(Life Technologies)によるニューロンの形質移入に使用した。
【1134】
細胞系培養および形質移入:5%ウシ胎仔血清(BSA)を含有するDMEM中でNeuro−2a(N2a)細胞を成長させた。HEK293FT細胞については、10%ウシ胎仔血清(FBS)を含有するDMEMを使用した。細胞を5%CO
2雰囲気中37℃で維持した。細胞を、Lipofectamine(登録商標)2000またはポリエチレンイミン(PEI)「MAX」試薬(Polysciences)を使用して、製造者のプロトコルに従い形質移入した。
【1135】
濃縮AAVベクターの作製:高力価AAV1/2粒子を、等比のAAV1およびAAV2血清型プラスミドならびにpDF6ヘルパープラスミドを使用して作製し、ヘパリンアフィニティーカラムで精製した。ウイルス粒子の力価測定をqPCRによって行った。高力価AAV1粒子はUNC Vector Core Services(University of North Carolina at Chapel Hill)によって作製された。DMEM中の低力価AAV1粒子を、S.Konermann et al.,Optical control of mammalian endogenous transcription and epigenetic states.Nature 500,472(Aug 22,2013)に以前記載されたとおり作製した。簡潔に言えば、HEK293FT細胞に、PEI「MAX」を使用して導入遺伝子プラスミド、pAAV1血清型プラスミドおよびpDF6ヘルパープラスミドを形質移入した。48時間後に培養培地を収集し、0.45μm PVDFフィルタ(Millipore)でろ過した。
【1136】
初代皮質ニューロン培養:組織培養用のニューロンを得るために用いられる動物を、MIT Committee on Animal Care(MIT CAC)の承認を受けたプロトコルに従い犠牲にした。16日目の胚性マウス脳から、G.Banker,K.Goslin,Developments in neuronal cell culture.Nature 336,185(Nov 10,1988)に記載されるとおり初期培養物を調製した。両性の胚を使用した。細胞をポリ−D−リジン(PDL)コート24ウェルプレート(BD Biosciences)またはラミニン/PDLコートカバースリップ(VWR)上にプレーティングした。培養物を、B27、Glutamax(Life Technologies)およびペニシリン/ストレプトマイシン混合物を補足したNeurobasal培地中において37℃および5%CO
2で成長させた。
【1137】
AAV形質導入のため、500μl Neurobasal培養培地中の皮質ニューロンを7 DIVでHEK293FT細胞からの300μl(1:1比の二重感染)のAAV1含有馴化培地とインキュベートした。形質導入の1週間後、下流処理のためニューロンを回収するか、または免疫蛍光染色もしくは形態分析のため4%パラホルムアルデヒドに固定した。
【1138】
神経形態を可視化するため、L.Swiech et al.,CLIP−170 and IQGAP1 cooperatively regulate dendrite morphology.The Journal of neuroscience:the Society for Neuroscienceの公式ジャーナル 31,4555(Mar 23,2011)に以前記載されたとおり、1週間にわたりLipofectamine(登録商標)2000(Life Technologies)を使用してDIV7の細胞にEF1α−mCherry発現ベクターを形質移入した。総樹状突起長さを測定するため、ImageJソフトウェアを使用して個々のニューロンの全ての樹状突起をトレースした。40倍対物レンズの蛍光顕微鏡(Zeiss AxioCam Ax10顕微鏡、Axiocam MRmカメラ)で取得した画像に関して、一次樹状突起、樹状突起先端の数の定量化およびSholl解析を実施した。樹状突起の数は、10μmより長い全ての非軸索突起の端部をカウントした。Sholl解析については、Shollプラグインを備えたImageJソフトウェアを使用して細胞体の周りに直径5μm刻みの同心円を自動で描き、各円を横切る樹状突起の数をカウントした。
【1139】
マウス脳へのAAV1/2の定位注入:本明細書に記載する全ての動物手順がMIT CACによって承認された。成体(12〜16週齢)雄性C57BL/6Nマウスを100mg/kgケタミンおよび10mg/kgキシラジンの腹腔内(i.p.)注射で麻酔した。先制鎮痛を投与した(Buprenex、1mg/kg、i.p.)。承認された手順に従い開頭術を実施し、1μlの1:1AAV混合物(1×10
13Vg/mlのsMecp2−SpCas9;6×10
12Vg/mlのDNMT 3×sgRNA;3〜5×10
12Vg/ml(hSyn−GFP−KASH)を背側歯状回(前側/後側:−1.7;中外側:0.6;背側/腹側:−2.15)および/または腹側歯状回(前側/後側:−3.52;中外側:2.65;背側/腹側:−3)に注入した。切開を縫合し、術後3日間にわたり適切な術後鎮痛薬(メロキシカム、1〜2mg/kg)を投与した。
【1140】
脳組織からの細胞核の精製:海馬または歯状回全体を氷冷DPBS(Life Sciences)中で速やかに解剖し、ドライアイスでショック凍結した。組織を2mlの氷冷ホモジナイズ緩衝液(HB)(320mM スクロース、5mM CaCl、3mM Mg(Ac)
2、10mM トリス pH7.8、0.1mM EDTA、0.1%NP40、0.1mM PMSF、1mM β−メルカプトエタノール)中に、2mlダウンス型ホモジナイザー(Sigma)を使用して;ペッスルAで25回、続いてペッスルBで25回、穏やかにホモジナイズした。次に、合計5mlになるまで3mlのHBを添加し、氷上に5分間置いておいた。勾配遠心のため、5mM CaCl、3mM Mg(Ac)
2、10mM トリス pH7.8、0.1mM PMSF、1mM β−メルカプトエタノールを含有する5mlの50%OptiPrep(商標)密度勾配媒体(Sigma)を添加して混合した。この溶解物を、コニカル30ml遠心管(Beckman Coulter、SW28ロータ)の中の10ml 29%等浸透圧OptiPrep(商標)溶液の上に穏やかに入れた。試料を10,100×g(7,500rpm)、4℃で30分間遠心した。上清を取り除き、核ペレットを、65mM β−グリセロリン酸(pH7.0)、2mM MgCl
2、25mM KCl、340mM スクロースおよび5%グリセロール中に穏やかに再懸濁した。精製した核の数および質を、明視野顕微鏡法を用いて検査した。
【1141】
細胞核選別:精製したGFP陽性(GFP
+)および陰性(GFP
−)のインタクトな核をVybrant(登録商標)DyeCycle(商標)Ruby染色(1:500、Life Technologies)で同時標識し、BD FACSAria III(Koch Institute Flow Cytometry Core,MIT)を使用して選別した。GFP
+核およびGFP
−核を、1%BSAでコーティングされた、かつ400μlの再懸濁緩衝液(65mM β−グリセロリン酸 pH7.0、2mM MgCl
2、25mM KCl、340mM スクロースおよび5%グリセロール)が入った1.5mlエッペンドルフ試験管に収集した。選別後、全ての試料を氷上に保ち、10,000×g、4℃で20分間遠心した。核ペレットを−80℃で保存し、下流処理に直接使用した。
【1142】
ゲノムDNA抽出およびSURVEYOR(商標)アッセイ:sgRNAの機能試験のため、50〜70%コンフルエントのN2a細胞に、単一のPCR増幅したsgRNAおよびCas9ベクターを同時形質移入した。Cas9のみを形質移入した細胞を陰性対照として供した。形質移入後48時間で細胞を回収し、DNeasy Blood & Tissueキット(Qiagen)を使用して製造者のプロトコルに従いDNAを抽出した。AAV1形質導入初代ニューロンからゲノムDNAを単離するため、AAV形質導入の7日後にDNeasy Blood & Tissueキットを製造者の指示に従い使用した。
【1143】
選別した核または解剖した組織を、溶解緩衝液(10mM トリス、pH8.0、10mM NaCl、10mM EDTA、0.5mM SDS、プロテイナーゼK(PK、1mg/ml)およびRNアーゼA)中に55℃で30分間溶解させた。次に、クロロホルム−フェノール抽出を実施し、続いてエタノールによるDNA沈殿を、標準的手順に従い実施した。最後にDNAをTE緩衝液(10mM トリス pH8.0、0.1mM EDTA)中に再懸濁し、下流分析に使用した。個々のsgRNAの機能試験を、表3に掲載するPCRプライマーを使用してSURVEYOR(商標)ヌクレアーゼアッセイ(Transgenomics)によって実施した。バンド強度の定量化を、F.A.Ran et al.,Genome engineering using the CRISPR−Cas9 system.Nature protocols 8,2281(Nov,2013)に以前記載されたとおり実施した。
【1144】
【表75】
[この文献は図面を表示できません]
【1145】
免疫蛍光染色:
細胞培養:初代ニューロンの免疫蛍光染色のため、細胞をウイルス送達の7日後に4%パラホルムアルデヒド(paraformaldehyd)(PFA)によって室温で20分間固定した。PBSで3回洗浄した後、細胞をPBS中5%正常ヤギ血清(NGS)(Life Technologies)、5%ロバ血清(DS)(Sigma)および0.1%Triton−X100(Sigma)によって室温で30分間ブロックした。細胞を一次抗体と共に2.5%NGS、2.5%DSおよび0.1%Triton−X100中室温で1時間または4℃で一晩インキュベートした。PBSTで3回洗浄した後、細胞を二次抗体と共に室温で1時間インキュベートした。最後に、DAPI含有VECTASHIELD HardSet封入剤(Vector Laboratories)を使用してカバーガラスをマウントし、Zeiss AxioCam Ax10顕微鏡およびAxiocam MRmカメラを使用して撮像した。画像をZen 2012ソフトウェア(Zeiss)を使用して処理した。ImageJソフトウェア1.48hおよびニューロン検出器プラグインを使用することにより定量化を実施した。
【1146】
ウイルス送達の4〜8週間後に致死量のケタミン/キシラジンによってマウスを犠牲にし、PBS、続いてPFAで経心的に灌流した。固定した組織を、ビブラトーム(Leica、VT1000S)を使用して切片化した。次に、30μm切片をクエン酸ナトリウム緩衝液(10mMクエン酸三ナトリウム脱水物、0.05% Tween20、pH6.0)中で2分間煮沸し、室温で20分間冷却した。切片をTBST(137mM NaCl、20mM トリス pH7.6、0.2%Tween−20)中の4%正常ヤギ血清(NGS)で1時間ブロックした。パラフィン切片をミクロトーム(Leica RM2125 RTS)を使用して8μmに切り、A.V.Tzingounis et al., The KCNQ5 potassium channel mediates a component of the afterhyperpolarization current in mouse hippocampus.Proceedings of the National Academy of Sciences of the United States of America 107,10232(Jun 1,2010)に以前記載されたとおり染色した。
【1147】
切片を、4%NGSを含むTBST中に希釈した一次抗体と共に4℃で一晩インキュベートした。TBST中で3回洗浄した後、試料を二次抗体と共にインキュベートした。TBSTで3回洗浄した後、切片をDAPI含有VECTASHIELD HardSet封入剤を使用してマウントし、共焦点顕微鏡(Zeiss LSM 710、Ax10 ImagerZ2、Zen 2012ソフトウェア)で視覚化した。
【1148】
以下の一次抗体を使用した:ウサギ抗Dnmt3a(Santa Cruz、1:100);ウサギ抗MeCP2(Millipore、1:200);マウス抗NeuN(Millipore、1:50〜1:400);ニワトリ抗GFAP(Abcam、1:400);マウス抗Map2(Sigma、1:500);ニワトリ抗GFP(Aves labs、1:200〜1:400);マウス抗HA(Cell Signaling、1:100)。二次抗体:AlexaFluor(登録商標)488、568または633(Life Technologies、1:500〜1:1,000)。
【1149】
ゴルジ−Cox染色:FD Rapid GolgiStainキット(FD NeuroTechnologies)を使用してゴルジ−Cox染色を実施した。Mecp2遺伝子座をターゲティングするCRISPR−Cas9の注入後1〜4週間の成体雄マウスを、MIT CACプロトコルに従い頸椎脱臼によって犠牲にした。解剖後直ちに脳を製造者のプロトコルに従い処理した。細胞の形態を、100倍対物レンズ下の光学顕微鏡を使用して(電動高精度焦点制御を備えるZeiss Axioplan 2、OcraERデジタルカメラ)、歯状回の100μm厚の凍結切片に関して分析した。棘密度を、MetaMorph4ソフトウェアを使用して手動でカウントした。
【1150】
LIVE/DEAD(登録商標)アッセイの定量化:LIVE/DEAD(登録商標)アッセイ(Life technologies)を製造者の指示に従い使用して、対照および形質導入初代ニューロンを染色した。GFP−KASH発現からのGFPシグナルへの干渉を回避するため、DEAD(エチジウムホモ二量体)およびDAPI(全ての細胞)のみについて細胞を染色した。染色した細胞を蛍光顕微鏡法を用いて撮像し、ImageJ 1.48hソフトウェアおよびニューロン検出器プラグインを使用してDEAD、GFPおよびDAPI陽性細胞をカウントした。
【1151】
ウエスタンブロット分析:形質導入初代皮質ニューロン(ウイルス送達後7日)および形質導入組織試料(ウイルス送達後4週間)を、0.1%SDSおよびプロテアーゼ阻害薬(Roche、Sigma)を含有する50μLの氷冷RIPA緩衝液(Cell Signaling)中に溶解した。細胞溶解物をBioruptorソニケーター(Diagenode)で5分間超音波処理し、BCAタンパク質アッセイキット(Pierce Biotechnology,Inc.)を使用してタンパク質濃度を決定した。タンパク質溶解物(lysats)をSDS−PAGE試料緩衝液中に溶解し、還元条件下4〜15%トリス−HClゲル(Bio−Rad)上で分離し、一次抗体:ウサギ抗Dnmt3a(Santa Cruz、1:500)、マウス抗Dnmt1(Novus Biologicals、1:800)、ウサギ抗Mecp2(Millipore、1:400)、ウサギ抗チューブリン(Cell Signaling、1:10,000)、続いて二次抗マウスおよび抗ウサギ(rabbbit)HRP抗体(Sigma−Aldrich、1:10,000)を使用したウエスタンブロッティングによって分析した。GAPDHはウサギHRP共役抗GAPDH抗体(Cell Signaling、1:10,000)で直接可視化した。チューブリンまたはGAPDHをローディング対照として供した。ImageLab 4.1ソフトウェア(BioRad)を備えるChemiDoc(商標)MPシステムでブロットを画像化し、ImageJソフトウェア1.48hを使用して定量化した。
【1152】
遅延文脈的恐怖条件付け(DCFC):12週齢C57BL/6N雄マウスの背側および腹側歯状回への両側性Cas9/DNMT 3xsgRNA送達の8週間後、動物を実験者および行動実験室に7日間馴化させた。Cas9/GFP−KASHを注入した同腹仔を対照として供した。DCFCの1日目、隔離された控え室にマウスケージを置き、試験前および試験後にマウスに聴覚キューが入ることを防いだ。個々のマウスをFCチャンバ(Med Associates Inc.)に置き、12分間の馴化期間を実施した。馴化後、マウスをそのホームケージに戻した。翌日(訓練日)、個々のマウスをチャンバに入れ、4分間馴化させた。さらに20秒間の(トーン前)間隔後、トーン(聴覚キュー)を85dB、2.8kHzのレベルで20秒間提示し、続いて18秒間の遅延間隔を置いた後、フットショックを提示した(0.5mA、2秒間)。フットショック後、40秒間の間隔(トーン/ショック後)を続けた後、次の同じ試行を20秒間のトーン前期間から開始した。この訓練試行を6回繰り返してからマウスをそのホームケージに戻した。3日目(試験日)、マウスを初めに条件付け文脈チャンバに3分間置いた。次に、マウスは、20秒間の間隔と、続く20秒間のトーンおよび60秒間のトーン後間隔から始まる4×100秒間の試験試行を受けた。最後に、マウスを文脈を変えた条件付けチャンバ(フラットフロア対グリッド、四分割対七分割チャンバ、バニリン芳香)に入れ、試験試行を繰り返した。フリージング行動を記録し、オフラインで手動で分析し、Noldus EthoVision XTソフトウェア(Noldus Information Technology)で確認した。
【1153】
ディープシーケンシング解析およびインデル検出:CRISPR設計ツール(ウェブサイトcrispr.mit.edu/で利用可能)を使用して、脳においてCRISPR−Cas9によりターゲティングされるDNMTファミリー遺伝子の潜在的なオフターゲットを見付けた。ウイルス送達の12週間後に歯状回の標的細胞核をFACS選別し、ゲノムDNAを上記に記載したとおり精製した。目的の遺伝子毎に、CRISPR標的部位に隣接するゲノム領域をフュージョンPCR方法によって増幅し、Illumina P5アダプターならびにユニークな試料特異的バーコードを標的アンプリコンに取り付けた(オンターゲットおよびオフターゲットプライマーについては表4を参照のこと)。バーコードを付加して精製したDNA試料をQubit 2.0蛍光光度計(Life Technologies)によって定量化し、等モル比でプールした。次にシーケンシングライブラリをIllumina MiSeq Personalシーケンサー(Life Technologies)によってリード長さ300bpでシーケンシングした。
【1154】
【表76】
[この文献は図面を表示できません]
【1155】
【表77】
[この文献は図面を表示できません]
【1156】
MiSeqリードを先に記載のとおり解析した。簡潔に言えば、リードをPhredクオリティ(Qスコア)によってフィルタリングし、スミス−ウォーターマンアルゴリズムを用いて標的部位の50ヌクレオチド上流および下流のゲノム領域とアラインメントした。標的部位の5ヌクレオチド上流から5ヌクレオチド下流まで(合計30bp)のアラインメントした領域におけるインデルを推定した。各試料の陰性対照を使用して、インデルが含まれるか、または含まれないかを推定切断イベントとして推定した。本発明者らは、真のインデルを含む標的領域を有するリードの割合について、陰性対照試料のデータからの標的領域毎リード毎のエラー率を使用して最尤推定量(MLE)を計算した。各標的のMLEスコアおよび切断率を表2に掲載する。
【1157】
統計的分析:全ての実験は、最小2つの独立した生物学的レプリケートで行った。統計は、Prism6(GraphPad)でスチューデント両側t検定を用いて実施した。
【1158】
脳におけるCRISPRをさらに特徴付けるため、本出願者らはアポトーシス細胞のTUNEL染色および標準的な組織学(例えばヘマトキシリン染色)を用いて毒性効果を試験する。複数の遺伝子座の改変効率をさらに詳細に試験するため、次に本出願者らはGFP陽性単一細胞を選別し、次世代シーケンシングを用いて細胞毎の改変効率を分析する。
【1159】
本出願者らは、二光子顕微鏡下でインビボパッチクランプを用いて脳におけるMecp2ノックダウンの効果を皮質の標的細胞の生理学的表現型によって特徴付ける。成熟脳におけるMecp2ノックダウンの効果を理解するため、本出願者らはインビボで標的細胞のトランスクリプトームを解析する。フォローアップ研究用に興味深い候補遺伝子が選択されることになる。
【1160】
系の両方の成分(Cas9およびsgRNA)でターゲティングされる細胞を有効に精製/可視化するため、本出願者らは、分割型のGFPと組み合わせた分割型のCas9を構築し、これは両方のAAVが同じ細胞内にある場合にのみ再構成する。最後に、本出願者らは、本明細書に記載されるとおり実験を実施し、分裂終了ニューロンにおいてインビトロおよびインビボで相同組換えを達成する。
【1161】
実施例37:AAVベクターおよび肝臓特異的Cas9プロモーターを使用してガイドおよびSaCas9を肝臓に静脈内送達することでインビボで見られるApoB遺伝子型および表現型の変化
この例では、とりわけ:
・ AAV2/8は肝臓標的アデノウイルスベクターである;
・ TBGは肝臓特異的プロモーターであり、ここではこれを用いてSaCas9の発現を駆動する;
・ ここではU6を用いてsgRNA(ガイド)の発現を駆動する;
・ ApoBは脂質代謝遺伝子である。これは肝臓送達の「ゴールドスタンダード」と言われることもあり、肥満症マウスモデルで広く用いられている
・ 「標的1〜標的4」は、ApoB内の4つの標的が選択されたことを意味し、そのうち標的1および標的3(T1およびT3)が最も有用であった;
・ ここで見られるとおりのウイルスベクターからの発現を介した送達は、送達方法としてAnderson/Yin(NBT 2884)による流体力学的送達の使用の改良であり、なぜなら流体力学的送達は数mlの流体を注入する必要があり、これがマウスの体に負担をかけ、致死的となり得るためである。流体力学的送達はプラスミド(ネイキッド)DNAの送達に良く適しているが、本出願者らは、ガイド配列およびCas9配列をウイルス送達ベクター内にパッケージングすることが、効率を大幅に高める点で好ましいことを示している。実際、比較的少量を導入するだけでよく、これは静脈内(i.v.)的に行うことができ、治療上はるかに良好に容認される可能性が高い。
・ 特に有望であったのは、ApoBなどの肝臓の「ゴールドスタンダード」遺伝子に遺伝子型の変化が見られたのみならず、表現型の変化もまた記録されたことであった。PCSK9での先行研究は遺伝子型の変化を示しているが、表現型の変化は示しておらず、従ってApoBで見られた表現型の変化は、肝臓へのCRISPR送達、および肝臓で表現型の変化を生じさせるその能力の妥当性を立証している。これは、より治療的に容認される送達手段(流体力学的送達と比較したi.v.)と組み合わされる。従って、CRISPR(ガイドおよびCas9)の、特に静脈内的なウイルス送達が好ましい)。
・ 標的としては、以下が挙げられる:PCSK9、HMGCR、APOB、LDLR、ANGPTL3、F8、F9/FIX、AAT、FAH、HPD、TAT、ATP7B、UGT1A1、OTC、ARH
【1162】
材料および方法
ウイルスおよび注射パラメータ
使用した構築物:
−AAV2/8−TBG−SaCas9−U6−sgRNA(Apob−標的1〜標的4)。
インビトロ試験:全てがHepa細胞において10%〜15%の効率でApob遺伝子座の開裂を誘導した。
インビボ結果:マウス−8週、C57BL/6(各時点2匹の動物および生理食塩水を注射した野生型対照として1匹の動物)
【1163】
尾静脈注射:
注入量:100ulの0.8E12vp/ml(vp=ウイルス粒子)
送達ウイルス粒子:0.8E11総vp/動物
【1164】
組織処理およびデータ収集
組織処理およびデータ収集は以下のとおり行った:
第1の時間点約1週間(8日)。第2の時間点約4週間。
生理食塩水灌流と、続く肝組織の急性解離。
(A)肝臓の半分をSurveyorおよびqPCRおよびウエスタンブロットタンパク質解析用に−80℃の貯蔵庫に入れた(×12チューブ/動物)。
(B)肝臓の半分をクリオスタット処理用に抗凍結剤中に入れ、急速凍結した。クリオスタット切片をH&Eおよびオイルレッド染色に供した。
各動物につき2片の肝臓からQuickExtractおよびSurveyorアッセイを使用してインデルを検出および定量化した。
【1165】
結果
インビボインデル評価
図は、ApoBガイド(標的)の経時的な(注入後4週間までの)インビボインデル評価を示す。
図56Aは、ガイド(標的)1がApoBにおいて最も高い割合のインデルを誘導したことを示す。標的2および4はインデル形成を全くまたは極めて不十分にしか生じさせないという意味で、ほとんどないし全く効果がないことを示した一方、標的3はいくらかの活性を示した。
図56Bは、注入後4週間のインデル形成効率に関するSurveyorヌクレアーゼゲルアッセイの結果を示す。
【1166】
標的1は約9%のインデル形成であることが分かり、これは標的遺伝子座の許容できるレベルに相当する。
【1167】
ターゲティングするように設計された4個のガイド中2個で示された表現型の変化
AAV−Cas9−sgRNA送達後のインビボでの肝臓脂質蓄積表現型を検出するオイルレッド染色を示す
図66に見られるとおり、使用した3個のガイド中2個(標的1および3)で表現型の変化が見られた。左側の
図66、標的1および3に溜まって示される赤色のオイル斑点が、ApoBが破壊されていることを示し、右下の対照と比較される。Apob遺伝子は、Cas9の誘導による標的ゲノム開裂の結果として破壊されており、この生理学的/表現型の変化が生じた。標的2は対照と比べて顕著な差異は示さなかったとともに、標的4は図示しない。このオイルレッドO染色は、肝臓における脂肪を組織学的染色によって可視化するアッセイである。この染色は、肝臓中の脂肪量を評価するために研究で多く用いられる。実際の臨床では、オイルレッドO染色は主に、肝移植および他の手技において肝臓中の脂肪量を評価するため、肝臓生検標本の凍結切片に対して指示される。実施例のこの態様に関するプロトコルおよび情報については、以下が挙げられる:Mehlem et al,「健康および疾患における代謝状態を分析するためのオイルレッドOによる中性脂質のイメージング(Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease)」,Nature Protocols 8,1149−1154(2013);Maczuga et al.,「アポリポタンパク質B100をターゲティングするヘアピンの治療的発現は、マウス肝臓において表現型およびトランスクリプトームの変化を誘導する(Therapeutic expression of hairpins targeting apolipoprotein B100 induces phenotypic and transcriptome changes in murine liver)」,Gene Therapy(2014)21,60−70;Koornneef et al,「AAVで送達したshRNAによるアポリポタンパク質Bノックダウンはマウスにおいて血漿コレステロールを低下させる(Apolipoprotein B Knockdown by AAV−delivered shRNA Lowers Plasma Cholesterol in Mice)」,Molecular Therapy(2011)19 4,731−740;Tadin−Strapps et al.,「siRNA誘導肝臓ApoBノックダウンはヒト様血清脂質を有するマウスモデルにおいて血清LDLコレステロールを低下させる(siRNA−induced liver ApoB knockdown lowers serum LDL−cholesterol in a mouse model with human−like serum lipids)」,Journal of Lipid Research Volume 52,1084−1097(2011)。
図66中のスケールバーは20ミクロンを表す。
【1168】
実施例38:SaCas9最適化実験
以下を調べた:ガイド長さ最適化;イントロン試験;H1プロモーター;D10A二重ニッカーゼ試験;追加的な長さ/DN試験。
【1169】
SaCas9ガイド長さ試験:sgRNAガイド長さ、すなわち20対21対22bp、さらにガイドの始端(5’末端)における「G」の効果を決定するため。この実験では、
標的部位:
A1:AAVS1
E1:EMX1
T1、T2、…:標的部位の付番
TGC、GTC、…:PAMの5’末端からの位置23、22、21ntにおける塩基組成
【1170】
この実施例の実験は以下によって実施する:1.2つの目的の遺伝子AAVS1およびEMX1の中でNNGRRをPAMとして使用して標的を選択する。2.標的に対応する、しかしsgRNA内のガイド配列部分の長さは20から21、22まで様々なオリゴを合成する。3.このオリゴを使用してsgRNA発現カセットを作成し、SaCas9タンパク質を発現するプラスミドと共にHEK 293FT細胞系に同時形質移入する。4.形質移入の72時間後、細胞を回収し、次にSurveyorアッセイによって分析してインデルを検出した。5.次に、Cas9によって誘導されたインデル形成頻度を計算し、本明細書に添付する図に要約した。
【1171】
図67は、種々の標的間および2つの異なる遺伝子(AAVS1およびEMX1)の範囲内では、灰色のバーで表される21nt/塩基対(bp)が、少なくとも20または22塩基対(それぞれ黒色および白色のバーで表される)と比較して最適なスペーサー長さであることを示す。標的および遺伝子は重要でなく、単に代表例と考えられる。従って、特にSaCas9では、またはSaCas9に関しては、21ntまたは塩基対が良好な長さに最適であるように見える。
図67はまた、ガイド/標的配列の5’末端にあるG ntが、例えばU6プロモーターにとって有利となり得ることも示す。最適なガイド長さは各Cas9タンパク質に特異的であり得る。例えば、SpCas9については、最適なガイド長さは19〜20ntであり得る。ひいては、この例は、どのように最適なガイド長さを決定および使用することができるかを実証する。
【1172】
イントロン試験
この実験は、ガイド配列をCas9イントロン配列に挿入することができたかどうかを試験しようと試みた。
【1173】
以下の構築物を使用した。ガイドRNA(sgRNA)はイントロン内(Cas9 N’およびC’末端エクソン間)に存在することに留意されたい。
CMV−SaCas9(N末端)−イントロン(sgRNA)−SaCas9(C末端)
【1174】
構築物はHepa細胞で発現させた。
【1175】
各イントロンを2つの異なるガイド:Pcsk9およびHmgcr sgRNAで試験した。
【1176】
示される合計9個の構築物:3個のEBV1、3個のEBV2および3個のADV:
− レーン1〜3:EBV1−152(EBVベース、EBVゲノム由来の152bpイントロン1)を示す
− レーン4〜6:EBV2(EBVベース、EBVゲノムのWリピート由来のイントロン)を示す
− レーン7〜9:ADV(アデノウイルスベースのイントロン、Kiani et al.,「哺乳類細胞におけるCRISPR転写抑制デバイスおよび層状回路(CRISPR transcriptional repression devices and layered circuits in mammalian cells)」,Nature Methods doi:10.1038/nmeth.2969 Published online 5 May 2014およびNissim et al,「ヒト細胞における統合RNAおよびCRISPR/Casツールキットによる遺伝子ネットワークの多重化したプログラム可能な調節(Multiplexed and Programmable Regulation of Gene Networks with an Integrated RNA and CRISPR/Cas Toolkit in Human Cells)」,Volume 54,Issue 4,p698−710,22 May 2014;DOI:http://dx.doi.org/10.1016/j.molcel.2014.04.022と同様の起源)を示す。
【1177】
各設計群内で、イントロン内におけるsgRNAの3つの異なる挿入部位に対応する3つの構築物。
【1178】
ADV設計3
結果を
図68に示す。これらの結果は、SaCas9イントロンへのガイド配列のパッケージングを成功させることの原理証明が確かに可能であることを提供する。ガイド配列を有するsgRNAを、アデノウイルスに由来する合成イントロン内に挿入し、次にこのイントロン−sgRNAカセット全体をSaCas9遺伝子に挿入する。イントロンは、SaCas9タンパク質の正常な発現を著しく妨げることなしにSaCas9遺伝子内のどこにでも挿入することができる。sgRNAを有する複数のイントロンを、SaCas9遺伝子内の種々の位置に挿入することができる。位置決めは柔軟であり、この広範な手法は以下の2つの形で有利である:
【1179】
サイズ最小化によって、構築物中のbpまたはntの総数を減らすことができる。
【1180】
「スペース」がここでも常に課題であるため、多重化によってより高度な多重化(複数のガイドの同様送達)が可能である。ガイドは必ずしも特異的プロモーターを必要としないため、同様に1つ以上のガイドを、ある/当該のCas9イントロンにパッケージングすることができる。
【1181】
上記で考察したとおり、複数の合成イントロンをCas9に導入することができるため、前述の文章では「ある/当該の」を使用する。sgRNAを、イントロンの5’末端に近いが、そこから少なくとも5〜15bpの、またイントロンの分岐点より前の位置に挿入することが有利であり得る。5’スプライス供与部位とイントロンの中央の分岐点との間のイントロンスペーサー配列の一部は、当業者がそうすること望む場合には欠失させてもよい。SaとSpとの間でsgRNA構造は異なるという理由を含め、Cas9、特にSaCas9でこれが達成されたことは意外とも言える。
【1182】
現在のところADVが好ましいが、この手法は様々なウイルスおよびCas9(Sa、Sp等)にわたり幅広い適用性を有する。
【1183】
H1プロモーター試験
この実験は、U6プロモーターの代替となるプロモーターを調べようと試みた。
【1184】
A)完全長H1
以下の構築物を作製した:
元のH1プロモーターが1つのsgRNA(Pcsk9−Target201またはHmgcr−NewTarget5のいずれか)を駆動するCMV−SaCas9
【1185】
図69を見ると分かるように、試験した各標的についてU6が高いインデル形成割合を示すとおり、完全長H1プロモーター(灰色のバー)はなおもU6プロモーター(黒色のバー)より弱い。
【1186】
B)二重H1プロモーター試験(短鎖H1)
以下の構築物を作製した:
2つの短鎖H1プロモーターが2つのsgRNA(Pcsk9−Target201およびHmgcr−NewTarget5)を同時に駆動する、二重短鎖H1プロモーターを同じ向きおよび逆の向きで使用したTBG−SaCas9。
【1187】
図70を見ると分かるとおり、短鎖H1プロモーターは完全長H1より弱い。
【1188】
SaCas9ニッカーゼ試験(D10A突然変異体を使用)
この実験は、構築物中の2つのガイド配列の5’末端間の距離を調べ、次にそれを、D10A SaCAs9二重ニッカーゼの開裂効率に関して測定した。標的はヒトAAT1遺伝子であった。これらの試験はプラスミドにクローニングした20bp+Gガイドで行った。
【1189】
−5〜+1bp(5’から5’)の間で最適な結果が示された(
図71を参照のこと)。
【1190】
実施例39:CRISPR−Cas9を使用した哺乳類の脳における遺伝子機能のインビボ研究
この研究は以下の要点を提示する:
・インビボでのAAV媒介性Cas9送達の成功ならびに分裂終了ニューロンにおける効率的なゲノム改変の初めての実証;
・Cas9およびsgRNA発現細胞からの神経核の容易な単離を可能にする核タグ標識技法の開発;
・ニューロントランスクリプトームのRNAseq解析に向けた適用の実証;・・電気生理学的研究とCas9媒介性ゲノム摂動との統合;および
・および、多重ターゲティングおよびCas9媒介性ゲノム編集を用いてげっ歯類行動に関する遺伝子機能を調べる能力の実証。
【1191】
疾患関連突然変異を有するトランスジェニック動物モデルは、神経障害の研究に極めて有用であり、疾患の遺伝的および病態生理学的機構を解明する助けとなる
1。しかしながら、単一または複数の遺伝子修飾を有する動物モデルの作成は特に労力がかかり、何世代にもわたる時間のかかる繁殖が必要である。従って、正常および疾患関連脳プロセスにおける遺伝子機能の迅速な分析を促進するためには、インビボでニューロンのゲノムを正確かつ効率的に操作する能力が必要となる。化膿性連鎖球菌(Streptococcus pyogenes)由来のCRISPR関連エンドヌクレアーゼCas9(SpCas9)は、真核細胞の複製において単一および複数の遺伝子の正確かつ効率的なゲノム開裂を媒介し、フレームシフト挿入/欠失(インデル)突然変異をもたらすことが示されている
2、3。ここで、本発明者らは、Cas9媒介性ゲノム摂動を生化学的、シーケンシングの、電気生理学的、および行動学的リードアウトと統合して、神経プロセスにおける個々のおよび一群の遺伝子の機能ならびに脳障害でのその役割をインビボで研究する。
【1192】
考察
アデノ随伴ウイルス(AAV)ベクターは、マウス脳への組換え遺伝子の送達に一般的に用いられている
4。AAV系の主な限界は、上限がITRなしに約4.5kbという
5、その小さいパッケージングサイズであり、これにより単一のベクター中にパッケージングし得る遺伝物質の量が制限される。SpCas9
6のサイズが既に4.2kbあるため、単一のAAVベクター内で他の遺伝子エレメントに残されているのは0.3kb未満であり、本発明者らは、2つの別個のウイルスベクター上にSpCas9(AAV−SpCas9)およびsgRNA発現カセット(AAV−SpGuide)をパッケージングするデュアルベクター系を設計した(
図72)。AAV−SpCas9ベクターを設計する間、本発明者らは、SpCas9発現を最適化するため様々な短いニューロン特異的プロモーターならびにポリアデニル化シグナルを比較した。本発明者らは、その最終的な設計について、培養初代マウス皮質ニューロンで十分なレベルのSpCas9発現を達成する能力に基づきマウスMecp2プロモーター(235bp、pMecp2)
7および最小ポリアデニル化シグナル(48bp、spA)
8を選択した(
図76−c)。SpCas9を発現するニューロンの免疫蛍光法による同定を促進するため、本発明者らはSpCas9をHA−エピトープタグでタグ標識した。AAV−SpGuideベクターについては、本発明者らは、U6−sgRNA発現カセットならびにヒトシナプシンIプロモーターによって駆動されるKASH核膜貫通ドメイン
9と融合した緑色蛍光タンパク質(GFP)をパッケージングした(
図72a)。GFP−KASH融合タンパク質はGFPを核外膜に指向させ(
図76c、
図76d)、AAV−SpGuideによって形質導入されたインタクトな神経核の蛍光に基づく同定および精製を可能にする。
【1193】
本発明者らのデュアルベクター送達系の送達有効性を試験するため、本発明者らは初めにインビトロで培養初代マウス皮質ニューロンを形質導入し、AAV−SpCas9およびAAV−SpGuideによるロバストな発現を観察したところ(
図76c)、80%を超える同時形質導入効率であった(
図76e)。重要なことには、非形質導入ニューロンと比較すると、SpCas9の発現は形質導入ニューロンの形態および生存率に悪影響を及ぼさなかった(
図76c、
図76f)。
【1194】
効率的な送達系が確立されたことで、本発明者らは次に、マウス初代ニューロンにおけるSpCas9媒介性ゲノム編集を試験しようとした。種々の分裂細胞型でSpCas9を使用して効率的なゲノム改変が達成されているが、SpCas9を分裂終了ニューロンにおけるゲノム編集の効率的な達成に使用し得るかどうかは不明である。本発明者らの初期試験では、自閉症スペクトラム障害の一種であるレット症候群
10で主要な役割を果たすMecp2遺伝子をターゲティングした。MeCP2タンパク質は、脳の至る所にあるニューロンで遍在的に発現するが、グリア細胞ではほとんど発現がなく
11、12、その欠損はニューロンの重大な形態学的および電気生理的表現型に関連することが示されており、両方ともに、レット症候群の患者で観察される神経学的症状に寄与すると考えられている
13〜16。Mecp2をターゲティングするため、本発明者らは初めに、マウスMecp2遺伝子のエクソン3をターゲティングするいくつかのsgRNAを設計し(
図77a)、Neuro−2a細胞を使用してそれらの有効性を評価した。最も効率の高いsgRNAを、SURVEYORヌクレアーゼアッセイを用いて同定した(
図77b)。本発明者らは、続くインビトロおよびインビボMecp2ターゲティング実験用に、最も有効なsgRNA(Mecp2標的5)を選択した。
【1195】
ニューロンにおける本発明者らのデュアルベクター系の編集効率を評価するため、本発明者らは初代マウス皮質ニューロンをインビトロ培養7日目に形質導入し(7DIV、
図78a)、形質導入の7日後にSURVEYORヌクレアーゼアッセイを用いてインデル率を計測した(
図78b)。顕著なことに、AAV−SpCas9とMecp2をターゲティングするAAV−SpGuideとを同時形質導入したニューロン培養物は、対照ニューロンと比較してMeCP2タンパク質レベルの最大80%の低下を示した(
図78c、
図78d)。比較的低いインデル頻度(約14%)とロバストなタンパク質欠乏(約80%)との間の観察された不一致に関する1つの可能性のある説明は、単に標的部位におけるSpCas9の結合が転写を妨げ得るというものであり、これは大腸菌(E.coli)で示されている
17、18。本発明者らは、RuvCおよびHNH触媒ドメインの両方を不活性化した
19、20SpCas9の突然変異体(D10AおよびH840A、dSpCas9)を使用してこの可能性を調べた。dSpCas9およびMecp2ターゲティングsgRNAの同時発現はMeCP2タンパク質レベルを低下させなかった(
図78a、
図78d)ことから、活性SpCas9の存在下で観察されたMeCP2レベルの低下が、Mecp2遺伝子座の改変の存在に起因することが示唆される。検出されたインデルの低いレベルとタンパク質欠乏の高いレベルとの間の不一致に関する別の可能性のある説明は、SURVEYORヌクレアーゼアッセイによる真のインデル率の過小評価に起因し得る−SURVEYORの検出精度はインデル配列組成に感受性が高いことが以前示されている
21。
【1196】
MeCP2機能喪失は、ニューロンにおける樹状突起樹の異常および棘形態形成障害に関連することが以前示されている
14、16。MeCP2欠乏のこれらの表現型はまた、MeCP−KO iPS細胞から分化したニューロンでも再現されている
15。従って、本発明者らは、ニューロンにおけるSpCas9媒介性MeCP2欠乏が同様にレット症候群の形態学的表現型を再現するかどうかを調べた。実際、SpCas9とMecp2をターゲティングするsgRNAとを同時発現するニューロンは、対照ニューロンと比較したとき樹状突起樹形態および棘密度の変化を呈した(
図79)。これらの結果は、SpCas9を使用して分裂終了ニューロンにおける標的ノックアウトを可能にすることにより、細胞アッセイにおける遺伝子機能の研究を促進し得ることを実証している。
【1197】
不均一な細胞型の入り組んだ回路網で構成される神経系の複雑さを所与とすれば、ニューロンのゲノムをインビボで効率的に編集可能であることにより、自然文脈に組み込まれた関連細胞型における遺伝子機能の直接的な試験が可能となる。従って、本発明者らは、成体マウスにおいて高力価AAV−SpCas9とAAV−SpGuideとの混合物(1:1比)を海馬歯状回に定位注入した。本発明者らは、ウイルス注入後4週間で海馬顆粒細胞において両方のベクターの同時形質導入効率が高く(80%を超える)(
図72b、
図72c)、Mecp2遺伝子座のゲノム修飾がもたらされた(
図72d)ことを観察した。SURVEYORヌクレアーゼアッセイを用いて、本発明者らは、注入した脳領域から採取した脳パンチで約13%のインデル頻度を検出した(
図72e)。本発明者らの培養初代ニューロンにおける知見と同様に、Mecp2遺伝子座のSpCas9媒介性切断は、MeCP2タンパク質レベルを60%超効率的に低下させた。(
図72f)加えて、歯状回中のMeCP2陽性核の数が、AAV−SpCas9およびAAV−SpGuideを注入したとき、AAV−SpCas9単独と比較して75%超減少した(
図72g〜
図72h)。これらの結果は、SpCas9を使用してインタクトな生物学的コンテクストの範囲内で特異的遺伝子に直接摂動を与え得ることを示唆している。
【1198】
ターゲティングしたゲノム摂動を定量的リードアウトと組み合わせて、特定のゲノムエレメントの生物学的機能に関する洞察を提供することができる。AAV−SpCas9およびAAV−SpGuideを形質導入した細胞の分析を促進するため、本発明者らは、蛍光活性化細胞選別(FACS)を用いてGFP−KASH標識核を精製する方法を開発した(
図73a)。選別した核を直接使用して、下流の生化学的分析または配列解析用に核DNAおよびRNAを精製することができる。本発明者らはサンガーシーケンシングを用いて、14個中13個の単一GFP陽性核がsgRNA標的部位にインデル突然変異を含有したことを見出した。
【1199】
ゲノムDNAシーケンシングに加え、精製GFP陽性核をまたRNAseq解析に使用して、MeCP2欠乏の転写結果を研究することもできる(
図73bおよび
図80)。歯状回のニューロンの転写に対するMecp2ノックアウトの効果を試験するため、本発明者らは、AAV−SpCas9、ならびに細菌lacZ遺伝子をターゲティングし、かつマウスゲノムはターゲティングしないように設計されている対照sgRNAか、またはMecp2をターゲティングするsgRNAかのいずれかの投与を受ける動物のFACS精製GFP
+核を使用して、RNAseqライブラリを調製した。全てのsgRNAが、そのオフターゲットスコアが最小となるように最適化されている(CRISPR設計ツール:http://tools.genome−engineering.org)
2。本発明者らは、対照とMecp2 sgRNA発現核との間に差次的発現遺伝子(
図70b)を見出すことができた(p<0.01)。本発明者らは、Mecp2 sgRNA発現核で下方制御された遺伝子の中にいくつかの興味深い候補を同定した:Hpca、Olfm1、およびNcdn(これらは学習行動において重要な役割を果たすことが以前報告されているものである
22〜24);およびCplx2(これはシナプス小胞放出に関与し、かつニューロン発火率に関係することが示されている
25、26)。これらの結果は、SpCas9媒介性ゲノム摂動と集団レベルのRNAseq解析との組み合わせが、ニューロンにおける転写調節を特徴付け、かつ特定のニューロン機能または疾患過程に重要であり得る遺伝子を示唆する方法をもたらすことを実証している。
【1200】
脳におけるSpCas9媒介性インビボゲノム編集はまた、電気生理学的記録法と組み合わせることにより、特定の細胞型または回路成分に対するゲノム摂動の効果を研究することができる。神経生理学に対するMeCP2欠乏の機能的効果を研究するため、本発明者らは、AAV−SpCas9とMecp2をターゲティングするAAV−SpGuideとを雄マウスの一次視覚野(V1)の表層に定位的に同時送達した。V1を選択したのは、二光子イメージングおよび二光子誘導標的化記録法にとって表層皮質興奮性ニューロンは到達性が高いためである。SpCas9送達の2週間後、マウスを二光子誘導傍細胞記録法に供し(
図74)、マウスV1の第2/3層におけるKASH−GFP
+ニューロンとGFP
−隣接ニューロンとの電気生理学的反応を比較した(
図72a〜
図72c)。本発明者らは、20度インクリメントの18枚のドリフトグレーティングに対するニューロン応答を測定し、細胞の誘発された発火率(FR)および方位選択性指数(orientation selectivity index:OSI)を、応答のベクトル平均を取ることにより計算した。FRおよびOSIの両方とも、興奮性GFP
+、MeCP2ノックアウトニューロンについて隣接GFP
−興奮性ニューロンと比較して有意に低下した(
図73d〜
図73e)。比較すると、SpCas9と併せた対照sgRNA発現は、隣接する非感染ニューロンと比較したときFRおよびOSIに対していかなる効果も有しなかった(
図73d〜
図73e)。これらの結果は、成熟V1皮質ニューロンにおけるSpCas9媒介性のMeCP2欠乏がインビボで2週間以内に興奮性ニューロンの視覚反応特性を変化させることを示しており、さらに、遺伝子機能の研究および神経回路の分析のための、インビボで哺乳類の脳における標的遺伝子ノックアウトを促進することにおけるSpCas9の多用途性を実証している。
【1201】
SpCas9系の一つの重要な利点は、多重ゲノム編集を促進するその能力である
2。生きている動物の脳に複数の遺伝子の安定したノックアウトを導入することには、生理学的および神経病理学的病態における多遺伝子機構の因果関係研究など、潜在的に広範囲に及ぶ適用性があるものと思われる。脳における多重ゲノム編集の可能性を試験するため、本発明者らは、核標識用のGFP−KASHを伴うタンデムの3つのsgRNAからなる多重sgRNA発現ベクターを設計した(
図74a)。本発明者らは、DNAメチルトランスフェラーゼ遺伝子ファミリー(DNMT)(Dnmt1、Dnmt3aおよびDnmt3bからなる)をターゲティングするsgRNAを選択した。Dnmt1および3aは成熟脳で高発現であり、以前、DNMT活性がDNAメチル化を変化させ、かつシナプス可塑性ならびに学習および記憶形成にDnmt3aおよびDnmt1の両方が必要であることが示された
27。本発明者らは、高い改変効率でDnmt3aおよびDnmt1に対する個々のsgRNAを設計した。Dnmt3bによるいかなる潜在的な代償効果も回避するため、本発明者らはまた、この遺伝子を、それが主として神経発生中に発現するにしても
27、さらにターゲティングすることに決めた。最後に本発明者らは、3つ全ての標的遺伝子について高度に同時性のDNA開裂用に個々のsgRNAを選択した(
図75bおよび
図81)。
【1202】
インビボでの多重ゲノム編集の有効性を試験するため、本発明者らは、高力価AAV−SpCas9とAAV−SpGuideとの混合物を雄成体マウスの背側および腹側歯状回に定位的に送達した。4週間後、海馬を解剖し、FACSで標的細胞核を選別した。本発明者らは、選別した核集団においてSURVEYORヌクレアーゼアッセイ(
図75c)およびシーケンシング(
図82)を用いて約19%(Dnmt3a)、18%(Dnmt1)および4%(Dnmt3b)のインデル頻度を検出した。複数の遺伝子座のターゲティングは、個々の細胞における有効な複数ノックアウト率に関して疑問を起こさせる。単一の核選別を標的シーケンシングと組み合わせて使用することにより、本発明者らは、個々の神経核における複数のDNMT遺伝子座の同時ターゲティングを定量化した(
図75d)。少なくとも1つのDnmt遺伝子座に改変を有する神経核のうち、70%を上回る核がDnmt3aおよびDnmt1の両方にインデルを含んだ(約40%が3つ全ての遺伝子座に、および約30%がDnmt3aおよびDnmt1遺伝子座の両方にインデルを含んだ)。これらの結果は、歯状回におけるDnmt3aおよびDnmt1タンパク質欠乏レベルと一致する(
図75e)。成熟脳におけるDnmt3bの低い発現に起因して、本発明者らはDnmt3bタンパク質を検出することができなかった。
【1203】
最近のSpCas9研究は、20nt sgRNA配列内の各塩基が全体的な特異性に寄与するが、sgRNAに部分的に一致するゲノム遺伝子座が、オフターゲット二本鎖切断およびインデル形成をもたらし得ることを示している
28、29。オフターゲット改変率を評価するため、本発明者らは、高度に類似したゲノム標的部位のリストを計算的に同定し
2、標的ディープシーケンシングを用いて改変率を定量化した。上位の予測オフターゲット遺伝子座のインデル解析から、0〜1.6%のインデル形成率が明らかとなり、SpCas9改変が特異的であることが実証された。(捕表1)インビボでのSpCas9媒介性ゲノム編集の特異性を高めるため、さらなる研究では、二重ニッキング
30、31およびトランケートsgRNA
28などのオフターゲット最小化戦略を用い得る。
【1204】
Dnmt3aおよびDnmt1のノックダウンは、海馬依存性の記憶形成に影響を与えることが以前示されている
27。従って、本発明者らは、文脈的恐怖条件付け行動試験を実施して、SpCas9媒介性三重ノックアウト(Dnmt3a、Dnmt1およびDnmt3b)が記憶の獲得および固定に及ぼす効果を調べた。記憶獲得段階では対照マウスと三重ノックアウトマウスとの間にいかなる違いも観察されなかったが、訓練文脈条件下で試験したとき、ノックアウトマウスは記憶固定の障害を示した(
図75f)。マウスを変化した文脈で試験したときには、この効果は消失した。本発明者らの結果は、歯状回ニューロンにおけるDNMTファミリーメンバーのCRIPSR−Cas9媒介性ノックアウトが、行動課題における遺伝子の機能を探索するのに十分であることを実証している。
【1205】
まとめると、本発明者らの結果は、SpCas9およびsgRNAのAAV媒介性インビボ送達が、インタクトな神経回路内で正確なゲノム摂動を達成するための迅速かつ強力な技術を提供することを実証している。SpCas9は分裂細胞のエンジニアリングに広く用いられているが、本発明者らは、SpCas9はまた、分裂終了ニューロンのゲノムをNHEJ媒介性インデル生成によって高効率でエンジニアリングするためにも使用し得ることを実証している。SpCas9媒介性ゲノム摂動を、生化学的、シーケンシングの、電気生理学的、および行動学的解析と組み合わせて、標的ゲノムエレメントの機能を研究することができる。本発明者らは、単一または複数の遺伝子のSpCas9媒介性ターゲティングが、古典的な、より時間のかかる遺伝的マウスモデルを使用して観察される形態学的、電気生理学的、および行動学的表現型を再現し得ることを実証している。現在の研究は、化膿性連鎖球菌(Streptococcus pyogenes)Cas9を用いたが、これは2つのAAVベクターの使用を必要とするのみならず、細胞型特異的ターゲティングを達成するために用い得るプロモーターエレメントのサイズもまた制限する。SpCas9と比べて実質的に短いものもある
2、32、33Cas9オルソログの多様性を所与とすれば、本明細書に記載されるとおりの、Cas9とsgRNAとの両方を発現する単一のAAVベクターをエンジニアリングすることが可能なはずである。
【1206】
参考文献
1. Nestler,E.J.& Hyman,S.E.Animal models of neuropsychiatric disorders.Nat Neurosci 13,1161−1169(2010).
2. Cong,L.et al.Multiplex genome engineering using CRISPR/Cas systems.Science 339,819−823(2013).
3. Mali,P.et al.RNA−guided human genome engineering via Cas9.Science 339,823−826(2013).
4. Burger,C.,Nash,K.& Mandel,R.J.Recombinant adeno−associated viral vectors in the nervous system.Hum Gene Ther 16,781−791(2005).
5. Wu,Z.,Yang,H.& Colosi,P.Effect of genome size on AAV vector packaging.Mol Ther 18,80−86(2010).
6. Deltcheva,E.et al.CRISPR RNA maturation by trans−encoded small RNA and host factor RNase III.Nature 471,602−607(2011).
7. Gray,S.J.et al.Optimizing promoters for recombinant adeno−associated virus−mediated gene expression in the peripheral and central nervous system using self−complementary vectors.Hum Gene Ther 22,1143−1153(2011).
8. Levitt,N.,Briggs,D.,Gil,A.& Proudfoot,N.J.Definition of an efficient synthetic poly(A)site.Genes Dev 3,1019−1025(1989).
9. Ostlund,C.et al.Dynamics and molecular interactions of linker of nucleoskeleton and cytoskeleton(LINC)complex proteins.J Cell Sci 122,4099−4108(2009).
10. Chahrour,M.& Zoghbi,H.Y.The story of Rett syndrome:from clinic to neurobiology.Neuron 56,422−437(2007).
11. Kishi,N.& Macklis,J.D.MECP2 is progressively expressed in post−migratory neurons and is involved in neuronal maturation rather than cell fate decisions.Molecular and cellular neurosciences 27,306−321(2004).
12. Skene,P.J.et al.Neuronal MeCP2 is expressed at near histone−octamer levels and globally alters the chromatin state.Molecular cell 37,457−468(2010).
13. Chen,R.Z.,Akbarian,S.,Tudor,M.& Jaenisch,R.Deficiency of methyl−CpG binding protein−2 in CNS neurons results in a Rett−like phenotype in mice.Nat Genet 27,327−331(2001).
14. Zhou,Z.et al.Brain−specific phosphorylation of MeCP2 regulates activity−dependent Bdnf transcription,dendritic growth,and spine maturation.Neuron 52,255−269(2006).
15. Li,Y.et al.Global transcriptional and translational repression in human−embryonic−stem−cell−derived Rett syndrome neurons.Cell Stem Cell 13,446−458(2013).
16. Nguyen,M.V.et al.MeCP2 is critical for maintaining mature neuronal networks and global brain anatomy during late stages of postnatal brain development and in the mature adult brain.J Neurosci 32,10021−10034(2012).
17. Jiang,W.,Bikard,D.,Cox,D.,Zhang,F.& Marraffini,L.A.RNA−guided editing of bacterial genomes using CRISPR−Cas systems.Nature biotechnology 31,233−239(2013).
18. Qi,L.S.et al.Repurposing CRISPR as an RNA−guided platform for sequence−specific control of gene expression.Cell 152,1173−1183(2013).
19. Sapranauskas,R.et al.The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli.Nucleic acids research 39,9275−9282(2011).
20. Jinek,M.et al.A programmable dual−RNA−guided DNA endonuclease in adaptive bacterial immunity.Science 337,816−821(2012).
21. Qiu,P.et al.Mutation detection using Surveyor nuclease.BioTechniques 36,702−707(2004).
22. Kobayashi,M.et al.Hippocalcin−deficient mice display a defect in cAMP response element−binding protein activation associated with impaired spatial and associative memory.Neuroscience 133,471−484(2005).
23. Dateki,M.et al.Neurochondrin negatively regulates CaMKII phosphorylation,and nervous system−specific gene disruption results in epileptic seizure.The Journal of biological chemistry 280,20503−20508(2005).
24. Nakaya,N.et al.Deletion in the N−terminal half of olfactomedin 1 modifies its interaction with synaptic proteins and causes brain dystrophy and abnormal behavior in mice.Experimental neurology 250,205−218(2013).
25. Reim,K.et al.Complexins regulate a late step in Ca2+−dependent neurotransmitter release.Cell 104,71−81(2001).
26. Edwardson,J.M.et al.Expression of mutant huntingtin blocks exocytosis in PC12 cells by depletion of complexin II.The Journal of biological chemistry 278,30849−30853(2003).
27. Feng,J.et al.Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons.Nat Neurosci 13,423−430(2010).
28. Fu,Y.et al.High−frequency off−target mutagenesis induced by CRISPR−Cas nucleases in human cells.Nature biotechnology 31,822−826(2013).
29. Hsu,P.D.et al.DNA targeting specificity of RNA−guided Cas9 nucleases.Nature biotechnology 31,827−832(2013).
30. Ran,F.A.et al.Double nicking by RNA−guided CRISPR Cas9 for enhanced genome editing specificity.Cell 154,1380−1389(2013).
31. Mali,P.et al.CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering.Nature biotechnology 31,833−838(2013).
32. Esvelt,K.M.& Wang,H.H.Genome−scale engineering for systems and synthetic biology.Molecular systems biology 9,641(2013).
33. Li,W.,Teng,F.,Li,T.& Zhou,Q.Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR−Cas systems.Nat Biotechnol 31,684−686(2013).
【1207】
方法
DNA構築物
SpCas9標的選択および単一ガイドRNA(sgRNA)の生成のため、5’−NGG PAM配列に先行するように20nt標的配列を選択した。オフターゲット効果を最小限に抑えるため、CRIPSR設計ツールを使用した(http://tools.genome−engineering.org)。U6プロモーターをテンプレートとして使用して、フォワードプライマー:5’−CGCACGCGTAATTCGAACGCTGACGTCATC−3’および20ntDNA標的部位(太字斜体)を有するsgRNAを含むリバースプライマー:
【化36】
[この文献は図面を表示できません]
でsgRNAをPCR増幅した。
【1208】
対照sgRNA配列は、大腸菌(E.coli)由来のlacZ遺伝子をターゲティングするように設計した:標的配列:TGCGAATACGCCCACGCGATGGG(配列番号 )EGFP−KASH
1構築物はWorman教授(コロンビア大学(Columbia University),NYC)から供与されたもので、コードカセットをヒトシナプシンプロモーター(hSyn)下でAAV骨格にクローニングするためのPCRテンプレートとして使用した。次に、MluI部位を使用してU6−Mecp2 sgRNAコード配列を導入した。多重遺伝子ターゲティング戦略に向けて個々のsgRNAを上記に記載したとおりPCR増幅した。3つ全てのsgRNAを、Golden Gateクローニング戦略を用いて、PCR増幅したhSyn−GFP−KASH−bGHpAカセットとライゲートした。(
図4Aを参照のこと)PCR増幅後、3つのsgRNAおよびhSyn−GFP−KASH−bGH pAを含むGolden Gateライゲーション産物をAAV骨格にクローニングした。得られた全ての構築物をシーケンシングして確認した。ニューロンにおけるSpCas9発現の駆動に最適なプロモーター配列を見付けるため、本発明者らは以下を試験した:hSyn1、マウストランケートMecp2(pMecp2)、およびトランケートラットMap1b(pMap1b)プロモーター配列
2。(捕表1Aを参照のこと)以下のプライマーを使用してプロモーター領域を増幅した:
【化37】
[この文献は図面を表示できません]
【1209】
ラットmap1bプロモーターの別のトランケーションを、以下のオリゴでアセンブルした:
【化38】
[この文献は図面を表示できません]
【1210】
短鎖合成ポリアデニル化シグナル(spA)
3を、以下のオリゴを使用してアセンブルした:
【化39】
[この文献は図面を表示できません]
【1211】
SpCas9およびそのD10A突然変異体型(dSpCas9)は以前記載された
4、5。Lipofectamine(登録商標)2000(Life Technologies)によるニューロン形質移入には、EF1αプロモーターの制御下にある赤色蛍光タンパク質(mCherry)をコードするプラスミドを使用した。
【1212】
細胞系培養および形質移入
Neuro−2a(N2a)細胞を、5%ウシ胎仔血清(BSA)を含有するDMEM中で成長させた。HEK293FT細胞には、10%ウシ胎仔血清(FBS)を含有するDMEMを使用した。細胞は5%CO
2雰囲気中37℃で維持した。Lipofectamine(登録商標)2000またはポリエチレンイミン(PEI)「MAX」試薬(Polysciences)を製造者のプロトコルに従い使用して細胞を形質移入した。
【1213】
濃縮AAVベクターの作製
等比のAAV1およびAAV2血清型プラスミドならびにpDF6ヘルパープラスミドを使用して高力価AAV1/2粒子を作製し、ヘパリンアフィニティーカラムで精製した
6。qPCRによってウイルス粒子の力価測定を行った。高力価AAV1粒子はUNC Vector Core Services(ノースカロライナ大学チャペルヒル校(University of North Carolina at Chapel Hill))によって作製された。DMEM中の低力価AAV1粒子は、以前記載があるとおり作製した
7。簡潔に言えば、HEK293FT細胞に、PEI「MAX」を使用して導入遺伝子プラスミド、pAAV1血清型プラスミドおよびpDF6ヘルパープラスミドを形質移入した。48時間後に培養培地を回収し、0.45μm PVDFフィルタ(Millipore)でろ過した。
【1214】
初代皮質ニューロン培養
組織培養用のニューロンを得るために使用した動物を、MIT動物管理委員会(MIT CAC:Committee on Animal Care)によって承認されたプロトコルに従い犠牲にした。胚性16日目のマウス脳から初代培養物を調製した
8。男女両性の胚を使用した。細胞を、ポリ−D−リジン(PDL)でコートした24ウェルプレート(BD Biosciences)またはラミニン/PDLでコートしたカバーガラス(VWR)に播いた。培養物は、B27、Glutamax(Life Technologies)およびペニシリン/ストレプトマイシン混合物を補足したNeurobasal培地において37℃および5%CO
2で成長させた。
【1215】
AAV形質導入は、500μlのNeurobasal培養培地中の皮質ニューロンを、7DIVでHEK293FT細胞からの300μl(1:1比での二重感染)AAV1含有馴化培地によってインキュベートした
7。形質導入後1週間でニューロンを下流処理用に回収し、または免疫蛍光染色もしくは形態分析用に4%パラホルムアルデヒド中に固定した。
【1216】
ニューロン形態を可視化するため、先述のとおりLipofectamine(登録商標)2000(Life Technologies)を1週間使用してDIV7の細胞にEF1α−mCherry発現ベクターを形質移入した
9。総樹状突起長さを計測するため、ImageJソフトウェアを使用して個々のニューロンの全ての樹状突起をトレースした。蛍光顕微鏡によって40倍対物レンズ(Zeiss AxioCam Ax10顕微鏡、Axiocam MRmカメラ)で取得した画像に関し、一次樹状突起、樹状突起先端の数の定量化およびSholl解析
10を実施した。樹状突起の数は、10μmより長い全ての非軸索突起の端部をカウントした。Sholl解析については、Shollプラグインを備えたImageJソフトウェアを使用して細胞体の周りに直径5μm刻みの同心円を自動で描き、各円を横切る樹状突起の数をカウントした。
【1217】
マウス脳へのAAV1/2の定位注入
本明細書に記載する全ての動物手順がMIT CACによって承認された。成体(12〜16週齢)雄性C57BL/6Nマウスを100mg/kgケタミンおよび10mg/kgキシラジンの腹腔内(i.p.)注射で麻酔した。先制鎮痛を投与した(Buprenex、1mg/kg、i.p.)。承認された手順に従い開頭術を実施し、1μlの1:1AAV混合物(1×10
13Vg/mlのsMecp2−SpCas9;6×10
12Vg/mlのDNMT 3×sgRNA;3〜5×10
12Vg/mlのhSyn−GFP−KASH)を背側歯状回(前側/後側:−1.7;中外側:0.6;背側/腹側:−2.15)および/または腹側歯状回(前側/後側:−3.52;中外側:2.65;背側/腹側:−3)に注入した。インビボ電気生理学記録実験(
図74)については、ウイルス注入座標は3mm外側(ブレグマから)および後側縫合線から1mm前側であった。時折生理食塩水で冷却しながらdremelドリルを使用して頭蓋を薄くし、残りの硬膜を、鉱油中に懸濁したウイルスを充填したガラス製マイクロピペットを使用して穿刺した。隣接部位に200〜250μmの深さで数回の注入(3〜4回)を行った。150〜200nlの容積のウイルス混合物を各部位につき75nl/分の速度で注入した。各注入後、ピペットをその場に3〜5分間保持してから引き込み、それにより漏れを防いだ。切開を縫合し、術後3日間にわたり適切な術後鎮痛薬(メロキシカム、1〜2mg/kg)を投与した。
【1218】
インビボ二光子誘導標的ルースパッチ記録法
ウイルス注入の2週間後、マウスを電気生理学的実験に使用した。マウスを2%イソフルランで麻酔し、0.8%イソフルランを使用して維持した。皮膚を切除し、sugiで洗浄し、接着剤および歯科用アクリルを使用して頭蓋に金属ヘッドプレートを取り付け、一次視覚野(V1)上で2mm×2mm開頭術を実施した。次に露出した領域を人工脳脊髄液(aCSF;140mM NaCl、5mM KCl、2mM CaCl2、1mM MgCl2、0.01mM EDTA、10mM HEPES、10mM グルコース;pH7.4)中の1.5%アガロースの薄層で覆った。実験中、動物の体温は加熱ブランケットで37.5℃に維持した。
【1219】
ホウケイ酸ガラスピペット(WPI)を、Sutter P−2000レーザープラー(Sutter Instruments)を使用して引いた。先端径は約1μmであった一方、抵抗は3〜5MΩであった。記録は、MultiClamp 700B増幅器(Axon)を制御して、Matlab(MathWorks)で書かれたカスタムソフトウェア(Network Prism、Sur lab)を使用して行った。ガラスピペット電極を20〜35°の角度で脳に挿入し、Ag/AgCl接地電極ペレット(Warner Instruments)を脳および対物レンズと同じ溶液中に位置決めした。蛍光による可視化のため、ピペットにAlexa Fluor 594(Molecular Probes)を充填した。初めに10倍レンズを使用してピペットを注入部位にターゲティングし、次に25倍レンズを使用して、770nmの同時二光子イメージングで個々のGFP+細胞にターゲティングした。急激に時間変化する5mV指令電圧パルスの間に電圧固定で観察される抵抗の振れによって細胞近接性を検出した。抵抗が5〜10MΩ上昇したところで、増幅器を電流固定に切り換え、ゼロ注入電流、4KHzのベッセルフィルタおよび300HzのACフィルタ下でスパイクを記録した。ウイルスを注入した脳は事後に灌流し、免疫組織化学を実施した。
【1220】
視覚刺激およびインビボ二光子誘導標的ルースパッチ記録法からのデータ解析
ゲノム編集されたニューロンの方位選択性およびチューニングを評価するため、本発明者らは、Matlab PsychToolbox−3で書かれたカスタムソフトウェアを使用して定方位グレーティングを提示した。グレーティングは細胞応答性に対して最適化し、方位を0から360度まで20度刻みで段階的に変えることにより提示し、各グレーティングの提示は4秒間「オフ」に先行し、その後4秒間「オン」が続き、合計提示時間を144秒とした。データはMatlabに直接取得し、.matファイルとして保存した。スパイク検出は、手動で定義した閾値と、続いてさらなる妥当性確認のためスパイク形状テンプレートマッチングを使用した解析ルーチンによって実施した。全てのスパイクをタグ付けし、グラフィカルユーザインターフェースのスクリーンに表示して、偽陽性および偽陰性を実験者が手動で精査した。次に各刺激に応答したスパイク時間をその視覚刺激に対するタイミングに基づき「オン」期間または「オフ」期間に分類し、各刺激の「オン」スパイクを、同じ期間に観察された「オフ」スパイクの数だけデクリメントした。方位実験について、「オン」期間および「オフ」期間は同じ長さであったため、刺激当たりのスパイク数=(「オン」スパイク数)−(「オフ」スパイク数)である。
【1221】
目的とするあらゆる細胞について、この方法を用いて各方位刺激(0〜360度、20度刻み)に対する応答を収集した。次にこれらの応答を、試験毎に方位対応答の「チューニング曲線」に変えた。以下のとおりの式に従い好ましい方位のベクトル平均を取ることにより、方位選択性指数(OSI)を計算した:
【数2】
[この文献は図面を表示できません]
【1222】
組織調製および細胞核の精製
海馬または歯状回全体を氷冷DPBS(Life Sciences)中で速やかに解剖し、ドライアイスで衝撃凍結した。細胞核精製のため、組織を2mlの氷冷ホモジナイズ緩衝液(HB)(320mM スクロース、5mM CaCl、3mM Mg(Ac)
2、10mM トリス pH7.8、0.1mM EDTA、0.1%NP40、0.1mM PMSF、1mM β−メルカプトエタノール)中に、2mlダウンス型ホモジナイザー(Sigma)を使用して;ペッスルAで25回、続いてペッスルBで25回、穏やかにホモジナイズした。次に、合計5mlになるまで3mlのHBを添加し、氷上に5分間置いておいた。勾配遠心のため、5mM CaCl、3mM Mg(Ac)
2、10mM トリス pH7.8、0.1mM PMSF、1mM β−メルカプトエタノールを含有する5mlの50%OptiPrep(商標)密度勾配媒体(Sigma)を添加して混合した。この溶解物を、コニカル30ml遠心管(Beckman Coulter、SW28ロータ)の中の10ml 29%等浸透圧OptiPrep(商標)溶液の上に穏やかに入れた。試料を10,100×g(7,500rpm)、4℃で30分間遠心した。上清を取り除き、核ペレットを、65mM β−グリセロリン酸(pH7.0)、2mM MgCl
2、25mM KCl、340mM スクロースおよび5%グリセロール中に穏やかに再懸濁した。精製した核の数および質を、明視野顕微鏡法を用いて検査した。
【1223】
細胞核選別
精製したGFP陽性(GFP
+)および陰性(GFP
−)のインタクトな核をVybrant(登録商標)DyeCycle(商標)Ruby染色(1:500、Life Technologies)で同時標識し、BD FACSAria III(Koch Institute Flow Cytometry Core,MIT)を使用して選別した。GFP
+核およびGFP
−核を、1%BSAでコーティングされた、かつ400μlの再懸濁緩衝液(65mM β−グリセロリン酸塩pH7.0、2mM MgCl
2、25mM KCl、340mM スクロースおよび5%グリセロール)が入った1.5mlエッペンドルフ試験管に収集した。選別後、全ての試料を氷上に保ち、10,000×g、4℃で20分間遠心した。核ペレットを−80℃で保存し、下流処理に直接使用した。
【1224】
ゲノムDNA抽出およびSURVEYOR(商標)アッセイ
sgRNAの機能試験のため、50〜70%コンフルエントのN2a細胞に、単一のPCR増幅したsgRNAおよびSpCas9ベクターを同時形質移入した。SpCas9のみを形質移入した細胞を陰性対照として供した。形質移入後48時間で細胞を回収し、DNeasy Blood & Tissueキット(Qiagen)を使用して、製造者のプロトコルに従いDNAを抽出した。AAV1形質導入初代ニューロンからゲノムDNAを単離するため、AAV形質導入の7日後にDNeasy Blood & Tissueキットを製造者の指示に従い使用した。
【1225】
選別した核または解剖した組織を、溶解緩衝液(10mM トリス、pH8.0、10mM NaCl、10mM EDTA、0.5mM SDS、プロテイナーゼK(PK、1mg/ml)およびRNアーゼA)中に55℃で30分間溶解させた。次に、クロロホルム−フェノール抽出を実施し、続いてエタノールによるDNA沈殿を、標準的手順に従い実施した。最後にDNAをTE緩衝液(10mM トリス pH8.0、0.1mM EDTA)中に再懸濁し、下流分析に使用した。個々のsgRNAの機能試験を、補表2に掲載するPCRプライマーを使用してSURVEYOR(商標)ヌクレアーゼアッセイ(Transgenomics)によって実施した。以前記載されたとおり
11、バンド強度の定量化を実施した。
【1226】
RNAライブラリ調製およびシーケンシング
Mecp2をターゲティングするガイドを有するSpCas9(4匹の動物)またはlacZをターゲティングするgRNAを有するSpCas9(4匹の動物)の両側性ウイルス送達の2週間後、歯状回を氷冷DPBS(Life Sciences)中に速やかに解剖し、RNA−later溶液(Ambion)に直ちに移した。4℃で24時間の後、組織を−80℃に移した。100個の標的神経核の集団を、1%2−メルカプトエタノール(Qiagen)を補足した10μl TCL緩衝液中にFACS選別した。遠心後、試料を−80℃で直ちに凍結した。RNAを、AMPure RNAcleanXP SPRIビーズ(Beckman Coulter Genomics)で製造者の指示に従い精製し、80%エタノールで3回洗浄し、最終的な溶出は省いた。RNAを捕捉したビーズを風乾させて、cDNA合成用に直ちに処理した。核を含まない試料を陰性対照として使用した。cDNAライブラリの調製においては、逆転写酵素を0.1ulのMaxima H Minus酵素(200U/ul、Thermo Scientific)に置き換え、かつPCR反応を25ulの容積にスケールダウンしたことを除きSMART−seq2プロトコル
12に従い、各動物につき3個の集団試料、合計24個の集団試料を使用した。Nextera XT DNA試料調製キット(Illumina)を以下の改変を伴い使用して、タグメンテーション反応および最終的なPCR増幅を行った。反応容積は全て4分の1にスケールダウンし、かつPCR増幅ステップ後に、各試料につき2.5ulを取ることによりライブラリをプールした。プールしたライブラリを、2ラウンドの0.7容積のAMPure XP SPRIビーズクリーンアップ(Beckman Coulter Genomics)を使用してクリーニングし、サイズ選択した。試料を高感度DNAチップ(Agilent)にロードしてライブラリのクオリティを確かめ、一方、Qubit高感度DNAキット(Invitrogen)で定量化を行った。プールしたライブラリを4nMの終濃度および12pmolとなるように希釈し、75bpペアエンドリードでIllumina Miseqを使用してシーケンシングした。
【1227】
RNAライブラリデータ解析
マウスmm9 UCSCゲノムおよび既知の遺伝子トランスクリプトーム
13に基づきBowtie2インデックスを作成し、Bowtie2を使用してコマンドラインオプション−q −−phred33−quals −n 2 −e 99999999 −l 25 −I 1 −X 1000 −a −m 200 −p 4 −−chunkmbs 512でペアエンドリードをこのインデックスと直接アラインメントした。次に、Bowtie2によって作成されたアラインメントに対してRSEM v1.27をデフォルトパラメータで実行し、発現レベルを推定した。各遺伝子についてRSEM遺伝子レベル発現推定値(τ)に1,000,000を乗じて転写物百万分率(TPM)推定値を求め、log2(TPM+1)を取ることによりTPM推定値を対数空間に変換した。遺伝子は、それらの変換された発現レベルが2以上(log2(TPM+1)目盛で)である場合に検出されたと見なした。8000個未満の遺伝子が検出された場合にライブラリはフィルタリングで取り除いた。この基準に基づき4個のライブラリがフィルタリングされ、下流分析から除外された。対照動物とMecp2 sgRNAを発現する動物との間の差次的発現遺伝子を見付けるため、20回のランダムな順列ランでのスチューデントt検定(Matlab V2013b)およびクロス確認を使用し、ここでは各ランにおいて各動物から1つのライブラリがランダムに選択され、除外された(これにより毎回t検定で使用される合計12個のライブラリがもたらされた)。各試料について平均発現レベルが0.9分位点より高い(通常約5log2(TPM+1))全ての遺伝子に対してt検定を実行した。次に、順列ランの3分の1より多くで有意であった(p<0.01)遺伝子を選択した。全試料にわたるこれらの遺伝子のlog2(TPM+1)発現レベルを、階層クラスタリング(Matlab V2013b)を使用してクラスタリングした。
【1228】
免疫蛍光染色
細胞培養:初代ニューロンの免疫蛍光染色のため、細胞をウイルス送達7日後に4%パラホルムアルデヒド(paraformaldehyd)(PFA)によって室温で20分間固定した。PBSで3回洗浄した後、細胞をPBS中5%正常ヤギ血清(NGS)(Life Technologies)、5%ロバ血清(DS)(Sigma)および0.1%Triton−X100(Sigma)によって室温で30分間ブロックした。細胞を一次抗体と共に2.5%NGS、2.5%DSおよび0.1%Triton−X100中室温で1時間または4℃で一晩インキュベートした。PBSTで3回洗浄した後、細胞を二次抗体と共に室温で1時間インキュベートした。最後に、DAPI含有VECTASHIELD HardSet封入剤(Vector Laboratories)を使用してカバーガラスをマウントし、Zeiss AxioCam Ax10顕微鏡およびAxiocam MRmカメラを使用してイメージングした。画像をZen 2012ソフトウェア(Zeiss)を使用して処理した。ImageJソフトウェア1.48hおよびニューロン検出器プラグインを使用することにより定量化を実施した。
【1229】
ウイルス送達の4週間後に、致死量のケタミン/キシラジンによってマウスを犠牲にし、PBS、続いてPFAで経心的に灌流した。固定した組織を、ビブラトーム(Leica、VT1000S)を使用して切片化した。次に、30μm切片をクエン酸ナトリウム緩衝液(10mMクエン酸三ナトリウム脱水物、0.05% Tween20、pH6.0)中で2分間煮沸し、室温で20分間冷却した。切片をTBST(137mM NaCl、20mM トリス pH7.6、0.2%Tween−20)中の4%正常ヤギ血清(NGS)で1時間ブロックした。パラフィン切片をミクロトーム(Leica RM2125 RTS)を使用して8μmに切り、先に記載のとおり染色した
14。
【1230】
切片を、4%NGSを含むTBST中に希釈した一次抗体と共に4℃で一晩インキュベートした。TBST中で3回洗浄した後、試料を二次抗体と共にインキュベートした。TBSTで3回洗浄した後、DAPI含有VECTASHIELD HardSet封入剤を使用して切片をマウントし、共焦点顕微鏡(Zeiss LSM 710、Ax10 ImagerZ2、Zen 2012ソフトウェア)で可視化した。
【1231】
以下の一次抗体を使用した:ウサギ抗Dnmt3a(Santa Cruz、1:100);ウサギ抗MeCP2(Millipore、1:200);マウス抗NeuN(Millipore、1:50〜1:400);ニワトリ抗GFAP(Abcam、1:400);マウス抗Map2(Sigma、1:500);ニワトリ抗GFP(Aves labs、1:200〜1:400);マウス抗HA(Cell Signaling、1:100)。二次抗体:AlexaFluor(登録商標)488、568または633(Life Technologies、1:500〜1:1,000)。
【1232】
LIVE/DEAD(登録商標)アッセイの定量化
LIVE/DEAD(登録商標)アッセイ(Life technologies)を製造者の指示に従い使用して、対照および形質導入初代ニューロンを染色した。GFP−KASH発現からのGFPシグナルへの干渉を回避するため、DEAD(エチジウムホモ二量体)およびDAPI(全ての細胞)のみについて細胞を染色した。染色した細胞を蛍光顕微鏡法を用いてイメージングし、ImageJ 1.48hソフトウェアおよびニューロン検出器プラグインを使用してDEAD、GFPおよびDAPI陽性細胞をカウントした。
【1233】
ウエスタンブロット分析
形質導入初代皮質ニューロン(24ウェル、ウイルス送達7日後)および形質導入組織試料(ウイルス送達4週間後)を、0.1%SDSおよびプロテアーゼ阻害薬(Roche、Sigma)を含有する50μLの氷冷RIPA緩衝液(Cell Signaling)中に溶解した。細胞溶解物をBioruptorソニケーター(Diagenode)で5分間超音波処理し、BCAタンパク質アッセイキット(Pierce Biotechnology,Inc.)を使用してタンパク質濃度を決定した。タンパク質溶解物(lysats)をSDS−PAGE試料緩衝液中に溶解し、還元条件下4〜15%トリス−HClゲル(Bio−Rad)上で分離し、一次抗体:ウサギ抗Dnmt3a(Santa Cruz、1:500)、マウス抗Dnmt1(Novus Biologicals、1:800)、ウサギ抗Mecp2(Millipore、1:400)、ウサギ抗チューブリン(Cell Signaling、1:10,000)、続いて二次抗マウスおよび抗ウサギ(rabbbit)HRP抗体(Sigma−Aldrich、1:10,000)を使用したウエスタンブロッティングによって分析した。GAPDHはウサギHRP共役抗GAPDH抗体(Cell Signaling、1:10,000)で直接可視化した。チューブリンまたはGAPDHをローディング対照として供した。ImageLab 4.1ソフトウェア(BioRad)を備えるChemiDoc(商標)MPシステムでブロットをイメージングし、ImageJソフトウェア1.48hを使用して定量化した。
【1234】
遅延文脈的恐怖条件付け(DCFC)
12週齢C57BL/6N雄マウスの背側および腹側歯状回への両側性SpCas9/DNMT 3xsgRNA送達の8週間後、動物を実験者および行動実験室に7日間馴化させた。SpCas9/GFP−KASHを注入した同腹仔を対照として供した。DCFCの1日目、隔離された控え室にマウスケージを置き、試験前および試験後にマウスに聴覚キューが入ることを防いだ。個々のマウスをFCチャンバ(Med Associates Inc.)に置き、12分間の馴化期間を実施した。馴化後、マウスをそのホームケージに戻した。翌日(訓練日)、個々のマウスをチャンバに入れ、4分間馴化させた。さらに20秒間の(トーン前)間隔後、トーン(聴覚キュー)を85dB、2.8kHzのレベルで20秒間提示し、続いて18秒間の遅延間隔を置いた後、フットショックを提示した(0.5mA、2秒間)。フットショック後、40秒間の間隔(トーン/ショック後)を続けた後、次の同じ試行を20秒間のトーン前期間から開始した。この訓練試行を6回繰り返してからマウスをそのホームケージに戻した。3日目(試験日)、マウスを初めに条件付け文脈チャンバに3分間置いた。次に、マウスは、20秒間の間隔と、続く20秒間のトーンおよび60秒間のトーン後間隔から始まる4×100秒間の試験試行を受けた。最後に、マウスを文脈を変えた条件付けチャンバ(フラットフロア対グリッド、四分割対七分割チャンバ、バニリン芳香)に入れ、試験試行を繰り返した。フリージング行動を記録し、分析を盲検的にオフラインで手動で実施し、Noldus EthoVision XTソフトウェア(Noldus Information Technology)で確認した。
【1235】
ディープシーケンシングおよびインデル検出
CRISPR設計ツール(http://crispr.mit.edu/)を使用して、脳においてCRISPR−SpCas9によりターゲティングされるDNMTファミリー遺伝子の潜在的なオフターゲットを見付けた。ウイルス送達の12週間後に歯状回の標的細胞核をFACS選別し、ゲノムDNAを上記に記載したとおり精製した。目的の遺伝子毎に、CRISPR標的部位に隣接するゲノム領域を融合PCR方法によって増幅し、Illumina P5アダプターならびにユニークな試料特異的バーコードを標的アンプリコンに取り付けた(オンターゲットおよびオフターゲットプライマーについては、補表3を参照のこと)
15。バーコードを加え、かつ精製したDNA試料をQubit 2.0蛍光光度計(Life Technologies)によって定量化し、等モル比でプールした。次にシーケンシングライブラリをIllumina MiSeq Personalシーケンサー(Life Technologies)によってリード長さ300bpでシーケンシングした。
【1236】
MiSeqリードを先に記載のとおり解析した
15。簡潔に言えば、リードをPhredクオリティ(Qスコア)によってフィルタリングし、スミス−ウォーターマンアルゴリズムを用いて標的部位の50ヌクレオチド上流および下流のゲノム領域とアラインメントした。標的部位の5ヌクレオチド上流から5ヌクレオチド下流まで(合計30bp)のアラインメントした領域におけるインデルを推定した。各試料の陰性対照を使用して、インデルが含まれるかまたは含まれないかを推定切断イベントとして推定した。本発明者らは、真のインデルを含む標的領域を有するリードの割合について、陰性対照試料のデータからの標的領域毎リード毎のエラー率を使用して最尤推定量(MLE)を計算した。各標的のMLEスコアおよび切断率を補表1に掲載する。
【1237】
統計的分析
全ての実験は、最小2つの独立した生物学的レプリケートで行った。統計は、Prism6(GraphPad)でスチューデント両側t検定を用いて実施した。
【1238】
【表78】
[この文献は図面を表示できません]
【1239】
【表79】
[この文献は図面を表示できません]
【1240】
【表80】
[この文献は図面を表示できません]
【1241】
【表81】
[この文献は図面を表示できません]
【1242】
参考文献
1. Ostlund,C.et al.Dynamics and molecular interactions of linker of nucleoskeleton and cytoskeleton(LINC)complex proteins.J Cell Sci 122,4099−4108(2009).
2. Gray,S.J.et al.Optimizing promoters for recombinant adeno−associated virus−mediated gene expression in the peripheral and central nervous system using self−complementary vectors.Hum Gene Ther 22,1143−1153(2011).
3. Levitt,N.,Briggs,D.,Gil,A.& Proudfoot,N.J.Definition of an efficient synthetic poly(A)site.Genes Dev 3,1019−1025(1989).
4. Jinek,M.et al.A programmable dual−RNA−guided DNA endonuclease in adaptive bacterial immunity.Science 337,816−821(2012).
5. Cong,L.et al.Multiplex genome engineering using CRISPR/Cas systems.Science 339,819−823(2013).
6. McClure,C.,Cole,K.L.,Wulff,P.,Klugmann,M.& Murray,A.J.Production and titering of recombinant adeno−associated viral vectors.J Vis Exp,e3348(2011).
7. Konermann,S.et al.Optical control of mammalian endogenous transcription and epigenetic states.Nature 500,472−476(2013).
8. Banker,G.& Goslin,K.Developments in neuronal cell culture.Nature 336,185−186(1988).
9. Swiech,L.et al.CLIP−170 and IQGAP1 cooperatively regulate dendrite morphology.J Neurosci 31,4555−4568(2011).
10. Sholl,D.A.Dendritic organization in the neurons of the visual and motor cortices of the cat.J Anat 87,387−406(1953).
11. Ran,F.A.et al.Genome engineering using the CRISPR−Cas9 system.Nature protocols 8,2281−2308(2013).
12. Picelli,S.et al.Smart−seq2 for sensitive full−length transcriptome profiling in single cells.Nature methods 10,1096−1098(2013).
13. Fujita,P.A.et al.The UCSC Genome Browser database:update 2011.Nucleic acids research 39,D876−882(2011).
14. Tzingounis,A.V.et al.The KCNQ5 potassium channel mediates a component of the afterhyperpolarization current in mouse hippocampus.Proceedings of the National Academy of Sciences of the United States of America 107,10232−10237(2010).
15. Hsu,P.D.et al.DNA targeting specificity of RNA−guided Cas9 nucleases.Nature biotechnology 31,827−832(2013).
16. Qiu,P.et al.Mutation detection using Surveyor nuclease.BioTechniques 36,702−707(2004).
【1243】
実施例40:核タグ標識技法のさらなる研究
この実施例38は、Cas9のエピトープタグ標識に関する。端的には、本発明者らは、三重エピトープタグ(具体的には3xHA)が検出シグナルを改善することを見出した。
【1244】
材料および方法
細胞培養および形質移入
ヒト胎児腎臓(HEK)細胞系293FT(Life Technologies)またはマウスHepa1−6(Sigma−Aldrich)細胞系を、10%ウシ胎仔血清(HyClone)、2mM GlutaMAX(Life Technologies)、100U/mLペニシリン、および100μg/mLストレプトマイシンを補足したダルベッコ変法イーグル培地(DMEM)に37℃で5%CO
2インキュベーションによって維持した。
【1245】
細胞を24ウェルプレート(Corning)に120,000細胞/ウェルの密度で播種し、24時間後に形質移入した。細胞は、80〜90%コンフルエンシーでLipofectamine 2000(Life Technologies)を使用して製造者の推奨プロトコルに従い形質移入した。合計500ngのCas9プラスミドおよび100ngのU6−sgRNA PCR産物が形質移入された。
【1246】
ゲノム改変のためのSURVEYORヌクレアーゼアッセイ
293FTおよびHUES62細胞に、上記に記載したとおりのDNAを形質移入した。細胞を形質移入後72時間にわたり37℃でインキュベートした後、ゲノムDNAを抽出した。ゲノムDNAはQuickExtract DNA抽出溶液(Epicentre)を使用して、製造者のプロトコルに従い抽出した。簡潔に言えば、ペレット化した細胞をQuickExtract溶液に再懸濁し、65℃で15分間、68℃で15分間、および98℃で10分間インキュベートした。
【1247】
各遺伝子についてCRISPR標的部位に隣接するゲノム領域をPCR増幅し、産物をQiaQuickスピンカラム(Qiagen)を使用して製造者のプロトコルに従い精製した。合計400ngの精製PCR産物を2マイクロリットルの10×Taq DNAポリメラーゼPCR緩衝液(Enzymatics)および超純水と混合して最終容積を20マイクロリットルとし、リアニーリングプロセスに供してヘテロ二本鎖の形成を可能にした:95℃で10分、−2℃/秒で95℃〜85℃のランピング、−0.25℃/秒で85℃〜25℃、および25℃で1分間保持。リアニーリング後、産物をSURVEYORヌクレアーゼおよびSURVEYORエンハンサーS(Transgenomics)で製造者の推奨するプロトコルに従い処理し、4〜20%Novex TBEポリアクリルアミドゲル(Life Technologies)上で分析した。ゲルをSYBR Gold DNA染料(Life Technologies)で30分間染色し、Gel Docゲルイメージングシステム(Bio−rad)で撮像した。定量化は相対バンド強度に基づいた。インデル率を、式100×(1−(1−(b+c)/(a+b+c))
1/2)(式中、aは未消化PCR産物の積分強度であり、bおよびcは各開裂産物の積分強度である)によって決定した。
【1248】
ウエスタンブロット
HEK 293FT細胞を形質移入し、プロテアーゼ阻害薬(Roche)を補足した1×RIPA緩衝液(Sigma−Aldrich)中に溶解した。この溶解物をBolt 4−12%ビス−トリスPlusゲル(Invitrogen)にロードし、ニトロセルロース膜に移した。膜を、0.1%Tween−20および5%ブロッキング剤(G−Biosciences)を含有するトリス緩衝生理食塩水でブロックした。膜をウサギ抗FLAG(1:5,000、Abcam)、HRP共役抗GAPDH(1:5,000 Cell Signaling Technology)、およびHRP共役抗ウサギ(1:1,000)抗体でプローブし、Gel Doc XR+システム(Bio−Rad)で可視化した。
【1249】
参考文献
R.E.Amir et al.,Rett syndrome is caused by mutations in X−linked MECP2,encoding methyl−CpG−binding protein 2.Nature genetics 23,185(Oct,1999).
Banker G,Goslin K.Developments in neuronal cell culture.Nature.1988 Nov 10;336(6195):185−6.
Bedell,V.M.et al.In vivo genome editing using a high−efficiency TALEN system.Nature 491,114−U133(2012).
Bhaya,D.,Davison,M.& Barrangou,R.CRISPR−Cas systems in bacteria and archaea:versatile small RNAs for adaptive defense and regulation.Annu Rev Genet 45,273−297(2011).
Bobis−Wozowicz,S.,Osiak,A.,Rahman,S.H.& Cathomen,T.Targeted genome editing in pluripotent stem cells using zinc−finger nucleases.Methods 53,339−346(2011).
Boch,J.et al.Breaking the code of DNA binding specificity of TAL−type III effectors.Science 326,1509−1512(2009).
Bogenhagen,D.F.& Brown,D.D.Nucleotide sequences in Xenopus 5S DNA required for transcription termination.Cell 24,261−270(1981).
Bultmann,S.et al.Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers.Nucleic Acids Res 40,5368−5377(2012).
C.Burger,K.Nash,R.J.Mandel,Recombinant adeno−associated viral vectors in the nervous system.Human gene therapy 16,781(Jul,2005).
Carlson,D.F.et al.Efficient TALEN−mediated gene knockout in livestock.Proc Natl Acad Sci U S A 109,17382−17387(2012).
M.Chahrour,H.Y.Zoghbi,The story of Rett syndrome:from clinic to neurobiology.Neuron 56,422(Nov 8,2007).
Chen,F.Q.et al.High−frequency genome editing using ssDNA oligonucleotides with zinc−finger nucleases.Nat Methods 8,753−U796(2011).
R.Z.Chen,S.Akbarian,M.Tudor,R.Jaenisch,Deficiency of methyl−CpG binding protein−2 in CNS neurons results in a Rett−like phenotype in mice.Nature genetics 27,327(Mar,2001).
Cho,S.W.,Kim,S.,Kim,J.M.& Kim,J.S.Targeted genome engineering in human cells with the Cas9 RNA−guided endonuclease.Nat Biotechnol 31,230−232(2013).
Christian,M.et al.Targeting DNA double−strand breaks with TAL effector nucleases.Genetics 186,757−761(2010).
Cong,L.et al.Multiplex genome engineering using CRISPR−Cas systems.Science 339,819−823(2013).
Deltcheva,E.et al.CRISPR RNA maturation by trans−encoded small RNA and host factor RNase III.Nature 471,602−607(2011).
Deveau,H.,Garneau,J.E.& Moineau,S.CRISPR−Cas system and its role in phage−bacteria interactions.Annu Rev Microbiol 64,475−493(2010).
Ding,Q.et al.A TALEN genome−editing system for generating human stem cell−based disease models.Cell Stem Cell 12,238−251(2013).
J.Feng et al.,Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons.Nature neuroscience 13,423(Apr,2010).
Y.Fu et al.,High−frequency off−target mutagenesis induced by CRISPR−Cas nucleases in human cells.Nature biotechnology 31,822(Sep,2013).
Garneau,J.E.et al.The CRISPR−Cas bacterial immune system cleaves bacteriophage and plasmid DNA.Nature 468,67−71(2010).
Gasiunas,G.,Barrangou,R.,Horvath,P.& Siksnys,V.Cas9−crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria.Proc Natl Acad Sci U S A 109,E2579−2586(2012).
Geurts,A.M.et al.Knockout Rats via Embryo Microinjection of Zinc−Finger Nucleases.Science 325,433−433(2009).
Gray SJ,Foti SB,Schwartz JW,Bachaboina L,Taylor−Blake B,Coleman J,Ehlers MD,Zylka MJ,McCown TJ,Samulski RJ.Optimizing promoters for recombinant adeno−associated virus−mediated gene expression in the peripheral and central nervous system using self−complementary vectors.Hum Gene Ther.2011 Sep;22(9):1143−53.doi:10.1089/hum.2010.245.
Guschin,D.Y.et al.A rapid and general assay for monitoring endogenous gene modification.Methods Mol Biol 649,247−256(2010).
Hasty,P.,Rivera−Perez,J.& Bradley,A.The length of homology required for gene targeting in embryonic stem cells.Mol Cell Biol 11,5586−5591(1991).
Horvath,P.& Barrangou,R.CRISPR−Cas,the immune system of bacteria and archaea.Science 327,167−170(2010).
P.D.Hsu et al.,DNA targeting specificity of RNA−guided Cas9 nucleases.Nature biotechnology 31,827(Sep,2013).
Hsu,P.D.& Zhang,F.Dissecting neural function using targeted genome engineering technologies.ACS Chem Neurosci 3,603−610(2012).
Hwang,W.Y.et al.Efficient genome editing in zebrafish using a CRISPR−Cas system.Nat Biotechnol 31,227−229(2013).
Jiang,W.,Bikard,D.,Cox,D.,Zhang,F.& Marraffini,L.A.RNA−guided editing of bacterial genomes using CRISPR−Cas systems.Nat Biotechnol 31,233−239(2013).
Jinek,M.et al.A programmable dual−RNA−guided DNA endonuclease in adaptive bacterial immunity.Science 337,816−821(2012).
Jinek,M.et al.RNA−programmed genome editing in human cells.eLife 2,e00471(2013).
Kaplitt,M.G.,et al.,Safety and tolerability of gene therapy with an adeno−associated virus(AAV)borne GAD gene for Parkinson’s disease:an open label,phase I trial.Lancet.2007 Jun 23;369(9579):2097−105.
S.Konermann et al.,Optical control of mammalian endogenous transcription and epigenetic states.Nature 500,472(Aug 22,2013).
Levitt N.Briggs D.Gil A.Proudfoot N.J.Definition of an efficient synthetic poly(A)site.Genes Dev.1989;3:1019-1025.
Y.Li et al.,Global transcriptional and translational repression in human−embryonic−stem−cell−derived Rett syndrome neurons.Cell stem cell 13,446(Oct 3,2013).
Liu D,Fischer I.Two alternative promoters direct neuron−specific expression of the rat microtubule−associated protein 1B gene.J Neurosci.1996 Aug 15;16(16):5026−36.
Lopes,V.S.,etc al.,Retinal gene therapy with a large MYO7A cDNA using adeno−assocaited virus.Gene Ther,2013 Jan 24.doi:10.1038/gt 2013.3.[Epub ahead of print]
Mahfouz,M.M.et al.De novo−engineered transcription activator−like effector(TALE)hybrid nuclease with novel DNA binding specificity creates double−strand breaks.Proc Natl Acad Sci U S A 108,2623−2628(2011).
Makarova,K.S.et al.Evolution and classification of the CRISPR−Cas systems.Nat Rev Microbiol 9,467−477(2011).
Mali,P.et al.RNA−guided human genome engineering via Cas9.Science 339,823−826(2013).
S.A.McCarroll,S.E.Hyman,Progress in the genetics of polygenic brain disorders:significant new challenges for neurobiology.Neuron 80,578(Oct 30,2013).
McClure C,Cole KL,Wulff P,Klugmann M,Murray AJ.Production and titering of recombinant adeno−associated viral vectors.J Vis Exp.2011 Nov 27;(57):e3348.doi:10.3791/3348.
Michaelis,L.M.,Maud “Die kinetik der invertinwirkung.”.Biochem.z(1913).
Miller,J.C.et al.An improved zinc−finger nuclease architecture for highly specific genome editing.Nat Biotechnol 25,778−785(2007).
Miller,J.C.et al.A TALE nuclease architecture for efficient genome editing.Nat Biotechnol 29,143−148(2011).
Moscou,M.J.& Bogdanove,A.J.A simple cipher governs DNA recognition by TAL effectors.Science 326,1501(2009).Porteus,M.H.& Baltimore,D.Chimeric nucleases stimulate gene targeting in human cells.Science 300,763(2003).
Mussolino,C.et al.A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity.Nucleic acids research 39,9283−9293(2011).
Nathwani,A.C.,et al.,Adenovirus−associated virus vector−mediated gene transfer in hemophilia B.N Engl J Med.2011 Dec 22;365(25):2357−65.doi:10.1056/NEJMoa1108046.Epub 2011 Dec 10.
M.V.Nguyen et al.,MeCP2 is critical for maintaining mature neuronal networks and global brain anatomy during late stages of postnatal brain development and in the mature adult brain.The Journal of neuroscience:the official journal of the Society for Neuroscience 32,10021(Jul 18,2012).
Oliveira,T.Y.et al.Translocation capture sequencing:a method for high throughput mapping of chromosomal rearrangements.J Immunol Methods 375,176−181(2012).
C.Ostlund et al.,Dynamics and molecular interactions of linker of nucleoskeleton and cytoskeleton(LINC)complex proteins.Journal of cell science 122,4099(Nov 15,2009).
Perez,E.E.et al.Establishment of HIV−1 resistance in CD4(+)T cells by genome editing using zinc−finger nucleases.Nat Biotechnol 26,808−816(2008).
Qi,L.S.et al.Repurposing CRISPR as an RNA−guided platform for sequence−specific control of gene expression.Cell 152,1173−1183(2013).
F.A.Ran et al.,Genome engineering using the CRISPR−Cas9 system.Nature protocols 8,2281(Nov,2013).
REMINGTON’S PHARMACEUTICAL SCIENCES(Mack Pub.Co.,N.J.1991)
Reyon,D.et al.FLASH assembly of TALENs for high−throughput genome editing.Nat Biotechnol 30,460−465(2012).
Saleh−Gohari,N.& Helleday,T.Conservative homologous recombination preferentially repairs DNA double−strand breaks in the S phase of the cell cycle in human cells.Nucleic Acids Res 32,3683−3688(2004).
Sander,J.D.et al.Selection−free zinc−finger−nuclease engineering by context−dependent assembly(CoDA).Nat Methods 8,67−69(2011).
Sanjana,N.E.et al.A transcription activator−like effector toolbox for genome engineering.Nat Protoc 7,171−192(2012).
Sapranauskas,R.et al.The Streptococcus thermophilus CRISPR−Cas system provides immunity in Escherichia coli.Nucleic Acids Res 39,9275−9282(2011).
M.Shahbazian et al.,Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3.Neuron 35,243(Jul 18,2002).
Shen,B.et al.Generation of gene−modified mice via Cas9/RNA−mediated gene targeting.Cell Res 23,720−723(2013).
D.A.Sholl,Dendritic organization in the neurons of the visual and motor cortices of the cat.Journal of anatomy 87,387(Oct,1953).
Smithies,O.,Gregg,R.G.,Boggs,S.S.,Koralewski,M.A.& Kucherlapati,R.S.Insertion of DNA sequences into the human chromosomal beta−globin locus by homologous recombination.Nature 317,230−234(1985).
Soldner,F.et al.Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations.Cell 146,318−331(2011).
L.Swiech et al.,CLIP−170 and IQGAP1 cooperatively regulate dendrite morphology.The Journal of neuroscience:the official journal of the Society for Neuroscience 31,4555(Mar 23,2011).
Takasu,Y.et al.Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection.Insect Biochem Molec 40,759−765(2010).
Tangri S,et al.,Rationally engineered therapeutic proteins with reduced immunogenicity,J Immunol.2005 Mar 15;174(6):3187−96.
Thomas,K.R.,Folger,K.R.& Capecchi,M.R.High frequency targeting of genes to specific sites in the mammalian genome.Cell 44,419−428(1986).
Tuschl,T.Expanding small RNA interference.Nat Biotechnol 20,446−448(2002).
A.V.Tzingounis et al.,The KCNQ5 potassium channel mediates a component of the afterhyperpolarization current in mouse hippocampus.Proceedings of the National Academy of Sciences of the United States of America 107,10232(Jun 1,2010).
Urnov,F.D.,Rebar,E.J.,Holmes,M.C.,Zhang,H.S.& Gregory,P.D.Genome editing with engineered zinc finger nucleases.Nat Rev Genet 11,636−646(2010).
Valton,J.et al.Overcoming transcription activator−like effector(TALE)DNA binding domain sensitivity to cytosine methylation.J Biol Chem 287,38427−38432(2012).
Wang,H.et al.One−Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR−Cas−Mediated Genome Engineering.Cell 153,910−918(2013).
Watanabe,T.et al.Non−transgenic genome modifications in a hemimetabolous insect using zinc−finger and TAL effector nucleases.Nat Commun 3(2012).
Wilson,E.B.Probable inference,the law of succession,and statistical inference.J Am Stat Assoc 22,209−212(1927).
Wood,A.J.et al.Targeted genome editing across species using ZFNs and TALENs.Science 333,307(2011).
Wu,S.,Ying,G.X.,Wu,Q.& Capecchi,M.R.A protocol for constructing gene targeting vectors:generating knockout mice for the cadherin family and beyond.Nat Protoc 3,1056−1076(2008).
Z.Wu,H.Yang,P.Colosi,Effect of genome size on AAV vector packaging.Molecular therapy:the journal of the American Society of Gene Therapy 18,80(Jan,2010).
Zhang,F.et al.Efficient construction of sequence−specific TAL effectors for modulating mammalian transcription.Nat Biotechnol 29,149−153(2011).
Z.Zhou et al.,Brain−specific phosphorylation of MeCP2 regulates activity−dependent Bdnf transcription,dendritic growth,and spine maturation.Neuron 52,255(Oct 19,2006).
【1250】
本発明の好ましい実施形態を本明細書に図示および記載したが、当業者には、かかる実施形態が単に例として提供されることは明らかであろう。ここで多数の変形例、変更例、および代替例が、当業者には本発明から逸脱することなく想起されるであろう。本明細書に記載される発明の実施形態の様々な代替例を本発明の実施に用い得ることが理解されなければならない。