(58)【調査した分野】(Int.Cl.,DB名)
【背景技術】
【0003】
ガス圧縮機は、消費者市場において(バスケットボール、玩具、及びタイヤを膨らませるために)、かつ産業市場において(搬送のために、空気圧ツールに動力を供給するために、かつ坑口からユーザに天然ガスを分配するためにガスを圧縮するために)多くの品目に対して使用されている。
【0004】
主として実用的にガスを高速に圧縮することが要求されるという理由で、従来技術の市販ガス圧縮機の効率は不十分である。高速圧縮は、圧縮工程中に圧縮熱を放散させることをほぼ不可能にする。圧縮工程中のこの固有の加熱(本明細書では「C熱」)は、同じ工程を完全かつ即時「C熱」除去と共に行った場合よりも原動機から100%までのより多くの物理的仕事を要求する。典型的には、原動機は、内燃機関又は電動機である。殆ど又は全くC熱除去を用いない高速圧縮工程を断熱圧縮と呼ぶ。大部分の従来技術の圧縮機は、断熱又は準断熱圧縮サイクルで作動する。C熱に起因して失われるエネルギ又は仕事は、圧縮機に対する最終ターゲット圧力が高い程増大する。
【0005】
等温圧縮ガスの仕事ポテンシャルは、ガスを圧縮するのに必要とされる仕事にほぼ同等である。しかし、殆どの圧縮ガスは、非絶縁圧力容器に格納され、ガスの圧縮とガスの使用との間の時間は、ガス内の熱の保持を非実用的にしている。従って、ガスを圧縮する間にC熱に打ち勝つためのこの50〜100%の追加の仕事は、失われるか又は浪費される。C熱の全てを直ちに除去する間に実施される圧縮を等温圧縮と呼ぶ。等温圧縮を達成することができる場合に、ガスを与えられた圧力まで圧縮するのに必要とされるエネルギは、理論上ほぼ半分に低減することができると考えられる。別の言い方をすると、2倍の量の圧縮ガスをエネルギ又はドルに関して同じコストで生成することができるであろう。歴史的に、圧縮ガスからのC熱除去は、実用的に過度の時間及び/又は追加エネルギを必要とするので、非実用的又は達成するのが不可能であった。
【0006】
1つの従来技術参考文献は、高速等温圧縮を使用する圧縮機を議論している。1908年に特許を取ってTaylorに付与された米国特許第892,772号明細書は、数百万個の微小球形気泡が注入された落下水柱を利用する水圧空気圧縮機を開示している。水柱が特定の高さから落下すると、水中の気泡が圧縮される。Taylorは、圧縮工程を駆動するためにほぼ30PSI差動圧力を生成する70フィート差動水頭圧力(約21メートル)を用いた。Taylorは、約128psi(ポンド毎平方インチ)圧力を生成かつ維持して5000〜6000馬力等温圧縮機を駆動するために高さ290フィート(約88メートル)の放水路を用いた。
【0007】
2014年5月19日出願の米国特許出願第14/280,780号明細書、Cherry他に付与された米国特許出願公開第20150023807号明細書(2015年1月22日に公開)は、半径方向に遠隔の環状容器空間に至る毛管内にガスを圧縮する遠心圧縮機を開示している。遠心力は、半径方向、タンジェンシャル、又は連続的に湾曲する場合がある毛管圧縮チューブを通って半径方向外向きに(遠位に)移動する液体スラグ間に同伴されたガス気泡に対して作用する。圧縮ガスは、環状加圧ガス分離及びストレージチャンバに収集され、その後に、産業用途に向けて採取される。流入側では、ガス−液体エマルジョンが、内側エマルジョン化デバイスによって毛管圧縮チューブまで給送される。エマルジョン化デバイスは、渦発生器、噴出器、又はベンチュリ注入器を含むことができ、全てが、ガス−液体混合物を毛管の内側ポート内に給送する。毛管は、外側ディスク端部が環状ディスク空間に開いて同軸状に積み重ねられた一連のディスク内に形成される。
【0008】
Kellerに付与された米国特許第6,276,140号明細書は、タービンエンジンを通してエネルギを発生させるデバイスを開示している。Kellerデバイスはまた、落水中の空気気泡を圧縮するために漏斗形垂直チューブ又はトンネルを通して給送される落水を使用している。Kellerにおける落水降下は、30〜100メートルの間であった。Keller漏斗チューブの上部での典型的な直径は、約2〜7メートルであり、底部では、漏斗出口領域は、典型的に0.7〜2.0メートルである。
【0009】
Reesに付与された米国特許第1,144,865号明細書は、回転ポンプ、コンデンサー、及び圧縮機を開示している。Rees’865回転ポンプ圧縮機は、大きく湾曲した形状の壁を有する大きい空洞を利用し、これらの空洞は、回転容器に対して半径方向ではない。
【0010】
Fongに付与された米国特許出願公開第2011/0030359号明細書は、遠心分離器を一般的に議論している。Stahlkopfに付与された米国特許出願公開第2011/0115223号明細書も遠心分離器を議論している。Fong’359又はStahlkopf’223のいずれも、圧縮空気又はガスを抽出するために等温方式で水又は液体中の気泡を圧縮する遠心圧縮機を議論していない。
【0011】
Hughesに付与された米国特許第1,769,260号明細書は、遠心ポンプと、ガス気泡を圧縮するのに毛管チューブを使用するコンデンサーとを開示している。しかし、Hughesが気泡列を生成する方式は、かなり長くて大きい気泡をもたらし、相応により大きい気泡浮力を有し、そのために気泡は、圧縮チューブの遠位端に向けて加勢することが非常に困難である。Hughesのシュラウドは、水をそれが毛管チャンバを離れる時に収集するトラフである。トラフは、内向きに面するフランジによって決定される深さでの遠心力に起因して捕捉された水で満たされる。これらのフランジを超えて出る水は、固定円筒ケーシングの内壁まで排出される。毛管チャンバの半径方向外側端部は、内向きに面するフランジの内径を超えて半径方向に延びてガスシールを生成する。
【発明の概要】
【発明が解決しようとする課題】
【0014】
Hughesのシュラウド設計は、有意な圧力差分を持たない。Hughesのシュラウドは、半径方向に遠隔の内側の壁にガス−液体混合物を投げつけることによってシールとし作用するが、シュラウド設計は、同伴気泡の一方向遠位流れを加勢するための整流手段として作用しない。Hughesのシュラウド設計はまた、加圧ガスストレージハウジング及びガス/液体分離チャンバを提供しない。Hughesはまた、羽根車によって水に付与された運動エネルギを回収する方法を開示しておらず、従って、等温圧縮の利得は、水に付与されたエネルギに対して浪費されると考えられる。
【課題を解決するための手段】
【0015】
本発明のガスを圧縮する方法及びガス圧縮器は、(1)毛管圧縮チューブを通る遠位に一方向のエマルジョン流れを生成して増強し、かつ(2)一部の実施形態では遠心気泡圧縮機内の毛管チューブの重要セクションを通して気泡−チューブ壁を全直径接触に維持する。
【0016】
本発明の方法は、半径方向内側流れの機械的逆止、遠位半径方向外側エマルジョン流れの動的増強、チューブの内側端部又は近位端に向う気泡浮力を逆止すること、エマルジョン出口速度に対抗すること、及び圧縮中の気泡直径の低減率に適合するようにチューブ直径を長手方向に先細にすることの使用を通して、毛管圧縮チューブ内に遠位向き一方向エマルジョン流れを生成し、増強し、かつ強化する。
【0017】
近位方向の(回転軸に向う)エマルジョン流れ又はガス気泡「滑り」は、デバイスによって失われる仕事を表す。
【0018】
ほぼ半径方向外側方向に毛管圧縮チューブを通して完全に逆止又は整流された(逆進不能な)エマルジョン流れは、定義により一方向性である。その速度は、変化するか又は更に停止する場合があるが、流れは、1つの方向に進行することしかできない。機械的逆止機構は、完全な遠位向き一方向エマルジョン流れを生成するために毛管圧縮チューブに追加することができる1つの方法部類である。
【0019】
毛管圧縮チューブを通る増強された遠位向き一方向エマルジョン流れは、逆流に対して防護する方法が使用される時に発生する。回転専用噴出器機構及び先細直径を有する毛管圧縮チューブは、完全な遠位向き一方向エマルジョン流れを増強するためにこのデバイス内で毛管圧縮チューブに追加することができる2つの方法部類である。
【0020】
毛管圧縮チューブを通る強化された遠位向き一方向エマルジョン流れは、エマルジョンの流量を増加するために本発明の方法が使用される時に発生する。曲げ端部圧縮チューブは、遠位向き一方向エマルジョン流れを強化するためにこのデバイス内で毛管圧縮チューブに追加することができる1つの方法部類である。
【0021】
これらの方法の個々の又は組合せでのいずれの使用もガス圧縮器の生産性及び効率を大きく高める。
【0022】
要約すると、半径方向内向き毛管セグメントへの逆流を抑制する抑制された流れ特性を用いてガスを圧縮する方法は、最初に流入ガス及び流入液体をエマルジョン化してエマルジョン化された液体−ガス混合物を提供する。エマルジョン化された液体−ガス混合物は、回転ディスク内に形成された複数の毛管通路の半径方向内側端部の中に導入される。半径方向外側毛管通路端部は、ディスク内の1又は2以上の弓形周囲容器空間ディスク領域内で終端する。同伴ガス気泡は、液体及び圧縮ガスが毛管を通過し、かつ終端毛管端部及び弓形周囲ディスク空間まで半径方向外向きに移動する時に毛管チューブ内で圧縮される。流れは、近位方向に抑制され、毛管通路を通る実質的に半径方向内側の流れを制限する。圧縮ガスは、圧縮ガス気泡が、周囲で収集されたエマルジョンから出現する時に、上述の弓形周囲ディスク空間内の圧縮ガス−液体エマルジョンから放出される。
【0023】
毛管を通る半径方向内側流れを制限して半径方向外側流れを促進する抑制された流れは、機械的逆止弁、一方向弁、スイング弁、ダックビル弁、リフト逆止弁、インライン逆止弁、フラップ弁、ボール弁、傾斜ディスク弁、及び整流弁のうちの1又は2以上によって達成される。そうでなければ又はこれに加えて、抑制された一方向流れは、複数の毛管チューブの長手セグメントに沿う毛管通路の物理的サイズの縮小又は狭窄化によって毛管通路又は毛管チューブに生成される。これは、水ピストン/スラグ分離を維持し、それによって気泡浮力をほぼ排除する。
【0024】
更に、逆流を抑制することによる実質的に一方向の流れは、通路又はチューブを通る半径方向外側流れを促進する毛管通路内に形成された水圧インピーダンスによって達成される。これは、半径方向内側逆流に方向的に特定のインピーダンスである。半径方向内側流れに対する高いインピーダンスが存在し、この高インピーダンスは、毛管チューブ内に生成される。別の技術的特性は、毛管通路の終端部テールセグメント内にコリオリ力を確立することによって半径方向内側流れを制限して半径方向外側流れを促進する。コリオリ力は、ディスクの回転方向に角度変位された(上流毛管通路軸線方向中心線から約90度又はそれよりも大きい角度変位で)テール端部セグメント内で増強かつ強化される。場合によってテール端部セグメントは、弓形周囲ディスク空間の内側側壁に沿って追従することになる。ほぼ半径方向に位置合わせされた毛管チューブでは、コリオリ力効果は、液体−ガス気泡ユニットの半径方向外側の又は遠位に向けられた移動に対抗する。曲げテール端部は、コリオリ力を増強し、かつ液体−ガス気泡ユニットをチューブの遠位端まで移動する。
【0025】
遠心ガス圧縮機も開示する。ガス圧縮器には、ガスと液体が給送される。圧縮機は、原動機によって軸の周りに回転される複数のディスクを有する回転容器を含む。圧縮機内の半径方向内側エマルジョン化デバイスには、流入ガスと流入液体が給送され、エマルジョン化デバイスは、エマルジョン化された液体−ガス混合物を生成する。ディスクは、エマルジョン化デバイスからエマルジョン化された液体−ガス混合物を受け入れる半径方向内側ポートを備えた半径方向内側端部を有する複数の実質的に半径方向の毛管通路を形成するか又はそれを担持する。本明細書に使用する場合の毛管通路に対して「実質的に半径方向」という用語は、特許出願第14/280,780号明細書にあるものと同じ意味を有する。毛管通路は、圧縮機内の1又は2以上の弓形周囲容器空間ディスク領域内で終端する外側終端部を有する。
【0026】
ガス圧縮器は、同伴気泡が、それが毛管通路を通過する時に圧縮され、かつ終端毛管端部及び弓形周囲空間を半径方向外向きに移動するように、毛管通路内の同伴ガス気泡及び液体の流れを1つの方向に抑制し、それによって遠位方向の流れ(一方向流れ)を促進する。毛管通路内の流れ抑制は、機械的逆止弁、一方向弁、スイング弁、ダックビル弁、リフト逆止弁、インライン逆止弁、フラップ弁、ボール弁、傾斜ディスク弁、整流弁、毛管通路の狭窄化、及び毛管通路のそれぞれの長手セグメントに沿った毛管通路の物理的サイズの縮小のうちの1又は2以上によって達成される。この流れ抑制は、弓形周囲ディスク空間内への圧縮同伴ガス気泡及び液体の半径方向外向きの実質的に一方向の流れを引き起こす。弓形周囲ディスク空間からの1又は2以上のガス排出管が、この空間から圧縮ガスを引き出す。同じく弓形周囲ディスク空間からの1又は2以上の液体排出管が、この空間から液体を引き出す。浮力の結果として、弓形周囲空間内の液体から圧縮ガス気泡が出現し、圧縮ガスポートで排出される。
【0027】
毛管通路は、流れ抑制要素との組合せで又はこれらの流れ抑制要素を用いずにディスクの回転方向に角度変位した終端部テールセグメントを有することができる。場合によってテール端部セグメントは、上流毛管通路軸線方向中心線から約90度又はそれよりも大きく湾曲される。
【0028】
ガスと液体が給送される別の遠心ガス圧縮機は、回転する容器又はディスクスタックと、原動機と、エマルジョン化された液体−ガス混合物を生成する内側エマルジョン化デバイスとを含む。この圧縮機では、ディスクの回転方向に角度変位した終端部テールセグメントによって抑制された流れが引き起こされ又は達成され、実質的に一方向の遠位流れが形成される。流れ抑制(逆流を制限する)は、端部テールセグメント及び終端毛管端部から上述の弓形周囲空間内への圧縮同伴ガス気泡及び液体の外向き流れを引き起こす。
【0029】
本発明の目的は、遠位に向けられた流れを引き起こす有向流れ制限を用いてガスを圧縮する方法及びシステムを提供することである。
【0030】
本発明の更に別の目的は、等温圧縮を用いてそのような方法及びシステムを提供することである。
【0031】
本発明の更に別の目的及び利点は、好ましい実施形態の詳細説明において、それを添付図面に関連付けて理解することで見出すことができるであろう。
【発明を実施するための形態】
【0033】
本発明は、エマルジョン化された液体−ガス混合物内のガスを圧縮する方法及び遠心ガス圧縮機に関する。本明細書及び図面を通して類似の数字が類似の品目を表す。
【0034】
本発明の一実施形態は、片面に2つの浅いほぼ半径方向のポケットがフライスされた平坦なアルミニウムのディスク又は裏板10(
図1)を含む。これらのフライスポケットは、ガスケット16によって水圧通路に密封され、ポリカーボネートの被せ板がガスケットの上部の上に配置される(図示せず)。ディスク上には複数の毛管チューブ(チューブ14を参照されたい)を配置又は形成することができる。ディスクは、アルミニウム裏板10にアルミニウム挟着環及び面ワッシャーによって固定され、通しボルトでクランプ締めされる(
図1のボルト孔37を参照されたい)。アルミニウム裏板10には中心黄銅ハブがボルトクランプ締めされる。エマルジョン化デバイス11を保持する黄銅ハブは、前面上に密封液体入口20及び後側に密封加圧ガス採取ポート60(
図2)を形成するように機械加工される。毛管圧縮チューブ14はアルミニウム裏板10上のフライスポケット内のチャネル内に名目上半径方向の向きに装着され、近位端(回転軸の近位)にある入口28が、雰囲気ガス入口22、23内でエマルジョン噴出器26の出口に対して僅かに遠位に置かれる。液体はポート20内に給送され、更にチャネル24を通して給送され、出口ポート26から噴出される。次いで、液体噴流はベンチュリ噴流領域29内でガスと混合し合い、ガスと液体とのベンチュリ発生エマルジョン化物が形成され、毛管ポート28内に注入される。
【0035】
密封液体送出ポート20内には名目上加圧された水(又は他の液体)が導入される。各側に1つある2つの小さい噴流噴出器チューブ(噴出器ポート26を参照されたい)が、密封液体送出ポート20、21からの液体を搬送し、毛管寸法圧縮チューブ14の半径方向内側端部28に視準された液体噴流を形成する。液体噴流は、ガス状環境に対して開いた間隙29を交差する。液体噴流が圧縮チューブ14の入口に流入する時に液体噴流によって達成されるベンチュリ効果が、ガスの小気泡を捕捉して同伴させ、次いで、これらの気泡は、エマルジョン化されたガス−液体混合物を形成し、毛管14内に入ると圧縮チューブ14内の気泡列を形成する。例示的に
図11を参照されたい。
【0036】
加圧ガス−液体エマルジョン混合物は、圧縮チューブ14の半径方向外側端部で圧縮チューブ出口ポート30から流出し、圧縮ガス−液体エマルジョン混合物のうちの新しく制約が解かれたガス部分である加圧ガス(
図12を参照されたい)が容易に浮力を受け、回転中心に向けて気泡の形態で浮動し、液体部分から分離し(
図12の最外側周囲収集領域110を参照されたい)、圧縮ガスチャンバ40(
図1及び
図12)内に捕捉される。
図12の圧縮ガス−液体エマルジョンの流れ113を参照されたい。圧縮チューブ14の半径方向外側端部30から流出した
図12の領域110内のエマルジョン混合物の液体部分は、この半径方向に拘束されたエマルジョン(領域110内ではエマルジョンは遠心力によって拘束される)中のガス部分よりも密であり、フライスポケットの半径方向外側の水圧限界に加勢され、
図12の排液円柱空間105内に入り、更に排液ポート116に入り込む。加圧ガス115(
図12)が加圧ガスストレージチャンバ40(
図1、
図12)を満たすと、加圧ガスストレージチャンバ40内で分離された液体の液体レベルが、ガス収集領域40の周囲壁の内面103に対して高まる圧力(
図12)によって半径方向外向き方向に周囲収集領域110に加勢される。排液収集領域105(
図12)内の分離された液体は、デバイスを通過し、排出/吹出ポート116(
図12)を通って出て行って排出管/ブラフに至り、そこでガス圧縮器から放出される。
【0037】
図12の排出/吹出ポート116は、排液円柱空間110内の水圧密封レベルよりも水圧的に高い高さにある雰囲気に開き、半径方向の高低差が、角速度、液体密度、及びガス密度との組合せでデバイスが発生させることになる最大圧力を決定する。加圧ガス115は、圧縮ガスチャンバ40内に捕捉されるガスがガス吹出状態を発生させる点である液体シールレベル110のレベルに達するまで圧縮ガスチャンバ40内に取り込まれ、容積を増大させ、チャンバ内の排出収集空間105内の液体レベルを半径方向外向き方向に加勢し続け、ガス気泡は半径方向外向きの側で
図12の液体シールレベル矢印117の下で脱出し、次いで、排出/吹出ポート116に半径方向内向きに浮動し、ポート116において過剰ガス圧が雰囲気に解放され、それによって圧縮機がその最大圧力限界よりも大きいことを防止する圧力解放保護機構としての機能を提供する。圧縮ガスチャンバ40内の加圧ガス115は、アルミニウム裏板10内の加圧ガス採取ポート52a(
図2、
図12)、及び黄銅ハブ又はエマルジョン化デバイス11を通して採取され、この場合に、加圧ガス115は、通路54a、56、60(
図2)を通して加圧回転密封ポート60を通って流出する。
【0038】
一実施形態において、単一毛管チューブ層14がディスクとして配置される。他の実施形態において、ガスを圧縮するためにスタックディスクが使用される。
図1は、単一毛管チューブ14を図形で例示し、チューブスタックを図式的にしか示していない。各ディスクは、その上に複数の毛管通路14を担持する。一実施形態において、これらの毛管通路14は裏板上に敷設され、裏板10上でほぼ半径方向に配置された複数の毛管通路14の上にわたってガスケット16が配置される。一実施形態において、裏板10はアルミニウムであり、ガスケットは毛管通路14の層の間に挿入される。更に、ガスケットを覆うチューブ上のポリカーボネート被せ板(図示せず)が使用される。
【0039】
毛管通路は直接半径方向線(「スポーク」としての)である必要はなく、回転(原動機6、回転8、及びディスク回転9を参照されたい)の軸に対してタンジェンシャルの大体の半径方向に配置することができる。
図19及び
図20は、実質的には半径方向の毛管チューブ又は毛管通路を示している。
図18は、毛管14がエマルジョン化デバイス11に対してタンジェンシャルにあることを示している。毛管14に対する流入ポート28が示されている。システムは回転軸150の周りの方向151に回転する。毛管の流出端部は、ディスク12の半径方向内側の壁103の近位にある。
図20は、毛管14が回転方向151に湾曲していることを示している。
図19のタンジェンシャルに向く毛管は、ほぼ回転方向151に向けて湾曲又は変位される。従って、
図20の連続的に湾曲した毛管14を
図20に示す回転方向に変位させることができ(毛管出口ポートが回転方向に追従する)、又は連続的に湾曲した毛管を回転方向と反対に変位させることができる(毛管出口ポートが回転方向に先行する)。
図1、
図18、
図19、及び
図20の全てのこれらの構成において、毛管は「実質的に半径方向に位置決めされる」。
【0040】
更に毛管通路は、ディスク内でオフセット方式で軸線方向に積み重ねることができ、毛管の主長手本体は、回転方向9又は回転方向9の逆方向のいずれかに湾曲させることができる。
図1にはスタックチューブを図式的にしか示していない。
図18は、複数のほぼ半径方向の毛管チューブを有するディスク160を示している。空間162内に半径方向内側エマルジョン化デバイス11が配置される。ディスクは、通路166と共に作動する取り付けシステムによって互いに保持される。ディスクは、隣接ディスク上の鍵要素(図示せず)と共に作動する鍵溝164を用いて互いに鍵留めされる。鍵要素は鍵溝164内に嵌入する。
【0041】
エマルジョン化デバイス11は毛管通路14に対して半径方向内側にある。エマルジョン化デバイス11のポート20内に液体が注入又は他に誘導され、液体は軸線方向チャネル21を通過する。液体はほぼ半径方向のチャネル24を通して噴出され、出口ポート26から噴出される。米国特許出願第14/280,780号明細書は、遠心ガス圧縮機のためのいくつかのタイプのエマルジョン化デバイスを開示している。
【0042】
ガスは、ポート22を通してエマルジョン化デバイス11内に給送され、ガスポート23を通過する。出口ポート26を出て行く噴出体液は、領域29内でガスと交わってベンチュリ噴流効果を提供し、それによってエマルジョン化された液体−ガス混合物が生成され、この混合物は毛管14の流入ポート28内に強制的に誘導される。
図11を参照されたい。後に詳細に説明するように、このエマルジョン化された液体−ガス混合物は、半径方向内側の近位領域から毛管出口ポート30の場所のほぼ半径方向外側の遠位領域まで通過する時に圧縮される。
【0043】
図示の実施形態において、圧縮ガス−エマルジョン化液体混合物の実質的に半径方向の外側流れを生成する(別の言い方をすると実質的に半径方向内側流れを制限する)ために、毛管14の終端出口端30はダックビル一方向弁32を有する。圧縮ガス−エマルジョン化液体混合物(このガスは、それに対して作用する徐々に大きくなる遠心力に起因して圧縮される)は、ポート30及び弁32から流出し、周囲ディスク領域36に至るほぼ弓形の周囲容器空間ディスク領域34に流入する。
【0044】
図1ではいくつかの毛管の端部の場所に複数の一方向ダックビル弁を図式的に示しており(番号を振っていない)、ディスクが、互いに上下に積み重ねられてスタック12を形成するディスクとして形成された複数の毛管を有するように形成されることを示している。スタック毛管ディスクの更なる詳細に関しては、出願番号第14/280780号明細書を参照されたい。
【0045】
弓形周囲ディスク領域34、36は、圧縮機内で圧縮ガス−液体エマルジョン化混合物領域36からほぼ半径方向内側にある圧縮ガス収集空間40を含むいくつかの収集空間を有する。更に、
図12のエマルジョン化混合物収集領域110を参照されたい。ガス収集領域40は、脚スペーサ33、35とディスク板分離アイランド37又は被せ板ワッシャーとを有するディスク板分離体によって形成される。
【0046】
図2は、圧縮ガス収集空間40からの圧縮ガス排出管52a、54a、56を示している。弓形周囲ディスク領域36内で圧縮ガス気泡がエマルジョン化圧縮ガス−液体混合物から出現すると(
図12のエマルジョン化混合物収集領域110を参照されたい)、ガスは圧縮ガス空間40を満たし、最終的にこの圧縮ガスは、ガス排出管52aを通して空間40から流出する。
図2には矢印50で圧縮ガス流を示している。圧縮ガス排出管は、軸線方向通路54aに、次いで、半径方向通路56に至り、中心軸線方向ガス出口ポート又は通路60に至る。圧縮ガスはガス収集空間40からガス排出管52a、52b、通路54a、54b、及び軸線方向通路58を通して排出される。これらの図面内には盲穴を示していない。
【0047】
図3、
図4、
図5、及び
図6は、毛管チューブ14の半径方向内側の各部分から半径方向外側のチューブポート30への一方向流れを達成するための流れ抑制要素の作動を示している。
図1は、毛管14の出口ポート30の場所にダックビル一方向弁32を示すが、一方向要素又は流れ抑制要素は、毛管チューブ内のあらゆる望ましい場所に配置することができる。毛管チューブに沿って1又は2以上の一方向弁を配置することができる。異なる液体に対して異なる溶解度を有する異なるガスは、毛管チューブ14を通る圧縮ガス−液体エマルジョン化混合物の一方向流れを達成するために1又は複数の一方向流れ抑制要素を必要とする可能性がある。本明細書の図面は、一方向流れ又は整流弁の場所及びタイプを示すに過ぎない。
【0048】
エマルジョン化液体ガスの一方向流れは、実質的に半径方向内側流れを制限することによって得られ、エマルジョン化液体ガスの外側流れは、エマルジョン化混合物の液体スラグが遠心力に起因して半径方向外向きに移動する時に混合物内のガス気泡を圧縮する。一般的にエマルジョン化混合物内の液体は、ガス気泡と比較して実質的に圧縮不能である。
【0049】
「圧縮ガス−液体エマルジョン化混合物」という用語及び他の類似の用語は、圧縮ガスが液体中に同伴されたものを網羅するように意図している。
【0050】
図3は、ガス気泡が毛管チューブ14を通過する時のガス気泡に対する力を示している。チューブ14は、回転システムの回転軸9に半径方向に近い近位端62を有する。一般的に毛管14は、長手軸67を有する。方向63の遠心流れCFが液体に対して作用し、それによって気泡60を半径方向外向き方向61に押し出す。しかし、矢印65に示す浮力BFが遠心力CFに対抗し、気泡を半径方向内向きに移動するように作用する。浮力BFが遠心力CFよりも大きい場合に、液体中に同伴された気泡は半径方向内側に移動することになり、ガス気泡60は圧縮されることにはならない。エマルジョン化混合物の内側流を制限及び抑制することにより、ガス気泡は、毛管チューブ内で圧縮ガス−液体エマルジョン化物を形成する液体スラグと共に半径方向外向きに流れることしかできない。液体中に同伴されたガス気泡が回転ディスクの半径方向外向きの部分に達すると、ガス気泡は圧縮される。この圧縮ガス−液体エマルジョン化混合物は、容器ディスク空間40内で圧縮ガスを解放する。
【0051】
図4では、毛管チューブ14は半径方向内側ポート62を有する。半径方向内側の領域69においてエマルジョン化物中にガス気泡60が形成される。一方向弁64(図示の)は、同伴ガス気泡及び液体の逆流を禁止する。従って、そのような流れは、図形に示す一方向弁64によって阻止されるので、ガス気泡66を保持する液体は、流入ポート62に向けて半径方向内側に通過することができない。半径方向外側流れは、毛管チューブ14の遠位領域71内で促進される。
【0052】
図5は、一方向弁がフラップ弁又はスイング弁であることを示している。いかなる場合にも、スイング弁68は、液体及び同伴ガス気泡66が半径方向内側に又は毛管14の流入ポート62に向けて移動するのを禁止する機械的逆止弁としての機能をもたらす。弁のフラップ要素又はスイング要素68は方向65に移動する。
【0053】
図6は、ダックビル弁70を毛管14の流入ポート62と遠位端の間のいずれかの中間位置に配置することができることを示している。この弁は、チューブの遠位領域36又は終端部30にもある。
図1を参照されたい。
【0054】
図7Aは、ピボットフラップ部材72を有するスイング弁又は傾斜ディスク弁を示している。
図7A、
図7B、
図7Cでは、付勢要素をバネ要素76として示している。しかし、バネ、圧縮部材、圧縮性のプラグ又はピンのようなあらゆるタイプの付勢要素を使用することができる。スイング要素72は、それ自体が独自の付勢力を発生させるように可撓性とすることができる(バネ76は、スイングパネル72の構造的特徴によって達成される押し戻し力を示す)。スイング要素72は、毛管14aの望ましい場所に形成された座部74に対して適合する。
【0055】
図7Bは、毛管14b内の弁座部74に対して着座するように付勢要素76によって付勢された弁要素77を有するリフト弁を示している。
【0056】
図7Cは、毛管14C内の弁座部74に対して着座するボール要素78を有するボール逆止弁を示している。
【0057】
一方向弁は、文献では時として整流弁として識別され、検討されている。整流弁は、1つの方向だけの流れを可能にし、反対方向の流れを阻止する。例えば、波の一部分が障壁を超えて衝突する時に整流水流がマクロスケールで得られる。壁を克服する波は、整流された一方向流れである。
【0058】
図8は、裏板10上に見られる回転ディスク上の他の品目に対して半径方向内側の位置に配置されたエマルジョン化デバイス11(
図1を参照されたい)を示している。ガス圧縮器に対していくつかの異なるタイプのエマルジョン化デバイスを使用することができる。
【0059】
図8では、ガスは、エマルジョン化デバイス11の流入ポート22内に給送され、領域29内で出口ポート26からベンチュリ噴流領域29内に噴出された液体によってベンチュリ噴流が生成される。次いで、エマルジョン化ガス−液体混合物は、毛管チューブ14の入口ポート28内に加勢される。毛管チューブ14の半径方向外側端部30では、ダックビル一方向弁32が半径方向内側流れを制限し、圧縮ガス−液体エマルジョン化混合物の半径方向に流出する流れを促進する。圧縮ガスエマルジョン化物は
図1の空間36内に取り込まれる。
【0060】
図9A及び
図9Bは、毛管14内又はその上に装着されるダックビル弁32を示している。一例として、寸法「a」は約1.7mmであり、長さ「b」は約2.5mmであり、基部寸法「c」は約0.5mmである。
図9Bでは、長さ「d」は約2.2mmであり、弁のビル部分は長さ「d」の2分の1よりも若干長い。
【0061】
一方向エマルジョン流れを生成し、増強し、かつ強化する段階の議論を続ける。気泡間の液体スラグの質量に対して作用する遠心力(液体質量×角速度の二乗×半径)は、噴流噴出器チューブからの新しい液体の全面的な阻止が発生する点である半径方向内向きに(近位に)作用する気泡からの浮力が遠心力に等しいか又はそれよりも大きい点までガス気泡を半径方向外向きに(遠位に)駆動する。
【0062】
一実施形態において、気泡列(
図10を参照されたい)は、固有の共振を有する複数の質量−バネ−質量−バネ系と同じく作用し、この場合に、圧縮不能な液体スラグが質量として作用し、圧縮可能な(可撓性の)ガス気泡がバネとして作用する。この共振は、エマルジョンのガス部分及び液体部分に対して作用する浮力及び遠心力と結合して圧縮毛管チューブ内で液体又はガスの遠位流れを実質的に抑制するか又は更に阻止する振動性気泡列挙動をある一定の角速度範囲で発生させる。
【0063】
デバイスは、圧縮チューブ14の近位端から遠位端まで気泡列内の与えられたガス気泡を押し出すために与えられた仕事量を実施する。この気泡のあらゆる近位方向移動はデバイスによる仕事損失であり、生産性損失、すなわち、低効率である。従って、圧縮チューブ14内で遠位一方向エマルジョン流れ(気泡列)を生成し、増強し、かつ強化する段階は効率的なデバイス作動に対して重要である。
【0064】
本発明は、圧縮チューブ14内で遠位向き一方向エマルジョン流れ(気泡列)を生成し、増強し、かつ強化するためのいくつかの方法を個々に又は組合せで利用するように修正することができる。
【0065】
図10は、毛管14の近位端28における初期の気泡形成84と、チューブ内の半径方向に遠隔の位置における完全に形成されたガス気泡とを示している。力線86、88、90は、ガス気泡によってほぼ分離された液体スラグが毛管14を通過することによって引き起こされる水圧系の質量−バネ−質量振動を表している。質量−バネ−質量系内では機械的インピーダンスが見られる。物理学では、このインピーダンスは、系内の粒子の速度に対する単純な調和運動を受けている系に対する力の比である。別の言い方をすると、機械的インピーダンスは、構造が調和力を受ける時にどの程度まで運動に耐えるかということの尺度である。機械的インピーダンスは、力を機械系に対して作用する速度に関連付ける。構造上の一点の機械的インピーダンスは、この点で得られる速度に対するこの点に印加された力の比である。http://www.cqe.northwestern.edu/sk/EA3/EA3_weak_couple.pdfと、http://www.bksv.com/doc/17−179.pdfと、http://dictionary.reference.com/browse/mechanical−impedanceと、https://en.wikipedia.org/wiki/Mechanical_impedanceと、http://www.engineering.ucsb.edu/〜paden/ME104/notes/Phasor−analysis−of−mechanical−systems−rev−A.pdfとを参照されたい。
【0066】
科学文献は、水圧インピーダンスも議論している。例えば、「サージタンクの水圧インピーダンスに関する研究(Study on the Hydraulic Impedance of Surge Tank)」という名称の論文では、単純なタンクとスロットル付きタンクの両方のサージタンクの水圧インピーダンスの計算を中心として議論が行われている。水力の加圧搬送系の水圧振動に対するサージタンクの効果がこの研究の主題である。この研究調査は、サージタンクの水圧抵抗係数が増大した場合に、系の減衰率が減少することを示している。水圧タービンの水圧インピーダンスは、パイプの偶数次周波数に近い系周波数に対してほぼ効果を持たない。Wen−tao Feng、IEEE Mechanic Automation and Control Engineering(MACE)会報、2011年第2回国際会議、2011年7月15〜17日開催、ISBNコード:978−1−4244−9436−1、2624〜2627ページを参照されたい。
【0067】
従って、気泡−液体スラグ列の質量−バネ−質量振動作用は、毛管チューブ内に生成される一方向遠位流れを促進する水圧インピーダンスを表す。チューブのインピーダンスは、気泡−液体スラグ列の近位流れ又は逆流に対する抵抗である。別の言い方をすると、圧縮ガス−液体エマルジョン混合物は、毛管チューブ内を遠位チューブ端部に向う半径方向外向きの1つの方向に通過する。
【0068】
毛管14を通る圧縮ガス−液体エマルジョンの半径方向外向き流れに関して、
図10に示す気泡列は、固有の滞留を有する複数の質量−バネ−質量−バネ系と同様であると考えられる。毛管14内では、ほぼ圧縮不能な液体スラグは質量として機能し、圧縮可能、すなわち、ほぼ可撓性のガス気泡はバネとして機能する。振動挙動は、圧縮チューブを通るエマルジョン化圧縮ガス−液体混合物の流れを実質的に抑制する。
図10に関しては、これらの力86、88、90が毛管14内の全ての気泡に対して作用しており、これらの力は、チューブの遠位端に示す最後の3つ又は4つの気泡に限定されない。
【0069】
下記では遠位向き一方向エマルジョン流れを生成するためのいくつかの方法を議論する。機械的逆止機構は、完全な一方向流れを生成するために毛管圧縮チューブ14に追加することができるデバイスの1つの部類である。この部類は、取りわけ、スイング逆止デバイス、ボール型デバイス、傾斜円盤型デバイス、インラインデバイス、リフト型デバイス、フラップ型デバイス、及びダックビル型デバイスを含む。機械的逆止機構は、気泡列内の近位エマルジョン流れが不可能である状態を発生させるために圧縮チューブ14の長さに沿ういずれかの場所に個々に又は直列で配置することができる。この概念の一実施形態が、圧縮チューブ14の半径方向外側端部30の場所にあるダックビル逆止弁32(
図1)において見られる。
【0070】
このデバイスにおいて増強される一方向流れは、以下の2つの方法を使用することによっても得られる。
【0071】
エマルジョン化デバイス11内の液体噴出器は、毛管圧縮チューブの入口端又はその長さに沿う中間場所のための噴出器噴流の慣性力によって遠位向き運動エネルギのかなりであるが不完全な一方向逆止効果を与える。液体質量の遠位に向く慣性力(速度×質量)は、圧縮チューブ14の入口部分28内でガス気泡の近位に向く浮力に対抗し、遠位に向くエマルジョン流れを維持するのを助ける。逆圧が噴出器の最大圧力比よりも大きいと、近位に向くエマルジョン流れ又は完全な流れ阻止が依然として発生する可能性があるが、液体注入器(ベンチュリセット26、28、29)は、他の方法との組合せで液体スラグに対して作用する遠心力を補強するように機能し、気泡列内でガス気泡を遠位に押し出す。
【0072】
先細圧縮チューブ(図
15を参照されたい)は、近位端から遠位端に移るチューブの長さに沿って減少する直径を有する圧縮チューブ14である。等温圧縮の場合に、ガス容積の減少は圧力変化に正比例する。一例として、気泡列内に同伴された空気は、近位端において圧縮チューブ14に流入し、最大直径の気泡を形成し、そのいかなる側においても液体を密封する。気泡が遠位向きに移動する時に、エマルジョンに対する圧力は、対応する容積減少を用いて急速に高まる。球体の半径はその容積の3乗根だけ減少し、従って、気泡はチューブに流入した直後に劇的に収縮し、圧縮チューブ14の壁との完全接触から外れ始めるが、圧縮チューブ内で更に遠位に進行する時により緩慢に収縮する。気泡が圧縮チューブの壁との全直径接触を維持する限り、液体がその独自のレベルを見出す傾向である浮力は作用することができないが、液体が気泡の脇を滑り抜けることができる場合に、浮力が作用し、気泡は液体と相対的な近位移動を受ける。気泡の浮力はその容積低減に比例して降下し、気泡が遠位に向く液体速度に打ち勝つほど十分な液中増大速度を発達させることがもはやできない程度まで最終的に低下する。このように先細圧縮チューブ14(
図16A)は、チューブ壁が気泡との完全接触を維持する限り、遠位向き一方向エマルジョン流れを増強する。圧縮チューブ130の先細率は、デバイスの設計作動パラメータに対して特定的に設計しなければならず、主として回転の内径及び外径、液体密度、ガス密度、及び回転速度によって決定される。
【0073】
特定の半径における先細毛管圧縮チューブの内径の例示的計算を
図17に含めている。
【0074】
遠位向き一方向エマルジョン流れを強化する方法を続ける。気泡浮力は、回転座標系内で遠位に向くエマルジョン慣性力に対抗する主な力である。気泡浮力は、浮力ベクトルがスラグの慣性力ベクトルに常に反対であることで液体スラグ慣性力に対抗し、液体が気泡の周りを通過することが可能な場合にのみ有意であり、ガス容積が移動する時にそれを変位させる。直径において毛管チューブ14よりも小さい気泡は、それらの周りを液体が遠位向きに通過するのを可能にすることになり、液体と相対的な気泡の近位移動をもたらし、摩擦によって遠位に向けられた液体流に抵抗するように作用する。
【0075】
毛管圧縮チューブ14に流入するガス/液体エマルジョンのガス分量は、近位入口28の僅かに遠位で最も高い(
図10の近位気泡形成を参照されたい)。ボイルの法則を使用すると、エマルジョンが圧縮チューブ14を通して遠位に加勢される時にエマルジョンのガス部分が圧縮状態になる時にエマルジョンのガス分量が減少し、エマルジョンには遠心力を考慮した高めの単位密度が与えられる。液体質量が毛管圧縮チューブ14を通って移動する時の液体質量の加速度及びその得られる慣性力は、ガス部分を遠位端に駆動し、それによってガス部分を圧縮する主な原動力である。
【0076】
図11は、圧縮チューブ14を示し、更にチューブ14の遠位中間領域101内に一連の気泡を下流遠位領域103及びその先に一連の他の気泡105、107、及び109を示している。これらの更に別の下流気泡107、109は、ガスの圧縮に起因して小さめになる。
図1に関して議論し、
図12に関して後に議論するように、圧縮ガス−液体エマルジョン化混合物は、弓形周囲容器空間ディスク領域36に流入する。計算式は次式である。
遠心力=m ω ω r
【0077】
毛管14には、その内側位置から外側位置まで気泡が移動する時に減少する気泡浮力をY軸に沿って示す力グラフが隣接している。この気泡浮力曲線を毛管14内の液体部分の有効重量及びほぼ一定の容積と全体的に対比している。液体スラグの「有効重量」は、それに印加される遠心力の関数である。系全体(毛管チューブ14及び進行するエマルジョン化ガス−液体混合物)は、
図11に示す回転力又は遠心力によってもたらされる。
【0078】
気泡間の液体スラグ質量に対して作用する遠心力は、半径方向内向きに作用する気泡からの浮力(すなわち、近位力)がこれらの慣性力及び遠心力に等しいか又はそれよりも大きい時点までガス気泡を半径方向外向きに、すなわち、遠位向きに駆動し、この時点で噴流噴出器チューブ24、26(
図1)からの新しい液体の全面噴出が発生する。
【0079】
図12は、ディスクの平面図を示している。液体は、エマルジョン化デバイス11及び液体噴出ポート26から噴出される。ガスが充満する空間29内でベンチュリ噴流が生成され、それによってエマルジョン化ガス−液体混合物が毛管チューブ14の流入ポート28に流入する。同伴気泡が半径方向外向きに移動する時にガスは圧縮され、矢印113に示すように、圧縮ガス−液体エマルジョン化混合物が毛管チューブ14の半径方向に遠位の終端部30から流出する。系全体は回転しているので、エマルジョン化圧縮ガス−液体混合物は、最初に毛管チューブの流出口の近位の内壁面103に沿って配置される。高圧縮ガスは周囲領域110内で混合物を離れ、領域110内には液体部分が残る。弓形周囲容器空間領域36の外側到達区域は、周囲収集領域110である。
図1に示す空間36は、ディスクスタックの半径方向内側の壁面103に沿って位置する。チューブ14の出口口の近位の領域110内で内壁103に対して加勢された圧縮ガス−液体エマルジョン化混合物から圧縮ガス気泡が出現し、液体中に留まっていた圧縮ガス気泡がこの混合物から分離し、より大きいガス封入空間40を充満する。
図12には、これを不規則なガス矢印115に示している。ガスは弓形容器空間40からガス出口ポート52aにおいて流出する。
図2も参照されたい。
【0080】
加圧ガス115が弓形加圧ガスストレージチャンバ40に充満する時に、高まる圧力によって周囲空間110内の液体レベルは半径方向外向き方向に液体円柱排出領域105内に加勢される。分離された液体はデバイスを通過し、排出ポート又は吹出ポート116を通って出て行って圧縮機から放出される。多くの場合に、排出吹出通路116は、周囲収集領域110の半径方向外側の液圧密封レベルよりも水圧的に高いレベルにある雰囲気に開いている。排出空間105内の水柱は、圧縮機デバイスが発生させることになる最大圧力を決定する。加圧ガス115は、圧縮ガスチャンバ40内に捕捉されるガスがガス吹出状態を発生させる点に達するまで圧縮ガスチャンバ40内に取り込まれ、容積を増大させ、液体レベルを加勢して(定義空間110内で)チャンバ吹出空間105内の液体を押し出し続け(矢印117を参照されたい)、ガス気泡は周囲空間105の半径方向外向きの側の液体シール(矢印117の向きの気泡を参照されたい)の下で脱出し、次いで、排出吹出ポート116に半径方向内向きに浮動し、ポート116において過剰ガス圧が雰囲気に解放され、それによってガス圧縮機がその最大圧力限界よりも大きいことを防止する圧力解放保護機構としての機能を提供する。排出円柱105内に加勢された圧縮ガスは雰囲気に放出され、それによって圧縮機がその最大圧力限界よりも大きいことを防止する圧力解放保護機構としての機能を提供する。圧縮ガスチャンバ40内の加圧ガス115は、アルミニウム裏板10内の加圧ガス採取ポート52a(
図1、
図2)を通過し、最終的に半径方向内側の黄銅ハブを通して採取され、この場合に、圧縮ガスは加圧回転密封ポートを通って流出する。
【0081】
図13は、回転方向9に角度変位したテール端部セグメント120を有する毛管チューブ14を示している。
図13のテール端部セグメントは、毛管チューブの隣接する軸線方向中心線から90度よりも大きく曲げられる。
図14は、毛管14のほぼ長手方向の中心線119から約90°角度変位したテール端部セグメント120を有する毛管チューブ14を示している。
図14の角度変位121を参照されたい。テール端部セグメントは曲げることができ、容器空間40の壁103に接して敷設することができる。
図1及び
図13の図式線103を参照されたい。角度変位は、曲がったテール端部セグメントの上流の毛管チューブの実質的に半径方向の軸線方向中心線123からほぼ識別される。
【0082】
図13に戻ると、テール端部セグメント120は、回転ディスクの内面103をほぼ辿る。
図1を参照されたい。角度変位したテール端部セグメントを使用することにより、テール端部セグメント内に起こるコリオリ力に起因して半径方向内側流れが制限され、半径方向外向き流れが促進される。物理学では、コリオリ効果は、運動が回転座標系に対して記述される場合の移動物体の偏向である。時計方向の回転を有する座標系内では、偏向は物体の運動の左へのものであり、反時計周りの赤色回転を有するものでは、偏向は右へのものである。コリオリ効果は、回転系内で移動する質量が、運動方向及び回転軸と垂直に作用する力(コリオリ力)を受ける効果にある。地球上では、この効果は、北半球で西に、南半球で東に移動物体を偏向させる傾向を有し、サイクロン気象系の形成において重要である。別途、Miriam Webster辞書は、コリオリ力を地球の自転の結果として移動物体(飛翔物又は気流等)を北半球で右に、南半球で左に偏向させる見かけ上の力として定めている。
【0083】
テール端部セグメント内のコリオリ効果は、毛管チューブ14の側壁からの同伴圧縮気泡の分離を強め、それによって気泡をチューブの出口ポートから強制的に噴出させる。
【0084】
エマルジョン加速は、圧縮チューブ14の半径方向セクションにおいてのみ発生し、テール端部曲げ部120(
図13)においてエマルジョンをアルミニウム裏板10(
図1)の半径方向速度に接近する最大速度にもたらす。
【0085】
毛管圧縮チューブ14内に取り込まれた圧縮ガス−液体エマルジョン混合物は、テール端部における曲げ部に到達すると方向を変化させる。ある実証研究により、テール端部曲げ部は、その外側半径が外側設計圧縮半径に到達するように回転平面に対して少なくとも直角にされた場合に、遠位に向くエマルジョン流れを強化及び促進する条件を発生させることが見出されている。圧縮チューブ14のテール端部は、加圧ストレージチャンバの半径方向外側にある内壁に接して平坦であるように位置することができ、又は回転軸に向けて戻るように(回転座標系内で上方に)90°よりも大きく曲げることができる。
【0086】
テール端部曲げ部が向く方向は、圧縮チューブ14の性能に影響を及ぼす。回転平面にあり、回転方向に追従するテール端部曲げ部は最適に機能し、回転平面にあるが、回転方向に先行する曲げ部は、機能したとしても劣悪にしか機能しなかった。回転軸と平行であるが、そこからオフセットされたいかなる方向のテール端部曲げ部も、それを持たない圧縮チューブ14に優る改善された性能を示している。
【0087】
図15、
図16、及び
図17は、液体中に同伴されたガス気泡の半径方向内側流れを抑制し、エマルジョン化混合物内のガス−液体中で圧縮されたガスの半径方向外向き流れを促進するための別の構造を示している。図
15は、圧縮チューブ130をその半径方向内側ポート28から半径方向に遠位のポート30まで先細にすることができることを示している。言い換えれば、0.5の例示的チューブ長さにおいて、毛管チューブの直径又は内部通路断面寸法は、かなり小さい断面通路面積を有する3.5の例示的チューブ長さ距離と比較してかなり大きい。
【0088】
図
17は、毛管チューブ132が、流入ポート28から長手セクション134まで延びるほぼ一定又は均一な断面寸法を有することを示している。セクション134内では、毛管チューブの断面寸法は、チューブが遠位長手セクション136に到達する点まで狭窄化する。この点では、毛管チューブは、一定であるが小さめの断面通路流れを有する。これは、出口ポート30に至る。
【0089】
図
17は、毛管チューブの長さと比較した毛管チューブの半径の変化をグラフで例示している。
【0090】
図18は、複数のほぼ半径方向の毛管チューブを有するディスク160を示している。空間162内に、半径方向内側エマルジョン化デバイス11が配置される。ディスクは、通路166と共に作動する取り付けシステムによって互いに保持される。ディスクは、隣接ディスク上の鍵要素(図示せず)と共に作動する鍵溝164を用いて互いに鍵留めされる。鍵要素は、鍵溝164内に嵌入する。
【0091】
図19及び
図20は、実質的に半径方向の毛管チューブ又は毛管通路を示している。
図18は、毛管14がエマルジョン化デバイス11に対してタンジェンシャルであることを示している。毛管14に対する流入ポート28が示されている。システムは、回転軸150の周りの方向151に回転する。毛管の流出端部は、ディスク12の半径方向内側の壁103の近位にある。
図20は、毛管14が回転方向151に湾曲していることを示している。
図19のタンジェンシャルに向く毛管は、ほぼ回転方向151に向けて湾曲又は変位される。従って、
図20の連続的に湾曲した毛管14を
図20に示す回転方向に変位させることができ(毛管出口ポートが回転方向に追従する)、又は連続的に湾曲した毛管を回転方向と反対に変位させることができる(毛管出口ポートが回転方向に先行する)。
図1、
図18、
図19、及び
図20の全てのこれらの構成において、毛管は、「実質的に半径方向に位置決めされる」。
【0092】
本明細書に添付する特許請求の範囲は、本発明の範囲及び精神の範囲で修正及び変更を網羅するように意味している。