【実施例】
【0065】
以下の実施例により、本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。また、実施例及び比較例に記載の平均重合度は以下の測定方法により測定した。
【0066】
(CNFの重合度測定)
CNF固形分量0.15gを30mLの0.5M銅エチレンジアミン溶液に溶解させ、キャノン・フェンスケ動粘度管を用いて、CNF・銅エチレンジアミン溶液の粘度ηを測定し、0.5M銅エチレンジアミン溶液の粘度をη0として、下記のSchulz−Blaschke式から極限粘度[η]を求めて、下記のMark−Houwink−Sakurada式から重合度DPを算出した。
比粘度 ηsp=η/η0−1
極限粘度[η]=ηsp/{c(1+A×ηsp)}
η0は0.5M銅エチレンジアミン溶液の粘度であり、cはCNF濃度(g/mL)であり、Aは溶液の種類によって決まる固有値であって0.5M銅エチレンジアミン溶液の場合にはA=0.28である。
重合度DP=[η]/Ka
Kとaは高分子と溶媒の種類によって決まる固有値であって、銅エチレンジアミン溶液に溶解したセルロースの場合としてK=0.57、a=1とした。
【0067】
(実施例1)
メカノハイブリッド(日本コークス工業株式会社、型式:MMH−75B/I)を用いて、竹パルプ由来のCNF水混合物(CNF固形分35%、水分65%、平均重合度810)と
スチレン系重合体(ヤスハラケミカル株式会社製:YSレジンSX100)との割合を7:3(1:0.4)として混合した。
次いで、得られたCNFと
スチレン系重合体混合物を、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供し、粉末状セルロースナノファイバーを得た。スクリュー系はΦ25mm、樹脂温度を135℃とした。
【0068】
(実施例2)
竹パルプ由来のCNF水混合物(CNF固形分35%、水分65%、平均重合度810)と
スチレン系重合体(ヤスハラケミカル株式会社製:YSレジンSX100)との割合を9:1(1:0.1)として混合したこと以外はすべて実施例1と同様にして、粉末状セルロースナノファイバーを得た。
【0069】
(比較例1)
竹パルプ由来のCNF水混合物(CNF固形分35%、水分65%、平均重合度810)とテルペンフェノール樹脂(ヤスハラケミカル株式会社製:YSポリスターT130)との割合を7:3(1:0.4)として混合したこと以外はすべて実施例1と同様にして、粉末状セルロースナノファイバーを得た。
【0070】
(比較例2)
竹パルプ由来のCNF水混合物(CNF固形分35%、水分65%、平均重合度810)とテルペンフェノール樹脂(ヤスハラケミカル株式会社製:YSポリスターT130)との割合を9:1(1:0.1)として混合したこと以外はすべて実施例1と同様にして、粉末状セルロースナノファイバーを得た。
【0071】
(実施例3)
実施例1において得られた粉末状セルロースナノファイバーを、ポリプロピレン(株式会社プライムポリマー製:J105G、ホモPP、MFR9)に対して、5wt%となるように配合し、 二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、210℃で溶融混練し、ペレット化した。得られたペレットを、80℃で12時間乾燥させ後、射出成形機(日精樹脂工業株式会社製、型式:NPX7−IF)シリンダー温度190℃、金型温度50℃の条件で射出成形して短冊形試験片及びダンベル試験片1BAを作製した。
得られた試験片を用いて性能を各種試験によって評価し、その結果を表1に示した。
【0072】
(実施例4)
実施例1において得られた粉末状セルロースナノファイバーを、ポリプロピレン(株式会社プライムポリマー製:J105G、ホモPP、MFR9)に対して、10wt%となるように配合し、 二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、210℃で溶融混練し、ペレット化した。得られたペレットを、80℃で12時間乾燥させ後、射出成形機(日精樹脂工業株式会社製、型式:NPX7−IF)シリンダー温度190℃、金型温度50℃の条件で射出成形して短冊形試験片及びダンベル試験片1BAを作製した。
【0073】
(比較例3)
比較例1において得られた粉末状セルロースナノファイバーを、ポリプロピレン(株式会社プライムポリマー製:J105G、ホモPP、MFR9)に対して、5wt%となるように配合し、 二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、210℃で溶融混練し、ペレット化した。得られたペレットを、80℃で12時間乾燥させ後、射出成形機(日精樹脂工業株式会社製、型式:NPX7−IF)シリンダー温度190℃、金型温度50℃の条件で射出成形して短冊形試験片及びダンベル試験片1BAを作製した。
【0074】
(比較例4)
比較例1において得られた粉末状セルロースナノファイバーを、ポリプロピレン(株式会社プライムポリマー製:J105G、ホモPP、MFR9)に対して、10wt%となるように配合し、 二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、210℃で溶融混練し、ペレット化した。得られたペレットを、80℃で12時間乾燥させ後、射出成形機(日精樹脂工業株式会社製、型式:NPX7−IF)シリンダー温度190℃、金型温度50℃の条件で射出成形して短冊形試験片及びダンベル試験片1BAを作製した。
【0075】
(比較例5)
ポリプロピレン(株式会社プライムポリマー製:J105G、ホモPP、MFR9)のみを用いて、実施例1と同様にして、短冊形試験片及びダンベル試験片1BAを作製した。
【0076】
(実施例5)
メカノハイブリッド(日本コークス工業株式会社、型式:MMH−75B/I)を用いて、竹パルプ由来のCNF水混合物(CNF固形分35%、水分65%、平均重合度810)と
スチレン系重合体(ヤスハラケミカル株式会社製:YSレジンSX100)との割合を7:3(1:0.4)とし、この混合物と熱可塑性エラストマーとを75:25の割合にて混合した。
次いで、得られた混合物を、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供し、粉末状セルロースナノファイバーを得た。スクリュー系はΦ25mm、樹脂温度を135℃とした。
【0077】
(実施例6)
メカノハイブリッド(日本コークス工業株式会社、型式:MMH−75B/I)を用いて、竹パルプ由来のCNF水混合物(CNF固形分35%、水分65%、平均重合度810)と
スチレン系重合体(ヤスハラケミカル株式会社製:YSレジンSX100)との割合を7:3(1:0.4)とし、この混合物と熱可塑性エラストマーとを88:12の割合にて混合した。
次いで、得られた混合物を、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供し、粉末状セルロースナノファイバーを得た。スクリュー系はΦ25mm、樹脂温度を135℃とした。
【0078】
(物性値測定)
複合化によって得られたポリオレフィン樹脂組成物の強度物性は、曲げ強度測定(曲げ弾性率、曲げ応力)、引張強度測定(引張弾性率、引張応力、引張ひずみ)を行った。いずれも小型卓上試験機(株式会社島津製作所製 型式:Ex−LX)を用い、曲げ強度測定では、短冊試験片を用いて、曲げ試験速度2.0mm/minにおいて、引張強度測定では、ダンベル試験片1BAを用いて、引張試験速度 10mm/minにおいて実施した。
【0079】
(シャルピー衝撃試験)
JIS K7111−1:2012に従い、デジタル衝撃試験機(株式会社東洋精機製作所、型式:DG−VB2、ハンマー容量:4.0J)を用いて衝撃試験を行った。
【0080】
(粉末状セルロースナノファイバーの黄色度評価)
実施例1、2、5、6及び比較例1、2で得られた粉末状セルロースナノファイバーについて、測色色差計(日本電色工業株式会社製 型式:ZE6000、光源C/2)を用いて、JIS K 7373に従い、黄色度測定及び黄変度評価を行った。測定方法は、パウダー専用丸セルに粉体CNFを空隙がないように適度に詰め、1サンプルにつき3回測定を行った。
上記測定により得られた三刺激値X、Y、Z値から下記式を用いて黄色度(YI0)を算出した。
YI0=100(1.2769X−1.0592Z)/Y
次いで、黄変度評価(ΔYI)は、30%セルロースナノファイバーの三刺激値X、Y、Z値から上記式を用いて黄色度を算出し、この値を基準として、下記式を用いてそれぞれのΔYIを算出した。
ΔYI=YI−YI0
【0081】
(樹脂組成物の黄色度評価)
実施例3、4及び比較例3、4で得られた樹脂組成物について、測色色差計(日本電色工業株式会社製 型式:ZE6000、光源C/2)を用いて、JIS K 7373に従い、黄色度測定及び黄変度評価を行った。
上記測定により得られた三刺激値X、Y、Z値から下記式を用いて黄色度(YI0)を算出した。測定方法は、1gでシートを作成(0.2mm)し、これを5枚重ね、さらにコピー用紙を3枚重ね測定した
YI0=100(1.2769X−1.0592Z)/Y
次いで、黄変度の評価(ΔYI)は、コピー用紙、ポリプロピレンの三刺激値X、Y、Z値から上記式を用いて黄色度を算出し、この値を基準として、下記式を用いてそれぞれのΔYIを算出した。
ΔYI=YI−YI0
【0082】
結果を表1、表2及び表3に示す。表2により、全ての実施例において曲げ弾性率(MPa)、曲げ応力(MPa)、引張弾性率(MPa)及び引張応力(MPa)引張ひずみ(%)が良好であることがわかった。また、表1、表2及び表3により、全ての実施例において黄変度が低減しており、着色が抑えられていることがわかった。
【0083】
【表1】
【0084】
【表2】
【0085】
【表3】
【0086】
(実施例7)
メカノハイブリッド(日本コークス工業株式会社、型式:MMH−75B/I)を用いて、竹パルプ由来のCNF水混合物(CNF固形分35%、水分65%、平均重合度810)と
スチレン系重合体(ヤスハラケミカル株式会社製:YSレジンSX100)とを70:30(質量%比)として混合した。
次いで、得られたCNFと
スチレン系重合体混合物を、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供し、粉末状セルロースナノファイバーを得た。スクリュー系はΦ25mm、樹脂温度を140℃とした。
次いで、得られた粉末状セルロースナノファイバーとポリプロピレン(日本ポリプロ株式会社製:BC04BW、射出成形グレード、MFR5)とを、得られる組成物中のセルロースナノファイバーが10質量%となる割合で混合し、 二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、180℃で溶融混練し、ペレット化した。
得られたペレットを、80℃で12時間乾燥させ後、真空射出成形機(株式会社ソディック製、型式:MS100)シリンダー温度170℃、金型温度80℃の条件で射出成形して短冊形試験片及び多目的試験片A1を作製した。
次いで、得られた試験片を用いて物性値測定を行った。測定結果及び処方量を表4に示す。
【0087】
(実施例8)
実施例7における竹パルプ由来のCNF水混合物と
スチレン系重合体とを90:10(質量%比)とした以外は、実施例7と同様にして物性値測定を行った。
【0088】
(実施例9)
実施例7における竹パルプ由来のCNF水混合物と
スチレン系重合体とを95:5(質量%比)とした以外は、実施例7と同様にして物性値測定を行った。
【0089】
(実施例10)
実施例7における竹パルプ由来のCNF水混合物と
スチレン系重合体と界面活性剤(太陽化学株式会社製、製品名:チラバゾールP−4)とを90:5:5(質量%比)とした以外は、実施例7と同様にして物性値測定を行った。
【0090】
(比較例6)
ポリプロピレン(日本ポリプロ株式会社製:BC04BW、射出成形グレード、MFR5)を二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、180℃で溶融混練し、ペレット化した。
得られたペレットを、80℃で12時間乾燥させ後、真空射出成形機(株式会社ソディック製、型式:MS100)シリンダー温度170℃、金型温度80℃の条件で射出成形して短冊形試験片及び多目的試験片A1を作製した。
【0091】
【表4】
【0092】
表4より、全ての実施例において曲げ弾性率及び引張弾性率が比較例と比較して向上していることがわかった。
【0093】
(実施例11)
メカノハイブリッド(日本コークス工業株式会社、型式:MMH−75B/I)を用いて、竹パルプ由来のCNF水混合物(CNF固形分35%、水分65%、平均重合度810)と
スチレン系重合体(ヤスハラケミカル株式会社製:YSレジンSX100)と熱可塑性エラストマー(ダウ・ケミカル・カンパニー社製、製品名:エンゲージ8842)と界面活性剤(太陽化学株式会社製、製品名:チラバゾールP−4)と相溶化剤(化薬ヌーリオン株式会社製、製品名:カヤブリッド002PP)とを43:19:23:5:10(質量%比)として混合した。
次いで、得られた混合物を、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供し、粉末状セルロースナノファイバーを得た。スクリュー系はΦ25mm、樹脂温度を140℃とした。
次いで、得られた粉末状セルロースナノファイバーとポリプロピレン(株式会社プライムポリマー製:J707G、ホモPP、MFR9)とを、得られる組成物中のセルロースナノファイバーが10質量%となる割合で混合し、 二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、175℃で溶融混練し、ペレット化した。
得られたペレットを、80℃で12時間乾燥させ後、真空射出成形機(株式会社ソディック製、型式:MS100)シリンダー温度190℃、金型温度50℃の条件で射出成形して短冊形試験片及び多目的試験片A1を作製した。
次いで、得られた試験片を用いて物性値測定を行った。測定結果及び処方量を表5に示す。
【0094】
(実施例12)
実施例11において、熱可塑性エラストマー(ダウ・ケミカル・カンパニー社製、製品名:エンゲージ8842)を熱可塑性エラストマー(旭化成株式会社製、製品名:タフテックH1052)としたこと以外は、実施例11と同様にして物性値測定を行った。
【0095】
(実施例13)
実施例11において、熱可塑性エラストマー(ダウ・ケミカル・カンパニー社製、製品名:エンゲージ8842)を熱可塑性エラストマー(旭化成株式会社製、製品名:タフテックH1052)と熱可塑性エラストマー(ダウ・ケミカル・カンパニー社製、製品名:エンゲージ8842)とし、質量比を43:19:11.5:11.5:5:10としたこと以外は、実施例11と同様にして物性値測定を行った。
【0096】
(比較例7)
ポリプロピレン(株式会社プライムポリマー製:J707G、ホモPP、MFR9)を二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、175℃で溶融混練し、ペレット化した。
得られたペレットを、80℃で12時間乾燥させ後、真空射出成形機(株式会社ソディック製、型式:MS100)シリンダー温度190℃、金型温度50℃の条件で射出成形して短冊形試験片及び多目的試験片A1を作製した。
【0097】
【表5】
【0098】
表5より、全ての実施例において曲げ弾性率及び引張弾性率が比較例と比較して向上していることがわかった。
【0099】
(実施例14)
メカノハイブリッド(日本コークス工業株式会社、型式:MMH−75B/I)を用いて、竹パルプ由来のCNF水混合物(CNF固形分35%、水分65%、平均重合度810)と
スチレン系重合体(ヤスハラケミカル株式会社製:YSレジンSX100)とを70:30(質量%比)として混合した。
次いで、得られたCNFと
スチレン系重合体混合物を、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供し、粉末状セルロースナノファイバーを得た。スクリュー系はΦ25mm、樹脂温度を140℃とした。
次いで、得られた粉末状セルロースナノファイバーとポリプロピレン(株式会社プライムポリマー製:J707G、ホモPP、MFR9)とを、得られる組成物中のセルロースナノファイバーが10質量%となる割合で混合し、 二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、175℃で溶融混練し、ペレット化した。
得られたペレットを、80℃で12時間乾燥させ後、真空射出成形機(株式会社ソディック製、型式:MS100)シリンダー温度190℃、金型温度50℃の条件で射出成形して短冊形試験片及び多目的試験片A1を作製した。
次いで、得られた試験片を用いて物性値測定を行った。測定結果及び処方量を表6に示す。
【0100】
(実施例15)
実施例14において、竹パルプ由来のCNF水混合物と
スチレン系重合体を竹パルプ由来のCNF水混合物と
スチレン系重合体と熱可塑性エラストマー(旭化成株式会社製、製品名:タフテックH1052)と界面活性剤(太陽化学株式会社製、製品名:チラバゾールP−4)と相溶化剤(化薬ヌーリオン株式会社製、製品名:カヤブリッド002PP)とを47:15:23.5:4.9:9.6(質量%比)とした以外は、実施例14と同様にして物性値測定をおこなった。
【0101】
(実施例16)
実施例14において、竹パルプ由来のCNF水混合物と
スチレン系重合体を竹パルプ由来のCNF水混合物と
スチレン系重合体(ヤスハラケミカル株式会社製:YSレジンSX100)と熱可塑性エラストマー(旭化成株式会社製、製品名:タフテックH1052)と界面活性剤(太陽化学株式会社製、製品名:チラバゾールP−4)と相溶化剤(化薬ヌーリオン株式会社製、製品名:カヤブリッド002PP)とを50:10:25:5:10(質量%比)とした以外は、実施例14と同様にして物性値測定をおこなった。
【0102】
(実施例17)
実施例14において、竹パルプ由来のCNF水混合物と
スチレン系重合体を竹パルプ由来のCNF水混合物とスチレン系オリゴマー(ヤスハラケミカル株式会社製:YSレジンSX100)と熱可塑性エラストマー(旭化成株式会社製、製品名:タフテックH1052)と界面活性剤(太陽化学株式会社製、製品名:チラバゾールP−4)と相溶化剤(化薬ヌーリオン株式会社製、製品名:カヤブリッド002PP)とを51.9:7:25.8:5.1:10.2(質量%比)とした以外は、実施例14と同様にして物性値測定をおこなった。
【0103】
(比較例8)
ポリプロピレン(株式会社プライムポリマー製:J707G、ホモPP、MFR9)を二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、175℃で溶融混練し、ペレット化した。
得られたペレットを、80℃で12時間乾燥させ後、真空射出成形機(株式会社ソディック製、型式:MS100)シリンダー温度190℃、金型温度50℃の条件で射出成形して短冊形試験片及び多目的試験片A1を作製した。
【0104】
(実施例18)
メカノハイブリッド(日本コークス工業株式会社、型式:MMH−75B/I)を用いて、竹パルプ由来のCNF水混合物(CNF固形分35%、水分65%、平均重合度810)と
スチレン系重合体(ヤスハラケミカル株式会社製:YSレジンSX100)と熱可塑性エラストマー(旭化成株式会社製、製品名:タフテックH1052)と界面活性剤(太陽化学株式会社製、製品名:チラバゾールP−4)と相溶化剤(化薬ヌーリオン株式会社製、製品名:カヤブリッド002PP)とを43:19:23:5:10(質量%比)として混合した。
次いで、得られた混合物を、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供し、粉末状セルロースナノファイバーを得た。スクリュー系はΦ25mm、樹脂温度を140℃とした。
次いで、得られた粉末状セルロースナノファイバーとポリプロピレン(日本ポリプロ株式会社製:BC04BW、射出成形グレード、MFR5)とを、得られる組成物中のセルロースナノファイバーが10質量%となる割合で混合し、 二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、180℃で溶融混練し、ペレット化した。
得られたペレットを、80℃で12時間乾燥させ後、真空射出成形機(株式会社ソディック製、型式:MS100)シリンダー温度180℃、金型温度80℃の条件で射出成形して短冊形試験片及び多目的試験片A1を作製した。
次いで、得られた試験片を用いて物性値測定を行った。測定結果及び処方量を表6に示す。
【0105】
(実施例19)
実施例18において、熱可塑性エラストマー(旭化成株式会社製、製品名:タフテックH1052)を熱可塑性エラストマー(旭化成株式会社製、製品名:タフテックH1062)とした以外は、実施例18と同様にして物性値測定をおこなった。
【0106】
(実施例20)
実施例18において、熱可塑性エラストマー(旭化成株式会社製、製品名:タフテックH1052)を熱可塑性エラストマー(ダウ・ケミカル・カンパニー社製、製品名:エンゲージ8842)とした以外は、実施例18と同様にして物性値測定をおこなった。
【0107】
(実施例21)
実施例18において、熱可塑性エラストマー(旭化成株式会社製、製品名:タフテックH1052)を熱可塑性エラストマー(三井化学株式会社製、製品名:タフマーDF610)とした以外は、実施例18と同様にして物性値測定をおこなった。
【0108】
(実施例22)
実施例18において、熱可塑性エラストマー(旭化成株式会社製、製品名:タフテックH1052)を熱可塑性エラストマー(三井化学株式会社製、製品名:タフマーDF811)とした以外は、実施例18と同様にして物性値測定をおこなった。
【0109】
(比較例9)
ポリプロピレン(日本ポリプロ株式会社製:BC04BW、射出成形グレード、MFR5)を二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、180℃で溶融混練し、ペレット化した。
得られたペレットを、80℃で12時間乾燥させ後、真空射出成形機(株式会社ソディック製、型式:MS100)シリンダー温度180℃、金型温度80℃の条件で射出成形して短冊形試験片及び多目的試験片A1を作製した。
【0110】
【表6】
【0111】
表6より、全ての実施例において曲げ弾性率及び引張弾性率が比較例と比較して向上していることがわかった。
【0112】
(実施例23)
メカノハイブリッド(日本コークス工業株式会社、型式:MMH−75B/I)を用いて、竹パルプ由来のCNF水混合物(CNF固形分35%、水分65%、平均重合度810)と
スチレン系重合体(ヤスハラケミカル株式会社製:YSレジンSX100)とを70:30(質量%比)として混合した。
次いで、得られたCNFと
スチレン系重合体混合物を、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供し、粉末状セルロースナノファイバーを得た。スクリュー系はΦ25mm、樹脂温度を140℃とした。
次いで、得られた粉末状セルロースナノファイバーとポリプロピレン(日本ポリプロ株式会社製:BC04BW、射出成形グレード、MFR5)とを、得られる組成物中のセルロースナノファイバーが10質量%となる割合で混合し、 二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、180℃で溶融混練し、ペレット化した。
得られたペレットを、80℃で12時間乾燥させ後、真空射出成形機(株式会社ソディック製、型式:MS100)シリンダー温度180℃、金型温度80℃の条件で射出成形して短冊形試験片及び多目的試験片A1を作製した。
次いで、得られた試験片を用いて物性値測定を行った。測定結果及び処方量を表7に示す。
【0113】
(実施例24)
実施例23において、得られた粉末状セルロースナノファイバーとポリプロピレンに結晶核剤(新日本理化株式会社製、製品名:NU−100)を0.05質量%加えたこと以外は、実施例23と同様にして物性値測定を行った。
【0114】
(実施例25)
実施例23において、得られた粉末状セルロースナノファイバーとポリプロピレンに結晶核剤(新日本理化株式会社製、製品名:NU−100)を0.25質量%加えたこと以外は、実施例23と同様にして物性値測定を行った。
【0115】
(実施例26)
実施例23において、得られた粉末状セルロースナノファイバーとポリプロピレンに結晶核剤(新日本理化株式会社製、製品名:NU−100)を0.50質量%加えたこと以外は、実施例23と同様にして物性値測定を行った。
【0116】
(比較例10)
ポリプロピレン(日本ポリプロ株式会社製:BC04BW、射出成形グレード、MFR5)を二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、180℃で溶融混練し、ペレット化した。
得られたペレットを、80℃で12時間乾燥させ後、真空射出成形機(株式会社ソディック製、型式:MS100)シリンダー温度180℃、金型温度80℃の条件で射出成形して短冊形試験片及び多目的試験片A1を作製した。
【0117】
(実施例27)
メカノハイブリッド(日本コークス工業株式会社、型式:MMH−75B/I)を用いて、竹パルプ由来のCNF水混合物(CNF固形分35%、水分65%、平均重合度810)と
スチレン系重合体(ヤスハラケミカル株式会社製:YSレジンSX100)とを70:30(質量%比)として混合した。
次いで、得られたCNFと
スチレン系重合体混合物を、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供し、粉末状セルロースナノファイバーを得た。スクリュー系はΦ25mm、樹脂温度を140℃とした。
次いで、得られた粉末状セルロースナノファイバーとポリプロピレン(日本ポリプロ株式会社製:BC04BW、射出成形グレード、MFR5)とを、得られる組成物中のセルロースナノファイバーが10質量%となる割合で混合し、 二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、180℃で溶融混練し、ペレット化した。
得られたペレットを、80℃で12時間乾燥させ後、真空射出成形機(株式会社ソディック製、型式:MS100)シリンダー温度170℃、金型温度80℃の条件で射出成形して短冊形試験片及び多目的試験片A1を作製した。
次いで、得られた試験片を用いて物性値測定を行った。測定結果及び処方量を表7に示す。
【0118】
(実施例28)
実施例27において、得られた粉末状セルロースナノファイバーとポリプロピレンに結晶核剤(新日本理化株式会社製、製品名:NU−100)を0.05質量%加えたこと以外は、実施例27と同様にして物性値測定を行った。
【0119】
(実施例29)
実施例27において、得られた粉末状セルロースナノファイバーとポリプロピレンに結晶核剤(新日本理化株式会社製、製品名:NU−100)を0.1質量%加えたこと以外は、実施例27と同様にして物性値測定を行った。
【0120】
(実施例30)
実施例27において、得られた粉末状セルロースナノファイバーとポリプロピレンに結晶核剤(新日本理化株式会社製、製品名:NU−100)を0.20質量%加えたこと及びシリンダー温度を175℃としたこと以外は、実施例27と同様にして物性値測定を行った。
【0121】
(実施例31)
実施例27において、得られた粉末状セルロースナノファイバーとポリプロピレンに結晶核剤(新日本理化株式会社製、製品名:NU−100)を0.30質量%加えたこと及びシリンダー温度を175℃としたこと以外は、実施例27と同様にして物性値測定を行った。
【0122】
(比較例11)
ポリプロピレン(日本ポリプロ株式会社製:BC04BW、射出成形グレード、MFR5)を二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、180℃で溶融混練し、ペレット化した。
得られたペレットを、80℃で12時間乾燥させ後、真空射出成形機(株式会社ソディック製、型式:MS100)シリンダー温度170℃、金型温度80℃の条件で射出成形して短冊形試験片及び多目的試験片A1を作製した。
【0123】
(比較例12)
比較例11において、ポリプロピレンをポリプロピレンと結晶核剤(新日本理化株式会社製、製品名:NU−100)の質量比を99.95:0.05としたこと以外は、比較例11と同様にして物性値測定を行った。
【0124】
(比較例13)
比較例11において、ポリプロピレンをポリプロピレンと結晶核剤(新日本理化株式会社製、製品名:NU−100)の質量比を99.85:0.15としたこと以外は、比較例11と同様にして物性値測定を行った。
【0125】
(比較例14)
比較例11において、ポリプロピレンをポリプロピレンと結晶核剤(新日本理化株式会社製、製品名:NU−100)の質量比を99.70:0.3としたこと以外は、比較例11と同様にして物性値測定を行った。
【0126】
【表7】
【0127】
表7より、全ての実施例において曲げ弾性率及び引張弾性率が比較例と比較して向上していることがわかった。
【0128】
(実施例32)
メカノハイブリッド(日本コークス工業株式会社、型式:MMH−75B/I)を用いて、竹パルプ由来のCNF水混合物(CNF固形分35%、水分65%、平均重合度810)と
スチレン系重合体(ヤスハラケミカル株式会社製:YSレジンSX100)と熱可塑性エラストマー(旭化成株式会社製、製品名:タフテックH1052)と界面活性剤(太陽化学株式会社製、製品名:チラバゾールP−4)と相溶化剤(化薬ヌーリオン株式会社製、製品名:カヤブリッド002PP)とを45:19:22:7:7(質量%比)として混合した。
次いで、得られたCNFと
スチレン系重合体混合物を、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供し、粉末状セルロースナノファイバーを得た。スクリュー系はΦ25mm、樹脂温度を140℃とした。
次いで、得られた粉末状セルロースナノファイバーとポリプロピレン(日本ポリプロ株式会社製:BC04BW、射出成形グレード、MFR5)とを、得られる組成物中のセルロースナノファイバーが10質量%となる割合で混合し、 二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、180℃で溶融混練し、ペレット化した。
得られたペレットを、80℃で12時間乾燥させ後、真空射出成形機(株式会社ソディック製、型式:MS100)シリンダー温度170℃、金型温度80℃の条件で射出成形して短冊形試験片及び多目的試験片A1を作製した。
次いで、得られた試験片を用いて物性値測定を行った。測定結果及び処方量を表8に示す。
【0129】
(実施例33)
実施例32において、竹パルプ由来のCNF水混合物と
スチレン系重合体(ヤスハラケミカル株式会社製:YSレジンSX100)と熱可塑性エラストマー(旭化成株式会社製、製品名:タフテックH1052)と界面活性剤(太陽化学株式会社製、製品名:チラバゾールP−4)と相溶化剤(化薬ヌーリオン株式会社製、製品名:カヤブリッド002PP)に結晶核剤(新日本理化株式会社製、製品名:NU−100)を加えて、44.1:19:22:7:7:0.9(質量%比)とした以外は実施例32と同様にして物性値測定を行った。
【0130】
(実施例34)
実施例32において、得られた粉末状セルロースナノファイバーとポリプロピレンに結晶核剤(新日本理化株式会社製、製品名:NU−100)を0.20質量%加えたこと以外は、実施例32と同様にして物性値測定を行った。
【0131】
(実施例35)
実施例32において、竹パルプ由来のCNF水混合物と
スチレン系重合体(ヤスハラケミカル株式会社製:YSレジンSX100)と熱可塑性エラストマー(旭化成株式会社製、製品名:タフテックH1052)と界面活性剤(太陽化学株式会社製、製品名:チラバゾールP−4)と相溶化剤(化薬ヌーリオン株式会社製、製品名:カヤブリッド002PP)に結晶核剤(新日本理化株式会社製、製品名:NU−100)を加えて、53:10:22:7:7:1(質量%比)とした以外は実施例32と同様にして物性値測定を行った。
【0132】
(比較例15)
ポリプロピレン(日本ポリプロ株式会社製:BC04BW、射出成形グレード、MFR5)を二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、180℃で溶融混練し、ペレット化した。
得られたペレットを、80℃で12時間乾燥させ後、真空射出成形機(株式会社ソディック製、型式:MS100)シリンダー温度170℃、金型温度80℃の条件で射出成形して短冊形試験片及び多目的試験片A1を作製した。
【0133】
【表8】
【0134】
表8より、全ての実施例において引張弾性率が比較例と比較して向上していることがわかった。
【0135】
(実施例36)
メカノハイブリッド(日本コークス工業株式会社、型式:MMH−75B/I)を用いて、竹パルプ由来のCNF水混合物(CNF固形分35%、水分65%、平均重合度810)と
スチレン系重合体(ヤスハラケミカル株式会社製:YSレジンSX100)と金属石鹸(日東化成工業株式会社製:ZS−6)と熱可塑性エラストマー(旭化成株式会社製、製品名:タフテックH1052)と界面活性剤(太陽化学株式会社製、製品名:チラバゾールP−4)と相溶化剤(化薬ヌーリオン株式会社製、製品名:カヤブリッド002PP)と結晶核剤(新日本理化株式会社製、製品名:NU−100)とを48.1:6.1:6.1:23.5:7.4:7.4:1.4として混合した。
次いで、得られた混合物を、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供し、粉末状セルロースナノファイバーを得た。スクリュー系はΦ25mm、樹脂温度を140℃とした。
次いで、得られた粉末状セルロースナノファイバーとポリプロピレン(株式会社プライムポリマー製:J466HP、ホモPP、MFR3.1)とを、得られる組成物中のセルロースナノファイバーが10質量%となる割合で混合し、 二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、175℃で溶融混練し、ペレット化した。
得られたペレットを、80℃で12時間乾燥させ後、真空射出成形機(株式会社ソディック製、型式:MS100)シリンダー温度190℃、金型温度50℃の条件で射出成形して短冊形試験片及び多目的試験片A1を作製した。
次いで、得られた試験片を用いて物性値測定を行った。測定結果及び処方量を表8に示す。
【0136】
(比較例16)
ポリプロピレン(株式会社プライムポリマー製:J466HP、ホモPP、MFR3.1)を二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、175℃で溶融混練し、ペレット化した。
得られたペレットを、80℃で12時間乾燥させ後、真空射出成形機(株式会社ソディック製、型式:MS100)シリンダー温度190℃、金型温度50℃の条件で射出成形して短冊形試験片及び多目的試験片A1を作製した。
【0137】
(実施例37)
実施例36において、シリンダー温度190℃、金型温度50℃の条件をシリンダー温度170℃、金型温度80℃の条件としたこと以外は、実施例36と同様にして物性値測定を行った。
【0138】
(比較例17)
比較例13において、シリンダー温度190℃、金型温度50℃の条件をシリンダー温度170℃、金型温度80℃の条件としたこと以外は、比較例13と同様にして物性値測定を行った。
【0139】
【表9】
【0140】
表9より、全ての実施例において引張弾性率が比較例と比較して向上していることがわかった。
【0141】
(パンクチャー衝撃試験)
(実施例38)
メカノハイブリッド(日本コークス工業株式会社、型式:MMH−75B/I)を用いて、竹パルプ由来のCNF水混合物(CNF固形分35%、水分65%、平均重合度810)と
スチレン系重合体(ヤスハラケミカル株式会社製:YSレジンSX100)と熱可塑性エラストマー(旭化成株式会社製、製品名:タフテックH1052)と界面活性剤(太陽化学株式会社製、製品名:チラバゾールP−4)と相溶化剤(化薬ヌーリオン株式会社製、製品名:カヤブリッド002PP)とを45:19:22:7:7(質量%比)として混合した。
次いで、得られた混合物を、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供し、粉末状セルロースナノファイバーを得た。スクリュー系はΦ25mm、樹脂温度を140℃とした。
次いで、得られた粉末状セルロースナノファイバーとポリプロピレン(日本ポリプロ株式会社製:BC04BW、射出成形グレード、MFR5)とを、得られる組成物中のセルロースナノファイバーが30質量%となる割合で混合し、 二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、180℃で溶融混練し、ペレット化した。
次いで、得られたペレットとポリプロピレン(日本ポリプロ株式会社製:BC04BW、射出成形グレード、MFR5)とを、得られる組成物中のセルロースナノファイバーが5質量%となる割合で混合し、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、180℃で溶融混練し、ペレット化した。
次いで、射出成形機を用いて、158mm×120mm×3.7mmtの平板とした。該平板を、JIS K7211−2に準拠し、パンクシャ衝撃試験機(株式会社島津製作所製、型式:HITS−P10)により、試験温度25℃において、ストライカー径:φ10mm、支持台径:φ100mm、打ち抜き速度:4.4m/secの条件で、パンクチャー衝撃試験を行い、破壊形態を評価した。
破壊形態YDは深絞りによって起こる降伏、破壊形態YSは安定き裂成長によって起こる降伏であり、破壊形態YUは不安定き裂成長によって起こる降伏であり、破壊形態NYは不安定き裂成長によって起こる降伏しない破壊であることを示す。測定結果を表10、表11及び
図7〜
図10に示す。
【0142】
(実施例39)
実施例38において、得られたペレットとポリプロピレン(日本ポリプロ株式会社製:BC04BW、射出成形グレード、MFR5)とを、得られる組成物中のセルロースナノファイバーが10質量%となる割合で混合したこと以外は、実施例38と同様にしてパンクチャー衝撃試験を行い、破壊形態を評価した。
【0143】
(実施例40)
実施例38において、得られたペレットとポリプロピレン(日本ポリプロ株式会社製:BC04BW、射出成形グレード、MFR5)とを、得られる組成物中のセルロースナノファイバーが15質量%となる割合で混合したこと以外は、実施例38と同様にしてパンクチャー衝撃試験を行い、破壊形態を評価した。
【0144】
(比較例18)
ポリプロピレン(日本ポリプロ株式会社製:BC04BW、射出成形グレード、MFR5)を二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、190℃で溶融混練し、ペレット化した。
次いで、射出成形機を用いて、158mm×120mm×3.7mmtの平板とした。該平板を、JIS K7211−2に準拠し、パンクシャ衝撃試験機(株式会社島津製作所製、型式:HITS−P10)により、試験温度25℃において、ストライカー径:φ10mm、支持台径:φ100mm、打ち抜き速度:4.4m/secの条件で、パンクチャー衝撃試験を行い、破壊形態を評価した。
【0145】
【表10】
【0146】
【表11】
【0147】
表10より、実施例における破壊形態は全てYSとなった。この結果より、実施例38〜40においては、割れが生じていないから、外部からの衝撃エネルギーを吸収することができたといえる。
本願発明に係る組成物は、
図5における模式図に表したとおり、組成物中のCNF周辺にスチレン系重合体、相溶化剤、熱可塑性エラストマー、界面活性剤等が存在しているから、外部からの衝撃による内部構造のずれをこれらの成分が吸収することにより、結果的に、外部からの衝撃エネルギーを吸収した(すなわち、振動エネルギー吸収性能を有する)ものと推測される。
【0148】
(振動エネルギー吸収性能測定(動的粘弾性測定))
本発明の組成物の振動エネルギー吸収性能は、動的粘弾性測定で得られるtanδの温度依存性から求めることができる。すなわち、組成物の振動エネルギー吸収性能は、tanδのピーク値で評価される。tanδのピーク値が高いほど、振動エネルギー吸収性能に優れ、そのことにより高い制振性、防音性を実現できる物品を製造することが可能となる。
【0149】
(実施例41)
メカノハイブリッド(日本コークス工業株式会社、型式:MMH−75B/I)を用いて、竹パルプ由来のCNF水混合物(CNF固形分35%、水分65%、平均重合度810)と
スチレン系重合体(ヤスハラケミカル株式会社製:YSレジンSX100)とを70:30(質量%比)として混合した。
次いで、得られた混合物を、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供し、粉末状セルロースナノファイバーを得た。スクリュー系はΦ25mm、樹脂温度140℃とした。
次いで、得られた粉末状セルロースナノファイバーとポリプロピレン(株式会社プライムポリマー製:J707G、ホモPP、MFR9)とを、得られる組成物中のセルロースナノファイバーが10質量%となる割合で混合し、 二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、175℃で溶融混練し、ペレット化した。
得られたペレットを、80℃で12時間乾燥させ後、真空射出成形機(株式会社ソディック製、型式:MS100)シリンダー温度190℃、金型温度50℃の条件で射出成形して試験片を作製した。
次いで、損失正接(tanδ)の温度依存性を動的粘弾性測定装置(株式会社ユービーエム製、型式:E-4000-DVE)を用いて下記の方法により測定した。測定結果を
図11に示す。
(i)厚さ1.0mmの試験片から長さ17mm×幅3.3mmの短冊片を切り出し、動的粘弾性測定用の試験片とした。
(ii)引張モードにて、試験片を加振しながら昇温過程−80℃〜+150℃における材料の損失弾性率(E’’)および貯蔵弾性率(E’)を測定した。加振周波数は10Hz、昇温速度は2℃/分とした。
(iii)損失正接(tanδ)は貯蔵弾性率(E’)に対する損失弾性率(E’’)の比から求めた。
【0150】
(比較例19)
ポリプロピレン(株式会社プライムポリマー製:J707G、ホモPP、MFR9)を二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、175℃で溶融混練し、ペレット化した。
得られたペレットを、80℃で12時間乾燥させ後、真空射出成形機(株式会社ソディック製、型式:MS100)シリンダー温度190℃、金型温度50℃の条件で射出成形して試験片を作製した。
次いで、損失正接(tanδ)の温度依存性を動的粘弾性測定装置(株式会社ユービーエム製、型式:E-4000-DVE)を用いて実施例41と同様に測定した。
【0151】
(実施例42)
図11の測定結果より50℃において、tanδの値に有意差が見られたので、下記の方法により試験片を作成し、次いで、損失正接(tanδ)の周波数依存性を動的粘弾性測定装置(株式会社ユービーエム製、型式:E-4000-DVE)を用いて下記の方法により測定した。測定結果を
図12に示す。
メカノハイブリッド(日本コークス工業株式会社、型式:MMH−75B/I)を用いて、竹パルプ由来のCNF水混合物(CNF固形分35%、水分65%、平均重合度810)と
スチレン系重合体(ヤスハラケミカル株式会社製:YSレジンSX100)とを70:30(質量%比)として混合した。
次いで、得られた混合物を、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供し、粉末状セルロースナノファイバーを得た。スクリュー系はΦ25mm、樹脂温度140℃とした。
次いで、得られた粉末状セルロースナノファイバーとポリプロピレン(株式会社プライムポリマー製:J707G、ホモPP、MFR9)とを、得られる組成物中のセルロースナノファイバーが30質量%となる割合で混合し、 二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、175℃で溶融混練し、ペレット化した。
得られたペレットを、80℃で12時間乾燥させ後、真空射出成形機(株式会社ソディック製、型式:MS100)シリンダー温度190℃、金型温度50℃の条件で射出成形して試験片を作製した。
次いで、損失正接(tanδ)の温度依存性を動的粘弾性測定装置(株式会社ユービーエム製、型式:E-4000-DVE)を用いて下記の方法により測定した。測定結果を
図12に示す。
(i)動的粘弾性測定用の試験片の大きさを3.3×0.39×10(幅×厚み×長さ(mm))とした。
(ii)引張モードにて、試験片を加振しながら、温度を50℃とし、周波数0.10Hz〜900Hzにおける材料の損失弾性率(E’’)および貯蔵弾性率(E’)を測定した。
(iii)損失正接(tanδ)は貯蔵弾性率(E’)に対する損失弾性率(E’’)の比から求めた。
【0152】
(比較例20)
ポリプロピレン(株式会社プライムポリマー製:J707G、ホモPP、MFR9)を二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、175℃で溶融混練し、ペレット化した。
得られたペレットを、80℃で12時間乾燥させ後、真空射出成形機(株式会社ソディック製、型式:MS100)シリンダー温度190℃、金型温度50℃の条件で射出成形して試験片を作製した。
次いで、損失正接(tanδ)の温度依存性を動的粘弾性測定装置(株式会社ユービーエム製、型式:E-4000-DVE)を用いて実施例42と同様に測定した。
【0153】
図12の測定結果より、周波数0.1〜1000Hzの範囲のtanδにより、減衰への寄与が確認され、内部摩擦よるエネルギーロスが発生していることが分かった。したがって、本願発明に係る組成物は吸音特性を有していることが分かった。これは、前述したパンクチャー衝撃試験の結果と同様の理由によるものと推測される。すなわち、本願発明に係る組成物は、
図5における模式図に表したとおり、組成物中のCNF周辺に
スチレン系重合体、相溶化剤、熱可塑性エラストマー、界面活性剤等が存在しているから、外部からのエネルギーによる内部構造のずれをこれらの成分が吸収することにより、結果的にエネルギーを吸収したもの(すなわち、振動エネルギー吸収性能を有する)と推測される。
【0154】
(実施例43)
メカノハイブリッド(日本コークス工業株式会社、型式:MMH−75B/I)を用いて、竹パルプ由来のCNF水混合物(CNF固形分35%、水分65%、平均重合度810)と
スチレン系重合体(ヤスハラケミカル株式会社製:YSレジンSX100)と熱可塑性エラストマー(ダウ・ケミカル・カンパニー社製、製品名:エンゲージ8842)と界面活性剤(太陽化学株式会社製、製品名:チラバゾールP−4)と相溶化剤(化薬ヌーリオン株式会社製、製品名:カヤブリッド002PP)とを50:30:10:5:5(質量%比)として混合した。
次いで、得られた混合物を、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供し、粉末状セルロースナノファイバーを得た。スクリュー系はΦ25mm、樹脂温度を140℃とした。
次いで、得られた粉末状セルロースナノファイバーとポリプロピレン(株式会社プライムポリマー製:J707G、ホモPP、MFR9)とを、得られる組成物中のセルロースナノファイバーが10質量%となる割合で混合し、 二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、175℃で溶融混練し、ペレット化した。
得られたペレットを、80℃で12時間乾燥させ後、射出成形機(日精樹脂工業株式会社製、型式:NPX7−1F)シリンダー温度190℃、金型温度50℃の条件で射出成形して短冊形試験片及びダンベル試験片1BAを作製した。
次いで、得られた試験片を用いて物性値測定を行った。測定結果及び処方量を表12に示す。
【0155】
(実施例44)
実施例43において、熱可塑性エラストマー(ダウ・ケミカル・カンパニー社製、製品名:エンゲージ8842)を熱可塑性エラストマー(旭化成株式会社製、製品名:タフテックH1052)としたこと以外は、実施例43と同様にして物性値測定を行った。
【0156】
(実施例45)
実施例43において、竹パルプ由来のCNF水混合物の割合を60、熱可塑性エラストマー(ダウ・ケミカル・カンパニー社製、製品名:エンゲージ8842)の割合を5とし、相溶化剤(化薬ヌーリオン株式会社製、製品名:カヤブリッド002PP)を配合しなかったこと以外は、実施例43と同様にして物性値測定を行った。
【0157】
(実施例46)
実施例43において、竹パルプ由来のCNF水混合物の割合を60とし、熱可塑性エラストマー(ダウ・ケミカル・カンパニー社製、製品名:エンゲージ8842)を熱可塑性エラストマー(旭化成株式会社製、製品名:タフテックH1052)とし、これの割合を5とし、相溶化剤(化薬ヌーリオン株式会社製、製品名:カヤブリッド002PP)を配合しなかったこと以外は、実施例43と同様にして物性値測定を行った。
【0158】
(比較例21)
ポリプロピレン(株式会社プライムポリマー製:J707G、ホモPP、MFR9)を二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、175℃で溶融混練し、ペレット化した。
得られたペレットを、80℃で12時間乾燥させ後、射出成形機(日精樹脂工業株式会社製、型式:NPX7−1F)シリンダー温度190℃、金型温度50℃の条件で射出成形して短冊形試験片及びダンベル試験片1BAを作製した。
【0159】
【表12】
【0160】
表12より、全ての実施例において曲げ弾性率及び引張弾性率が比較例と比較して向上していることがわかった。