(58)【調査した分野】(Int.Cl.,DB名)
前記制御電源管理部は、動作電源を要さずに、前記第1電源線からの電流の引き込みと前記第2電源線からの電流の引き込みとを切り替えるように構成されていることを特徴とする請求項1記載の電動車両の電源システム。
【発明の概要】
【発明が解決しようとする課題】
【0006】
高電圧バッテリには、非常に大きなエネルギーが蓄積され、また、過充電及び過放電が禁止されるなど厳格な取扱いが要求される。このため、高電圧バッテリの管理には非常に高い信頼性が要求され、たとえ稀な状況であっても、電動車両の動作中にバッテリECUが停止するような事態は避けたいという要求がある。
【0007】
特許文献1に示された上記従来の技術によれば、低電圧バッテリの電圧が徐々に低下するような場合に、ハイブリッド制御ユニットがこの電圧の低下を検出し、低電圧バッテリの充電制御を実行できる。したがって、このような技術を採用することで、低電圧バッテリの電力が枯渇してバッテリECUが停止するといった事態を回避できる。
【0008】
しかしながら、このような技術を採用しても、低電圧バッテリの電圧が急激に低下する場合、あるいは、低電圧バッテリが異常により電力の供給を急に停止するような場合には、バッテリECUの停止を避けることが難しいという課題がある。なぜなら、このような場合には、ハイブリッド制御ユニットが低電圧バッテリの電圧低下を検出する前に、ハイブリッド制御ユニット自体が電力不足により停止してしまうからである。また、充電電圧を生成するコンバータ、並びに、電力の供給経路を切り替えるリレースイッチなども、同様の場合に電力不足で正常に動作することが困難になるからである。
【0009】
一方、低電圧バッテリに異常が発生してもバッテリECUが停止しないようにするため、予備の低電圧バッテリ及び予備のバッテリECUを設けて、異常に対処することも検討できる。しかし、この構成では、電動車両の部品点数が増し、部品の搭載スペースの増大、車両重量の増大、並びに、部品コストの増大という課題が生じる。
【0010】
本発明は、制御系の電力を供給する第2バッテリの電力供給能力が急激に低下しても、走行用の電力を供給する第1バッテリの充放電の管理を継続することのできる電動車両の電源システムを提供することを目的とする。
【課題を解決するための手段】
【0011】
請求項1記載の発明は、電動車両の電源システムにおいて、
走行モータに電力を供給する第1バッテリと、
前記第1バッテリの電圧及び温度を監視し、前記第1バッテリの充放電の可否判断を行うバッテリ制御部と、
前記第1バッテリよりも低電圧の電力を供給する第2バッテリと、
前記第1バッテリの電圧を変換して第1電源線へ出力する第1DC/DCコンバータと、
前記第2バッテリの電圧を変換して第2電源線へ出力する第2DC/DCコンバータと、
前記第1電源線及び
前記第2電源線から電流を引き込み可能な合流線と、前記合流線から前記第1電源線への電流の逆流を防止するダイオードと、を有し、前記第1電源線から電流が引き込まれる場合に前記第1電源線から前記合流線に加えられる電圧と、前記第2電源線から電流が引き込まれる場合に前記第2電源線から前記合流線に加えられる電圧との大小に応じて、前記第1電源線又は前記第2電源線の何れか一方から前記合流線を介して前記バッテリ制御部へ電力を送る制御電源管理部と、
を備え
、
正常時における前記第1DC/DCコンバータの出力電圧と正常時における前記第2DC/DCコンバータの出力電圧とが、前記第2電源線から前記合流線へ電流が引き込まれる値にそれぞれ設定されていることを特徴とする。
【0012】
請求項2記載の発明は、請求項1記載の電動車両の電源システムにおいて、
前記制御電源管理部は、動作電源を要さずに、前記第1電源線からの電流の引き込みと前記第2電源線からの電流の引き込みとを切り替えるように構成されていることを特徴とする。
【0014】
請求項
3記載の発明は、
請求項1又は請求項2に記載の電動車両の電源システムにおいて、
前記第2電源線は前記合流線に直結されていることを特徴とする。
【0015】
請求項
4記載の発明は、請求項1から請求項
3のいずれか一項に記載の電動車両の電源システムにおいて、
前記バッテリ制御部が搭載された半導体集積回路を有し、
前記制御電源管理部が前記半導体集積回路に内蔵されていることを特徴とする。
【0017】
請求項
5記載の発明は、請求項
1から請求項4のいずれか一項に記載の電動車両の電源システムにおいて、
前記第1DC/DCコンバータは出力能力を切り替え可能に構成され、
前記バッテリ制御部は、
前記第1DC/DCコンバータから電源電圧が入力されていることを検出する検出部と、
前記検出部の検出結果に応じて前記第1DC/DCコンバータの出力能力を切り替える切替処理部と、
を備えることを特徴とする。
請求項
6記載の発明は、電動車両の電源システムにおいて、
走行モータに電力を供給する第1バッテリと、
前記第1バッテリの充放電の管理を行うバッテリ制御部と、
前記第1バッテリよりも低電圧の電力を供給する第2バッテリと、
前記第1バッテリの電力が伝送される第1電源線及び前記第2バッテリの電力が伝送される第2電源線から電流を引き込み可能な合流線を有し、前記第1電源線から電流が引き込まれる場合に前記第1電源線から前記合流線に加えられる電圧と、前記第2電源線から電流が引き込まれる場合に前記第2電源線から前記合流線に加えられる電圧との大小に応じて、前記第1電源線又は前記第2電源線の何れか一方から前記合流線を介して前記バッテリ制御部へ電力を送る制御電源管理部と、
前記第1バッテリの電圧を変換して前記第1電源線へ出力する第1DC/DCコンバータと、
前記第1DC/DCコンバータの出力能力を切り替える切替処理部と、
を備え、
正常時においては前記第2電源線から前記合流線へ電流が引き込まれ、
前記切替処理部は、前記第1DC/DCコンバータから前記合流線へ電源電圧が入力されていると検出された場合に、前記第1DC/DCコンバータの出力能力を上げることを特徴とする。
【発明の効果】
【0018】
本発明によれば、第1バッテリの電力が伝送される第1電源線及び第2バッテリの電力が伝送される第2電源線から電流を引き込み可能な合流線を有し、第1電源線から電流が引き込まれる場合に第1電源線から前記合流線に加えられる電圧と、第2電源線から電流が引き込まれる場合に第2電源線から合流線に加えられる電圧との大小に応じて、第1電源線又は第2電源線の何れか一方から合流線を介してバッテリ制御部へ電力を送る制御電源管理部を備える。したがって、例えば第2バッテリの電力供給能力が正常であれば、第2電源線から制御電源管理部に電流が引き込まれてバッテリ制御部へ電力を供給する一方、第2バッテリの電力供給能力が低下して第2電源線の電圧が低下したような場合には、第1電源線から制御電源管理部に電流が引き込まれてバッテリ制御部へ電力を供給することができる。電圧の大小に応じて、このような切り替わりが行われるので、第2バッテリの電力供給能力が急激に低下するような場合でも、同様の作用を得ることができ、バッテリ制御部は第1バッテリの充放電の管理を継続することができる。
【発明を実施するための形態】
【0020】
以下、本発明の実施形態について図面を参照して詳細に説明する。
【0021】
図1は、本発明の実施形態に係る電動車両の要部を示すブロック図である。
図2は、制御電源管理部の周辺を詳細に示す構成図である。
【0022】
本発明の実施形態の電動車両1は、EV又はHEV等であり、駆動輪2、2を駆動する走行モータ11、走行用の電力を蓄積及び供給する高電圧バッテリ20、メインリレー13、並びに、走行モータ11を駆動するインバータ12を備える。また、電動車両1は、バッテリECU(Electronic Control Unit)30、車両コントローラ31、各種のECU32、低電圧バッテリ25、第1DC/DCコンバータ21、第2DC/DCコンバータ26及び制御電源管理部28を備える。これらの構成のうち、高電圧バッテリ20、低電圧バッテリ25、第1DC/DCコンバータ21、第2DC/DCコンバータ26、制御電源管理部28及びバッテリECU30が、電源システム3を構成する。上記構成のうち、高電圧バッテリ20は、本発明に係る第1バッテリの一例に相当し、低電圧バッテリ25は、本発明に係る第2バッテリの一例に相当する。バッテリECU30は、本発明に係るバッテリ制御部の一例に相当する。
【0023】
低電圧バッテリ25は、例えば鉛蓄電池であり、高電圧バッテリ20よりも低電圧の電力を供給する。低電圧バッテリ25は、バッテリECU30、車両コントローラ31、各種のECU32、図示しないエンジン補機、各種の付属品(アクセサリ)へ電力を供給する。
【0024】
第2DC/DCコンバータ26は、低電圧バッテリ25の電圧を変換して、第2電源線L2へ制御系の主電源電圧Vmainを出力する。第2DC/DCコンバータ26は、車両コントローラ31及び各種のECU32へ主電源電圧Vmainを供給し、また、制御電源管理部28を介してバッテリECU30へ主電源電圧Vmainを供給する。第2DC/DCコンバータ26は、低電圧バッテリ25から入力される電圧を電源として動作する。
【0025】
高電圧バッテリ20は、例えばリチウムイオン電池あるいはニッケル水素電池などの大容量の二次電池であり、走行用の高電圧を出力する。高電圧バッテリ20は複数のセルが集合されて構成され、各セルは比較的小さい電圧を出力する。
【0026】
第1DC/DCコンバータ21は、高電圧バッテリ20の電圧を変換して、第1電源線L1に制御系の補助電源電圧Vsubを出力する。第1DC/DCコンバータ21は、メインリレー13を介さずに高電圧バッテリ20の一部のセルから電圧を入力し、変換された補助電源電圧Vsubを制御電源管理部28へ出力する。第1DC/DCコンバータ21は、高電圧バッテリ20から入力される電圧を電源として動作する。
【0027】
さらに、第1DC/DCコンバータ21は、電圧の変換方式を切り替えることで、高い効率で動作する低負荷モードと、大電流を出力可能な高負荷モードとに切り替え可能な機能を有する。負荷モードの切り替えは、モード端子tmの入力を変えることで行われる。低負荷モードでは、第1DC/DCコンバータ21の消費電力を非常に低く抑えることが可能となり、高負荷モードでは第1DC/DCコンバータ21の出力能力が向上する。負荷モードの切替機能を有するDC/DCコンバータは、多くの部品メーカにより販売されており、容易に入手可能である。
【0028】
車両コントローラ31は、例えばトライバーの運転操作に応じて電動車両1の駆動制御を行う。車両コントローラ31は、1つのECUから構成されてもよいし、複数のECUが協働することで実現される構成としてもよい。各種のECU32は、例えば表示パネルの制御、照明制御、又はエアコン制御などの各種の制御を行う。
【0029】
車両コントローラ31及びECU32は、所定の電源線(例えば第2電源線L2)から電源が供給される。車両コントローラ31及びECU32は、通信線CLを介して他のECUと通信可能に構成され、バッテリECU30から緊急状態を通知する緊急信号を入力可能である。
【0030】
メインリレー13は、例えば車両コントローラ31により開閉制御され、高電圧バッテリ20を使用しないときに、高電圧バッテリ20をシステムから切り離すことができる。
【0031】
インバータ12は、車両コントローラ31により制御され、高電圧バッテリ20の電力を変換して走行モータ11へ出力する。車両コントローラ31は、走行モータ11から要求トルクが出力されるようにインバータ12を制御する。また、インバータ12は、電動車両1の制動時に走行モータ11から回生電力を入力し、回生電力を変換して高電圧バッテリ20へ充電用の電力を出力することができる。
【0032】
バッテリECU30は、高電圧バッテリ20が適正に使用されるよう、高電圧バッテリ20の電圧、温度、SOC及びSOHなど、様々な状態を監視する。また、バッテリECU30は、検出された状態に応じて、高電圧バッテリ20の放電及び充電の管理を行う。例えば、走行モータ11を駆動する際、車両コントローラ31は、走行モータ11に要求トルクを発生させる放電が可能かバッテリECU30に問い合わせる。そして、バッテリECU30は、高電圧バッテリ20の状態に基づいて放電可否を判断し、放電可否情報を車両コントローラ31へ戻す。そして、放電可能であれば、車両コントローラ31はインバータ12を動作させて高電圧バッテリ20の電力を走行モータ11へ出力する。一方、放電不可であれば、車両コントローラ31はインバータ12の出力を停止又は低下させて高電圧バッテリ20からの放電を抑制する。また、インバータ12を介して走行モータ11から回生電力を取り込む際、車両コントローラ31は、高電圧バッテリ20へ回生電力の充電が可能であるかバッテリECU30に問い合せる。そして、バッテリECU30は高電圧バッテリ20の状態に応じて充電可否を判断し、充電可否情報を車両コントローラ31へ戻す。そして、充電可能であれば、車両コントローラ31は回生電力を取り込んで高電圧バッテリ20へ送るが、充電不可であれば、車両コントローラ31はインバータ12による回生電力の取り込みを停止して高電圧バッテリ20への充電を抑制する。このようなバッテリECU30の管理によって、高電圧バッテリ20の過放電、過充電及び異常な充放電が抑制されるなど、高電圧バッテリ20の適正な使用が確保される。
【0033】
なお、バッテリECU30による高電圧バッテリ20の充放電の管理は、上記の例に限られない。例えば、バッテリECU30は、高電圧バッテリ20の状態を監視し、状態情報を車両コントローラ31へ出力するように構成してもよい。そして、車両コントローラ31が、状態情報から高電圧バッテリ20の放電又は充電の可否を判断するように構成してもよい。
【0034】
バッテリECU30は、さらに、
図2に示すように、比較回路301、制御部303、電源入力ポートINを有する。比較回路301は、電源入力ポートINの電圧を所定の閾値と比較する。制御部303は、比較回路301の比較結果を受け、所定条件を満たした場合に通信線CLを介して緊急信号を出力する。比較回路301は、本発明に係る検出部の一例に相当し、制御部303は本発明に係る切替処理部の一例に相当する。これら各部の動作については後に詳述する。
【0035】
さらに、バッテリECU30には、第1DC/DCコンバータ21のモード端子tmに主電源電圧喪失信号を出力する出力線が設けられている。主電源電圧喪失信号は、主電源電圧Vmainが正常である場合にオフ、主電源電圧Vmainが喪失して補助電源電圧Vsubが入力されている場合にオンにされる。主電源電圧喪失信号の切替え処理の詳細については後述する。
【0036】
制御電源管理部28は、主電源電圧Vmainと補助電源電圧Vsubとが入力され、これら2つの入力の電圧差に応じて、何れか一方から電流が引き込まれてバッテリECU30へ電力を送る。制御電源管理部28、主電源電圧Vmainと補助電源電圧Vsubとのどちらから電流を引き込むか、動作電源を必要とせずに、電圧の大小に応じて自動的に切り替えることができる。制御電源管理部28は、
図2に示すように、第1入力端子t1と合流線t3とがダイオードD1を介して接続され、かつ、第2入力端子t2と合流線t3とが直結されて構成される。第1入力端子t1は、高電圧バッテリ20から電力が伝送される第1電源線L1に接続される。第2入力端子t2は、低電圧バッテリ25から電力が伝送される第2電源線L2に接続される。ダイオードD1は合流線t3から第1入力端子t1へ電流が逆流するのを防止するように、アノードが第1入力端子t1に接続され、カソードが合流線t3に接続される。
【0037】
補助電源電圧Vsubと主電源電圧Vmainとの電圧差(Vsub−Vmain)は、低電圧バッテリ25の電力供給能力が正常である場合に、ダイオードD1の順方向電圧(負の電圧値「−0.7V」)よりも大きくなるように設定されている。また、補助電源電圧Vsubの電圧値は、補助電源電圧VsubがダイオードD1を介してバッテリECU30へ出力されたときに、電源電圧の仕様を満たす値に設定されている。例えば、補助電源電圧Vsubは5.5V、主電源電圧Vmainは5.0Vに設定されている。この設定によれば、両方の電圧差は−0.5Vであり、ダイオードD1の順方向電圧−0.7Vよりも大きくなる。また、補助電源電圧VsubがダイオードD1を介してバッテリECU30に出力される電圧は4.8V(=5.5V−0.7V)であり、電源電圧の仕様を満たす電圧値となる。
【0038】
<動作説明>
続いて、電動車両1の動作(主に制御系の電源に関する動作)について説明する。
【0039】
電動車両1のシステム動作中においては、第1DC/DCコンバータ21及び第2DC/DCコンバータ26が動作して主電源電圧Vmainと補助電源電圧Vsubとが出力される。低電圧バッテリ25が正常でありかつ充電残量があると、主電源電圧Vmainは予め設定された電圧値(5.0V)に維持される。主電源電圧Vmainは、車両コントローラ31及びECU32へ供給される。また、主電源電圧Vmain及び補助電源電圧Vsubは、制御電源管理部28へ出力される。
【0040】
主電源電圧Vmainが正常な場合、制御電源管理部28では、補助電源電圧Vsubと主電源電圧Vmainとの電圧差により、ダイオードD1のアノードよりカソードの電圧が高くなり、第1入力端子t1から合流線t3へは電流が流れない。そして、主電源電圧Vmainが加えられている第2入力端子t2から合流線t3へ電流が流れ、主電源電圧VmainがバッテリECU30へ供給される。すなわち、正常時には、第1電源線L1から合流線t3に電流が引き込まれる場合に第1電源線L1から合流線t3に加えられる電圧は4.8Vであり、第2電源線L2から合流線t3に電流が引き込まれる場合に第2電源線L2から合流線t3に加えられる電圧は5.0Vである。したがって、電圧が大きい方の第2電源線L2から合流線t3に電流が引き込まれて、バッテリECU30へ電力が供給される。このとき、制御電源管理部28では、第2入力端子t2と合流線t3とが直結されており、主電源電圧Vmainを供給するのに無駄な電力が消費されない。
【0041】
また、主電源電圧Vmainが正常な場合、主電源電圧喪失信号はオフにされるため、補助電源電圧Vsubを生成する第1DC/DCコンバータ21は低負荷モードで動作する。加えて、ダイオードD1の作用により、第1DC/DCコンバータ21の出力はゼロとなり、補助電源電圧Vsubを出力するための消費電力は非常に小さくなる。したがって、補助電源電圧Vsubを生成するために、高電圧バッテリ20のセルから大きな電力が消費されることがない。
【0042】
ここで、低電圧バッテリ25の充電残量の低下あるいは異常により、主電源電圧Vmainが5.0Vから3.0Vなどへ低下したとする。すると、制御電源管理部28の第1入力端子t1と第2入力端子t2との電圧差により、補助電源電圧Vsubが優位となって、第1入力端子t1からダイオードD1を介して合流線t3へ電流が流れる。そして、補助電源電圧Vsubが、ダイオードD1の順方向電圧分降下されて、バッテリECU30へ供給される。すなわち、このような異常時には、第1電源線L1から合流線t3に電流が引き込まれる場合に第1電源線L1から合流線t3に加えられる電圧は4.8Vであり、第2電源線L2から合流線t3に電流が引き込まれる場合に第2電源線L2から合流線t3に加えられる電圧は3.0Vである。したがって、電圧が大きい方の第1電源線L1から合流線t3に電流が引き込まれて、バッテリECU30へ電力が供給される。これにより、バッテリECU30へ供給される電源電圧Vddが5Vから4.8Vへ低下するが、電源電圧の仕様を満たす電圧なので、バッテリECU30は動作を継続できる。ここで、第2入力端子t2と合流線t3とが直結されているため、補助電源電圧Vsubは第2入力端子t2を介して第2DC/DCコンバータ26の出力端子へも出力される。しかし、低電圧バッテリ25の出力が低下して第2DC/DCコンバータ26の出力インピーダンスが高くなることで、第2DC/DCコンバータ26の出力端子から流入する電流は小さい範囲に抑えることができる。
【0043】
図3は、バッテリECUで実行される制御電源切替処理の手順を示すフローチャートである。
【0044】
バッテリECU30は、システムの動作中、
図3の制御電源切替処理を実行する。制御電源切替処理において、比較回路301は、常に、電源電圧Vddと閾値(例えば4.9)とを比較しており(ステップS1)、電源電圧Vddが低下(5V→4.8V)すると比較回路301がこの低下を検出する(ステップS1のYES)。そして、電圧低下の検出結果に基づいて、制御部303は、主電源電圧喪失信号をオンにする(ステップS2)。これにより、第1DC/DCコンバータ21が高負荷モードで動作して、比較的に大きな電流が出力可能となる。ステップS2の処理は、本発明に係る切替処理部の機能の一例に相当する。さらに、電圧低下の検出結果に基づいて、制御部303は、通信線CLを介して緊急信号を出力する(ステップS3)。そして、処理がステップS4へ移行される。
【0045】
なお、主電源電圧Vmainが低下したときに、車両コントローラ31及びECU32が電源喪失により動作不可となる可能性があることを考慮して、
図1の電源ラインL11が加えられてもよい。電源ラインL11により、主電原電圧Vmainが低下したときに、制御電源管理部28から出力される電源電圧Vddを車両コントローラ31及びECU32に供給することができる。このような構成を採用しても、ステップS2の処理により、第1DC/DCコンバータ21は、高負荷モードへ切り替えられており、バッテリECU30、車両コントローラ31及びECU32へ電力を十分に供給できる。
【0046】
車両コントローラ31及びECU32は、緊急信号を受けると、例えばフェールセーフモードに移行して、電動車両1の走行速度を一定以下に抑制するなど、緊急時の処理を実行してもよい。
【0047】
次に、緊急信号が出力されている状況で、低電圧バッテリ25が正常な状態に復帰して主電源電圧Vmainが正常値(5.0V)に戻ったとする。すると、制御電源管理部28の第1入力端子t1と第2入力端子t2との電圧差により、主電源電圧Vmainが優位となって、第2入力端子t2から合流線t3へ電流が流れる。これにより、主電源電圧VmainがバッテリECU30へ供給される。そして、バッテリECU30へ供給される電源電圧Vddが、4.8Vから5.0Vへ上昇する。
【0048】
緊急信号の出力中、比較回路301は、常に、電源電圧Vddと閾値(例えば4.9V)とを比較しており(ステップS4)、電源電圧Vddが上昇(4.8V→5V)すると、比較回路301がこの上昇を検出する(ステップS4のYES)。そして、電圧上昇の検出結果に基づいて、制御部303は、主電源電圧喪失信号をオフにする(ステップS5)。これにより、第1DC/DCコンバータ21が低負荷モードで動作して、消費電力の低減が図られる。ステップS5の処理は、本発明に係る切替処理部の機能の一例に相当する。さらに、電圧低下の検出結果に基づいて、制御部303は、緊急信号の出力を停止する(ステップS6)。そして、バッテリECU30では、ステップS1に処理が戻される。
【0049】
上記のステップS4〜S6の処理により、電源システム3は通常時の状態に戻され、低電圧バッテリ25の電力により主電源電圧VmainがバッテリECU30に供給される。
【0050】
以上のように、本実施形態の電動車両1の電源システム3によれば、高電圧バッテリ20の電力が伝送される第1電源線L1及び低電圧バッテリ25の電力が伝送される第2電源線L2から電流を引き込み可能な合流線t3を有し、第1電源線L1から電流が引き込まれる場合に第1電源線L1から合流線t3に加えられる電圧と、第2電源線L1から電流が引き込まれる場合に第2電源線L1から合流線t3に加えられる電圧との大小に応じて、第1電源線L1又は第2電源線L2の何れか一方から合流線t3を介してバッテリECU30へ電力を送る制御電源管理部28を備える。したがって、低電圧バッテリ25の電力供給能力が正常であれば、第2電源線L1から制御電源管理部28に電流が引き込まれてバッテリECU30へ電力を供給する一方、低電圧バッテリ25の電力供給能力が低下して第2電源線L2の電圧が低下したような場合には、第1電源線L1から制御電源管理部28に電流が引き込まれてバッテリECU30へ電力を供給することができる。電圧の大小に応じて、このような切り替わりが行われるので、低電圧バッテリ25の電力供給能力が急激に低下するような場合でも、同様の作用を得ることができ、バッテリECU30は高電圧バッテリ20の充放電の管理を継続することができる。
【0051】
また、本実施形態の電源システム3によれば、制御電源管理部28は、第1入力端子t1と合流線t3とがダイオードD1を介して接続され、第2入力端子t2と合流線t3とが直結された構成を有する。したがって、主電源電圧Vmainが正常なときには、制御電源管理部28で無駄な電力が消費されることがない。また、主電源電圧Vmainが低下したときには、遅延なく補助電源電圧VsubをバッテリECU30へ供給することができる。
【0052】
また、本実施形態の電源システム3によれば、制御電源管理部28には、第1DC/DCコンバータ21が生成した補助電源電圧Vsubと、第2DC/DCコンバータ26が生成した主電源電圧Vmainとが入力される。高電圧バッテリ20のセル電圧又は低電圧バッテリ25の電圧は、充電残量等に起因して変化するが、第1DC/DCコンバータ21及び第2DC/DCコンバータ26からは非常に安定した電圧を出力できる。したがって、上記の構成により、2入力の電圧差に基づく電流の引き込み元の切替えを、高電圧バッテリ20のセル電圧又は低電圧バッテリ25の電圧の変化の影響を受けずに、安定的に実現できる。
【0053】
また、本実施形態の電源システム3によれば、第1DC/DCコンバータ21が出力能力を切り替える機能を有する。さらに、バッテリECU30が、補助電源電圧Vsubの入力を検出して、主電源電圧喪失信号により第1DC/DCコンバータ21の出力能力を切り替える。これにより、主電源電圧Vmainが正常なときには、補助電源電圧Vsubを出力するために必要な消費電力を非常に小さくでき、主電源電圧Vmainが低下したときには、大きな負荷に対応して補助電源電圧Vsubを供給することができる。
【0054】
(変形例1)
図4は、変形例1の制御電源管理部の周辺を詳細に示す構成図である。
【0055】
変形例1の電動車両及びその電源システムは、バッテリECU30Aにおいて主電源電圧Vmainと補助電源電圧Vsubの電圧差を検出する構成が、
図2の実施形態と異なる。
図2の実施形態と同様の構成については、同一符号を付して、詳細な説明を省略する。
【0056】
変形例のバッテリECU30Aは、補助電源電圧Vsubを入力する検出端子tc1と、主電源電圧Vmainを入力する検出端子tc2とを備える。検出端子tc2には、主電源電圧Vmainが低下して第2電源線L2に第1電源線L1側から電圧が加えられた場合でも、低下した主電源電圧Vmainが出力されるように、第2DC/DCコンバータ26の内部から電圧を導いてもよい。
【0057】
バッテリECU30Aは、さらに、2つの検出端子tc1、tc2の電圧差を計算する減算回路305を有し、減算回路305は減算結果を制御部303へ出力する。
【0058】
図5は、バッテリECUにより実行される変形例1の制御電源切替処理の手順を示すフローチャートである。
【0059】
バッテリECU30Aは、システムの動作中、
図5の制御電源切替処理を実行する。制御電源切替処理において、減算回路305は、常に、主電源電圧Vmainと補助電源電圧Vsubとの電圧差αを演算し(ステップS11)、制御部303は電圧差αと閾値ΔVth(例えば−0.6V)とを比較する(ステップS12)。そして、低電圧バッテリ25の電力供給能力が低下して主電源電圧Vmainが低下(例えば5V→3V)すると、電圧差αの値が小さくなって制御部303がこれを判別する(ステップS12のYES)。
【0060】
そして、この判別結果に基づいて、制御部303は、主電源電圧喪失信号をオンし(ステップS2)、緊急信号を出力する(ステップS3)。ステップS2、S3の処理は、
図3の実施形態で説明した通りである。
【0061】
緊急信号の出力中、減算回路305は、常に、主電源電圧Vmainと補助電源電圧Vsubとの電圧差αを演算し(ステップS13)、制御部303は電圧差αと閾値ΔVth(例えば−0.6V)とを比較する(ステップS14)。そして、低電圧バッテリ25の電力供給能力が回復し、主電源電圧Vmainが上昇(例えば3V→5V)すると、電圧差αの値が大きくなって制御部303がこれを判別する(ステップS14のYES)。
【0062】
そして、この判別結果に基づいて、制御部303は、主電源電圧喪失信号をオフし(ステップS5)、緊急信号の出力を停止する(ステップS6)。ステップS5、S6の処理は、
図3の実施形態で説明した通りであり、これらの処理により、電源システム3は通常時の状態に戻され、バッテリECU30Aに主電源電圧Vmainが供給される。
【0063】
以上のように、変形例1の電動車両の電源システムにおいても、
図1〜
図3に示した実施形態と同様の作用及び効果が奏される。
【0064】
(変形例2)
図6は、変形例2のバッテリECUを示す構成図である。
【0065】
変形例2のバッテリECU30Bは、1チップの半導体集積回路であり、制御電源管理部28Aと、バッテリ制御部310とを内蔵する。制御電源管理部28Aは、
図2の実施形態又は
図4の変形例1で示した制御電源管理部28と同様の構成を有する。また、バッテリ制御部310は、
図2の実施形態又は
図4の変形例1で示したバッテリECU30、30Aと同様の構成を有する。
【0066】
このように構成された変形例2の電源システムにおいても、実施形態1と同様の作用及び効果が奏される。加えて、変形例2の電動車両の電源システムによれば、制御電源管理部28Aとバッテリ制御部310とがユニット化されているので、これらの制御基板への搭載が容易となり、信頼性の向上及び制御基板の占有面積の低減を図ることができる。
【0067】
以上、本発明の実施形態について説明した。しかし、本発明は上記実施形態に限られない。例えば、上記実施形態では、本発明に係る制御電源管理部として具体的な一例を示した。しかし、動作電源を用いずに2入力の電圧に応じて2入力の一方から電流を引き込むことのできる回路であれば、本発明に係る制御電源管理部としてどのような回路構成が適用されてもよい。また、上記実施形態では、制御電源管理部28からバッテリECU30、30Aへ電源電圧Vddを出力する構成を示した。しかし、制御電源管理部28とバッテリECU30、30Aとの間に別のDC/DCコンバータを設け、DC/DCコンバータにより電圧変換された電源電圧VddをバッテリECU30、30Aへ出力するように構成してもよい。この場合、制御電源管理部28に入力される2つの電源電圧の値を、これらの電圧差が大きくなるように設定するなど、電圧値の設定自由度を向上できる。さらに、上記実施形態では、制御電源管理部28へ第1DC/DCコンバータ21の出力電圧と、第2DC/DCコンバータ26の出力電圧とが入力される構成を示した。しかし、例えば、低電圧バッテリ25の出力電圧と、高電圧バッテリ20のセル電圧とが、制御電源管理部28へ入力され、これらの電圧差に応じて何れかから電流を引き込む構成としてもよい。その他、実施形態で示した細部は、発明の趣旨を逸脱しない範囲で適宜変更可能である。