特許第6705210号(P6705210)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東京電力株式会社の特許一覧

<>
  • 特許6705210-太陽光パネルの発電能力推定方法 図000002
  • 特許6705210-太陽光パネルの発電能力推定方法 図000003
  • 特許6705210-太陽光パネルの発電能力推定方法 図000004
  • 特許6705210-太陽光パネルの発電能力推定方法 図000005
  • 特許6705210-太陽光パネルの発電能力推定方法 図000006
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6705210
(24)【登録日】2020年5月18日
(45)【発行日】2020年6月3日
(54)【発明の名称】太陽光パネルの発電能力推定方法
(51)【国際特許分類】
   H02S 50/15 20140101AFI20200525BHJP
【FI】
   H02S50/15
【請求項の数】2
【全頁数】9
(21)【出願番号】特願2016-38501(P2016-38501)
(22)【出願日】2016年3月1日
(65)【公開番号】特開2017-158273(P2017-158273A)
(43)【公開日】2017年9月7日
【審査請求日】2019年2月4日
(73)【特許権者】
【識別番号】000003687
【氏名又は名称】東京電力ホールディングス株式会社
(74)【代理人】
【識別番号】100120400
【弁理士】
【氏名又は名称】飛田 高介
(74)【代理人】
【識別番号】100124110
【弁理士】
【氏名又は名称】鈴木 大介
(74)【代理人】
【識別番号】110000349
【氏名又は名称】特許業務法人 アクア特許事務所
(72)【発明者】
【氏名】山本 良太
(72)【発明者】
【氏名】土田 高嗣
(72)【発明者】
【氏名】佐藤 信之
(72)【発明者】
【氏名】秋山 結花
(72)【発明者】
【氏名】川崎 宏
(72)【発明者】
【氏名】坂本 浩司
(72)【発明者】
【氏名】望月 延恭
(72)【発明者】
【氏名】依田 信二
【審査官】 小林 幹
(56)【参考文献】
【文献】 特開2008−224432(JP,A)
【文献】 特表2015−527863(JP,A)
【文献】 特開2012−216540(JP,A)
【文献】 特開2002−371191(JP,A)
【文献】 特開2011−220744(JP,A)
【文献】 米国特許出願公開第2015/0008952(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H02S50/00−50/15
(57)【特許請求の範囲】
【請求項1】
太陽光パネルに暗所にて紫外線を照射し、
前記太陽光パネルの紫外線によって蛍光が一様でなく暗部が確認されるとき、該パネルの電極と電極を結ぶ方向を通電方向として、該通電方向と直交する幅方向において暗部がない部分の長さを発電有効長さとし、
前記発電有効長さから該太陽光パネルの発電能力を推定することを特徴とする太陽光パネルの発電能力推定方法。
【請求項2】
前記太陽光パネルは、CIS系パネルまたは結晶系パネルであることを特徴とする請求項1に記載の太陽光パネルの発電能力推定方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、太陽光パネルにおける発電能力を推定する太陽光パネルの発電能力推定方法に関する。
【背景技術】
【0002】
近年、化石燃料資源の有効利用およびCO2の排出抑制の観点から、太陽光エネルギーを利用して発電する太陽光発電システムの普及が進んでいる。太陽光発電システムでは、建物の屋根や壁面等に太陽光パネルを設置し、この太陽光パネルにおいて受光した太陽光エネルギーを電力に変換している。
【0003】
ここで、太陽光パネルは屋外に設置するものであるから、様々な要因によって破損が生じる。破損の要因は設置箇所の地域性に大きく依存するが、例えばカラス等鳥類による投石がある。太陽光パネルでは、破損が生じると発電能力が低下してしまうため交換する必要がある。しかしながら、破損が生じる度に、または破損している太陽光パネルのすべてを交換すると、設備コストが著しく増大してしまう。一方、一見して破損が生じている太陽光パネルであっても、発電能力を保持している場合がある。そこで、破損が生じている太陽光パネルであっても、発電能力に問題がない場合にはそのまま使用を継続したいという要請があった。
【0004】
そこで、発明者らは、破損が生じている太陽光パネルの発電能力の有無を精査した。太陽光パネルの発電能力の有無は、例えば特許文献1に開示されているように太陽光パネルの発電電力や開放電圧を測定することにより判断することができる。これによれば、破損が生じているパネルの中から発電能力を有するパネルを選別し、発電能力を有さないパネルのみを交換することができるため、設備コストの削減を図ることが可能となる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2014−93368号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記の結果、発明者らは、太陽光パネルにおいて破損が生じていても、その破損が太陽光パネルの基板まで到達していなければ、すなわち外観上観察されるカバーガラスの破損のみであれば発電能力は失われないと考えた。しかしながら、破損が基板まで到達しているか否か、ひいては発電能力を保持しているか否かを判断するためには、上述したように発電電力や開放電圧を測定する必要がある。このような測定作業は現地で行うには煩雑な手間がかかり効率的であるとは言いがたい。
【0007】
具体的には、太陽光パネルの接続ケーブルを取り外して測定器に接続し、日中の発電している時間帯に出力を測定しなくてはいけない。すると、作業時間が限られること、太陽光パネルの下側に潜り込んで作業しなくてはならないこと、固いコネクタの着脱および防水処理を行わなければならないことに加えて、メガソーラーに代表される大規模設備では太陽光パネルの枚数が膨大であることなどから、測定作業は非常に困難なものとなる。また測定器は高価であるため、測定器を用いて太陽光設備を保守するに十分な台数を購入することは事業者に過大な負担である。
【0008】
本発明は、このような課題に鑑み、発電電力や開放電圧の測定作業を行うことなく、太陽光パネルの発電能力の有無を容易に推定することが可能な太陽光パネルの発電能力推定方法を提供することを目的としている。
【課題を解決するための手段】
【0009】
上記課題を解決するために、本発明にかかる太陽光パネルの発電能力推定方法の代表的な構成は、太陽光パネルに暗所にて紫外線を照射し、太陽光パネルの紫外線によって蛍光が一様でなく暗部が確認されるとき、パネルの通電方向と直交する幅方向において暗部がない部分の長さを発電有効長さとし、発電有効長さから太陽光パネルの発電能力を推定することを特徴とする。
【0010】
上記構成によれば、太陽光パネルに紫外線を照射した際に暗部が確認されるか否かによって、太陽光パネルの基板における破損の有無を判断することができる。詳細には、太陽光パネルは一般に、カバーガラス、ガラス基板、樹脂層、バックシートを重ね合わせて構成されている。太陽光パネルに紫外線を照射すると、基板に破損が生じていない箇所では蛍光が起こる。一方、基板に破損が生じている箇所では蛍光が起こらない。したがって、基板に破損が存在すると、破損した部分は黒い暗部として視認することができる。なお、基板の破損の種類としては、ヒビや割れ、打痕を例示することができる。
【0011】
そして、暗部が確認されたら、パネルの通電方向と直交する幅方向において暗部がない部分の長さ、すなわち発電有効長さを測定する。これにより、基板に破損が生じている太陽光パネルがどの程度の発電能力を保持しているかを推定することができる。したがって、上記構成によれば、発電電力や開放電圧の測定作業を行うことなく、太陽光パネルの発電能力の有無を容易に判断することが可能である。
【0012】
また用いる機器が広い分野で使用されている紫外線照射装置、いわゆるブラックライトのみであるため、装置コストも安価である。太陽光パネルを観察するだけで、すなわち目視で基板の破損を判断可能であることから、作業者の熟練度に拘らず破損判断を行うことができる。またコネクタを着脱する必要もなく、複数枚の太陽光パネルを一括して観察することもでき、大量の太陽光パネルの破損判断を実施するのに非常に適している。また遮光フードで覆うなどして太陽光パネルの周囲を遮光することにより、日中においても観察が可能である。
【0013】
上記太陽光パネルは、CIS系パネルまたは結晶系パネルであるとよい。上記説明した破損判断方法は、特にCIS系パネルや結晶系パネルの破損検出に好適に適用することができる。
【発明の効果】
【0014】
本発明によれば、発電電力や開放電圧の測定作業を行うことなく、太陽光パネルの発電能力の有無を容易に推定することが可能な太陽光パネルの発電能力推定方法を提供することができる。
【図面の簡単な説明】
【0015】
図1】本実施形態にかかる太陽光パネルの破損判断方法を説明する図である。
図2】発電有効長さについて説明する図である。
図3】太陽光パネルの発電能力の計算方法について説明する図である。
図4図2に例示した太陽光パネルにおける発電有効長さと発電能力との関係を説明する図である。
図5】実施態様を説明する図である。
【発明を実施するための形態】
【0016】
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
【0017】
図1は、本実施形態にかかる太陽光パネル100の発電能力推定方法を説明する図であり、太陽光パネル100の縦断面を模式的に図示している。なお、本実施形態では、太陽光パネル100としてCIS系の太陽光パネルを例示するが、これに限定するものではなく、本実施形態の破損判断方法は、結晶系の太陽光パネルの破損判断にも好適に適用することが可能である。
【0018】
図1に示すように、太陽光パネル100は、上層から順にカバーガラス110、CISガラス基板120およびバックシート130を含んで構成され、太陽光エネルギーを電気エネルギーに変換して発電を行う。カバーガラス110は、透明なガラス板から構成され、その下層に配置されるCISガラス基板120の上方を保護する。
【0019】
本実施形態の太陽光パネル100の基板であるCISガラス基板120は、ガラス基板124上に、銅、インジウムおよびセレンからなる化合物の層であるCIS層122が形成されていて、かかるCIS層122において太陽光エネルギーを変換して発電がおこなわれる。また本実施形態では、CISガラス基板120の上面および下面は、EVA樹脂からなる上側EVA樹脂層142および下側EVA樹脂層144によって被覆されていて、下側EVA樹脂層144の下層には、CISガラス基板120の下方を保護するバックシート130が配置されている。
【0020】
特に本実施形態では、カバーガラス110と、ガラス基板であるCISガラス基板120との間に配置される上側EVA樹脂層142に波長変換材(不図示)を塗布または含有させる。これにより、通常時すなわち発電時には、発電に寄与しない紫外線を、発電に利用可能な波長域の光に変換することができ、発電効率の向上を図ることが可能となる。なお、波長変換材は、上側EVA樹脂層142の上面や下面に塗布したり、上側EVA樹脂層142そのものに含有させたりすることによって上記の効果が得られる。
【0021】
本実施形態にかかる発電能力推定方法では、まず、暗所において、図1に示すように太陽光パネル100に紫外線を照射する。図1では、紫外線照射装置としてブラックライト150を例示しているが、これに限定するものではなく、所定の波長の紫外線を照射可能であれば、他の装置を用いることも可能である。
【0022】
ブラックライト150によって紫外線を照射すると、図1に示すように、CISガラス基板120に破損が生じていない箇所Aでは、蛍光が起こる。一方、CISガラス基板120に破損102aが生じている箇所Bでは、蛍光が起こらない。
【0023】
したがって、紫外線を照射した太陽光パネル100の蛍光を観察すると、CISガラス基板120に破損が生じていない太陽光パネル100では、その全面において一様に蛍光が確認される。一方、CISガラス基板120に破損102aが生じている太陽光パネル100では、破損が生じていない箇所Aでは蛍光が起こり、破損102aが生じている箇所Bでは蛍光が起こらない。このため、破損102aが生じている箇所Bは、暗部として確認される。これにより、暗部が確認されなければ太陽光パネルの120には破損が生じていないと判断することができ、暗部が確認されたら太陽光パネルの120に破損が生じていると判断することができる。
【0024】
上述したように、本実施形態では、太陽光パネル100の上側EVA樹脂層142に波長変換材を塗布または含有させている。これにより、ブラックライト150によって紫外線を照射すると、CISガラス基板120に破損が生じていない場合は波長変換材によって蛍光が観察される。これに対し、CISガラス基板120に破損が生じている場合、カバーガラス110に入っている亀裂から水が浸水することにより、波長変換材が加水分解を起こし、蛍光が生じなくなる。このため、蛍光が起こらなくなり、暗部が確認されるものと推察される。
【0025】
図2は、発電有効長さについて説明する図であって、太陽光パネルの受光面側を表している。図2(a)〜(c)に示すように、太陽光パネル100a〜100cの上下には、一対の電極104a・104bが取り付けられていて、この一対の電極間を結ぶ方向が通電方向となる。電極104a・104bの一方はプラス極であり、他方はマイナス極である。そして、電極104a・104bを結ぶ方向が通電方向である。なお、説明の都合上電極104a・104bは太陽光パネル100a〜100cの受光面側に見えるように図示しているが、電極104a・104bは太陽光パネル100a〜100cの裏面側に配置されていてもかまわない。そして本実施形態の太陽光パネルの発電能力推定方法の特徴として、上述したように太陽光パネルに紫外線を照射することにより暗部が確認されたら、太陽光パネルの通電方向と直交する幅方向において暗部がない部分の長さを測定する。この「太陽光パネルの通電方向と直交する幅方向において暗部がない部分の長さ」のことを、「発電有効長さ」と呼ぶこととする。
【0026】
図2(a)の太陽光パネル100aでは、暗部106から太陽光パネル100aの左縁までの長さが40cmであり、暗部106から太陽光パネル100aの右縁までの長さが65cmである。したがって、太陽光パネル100aの発電有効長さは105cmとなる。図2(b)の太陽光パネル100bでは、暗部106から太陽光パネル100aの左縁までの長さは110cmであり、この長さが発電有効長さである。図2(c)の太陽光パネル100cでは、2つの暗部106の間の長さ50cmが発電有効長さとなる。
【0027】
図3は、太陽光パネル100の発電能力の計算方法について説明する図である。図3に例示する太陽光パネル100では、通電方向の全体の長さ(長辺の長さ)をaとし、発電有効長さbがa/4である場合を例示している。図3に示すように、太陽光パネルの発電能力は、通電方向の全体の長さaに対する発電有効長さbの割合を定格値に乗算することにより算出することができる。図3に示す例では、発電能力Pmax=P(定格値)×b/a=(1/4)Pとなる。
【0028】
図4は、図2に例示した太陽光パネル100における発電有効長さと発電能力との関係を説明する図である。図4(a)は、定格値に対する各太陽光パネル100a〜100cの発電能力(出力割合)を示すグラフである。図4(b)は、各太陽光パネル100a〜100cの発電能力(出力割合)と発電有効長さとの関係を示すグラフである。なお、図4(a)中、Pmaxは最大出力、Iscは短絡電流、Vocは開放電力である。
【0029】
図4(a)に示すように、暗部106が存在する太陽光パネル110a〜110cは、最大出力(Pmax)、短絡電流(Isc)、開放電力(Voc)の値が定格値(すなわち破損が存在しない太陽光パネル)よりも低下している。そして、図4(b)に示すように、発電有効長さに対する発電能力をプロットすると、発電有効長さが長いほど、高い発電能力を有していることがわかる。発電有効長さと出力割合は、おおむね比例関係にあるとみられる。このことから、破損を有する太陽光パネルにおいて発電有効長さを測定することにより、発電有効長さから太陽光パネルの発電能力を推定可能であることが理解できる。
【0030】
上記説明したように、本実施形態にかかる太陽光パネル100の発電能力推定方法によれば、太陽光パネルに紫外線を照射した際に暗部106が確認されるか否かによって、太陽光パネルの基板における破損の有無を判断することができる。そして、基板に破損が生じている太陽光パネル100の発電有効長さを測定することにより、かかる太陽光パネル100の発電能力を推定することができる。これにより、破損が存在する太陽光パネル100の交換が必要であるか否かを容易に判断することが可能となる。
【0031】
また本実施形態の太陽光パネル100の破損判断方法では、用いる機器はブラックライト150(紫外線照射装置)のみである。このため、装置コストの削減を図ることができる。更に、作業が紫外線の照射のみであることから、従来の発電電力や開放電圧の測定作業で行われていたコネクタの着脱等の作業が不要であるため、点検時の作業効率を大幅に向上することができる。また紫外線の照射は暗所で行うため、屋外に設置される太陽光パネル100の点検は当然にして夜間に行うこととなる。このため、開放電圧の測定に比べると作業時間を長く取ることができ、大量の太陽光パネル100の点検を効率的に行うことが可能となる。
【0032】
図5は実施態様を説明する図であって、図5(a)は手持ちの紫外線照射装置を用いる例である。メガソーラーに代表される大規模設備では、太陽光パネル100の枚数が膨大になり、数千〜数万枚にものぼる。しかし、上述の通り、本発明によればブラックライト150(紫外線照射装置)によって順に照射するだけで容易に破損の有無を判断することができる。測定器を用いて電気的に検査するとなれば、太陽光パネル100の下に潜り込んで、1枚ずつ固いコネクタを着脱して検査しなくてはならない。そのような作業に比べて、圧倒的に作業が容易になることを理解していただけると思う。
【0033】
また図5(b)は、大型の紫外線照射装置を用いる例である。ブラックライト投光器152は、複数本のブラックライト150を装着可能である。また集光フード154を取り付けて、紫外線の拡散を防ぎ、放射エネルギーを高めている。また、支柱156を多段パイプにして、ブラックライト150の高さを調節可能としている。支柱156の下部は三脚として図示しているが、台車を取り付けて走行可能にしてもよい。このような大型の紫外線照射装置を用いることで、さらに多くの枚数の太陽光パネル100を一度に観察することが可能になり、作業効率を向上させることができる。
【0034】
なお、発電有効長さを現地で直接測定する場合には、例えば非導電性のメジャー等の測定器具を用いるとよい。また例えば太陽光パネル100に一定長さ間隔で印を付けておけば、測定器具を用いることなく発電有効長さを推定することが可能である。更に、太陽光発電所の大規模な太陽光パネル100の発電能力を推定する際には、現地で発電有効長さを直接測定する以外に、上空から写真撮影を行いその画像から発電有効長さを算出すると効率的である。
【0035】
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
【産業上の利用可能性】
【0036】
本発明は、太陽光パネルにおける発電能力を推定する太陽光パネルの発電能力推定方法として利用することができる。
【符号の説明】
【0037】
100…太陽光パネル、100a…太陽光パネル、100b…太陽光パネル、100c…太陽光パネル、102a…破損、104a…電極、104b…電極、106…暗部、110…カバーガラス、120…CISガラス基板、122…CIS層、124…ガラス基板、130…バックシート、142…上側EVA樹脂層、144…下側EVA樹脂層、150…ブラックライト、152…ブラックライト投光器、154…集光フード、156…支柱
図1
図2
図3
図4
図5