特許第6706620号(P6706620)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ユニヴェルシテ・ドゥ・ボルドーの特許一覧 ▶ インスティチュート ナショナル ド ラ サンテ エト ド ラ レチェルシー メディカレ (インサーム)の特許一覧

特許6706620レーザー印刷方法およびその方法を実施する装置
<>
  • 特許6706620-レーザー印刷方法およびその方法を実施する装置 図000002
  • 特許6706620-レーザー印刷方法およびその方法を実施する装置 図000003
  • 特許6706620-レーザー印刷方法およびその方法を実施する装置 図000004
  • 特許6706620-レーザー印刷方法およびその方法を実施する装置 図000005
  • 特許6706620-レーザー印刷方法およびその方法を実施する装置 図000006
  • 特許6706620-レーザー印刷方法およびその方法を実施する装置 図000007
  • 特許6706620-レーザー印刷方法およびその方法を実施する装置 図000008
  • 特許6706620-レーザー印刷方法およびその方法を実施する装置 図000009
  • 特許6706620-レーザー印刷方法およびその方法を実施する装置 図000010
  • 特許6706620-レーザー印刷方法およびその方法を実施する装置 図000011
  • 特許6706620-レーザー印刷方法およびその方法を実施する装置 図000012
  • 特許6706620-レーザー印刷方法およびその方法を実施する装置 図000013
  • 特許6706620-レーザー印刷方法およびその方法を実施する装置 図000014
  • 特許6706620-レーザー印刷方法およびその方法を実施する装置 図000015
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6706620
(24)【登録日】2020年5月20日
(45)【発行日】2020年6月10日
(54)【発明の名称】レーザー印刷方法およびその方法を実施する装置
(51)【国際特許分類】
   B41M 5/46 20060101AFI20200601BHJP
   B41J 2/04 20060101ALI20200601BHJP
   B23K 26/00 20140101ALN20200601BHJP
【FI】
   B41M5/46 510
   B41J2/04
   !B23K26/00 B
【請求項の数】14
【全頁数】21
(21)【出願番号】特願2017-531541(P2017-531541)
(86)(22)【出願日】2015年12月17日
(65)【公表番号】特表2018-507793(P2018-507793A)
(43)【公表日】2018年3月22日
(86)【国際出願番号】FR2015053569
(87)【国際公開番号】WO2016097619
(87)【国際公開日】20160623
【審査請求日】2018年11月16日
(31)【優先権主張番号】1462568
(32)【優先日】2014年12月17日
(33)【優先権主張国】FR
(73)【特許権者】
【識別番号】514058706
【氏名又は名称】ユニヴェルシテ・ドゥ・ボルドー
(73)【特許権者】
【識別番号】516267038
【氏名又は名称】インスティチュート ナショナル ド ラ サンテ エト ド ラ レチェルシー メディカレ (インサーム)
(74)【代理人】
【識別番号】100092897
【弁理士】
【氏名又は名称】大西 正悟
(72)【発明者】
【氏名】ギュイモ,ファビアン
【審査官】 川村 大輔
(56)【参考文献】
【文献】 特開平07−164656(JP,A)
【文献】 特開平08−169171(JP,A)
【文献】 特開昭61−118273(JP,A)
【文献】 米国特許出願公開第2008/0117255(US,A1)
【文献】 特表2013−521033(JP,A)
【文献】 特開平10−151860(JP,A)
【文献】 特開平03−281358(JP,A)
【文献】 特開2003−191656(JP,A)
【文献】 特開平02−266985(JP,A)
【文献】 特開昭62−191157(JP,A)
【文献】 国際公開第03/056320(WO,A1)
【文献】 特開2008−012869(JP,A)
【文献】 韓国公開特許第10−2011−0011395(KR,A)
【文献】 特表2009−502364(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B41M 5/26
B41M 5/46
B41J 2/04
B23K 26/00
(57)【特許請求の範囲】
【請求項1】
レーザービーム(66)、重力(G)の反対方向である上方に照射される前記レーザービーム(66)を下側から受けるように配置されたインクフィルム(74)および前記インクフィルム(74)の上方に配置された受容基板(58)を用い、前記インクフィルム(74)からのインクを用いて前記受容基板(58)の下面の堆積表面(56)に印刷する印刷方法であって、
前記印刷方法は、
前記インクフィルム(74)内に空洞を発生させるように前記レーザービーム(66)を下方から前記インクフィルム(74)に集束させるステップと、
前記レーザービーム(66)の集束照射により、前記インクフィルム(74)の上面の自由表面(78)から上方に移動するインクの液滴(82)を少なくとも一つ形成するステップと、
前記インクフィルム(74)から上方に所定の距離(L)をおいて配置された前記受容基板(58)の前記堆積表面(56)に前記液滴(82)を堆積させるステップと、を有し、
前記インクフィルム(74)と前記堆積表面(56)とを隔てる前記所定の距離(L)および前記レーザービーム(66)のエネルギーは、前記液滴(82)が前記堆積表面(56)に接触するときの前記液滴の運動エネルギーがゼロになるように調整されることを特徴とする印刷方法。
【請求項2】
前記インクフィルム(74)は、500μm未満の厚さを有することを特徴とする請求項1に記載の印刷方法。
【請求項3】
前記インクフィルムは、前記インクフィルム(74)の厚さに対する前記インクフィルム(74)の自由表面の寸法の比が10以上であることを特徴とする請求項1または2に記載の印刷方法。
【請求項4】
前記インクフィルム(74)と前記堆積表面(56)とを隔てる前記所定の距離(L)は1〜2mmであり、前記レーザービーム(66)のエネルギーは、前記液滴(82)が前記堆積表面(56)に接触するときの前記液滴の運動エネルギーがゼロになるように調整されることを特徴とする請求項1〜3のいずれかに記載の印刷方法。
【請求項5】
前記印刷方法は、前記レーザービームのエネルギーを前記液滴(82)が前記堆積表面(56)に接触するときの前記液滴の運動エネルギーがゼロになるように調整するための事前の較正段階を有し、
前記較正段階は、前記レーザービーム(66)の衝撃後から設定時間の経過時点(T1)において前記インクフィルム(74)の自由表面(78)に形成される変形部(86)の夾角(θ)を測定するステップと、前記夾角(θ)の測定値に基づいて前記レーザービーム(66)のエネルギーを調整するステップとを有することを特徴とする請求項1〜4のいずれかに記載の印刷方法。
但し、前記経過時点(T1)における前記変形部は、垂直に延びる前記変形部の中央軸を含む平面内で、前記中央軸上に位置する頂点を中心として左右対称に広がる側面を有し、前記左右に広がる側面の接線がなす角が前記夾角(θ)である。
【請求項6】
前記レーザービームのエネルギーは、前記夾角(θ)が105度以下であるように調整されることを特徴とする請求項5に記載の印刷方法。
【請求項7】
形成された前記液滴が前記堆積表面(56)に到達するときにゼロに等しい運動エネルギーを得るために、前記レーザービームのエネルギーは、前記夾角(θ)が第2のしきい値以上であるように調整されることを特徴とする請求項5または6に記載の印刷方法。
【請求項8】
前記第2のしきい値は、前記堆積表面(56)と前記インクフィルム(74)の自由表面(78)との間の前記所定の距離(L)に依存することを特徴とする請求項7に記載の印刷方法。
【請求項9】
前記第2のしきい値は、前記所定の距離(L)が1mmのときにこれに対して80度に等しいことを特徴とする請求項8に記載の印刷方法。
【請求項10】
前記夾角(θ)の測定を行う前記経過時点(T1)は、前記レーザービーム(66)の衝撃から4〜5μsであることを特徴とする請求項5〜9のいずれかに記載の印刷方法。
【請求項11】
前記インクフィルムは、20μmを超える厚さを有することを特徴とする請求項1〜10のいずれかに記載の印刷方法。
【請求項12】
前記インクフィルムが高濃度の印刷要素(62)を含むバイオインクにより構成され、前記インクフィルムは40〜60μmの範囲の厚さを有することを特徴とする請求項1〜11のいずれかに記載の印刷方法。
【請求項13】
前記インクフィルムが球形状の印刷要素(62)を含むバイオインクにより構成され、前記インクフィルム(74)は1.5D〜2Dの範囲の厚さを有し、ここでDは、球形状を有する前記印刷要素(62)の直径であることを特徴とすることを特徴とする請求項1〜11のいずれかに記載の印刷方法。
【請求項14】
請求項1〜13のいずれかに記載の印刷方法を実施する印刷装置であって、
前記印刷装置は、
前記レーザービーム(66)を照射するように構成された少なくとも1つのパルスレーザー源(64)と、
前記レーザービーム(66)を集束させ方向付けるための光学系(68)と、
少なくとも1つのインクフィルム(74)が自由表面(78)を有して取り付けられている少なくとも1つのドナー基板(70)と、
前記インクフィルム(74)から前記所定の距離(L)で配置された前記堆積表面(56)を備える少なくとも1つの前記受容基板(58)と、を備え、
前記レーザービーム(66)は重力(G)の反対方向に方向付けられており、前記インクフィルムの前記自由表面(78)は、前記インクフィルムの上方に配置された前記堆積表面(56)に向かって上方に方向付けられていることを特徴とする印刷装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明はレーザー印刷方法およびその方法を実施する装置に関する。
【背景技術】
【0002】
複雑なデザインを再現するために多くの分野でインク印刷が用いられている。従って、要素の印刷は、特に、生物学、電子工学、材料または時計製造などのような様々な分野で実施することができる。これらの分野で遭遇する問題は類似しており、特に、極めて小規模な要素の組み合わせを作るためのニーズに関連している。特定の位置に材料を堆積することでなされるパターンの再現は、マスクを使用することによって、または選択的なアブレーションのステップに頼ることによって、化学的または物理的に行うことができる。
【0003】
これらの方法の欠点(汚濁のリスク、複雑な実施方法、いくつかの要素の困難な堆積の組み合わせ)を克服するために、インク印刷方法が開発されている。これらは、関連するコンピュータ支援設計ツールを用いて、要素パターンを極めて自由に生成するように構成されているという利点を有する。
【0004】
生物学の分野においては、製品にもよるが、このような印刷方法は生体成分のバイオプリンティング、生体成分のマイクロプリンティング、または単にバイオプリンティングと呼ばれる。
【0005】
これらの方法によれば、生体組織は、バイオインクの液滴の印刷によって得られる。ある大きさにするために液滴は相互に積み重ねられた層内に配置される。
【0006】
第1の例によればインクはタンクに蓄えられ、基板上に転写される液滴を形成するためにノズルまたは毛細管を通過する。この第1の例として、いわゆるノズル印刷があり、これはバイオ押出、インクジェット印刷、またはマイクロバルブ印刷を含む。
【0007】
バイオ押出は、1ミリリットル当たりの細胞数が1億個オーダーのかなり高い細胞密度および1ミリメートルの解像度を得ることを可能にする。
【0008】
マイクロバルブ印刷は、1ミリリットル当たりの細胞数が数百万個オーダーと細胞密度は低いが、100μmオーダーの優れた解像度を得ることができる。インクジェット印刷は、1ミリリットル当たりの細胞数がマイクロバルブ印刷と同じ細胞密度、または1千万個未満の細胞密度で、10μmオーダーのより良い解像度を得ることを可能にする。
【0009】
バイオ押出の場合には、細胞は第1のノズルから堆積され、ヒドロゲルは第2のノズルから同時に堆積される。バイオ押出の別の例では、細胞とヒドロゲルが押出に先立ってタンクの中で混合されてもよい。他の2つの場合(マイクロバルブ印刷、インクジェット印刷)では、インクは細胞を含む水性媒体である。バイオ押出の別の例によれば、バイオ押出は、繊維状に連続的に、または液滴状に不連続的に、インクを堆積することができる。
【0010】
このようなノズル印刷モードによれば、印刷の解像度は、特にノズルの選択に関係するので、所定のレオロジー特性を有するバイオインクのみを高解像度用に使用することができる。このような印刷技法はインクのノズル通過時に細胞に損傷を与える恐れがある大きなせん断応力を誘発するので、高い細胞密度を有するバイオインクを高解像度で印刷することが困難である。その上、このタイプのインクでは、主にタンク内の細胞の沈殿のために、細胞によってノズルが塞がれる重大なリスクがある。
【0011】
広範囲なバイオインクを用いて高解像度を実現するために、生体成分をレーザーによって印刷する方法が開発されている。レーザーバイオプリンティングと呼ばれるこの印刷方法は、また「レーザーアシスト・バイオプリンティング(Laser-Assisted Bio-printing)」(LAB)として知られている。本発明は、特にこのタイプの印刷方法に関する。比較すれば、レーザーバイオプリンティングは、1ミリリットル当たりの細胞数が1億個オーダーの高い細胞密度で10μmオーダーの解像度を有するインクの印刷を可能にする。
【0012】
同様に、レーザー印刷は解像度を改善し、使用可能なインクの範囲を広げる目的で他の分野でも開発されている。
【0013】
ノズル印刷技術と比較して、レーザー印刷は、使用に際してより大きなフレキシビリティ(柔らかい、平坦でない表面などに印刷する能力)を提供し、せん断応力を低減し、沈殿のリスクも制限する。別の利点としては、数マイクロリットルオーダーの少量のインクから印刷することも可能であり、これは高価な材料の堆積用として興味深い。結局、国際公開公報第2011/107599号に記載されているように、滴下領域を選択する観点で印刷システムを使用することが可能である。
【0014】
図1に示すように、いわゆる「レーザー誘起前方転写(Laser-lnduced Forward Transfer)」(LIFT)技術に基づいた生体成分のレーザー印刷装置は、レーザービーム12を照射するパルスレーザー源10、レーザービーム12を集束させ方向付けるためのシステム14、少なくとも1つのバイオインク18を含むドナー基板16、およびドナー基板16から放出された液滴22を受け取るように配置された受容基板20を備える。
【0015】
この印刷技術によれば、レーザービームがパルス化されて、各パルス上に液滴が生成される。
【0016】
バイオインク18は、例えば、受容基板20上に堆積される要素、例えば細胞が存在する例えば水性媒体のようなマトリックスを含む。ドナー基板16は、レーザービーム12の波長に対して透明なブレード24を含み、ブレードは、バイオインク18がその上にフィルムとして付着された吸収層26で被覆されている。
【0017】
吸収層26は、光エネルギーを運動エネルギーに変換することを可能にする。従って、レーザービーム12は吸収層26で時間的に正確に熱を発生する。それ(発熱)は気泡28を気化により生成させ、気泡は膨張によってバイオインクの液滴30の放出を引き起こす。
【0018】
公知の配置によれば、レーザービーム12は、ほぼ垂直方向にかつ上向きに向けられて、または、重力Gと同じ方向に向けられて、ドナー基板16に衝撃を与える。従って、バイオインク18は、下方、すなわち、ドナー基板16の下に配置された受容基板20の方向に向くようにブレード24の下に配置される。
【0019】
この配置であると仮定すれば、バイオインク18はそのブレードに保持されるように所定のしきい値よりも薄い厚さEを有するフィルムの形態である。このしきい値は、特にバイオインクの表面張力、粘度および密度によって変わる。
【0020】
インクフィルムからの液滴30の形成は、特に、レーザービーム12(波長、エネルギー、パルス継続時間...)、バイオインク18の性質(表面張力、粘度...)および外部条件(温度、湿度...)に関連する多くのパラメータに依存する。
【0021】
液滴30の形成は、また、バイオインクフィルムの厚さEに依存する。バイオインクフィルムの厚さEが下限および上限によって規定された厚さ範囲に含まれない場合には、液滴は形成されない。厚さEが上限を超える値であれば、気泡28の膨張がフィルムの自由表面に到達するのには弱すぎるので、液滴は形成されない。厚さEが下限を下回る値であれば、気泡28は自由表面で破裂して、受容基板に向かって複数のマイクロ液滴の制御不能な放出を引き起こす。
【0022】
従って、フィルム厚さEは、レーザービーム12によって影響を受けるドナー基板16の領域のどこでも液滴形成の再現性を実現するために、ドナー基板16の全表面に亘って実質的に一定でなければならない。ところが、図1に示すようにこの厚さEは一定ではない。
【0023】
この再現性の問題は、バイオインクの場合に限定されない。インクフィルムのレーザー印刷の際には使用分野が何であれ存在する。
【0024】
この問題を改善するために、2011年10月1日にwww.elsevier.comのサイトで公開された「フィルムフリーレーザー前方技術による微小液滴堆積(Microdroplet deposition through a film-free laser forward technique)」と題する刊行物には、図2に示す装置が記載されている。この装置も従来と同様に、レーザービーム34を照射するレーザー源32、レーザービーム34を集束させ方向付けるためのシステム36、少なくとも1つのバイオインク40を含むドナー基板38、およびドナー基板38から放出された液滴44を受け取るように配置された受容基板42を備える。
【0025】
この刊行物によれば、ドナー基板38は、タンクに収容されているバイオインク40の自由表面48が受容基板42に面するように、上壁を持たないタンク46を含む。整った、実質的に平坦な自由表面48を得るために、バイオインクは、薄膜状のものではなく、3mm程度の深さを有する体積を有するものである。従って、タンクの底面はバイオインクの自由表面48の形状に影響を及ぼさない。さらに、タンクの側壁は、自由表面48の周辺で表面張力によって限定的な影響を与えるだけである。
【0026】
バイオインクの体積に深さがあれば、自由表面48はタンク内で留まって必然的に上方を向き、受容基板42はバイオインク40の上方に位置する。
【0027】
この刊行物によれば、液滴の放出を得るためにレーザービーム34を自由表面48の真下で40〜80μm程度の深さに集束させる。従って、自由表面48から放出された液滴は、重力Gの方向と反対の運動方向で受容基板42に向かって放出される。
【0028】
この刊行物によって提案された解決策は、インク用の平坦な自由表面を得ることを可能にするが、バイオインクのような懸濁液の形態のインクには必ずしも適合してはいない。実際、上記に示唆したように、このようなバイオインクは、例えばマトリックスに埋め込まれた細胞のような印刷要素を含んでいるが、これらの要素はタンクの底面に沈下する傾向があるからである。このため、印刷要素の濃度は自由表面付近では低いので、印刷された液滴は事実上、細胞内の濃度が低く、通常、印刷された生体組織には有害である。その上、この方法によれば、細胞数や堆積される細胞の濃度は、ほとんど制御することができない。
【0029】
このような沈降の問題は、バイオインクに限られない。
【0030】
従って、このような沈降の問題は、このようなインクの利用分野が何であれ、液状マトリックス中の粒子またはナノ粒子の懸濁液などの、懸濁液としてのインクのレーザー印刷の際に見出される。
【0031】
この刊行物による方法の別の欠点としては、インクはレーザービームを吸収可能でなければならないので、この技術を用いて印刷することができるインクの範囲が制限される可能性がある。
【発明の概要】
【発明が解決しようとする課題】
【0032】
本発明は、従って、先行技術によって提供される印刷方法の欠点を改善すること、すなわち、広範囲に亘る要素の高精度な印刷を可能にすること目的とする。特に、本方法は、具体的には複雑な生体組織を得るために、広範囲に亘る生体成分を印刷することを可能にする。
【課題を解決するための手段】
【0033】
この目的のために、本発明は、少なくとも1つのインクを用いて印刷する印刷方法に関しており、前記印刷方法は、インクフィルム内に空洞を発生させるようにレーザービームを集束させるステップと、インクフィルムの自由表面から少なくとも1つの液滴を形成するステップと、インクフィルムから所定の距離で配置された受容基板の堆積表面に前記液滴を堆積させるステップと、を有し、インクフィルムの自由表面がインクフィルムの上方に配置された堆積表面に向かって上方に方向付けられている状態で、レーザービームが重力の反対方向に方向付けられていることを特徴とする。
【0034】
この構成は、特に沈降現象の発生を制限しながら、インクフィルム用に実質的に一定の厚さEを得ることを可能にする。さらに、広範囲のインクを使用することを可能にする。
【0035】
本発明による方法を用いて印刷されるインクは、任意の液状インクでよく、さらに溶液または懸濁液でもよい。
【0036】
使用可能なインクとしては、バイオインク、エレクトロニクスまたは時計製造に用いられるインクが挙げられる。
【0037】
ある用途によれば、インクはバイオインクである。
【0038】
別の特徴によれば、フィルムは、500μm未満の厚さを有し、および/または、フィルムの厚さに対するフィルムの自由表面の寸法の比が10以上である。
【0039】
インクフィルムと堆積表面とを隔てる距離、および/またはレーザービームのエネルギーは、液滴が堆積表面に接触するときの液滴の運動エネルギーがほぼゼロに等しくなるように調整されることが好ましい。このような特徴は、液滴に含まれる(細胞または他の要素である)要素を損傷するリスクを制限する。
【0040】
一実施形態によれば、インクフィルムと堆積表面とを隔てる距離は1〜2mmであり、レーザービームのエネルギーは、液滴が堆積表面に接触するときの液滴の運動エネルギーがほぼゼロに等しくなるように調整される。
【0041】
別の特徴によれば、印刷方法はレーザービームのエネルギーの事前の較正段階を有する。この較正段階は、レーザービームの衝撃後の設定時点でインクフィルムの自由表面の変形部の夾角を測定するステップと、夾角の測定値に応じてレーザービームのエネルギーを調整するステップとを有する。
【0042】
レーザービームのエネルギーは、前述の夾角が105度以下であるように調整される。この場合には、レーザービームのエネルギーは、液滴の形成を引き起こすのに十分である。
【0043】
形成された液滴が堆積表面に到達するときにほぼゼロに等しい運動エネルギーを得るために、レーザービームのエネルギーは、好ましくは前述の夾角が第2のしきい値以上であるように調整される。
【0044】
好ましくはバイオインクであり、40μm程度および50μm程度の厚さを有するフィルムであるインクに対しては、夾角を測定する時点はレーザービームの衝撃から好ましくは4〜5μs程度である。
【0045】
好ましくは、インクフィルムは20μmを超える厚さを有する。
【0046】
印刷要素内に高濃度の懸濁を有するインク用には、インクフィルムは好ましくは40〜60μmの範囲の厚さを有する。
【0047】
好ましくは、印刷要素の堆積の精度を向上するために、インクフィルム74は、1.5D〜2Dの間の厚さEを有する。ここで、Dは、ほぼ球形状を有する印刷要素の直径であり、少なくとも1つの印刷要素が内接している球の直径である。
【0048】
本発明は、また、本発明の印刷方法を実施する印刷装置に関する。
印刷装置は、
−レーザービームを照射するように構成された少なくとも1つのパルスレーザー源と、
−前記レーザービームを集束させ方向付けるための光学系と、
−少なくとも1つのインクフィルムが自由表面を有して取り付けられている少なくとも1つのドナー基板と、
−堆積表面を備える少なくとも1つの受容基板と、を備える。
【0049】
印刷装置は、レーザービームが重力の反対方向に方向付けられており、インクフィルムの自由表面がインクフィルムの上方に配置された堆積表面に向かって上方に方向付けられていることを特徴とする。
【0050】
他の特徴および利点は、添付図面を参照して述べる本発明の以下の説明から明らかになる。本発明はこれらの説明に限定されるものではない。
【図面の簡単な説明】
【0051】
図1】先行技術の一例を示すレーザー印刷装置の概略図である。
図2】先行技術の別の例を示すレーザー印刷装置の概略図である。
図3】本発明のレーザー印刷装置の概略図である。
図4】(A)〜(D)は、液滴が形成されるか否かを異なる状態に対応して説明する側面図である。
図5】(A)〜(C)は、異なる時点における液滴の形成を示す説明図である。(D)は、異なる時点における液滴の形成を示し、特に、液滴が受容基板に到達する時点における説明図である。
図6】印刷要素の大きさとバイオインクフィルムの厚さとの関係を説明するドナー基板の断面図である。
図7】(A)(B)は、レーザービームのエネルギーが異なる場合における同一時点での、液滴の形成に先立ってのバイオインクの自由表面の突起部の形成を示す側面図である。
図8】少なくとも1つのレーザー型プリントヘッドと、少なくとも1つのインクジェット型プリントヘッドとを備える、本発明の一実施形態による印刷装置の概略図である。
図9】レーザー型プリントヘッドと、複数個のインクジェット型プリントヘッドとを備える、本発明の一実施形態による印刷装置の斜視図である。
図10】インクジェット型プリントヘッドで印刷する場合の図9の印刷装置の部分斜視図である。
図11】レーザー型プリントヘッドで印刷する場合の図9の印刷装置の部分断面図である。
図12】複製される生体組織の一部分の3次元表現の斜視図である。
図13図12の表現のスライスの斜視図である。
図14】バイオインクの液滴の位置を示す図13のスライスの上面図である。
【発明を実施するための形態】
【0052】
図3は、少なくとも1つの生体組織を生成するための印刷装置50を示す。ここで生体組織は、細胞外マトリックスや種々のモルフォゲンのような種々の成分を所定の配置に従って層状に配置したものである。従って、印刷装置50は、少なくとも1つのバイオインク54の液滴52を層ごとに堆積表面56に堆積することを可能にする。ここで堆積表面56とは、前記受容基板58上に堆積される第1層、または続いて堆積された最後の層、の表面に対応する。
【0053】
説明を簡単にするために、堆積表面56は図3に示す受容基板58の表面に対応することとする。
【0054】
図6に示す実施形態によれば、バイオインク54は例えば水性媒体のようなマトリックス60を含み、マトリックスの中に堆積表面56上に印刷される細胞や細胞凝集体のような要素62が存在することができる。
【0055】
場合によっては、バイオインク54は一種類のみの印刷要素62、または数種類の印刷要素62をマトリックス60内に含んでもよい。その代りに、バイオインク54は単一の成分のみを含んでもよい。
【0056】
本特許出願に関してバイオインクとは、生物学的材料または生体材料を意味する。例えばバイオインクは、(例えばコラーゲンのような)細胞外マトリックス、細胞外マトリックスおよび細胞や細胞凝集体のような要素、細胞や細胞凝集体のような要素を含む水性媒体、のみを含む。
【0057】
バイオインク54は、インクごとに異なるタイプおよび異なるレオロジー特性を有することができるので、これ以上の説明はしない。
【0058】
この印刷装置は、特にその波長、周波数、エネルギー、直径、パルス持続時間によって特徴付けられるレーザービーム66を照射するように構成されたレーザー源64を備える。好ましくはレーザー源64は、レーザービームの少なくとも一つの特性、特にそのエネルギーを調整するように構成することができる。
【0059】
相互に分離された液滴を形成するために、レーザー源64はパルス源であり、毎秒1万個の液滴を放出できる規模である。
【0060】
例えば、レーザー源64は波長1,064nmのレーザー源である。
【0061】
レーザー源に加えて、印刷装置50は、堆積表面56に垂直なZ軸に沿って焦点の調整が可能な光学系68を含む。光学系68は、好ましくは、衝撃領域上にレーザービーム66を集束可能なレンズを含む。光学系68は、好ましくは、衝撃領域の位置を変更するミラーを含む。光学系68はこのようにしてレーザービームによって衝撃される領域、すなわち、図3の参照符号Piで示す衝撃面を変更することができる。
【0062】
レーザー源64および光学系68に関しては当業者には既知であり、先行技術と同一でもよいのでこれ以上の説明はしない。
【0063】
印刷装置50は、また少なくとも1つのドナー基板70を備える。一実施形態によれば、ドナー基板は少なくとも1つのバイオインクのフィルム74が付着されたレーザービーム66の波長用の吸収層72を含む。
【0064】
以下の説明部分では、フィルムとは500μm未満の厚さ(衝撃面Piに垂直な方向における寸法)を有して、ある体積を占めるバイオインクを意味する。
【0065】
タンクとは異なり、バイオインクがフィルムとして包装されているという事実によって沈降現象を回避することが可能になる。
【0066】
吸収層72は、光エネルギーを吸収層72で時間的に正確に熱に変換するようにレーザービーム66の波長に適合した材料で作られている。
【0067】
ドナー基板70は、好ましくは、光学系がレーザービームを吸収層72に集束するように配置される。
【0068】
一実施形態によれば、吸収層72はレーザービーム66の波長に応じて、金、チタン、または別の成分から作られる。
【0069】
別の実施形態によれば、ドナー基板70は吸収層72を含まない。この場合、レーザービーム66のエネルギーはインクによって吸収される。
【0070】
ドナー基板70は、好ましくはレーザービーム66の波長に対して透明な材料で作られたブレード76を備える。ブレードは、その一方の面に吸収層72に対応するコーティングを含む。ブレード76の存在は、ドナー基板70に剛性を与えて、ドナー基板がインクおよび/または吸収層72を衝撃面Pi内で実質的に平坦に扱うことおよび保持することを可能にする。
【0071】
バイオインクフィルム74は、フィルム74の厚さに対応する距離Eだけ吸収層72から間隔を空けられた自由表面78を含んでおり、自由表面は堆積表面56から距離Lだけ間隔を空けられている。自由表面78および堆積表面56は互いに向かい合っている。
【0072】
図3に示すように、レーザービーム66は吸収層とバイオインクフィルム74との界面で空洞80を発生するように構成されており、空洞が液滴82を生成させ、液滴は自由表面78から離れて堆積表面56の方に移動する。
【0073】
以下の説明部分においては、垂直方向とは重力Gに平行な方向であり、上下方向は重力Gの方向に対応する。
【0074】
レーザービーム66の方向および液滴の運動方向は、垂直方向に対して平行である。
【0075】
上向き印刷
【0076】
本発明の1つの特徴によれば、レーザービーム66および従って液滴82の動きは重力Gに対して反対方向に向いている。バイオインクフィルム74の自由表面78は従って上向きである。液滴がバイオインクフィルム74から堆積表面56へ移動するとき、液滴82は下から上方向に動く。
【0077】
この構成には以下の利点がある。
−バイオインクがフィルムの形態であるので、沈降現象の発生を制限する。
−フィルム74の自由表面78の形状に対する重力Gの影響は自由表面78が上方を向くことにより制限されるため、バイオインクフィルム74が実質的に一定の厚さEを得ることを可能にする。
−バイオインクフィルム74とは異なる吸収層72が光エネルギーを熱に時間的に正確に変換するように用いられる場合には、広範囲のバイオインクを使用することができる。
【0078】
受容基板上に液滴を堆積させる時点でほぼゼロの運動エネルギー
【0079】
バイオインクフィルムからの液滴82の形成は多くのパラメータに依存するが、主にバイオインクの特性、レーザービームの特性および実施条件に依存する。
【0080】
図4(A)から4(D)は、レーザービーム66のエネルギーの異なる値に対して、液滴の形成が結果的に生じるか否かに関するバイオインクフィルムの自由表面の変形部の変化状況を時間の経過と共に示す説明図である。ここで、各図のレーザービームのエネルギーは、図4(A)が21μJ、図4(B)は35μJ、図4(C)は40μJ、図4(D)は43μJである。
【0081】
同一のバイオインクを用いた同一の実施条件下で、レーザービームのエネルギーに応じていくつかの状態が存在することに留意されたい。
【0082】
図4(A)に示すように、レーザービームのエネルギーが下限しきい値未満の場合には、液滴はバイオインクフィルム74から脱離しない。インクフィルム74の自由表面78で生じる変形84の最大高さがインクフィルム74と堆積表面56との間の距離L未満であるので要素は印刷されない。選択された実例によれば、下限しきい値は21μJ〜35μJの範囲である。また、図4(D)に示すようにレーザービームのエネルギーが上限しきい値を上回ると、インクフィルムの内部で生成された気泡80は自由表面で破壊し、従って微小な液滴の自由な放射を引き起こす。選択された実例によれば、上限しきい値は40μJ〜43μJの範囲である。
【0083】
図4(B)および図4(C)に示すように、下限しきい値と上限しきい値との間でジェットの形成を可能にする状態がある。フィルム74と堆積表面56とを隔てる距離Lが十分であれば、この状態は液滴の形成を可能にする。
【0084】
好ましくは距離Lは、フィルムから堆積表面まで延びる連続的なジェットではなく、液滴の形成が可能になる1〜2mm程度である。この構成は、バイオインクによって得られる生体組織の汚濁のリスクを制限する。
【0085】
本発明の別の特徴によれば、同一のバイオインクおよび同一の実施形態の条件下で、インクフィルム74と堆積表面56とを隔てる距離L、および/またはレーザービーム66のエネルギーは、図5(D)に示すように液滴82が堆積表面56に接触するときの液滴の運動エネルギーがほぼゼロに等しくなるように調整される。この構成は、印刷要素、すなわち細胞を損傷するリスクを抑える。
【0086】
運動エネルギーがほぼゼロに等しく、とは、運動エネルギーがゼロ、または液滴の堆積表面56への沈降を可能にするために運動エネルギーがわずかに正であることを意味する。
【0087】
この状況は液滴82が重力Gに対して反対方向に移動するために可能になる。
【0088】
バイオインクフィルム74と堆積表面56とを隔てる距離Lは、固定されていることが好ましい。従って、レーザービーム66のエネルギーは、液滴82が堆積表面56に接触するときに液滴の運動エネルギーがほぼゼロに等しくなるように調整される。
【0089】
用途が何であれ、速度ゼロの堆積に導く印刷は、液滴が堆積表面に接触するときに液滴が飛散するリスクを低減する。
【0090】
較正技術
【0091】
上記に示唆したように、液滴の形成は、レーザービームのエネルギーのみには関係しない。それはまた、バイオインクの性質、特に粘度、表面張力、その実施条件に関係する。
【0092】
図5(A)から5(D)、7(A)、7(B)は、特に所定の距離Lで速度ゼロでの堆積に導く液滴の形成や堆積のために最適な速度を得るために、レーザービームのエネルギーを決定する較正方法を図示する。
【0093】
図5(A)から5(D)は、図5(A)に示すレーザービームの衝撃の時点と、図5(D)に示す堆積表面56に液滴82が堆積する時点との間で、液滴82を形成するステップのいくつかを示す。
【0094】
本発明の1つの特徴によれば、レーザーエネルギーを調節する較正方法は、レーザービーム66の衝撃後の設定時点T1でバイオインクのフィルム74の自由表面78の変形部86の夾角θを測定するステップと、夾角θの測定値に応じてレーザービーム66のエネルギーを調整するステップとを有する。
【0095】
図5(B)、7(A)および7(B)に示すように、変形部86は、垂直方向に対して平行な中央軸Amに対して対称形状を有する。この変形部86は、中央軸上に中心のある頂点Sを含む。頂点Sは、フィルム74の自由表面78の残りの部分から最も遠い変形領域86に対応する。
【0096】
中央軸Amを含む平面内で、頂点Sは、中央軸Amの一方側の第1側面88および中央軸Amの他方側の第2側面88’によって延長されており、双方の側面88、88’は中央軸Amに対して対称である。
【0097】
各面88、88’は、変曲点を含む。
【0098】
第1側面88はその変曲点で第1接線Tg1を含み、第2側面88’はその変曲点で第2接線Tg2を含み、2つの接線Tg1およびTg2は中央軸Am上の点で交差している。
【0099】
夾角θは、接線Tg1およびTg2によって形成された角に対応し、フィルム74に(または下方に)面している。
【0100】
液滴を形成させるためには、夾角θは第1のしきい値θ1以下でなければならない。
【0101】
図7(A)に示すように、夾角θが第1のしきい値θ1を超えていれば、レーザービームのエネルギーは液滴を生成するためには不十分である。他方、図7(B)に示すように、夾角θが第1のしきい値θ1を下回る場合には、レーザービームのエネルギーは液滴を生成するために十分である。
【0102】
形成された液滴がフィルム74の自由表面78からの距離Lで堆積表面56に到達するときにゼロに近い運動エネルギーを得るためには、夾角θは第2のしきい値θ2以上でなければならない。
【0103】
夾角θの値は、好ましくは、T1の時点で獲得された変形部86の像を用いて決定される。一実施形態においては、この像は視軸が垂直方向に対して直角を向くカメラを用いて撮られる。
【0104】
この時点T1は、フィルムの厚さに依存し、インクごとにはほとんど変わらない。この時点T1は、40〜50μm程度の厚さEを有するフィルムに対するレーザービームの衝撃から好ましくは4〜5μs程度である。この時点T1に対応する図が、図5(B)である。
【0105】
第1のしきい値θ1は、ほぼ105度に等しい。従って、時点T1で夾角θが105度以下であれば、レーザービームのエネルギーは液滴82を生成させるためには十分である。
【0106】
第2のしきい値θ2は、堆積表面56とインクフィルム74の自由表面78との間の距離Lに依存する。第2のしきい値θ2は距離Lに反比例する。
【0107】
第2のしきい値θ2は1mmオーダーの小さな距離Lに対して大きく、約80度に等しい。比較的小さい距離Lは堆積表面に液滴が接触する時点におけるジェット内のストレスを低減させるために好ましい。第2のしきい値θ2は10mmオーダーのかなりな距離Lに対して小さく、約50度に等しい。リモート印刷が望まれる場合、例えばドナー基板70が、堆積表面56が位置する底部のウェルの寸法より大きな寸法を有する場合には、かなり長い距離Lが好ましい。
【0108】
レーザービームのエネルギーを較正するこの技術は、特に堆積表面56上に堆積される時点でのインクに含まれる要素の損傷リスクを抑制するようにジェットの速度を低下させることによって、ジェットの速度の最適化を可能にする。
【0109】
インクフィルムの厚さ
【0110】
バイオインクの組成物は、好ましくは、細胞中に高濃度の生体組織を得るために高濃度の印刷要素62を含む。この場合には、図3に示すように、液滴82は印刷要素62内に高濃度の体積分率成分を含む。
【0111】
フィルム74の厚さEは、高濃度のバイオインク用には40〜60μm程度である。
【0112】
印刷要素の堆積の正確さを向上させるために、バイオインクのフィルム74は、好ましくは、1.5D〜2Dの範囲の厚さEを有する。ここでDは、ほぼ球状である印刷要素62の直径であり、印刷要素62が内接する球の直径である。
【0113】
一実施形態によれば、バイオインクのフィルム74は、直径が10〜15μm程度のより小さな印刷要素用に20μm以上の厚さEを有する。フィルムの厚さEは印刷要素62が細胞の凝集体の場合には、400μm程度であってもよい。
【0114】
印刷要素62が単位細胞である場合には、通常、フィルムの厚さEは100μm未満である。
【0115】
好ましくはフィルム74は、((自由表面78の寸法)/(フィルム74の厚さ))が10以上であるように特徴付けられており、より好ましくはこの比が20以上である。自由表面78の寸法は、衝撃面Piに平行な平面におけるフィルム74の自由表面78の最大寸法に対応する。
【0116】
レーザー型プリントヘッドおよびノズルプリントヘッドを組み合わせた印刷技術
【0117】
本発明の別な特徴によれば、印刷方法は、少なくとも第1のバイオインク用の少なくとも1つのレーザー型プリントヘッド、および少なくとも第2のバイオインク用の少なくとも1つのノズルプリントヘッドを用いる。
【0118】
この組み合わせによって、生産速度を向上させることができる。
【0119】
ノズルプリントヘッドとは、第2のバイオインクが通過するオリフェスを備えるプリントヘッドを意味する。従って、ノズルプリントヘッドは、インクジェット型のプリントヘッド、マイクロバルブプリントヘッド、および、バイオ押出型のプリントヘッドであってもよい。
【0120】
レーザー型の各プリントヘッドは、好ましくは図3に示したプリントヘッドと同じである。しかしながら、本発明はこのタイプのレーザープリントヘッドに限定されない。図1および図2に記載されているようなレーザー型プリントヘッド、または他のプリントヘッドを使用することも考えられる。
【0121】
ノズルプリントヘッドは先行技術のプリントヘッドと同じであることが好ましいので、これ以上は説明しない。
【0122】
細胞外物質によって分離された分離細胞を含む生体組織の場合には、細胞外物質は、好ましくは1または複数のノズルプリントヘッドによって堆積され、細胞は、好ましくは1または複数のレーザー型プリントヘッドによって堆積される。
【0123】
細胞外物質はせん断効果に対して敏感ではないので、ノズルプリントヘッドを用いて堆積させることができる。ノズルプリントヘッド用のバイオインクカートリッジは、レーザー型プリントヘッド用のドナー基板70によって支持されるインク(40μm程度)の体積よりもはるかに大きな体積を有するので、細胞外マトリックスの物質を高流量で堆積させることができる。ノズルプリントヘッドは高流量でインクを堆積することができるが、レーザー型プリントヘッド用の各ドナー基板は非常に少量のインクしか支持しないので、これらを頻繁に交換する必要があり、ノズルプリントヘッドと比較して除去時間が増加する傾向がある。
【0124】
別の特徴によれば、1または複数のレーザー型プリントヘッド、および1または複数のノズルプリントヘッドは、同一の装置に一体化されて同一の座標系で動く。この構成は、種々のプリントヘッドの相対的な位置決めを簡単にし、除去の精度を向上させ、印刷要素の完全性を保障することができる。
【0125】
ドナー基板保管チャンバーを備える印刷装置
【0126】
本発明の一実施形態による印刷装置を図8から図11に示す。
【0127】
印刷装置は、レーザー型のプリントヘッド102およびインクジェット型の数個のプリントヘッド104、104’、104”を支持するシャーシ100を含む。シャーシ100は、座標系X、Y、Zを含み、Z軸は垂直方向に方向付けられており、X、Y平面は水平面に対応する。
【0128】
プリントヘッド102、104、104’、104”は、シャーシ100に対して固定されており、液滴が垂直上方に放出されるように配置されている。
【0129】
プリントヘッド102、104、104’、104”は、Y軸に平行な第1の方向にずれている。一実施形態においては、インクジェット型のプリントヘッド104、104’、および104”は連結されている。レーザー型のプリントヘッド102は、インクジェット型のプリントヘッド104、104’、104”から間隔が空いている。
【0130】
印刷装置は、また、可動シャーシ106と、可動シャーシ106をシャーシ100に対してX、Y、Z軸に平行な3方向にガイドし、移動するシステムと、可動シャーシ106の移動を制御する制御システムと、を備える。ガイドおよび移動システムと制御システムは、シャーシ100に対する可動シャーシ106の動きに関してマイクロメートルの精度を達成するように選択されている。
【0131】
図10に示すように、可動シャーシ106は、少なくとも1つの受容基板58を解放可能に取り付けるためのフレーム108を含む。受容基板が可動シャーシに固定された場合には、受容基板58の動きはマイクロメートルの精度で制御される。
【0132】
レーザー型のプリントヘッド102は、シャーシ100に固定されて光学系の一部を収容する中空の円筒体110と、その上に配置されて水平面内に開口する上端部114を含む管状部112とを備える。これらの要素は、光学系によってガイドされるレーザービームが上端部114の部分をスキャンするように構成されている。
【0133】
各ドナー基板70は、ベース116上に配置されたディスクの形状を有する。
【0134】
図11に示す一実施形態によれば、各ベース116は、ドナー基板70の直径と同じ直径を有してドナー基板を保持するために十分な高さを有する凹部118をその上端部に備える管の形状を有する。この凹部118は、従って、ドナー基板を支持するベースに対してドナー基板70を位置決めすることができる。
【0135】
上端部114およびベース116が相互に協働する形状を有することにより、ベースが116が上端部114に対して、従ってシャーシのX、Y、Z系に対して、所定の位置に固定される。一実施形態によれば、ベース116は、上端部114を支えてベースがZ軸に沿って位置することを可能にする外側のフランジ120を含む。このフランジ120の下に、ベース116は管状部112の内側に備えられたテーパー部と協働する円錐台状の表面部122を含む。これらの形状は、管状部112に対してベース116を中心合わせすること、およびXY平面にベースを位置決めすることを可能にする。管状部112に対するベース116の位置決めを改善するために磁気材料を用いることが好ましい。
【0136】
印刷装置は、好ましくは、少なくとも1つのベース116を格納するように構成されたチャンバー124を備える。チャンバー124は、格納されるベースを入れたり出したりする少なくとも1つの開口125を備える。一実施形態によれば、チャンバー124は、平行6面体の形状を有する。
【0137】
チャンバー124は、好ましくは数個のベースを格納するのに適した寸法を有する。従って、印刷装置はレーザー型の同じプリントヘッド102を用いて数個のバイオインクを連続的に印刷することができる。
【0138】
ベース116は、例えば各ベース116に対して1つの収納部が対応する、複数個の収納部128を有するベースプレート126に格納される。ベースプレート126は細長い形状を有しており、その全長にU字状のノッチ128を含む。図9に示す第1の例によれば、ベースプレート126の長さはY軸に沿って方向付けられている。
【0139】
第2の好ましい実施形態によれば、ベースプレート126の長さはX軸に沿って方向付けられており、ノッチ128はプリントヘッドに向かって開いている。
【0140】
チャンバー124には、好ましくは、ベース116を取り出すことが可能な第1開口部125がプリントヘッドに面する第1面上にあり、ベース116を取り入れるための第2開口部125’が他の面上にある。
【0141】
一実施形態によれば、チャンバー124には、ベースプレート126を位置決めするためのガイドシステムがある。ガイドシステムは、例えば、ベースプレート126の下部に備わる溝の断面と係合するレールである。このレールは、第2の開口部125’で開口する。これは、好ましくはX軸に沿った方向を向く。
【0142】
チャンバー124は、特に温度および/または湿度に関してバイオインクに適合する雰囲気(特に温度および/または湿度)で保存するための封じ込め手段をチャンバーの内側に備える。このような封じ込め手段は、特に各開口部125、125’に備えられる。それらは、障壁またはエアカーテンの形状を取ってもよい。
【0143】
チャンバーに加えて、印刷装置にはチャンバー124とレーザー型のプリントヘッド102との間でベースを移動させる可動クランプ130がある。第1の例では、可動クランプ130は、可動シャーシ106に依存せずにX、Y、Z方向に移動するように構成された可動キャリッジ132に固定される。
【0144】
別の例によれば、可動クランプ130は可動シャーシ106に固定される。
【0145】
一実施形態によれば、印刷装置は(図示しない)撮影装置を含む。撮影装置はその視線が垂直方向に対して直角であり、ドナー基板の上側表面に面している。撮影装置は、レーザー型のプリントヘッド102のレーザービームのエネルギーを較正するために使用することができる。
【0146】
バイオプリンティングを用いて生体組織を作製する方法
【0147】
前記方法の第1ステップは、印刷すべき生体組織の3次元デジタル表現を生成することからなる。
【0148】
図12には、そのような表現の一部が、第3ボリューム領域146内に第2ボリューム領域144が位置し、第2ボリューム領域144内に第1ボリューム領域142が位置する立方体として図示されている(140)。この説明の目的は、表現140を大幅に単純化することである。
【0149】
各ボリューム領域142、144、146は異なる色彩の着色または異なるテクスチャー加工がなされており、色彩またはテクスチャーのそれぞれは、(限定はされないが)次に述べるものの中の、すなわち、材料、製造手段、軌跡...の、特性のセットに対応する。色彩またはテクスチャーのそれぞれは、好ましくはバイオインクに対応する。
【0150】
全てのボリューム領域142、144、および146は、閉じられている。
【0151】
表現は、好ましくは、複数の小さな基本ボリュームを有し、基本ボリュームは、それらが属しているボリューム領域に依存する異なる色彩またはテクスチャーを有する。一実施形態によれば、表現140はPLYタイプのコンピュータファイルから生じる。
【0152】
本方法の第2ステップは、表現140をZ軸に沿って連続した積層にスライスすることからなる。図13では、その表現140の層148が分離されている。
【0153】
表現140をスライスする場合、ボリューム領域の変化に従って、各層が新しい領域に対応するエッジを含む。
【0154】
図13に示すように、層148は、第1ボリューム領域142に対応する第1領域142’、第2ボリューム領域144に対応する第2領域144’、および第3ボリューム領域146に対応する第3領域146’を含む。各層に対して、領域142’、144’、146’はボリューム領域142、144、146の色彩またはテクスチャーに従って着色またはテクスチャー加工される。
【0155】
各層は、印刷された液滴の高さに従って決定される厚さεを有する。
【0156】
印刷される1つの材料のみを層が含む場合には、その層は液滴の高さに実質的に等しい厚さを有する。
【0157】
印刷されるいくつかの材料を層が含む場合には、第1の例においては、層は、各材料に関連する液滴の高さの最小公倍数に等しい厚さを有する。この例は、印刷されるオブジェクトに関してあらゆる場所で高さ方向のズレを最小限にして高速印刷を達成するという利点を有する。
【0158】
第2の例によれば、層は各材料に関連する液滴の高さの最大公約数に等しい厚さを有する。この例は、解像度および層の数を増やすという利点がある。
【0159】
例えば、第1の材料がレーザーバイオプリンティングを用いて印刷される場合、印刷された液滴は10μmオーダーの高さを有する。第2の材料がマイクロバルブバイオプリンティングを用いて印刷される場合、印刷された液滴は100μmオーダーの高さを有する。第1の例においては、層は100μmオーダーの厚さを有する。第2の例においては、層は10μmオーダーの厚さを有する。
【0160】
好ましくは各層が、例えばそれらが属する領域に応じて異なる色彩を有する複数の小さな基本的なポリゴン、例えば三角形ポリゴン、を含む。
【0161】
印刷されるオブジェクトは、従って、それぞれが関連する色彩やテクスチャーを有する1組のポリゴンをそれぞれ含む層のセットに対応する。
【0162】
本方法の第3ステップは、着色またはテクスチャー加工された領域142’、144’、146’、および各液滴の予想される体積、に従って各バイオインクの液滴の印刷位置を、各層に対して決定することからなる。この目的のために、各層の各領域142’、144’、146’は、図14に示すように、前記領域において印刷されるバイオインクの液滴の大きさに依存する大きさの楕円142”、144”、146”で満たされる。
【0163】
各領域において、楕円は同じ寸法を有する。全ての楕円が平行な焦点軸を有する。
【0164】
楕円形状は、(第1の方向は焦点軸に平行であり、第2の方向は第1の方向に垂直である)2つの方向における液滴の間の距離を調整することを可能にする。
【0165】
各楕円の中心は、液滴の中心の位置に対応する。
【0166】
楕円は、大きさの大きい順に領域ごとに配置されているので、領域146’に配置されるより大きな楕円が最初に配置され、領域142’に配置されるより小さい楕円が最後に配置される。
【0167】
好ましくは、領域変更で、位置決めは次の2つの基準に従って最適化される。
− −1つの楕円内に正しい色彩またはテクスチャーを有する基本ポリゴンの最大比、例えば75%程度。
− −1つの楕円内に間違った色彩またはテクスチャーを有する基本ポリゴンの最小比、例えば5%程度。
【0168】
重なり合う楕円は容認できる。
【0169】
本方法の第4ステップは、バイオインクの液滴が印刷される堆積表面56と種々のプリントヘッドとの動きを同期させることからなる。
【0170】
バイオレーザープリンティングの場合、レーザー集束領域は、各レーザー印刷される楕円の中心であり、各楕円はレーザーパルスの対象である。この場合、堆積表面は静止しており、レーザーは堆積表面の全体をスキャンする。堆積表面がドナー基板よりも大きい場合には、(その上に堆積表面が形成される)受容基板もレーザースキャンと同期化されて移動できる。
【0171】
ノズルバイオプリンティングの場合には、各楕円の中心は堆積表面56の液滴の衝撃箇所に対応する。この場合には、印刷ノズルは静止しており、受容基板が動く。しかしながら、印刷ノズルは可動であってもよい。
【0172】
用途
【0173】
本発明によるバイオプリンティングは、以下のものを作製するために用いることができる。
−再生医療のための移植可能な組織、
−インビトロでの治療の選択を可能にし、個人差を考慮した治療溶液の開発を可能にする、患者の細胞から作られた個別化された組織、
−分子、成分および薬物候補の有効性または毒性の予測的な試験のために、健全なヒトの組織または病理に冒された組織の生理機能を再現する予測モデル。
【0174】
限定することなく例示すれば、生体組織は骨組織である。
【0175】
バイオインクへの適用を述べたが、本発明はこの用途に限定されない。本発明による方法および装置は、従って、溶液または懸濁液のような任意の液状インクを印刷するために使用できる。他の適切なインクには、電子コーティング、材料または時計製造に用いられるインクが含まれるが、これらに限定されることもない。
【0176】
例えば、限定せずに述べれば、インクは以下から構成することができる。
−貴金属(特に、金、銀、白金、ロジウムおよびパラジウム)、または準貴金属(チタン、ジルコニウム、銅)、
−機能合金、
−有機材料、
−ゾル−ゲル系、
−セラミックス、またはマイクロコンポジット、またはナノコンポジット。
【0177】
これらの種々の材料は、以下に示すような種々のタイプのコーティングを製造することを可能にする。
−防食コーティング、
−高い耐薬品性を有するコーティング、
−生体機能性(抗細菌性、抗菌性、生体適合性)コーティング、
−食品接触用コーティング、
−表面エネルギー改質用コーティング、
−剥離コーティング
−電気技術(絶縁、帯電防止または導電)コーティング、
−耐摩耗性コーティング、
−光学特性変更用(反射防止、光触媒、赤外線/紫外線バリア)コーティング、
−触覚に影響を及ぼすコーティング、
−摩擦係数減少用コーティング。
−高温での耐久性を向上させるコーティング。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14