(58)【調査した分野】(Int.Cl.,DB名)
前記外力モデルは、人が前記床を歩行する際に加わる力を示すものであり、前記床を歩行する前記人の歩調の平均値および変動係数、前記床の減衰定数の平均値および変動係数、前記人の体重の平均値および変動係数、前記人の伸長の平均値および変動係数、前記体重と前記身長との相関関係、前記歩調と前記身長と歩幅との関係の少なくとも1つを用いて作成される、
ことを特徴とする請求項1から3のいずれか1項記載の床振動解析方法。
【背景技術】
【0002】
ビルや物流倉庫などの建物において良好な居住環境を確保する上で、床の振動障害に対する検討および対策が必要である。この検討あるいは対策が不十分な場合には、床上を人が歩行したとき、床上でモータあるいは発電機などを稼働させたとき、さらに重機が移動したときなどに、大きい振動が階下に伝わって、階下の居住環境が悪化してしまう。また、精密加工機械などが設置される場合には、許容限度を越える振動が機械に伝わり、必要な加工精度を保つことが困難となる。
【0003】
そのため、従来より建物の設計段階や建物が完成した段階で床振動のチェックが行われていた。
建物の設計段階でのチェックは、概ね次のような作業手順で行われる。
すなわち、まず床の固有振動数を計算し、さらに、予想される振動源(歩行する人間やモータなど)に対する床の応答として、床の変位および加速度のような振動応答を計算する。そして、得られた計算結果を、日本建築学会が作成した「居住性能評価基準」のグラフ上にプロットして評価し、振動障害の発生を予測する。その後、上記計算結果、グラフ、判定結果などを文書にまとめる。
【0004】
また、建物の完成後にチェックを行う場合の作業手順は概ね次のようなものである。
すなわち、まず完成した建物において実測により振動障害の現状を調査し、その調査結果にもとづいて振動障害を減ずるための対策を立案し、さらに予想される振動源に対し、床の変位および加速度応答のような振動応答を計算する。その後、得られた計算結果を、日本建築学会が作成した「居住性能評価基準」のグラフ上にプロットして評価し、振動障害の発生を予測する。その後、上記計算結果、グラフ、判定結果などを文書にまとめる。
いずれの場合にも、振動障害の発生が予測あるいは計測されたときは、設計変更や必要な対策を実施し、その後、再度上述の作業を行って振動障害の有無を確認することになる。
【0005】
さらに、計算あるいは計測によって床の固有振動数や変位および加速度のような振動応答を得た後、計算結果を評価するために、上記固有振動数と変位の組および固有振動数と加速度の組を、紙に印刷あるいは複写された日本建築学会の「居住性能評価基準」のグラフ上の対応する位置に円印などを記載する作業が必要となる。
この作業は、設計の手直しや、振動対策を実施した場合、その都度発生するものであり、非常に手間と時間がかかる。
また、上述の「居住性能評価基準」の評価は、人が感知する振動を知覚確率として確率的に表現しているのに対し、建物の特性(部材の剛性およびその配置などの構成)と外力が決まれば一意的に振動応答状態を決定している。
この問題を合理的に解決した従来の技術として、例えば下記特許文献1、2などの技術が知られている。
【発明を実施するための形態】
【0011】
以下に添付図面を参照して、本発明にかかる床振動解析方法、床振動解析プログラムおよび床振動解析装置の好適な実施の形態を詳細に説明する。
図1は、実施の形態にかかる床振動解析装置10の一例を示す機能ブロック図、
図2は、
図1の床振動解析装置10を構成するパーソナルコンピュータを示す構成図、
図3は、
図1の床振動解析装置10の動作を示すフローチャートである。
【0012】
床振動解析装置10は、具体的には
図2に示したパーソナルコンピュータ20により構成され、このパーソナルコンピュータ20は、CPU204と、不図示のインターフェース回路などを通じてCPU204に接続されたメモリ206、ハードディスク装置208、ディスプレイ210、キーボード212、マウス214、ならびにプリンタ216などにより構成されている。
そして、床振動解析装置10の主要な機能は、ハードディスク装置208に格納されている所定のプログラムデータを上記メモリ206にロードし、CPU204をそのプログラムデータにもとづいて動作させることで実現される。
なお、本発明に係わる記憶装置は、上記メモリ206およびハードディスク装置208により構成されている。
【0013】
図1に示すように、床振動解析装置10は、入力部12、解析部14、出力部16を含んで構成されている。
図3に示すように、床振動解析装置10は、まず入力部12に対して、床の振動解析に必要な物理的データと、振動外力の確率変数を用いて作成された外力モデルと、が入力される(ステップS301:入力ステップ)。
つぎに、解析部14において、ステップS301で入力された物理データおよび外力モデルを用いて、2次モーメント法により床の信頼性評価を示すパラメータ算出するとともに、簡易解析法を用いて床の固有値解析と動的応答解析とを行って、床の固有振動数と最大変位とを算出する(ステップS302:解析ステップ)。
そして、出力部16において、ステップS302で算出されたパラメータを出力する(ステップS303:出力ステップ)。
出力ステップでは、信頼性評価を示すパラメータ(床の信頼性指標、振動を不快と感じる確率である不快確率、振動の応答加速度のV値、振動の知覚確率)の値を、床上の各点に対応して識別可能に表示する。また、振動解析で得られた固有振動数と最大変位なども表示する。
以下、より詳細に各部の処理について説明する。
【0014】
入力部12には、床の振動解析に必要な物理的データと、振動外力の確率変数を用いて作成された外力モデルと、が入力される。
本実施の形態では、入力部12は、操作者(通常は設計者)の操作に基づいて、対話形式で床振動の解析に必要な種々のデータを順次取り込む。取り込んだデータは、メモリ206に格納される。
【0015】
入力部12は、具体的には以下のデータ1201〜1219をそれぞれ取り込む。
建物概要データ1201は、解析対象となる建物の階数、階高および平面形状の形状寸法を含む情報である。
通りの定義1202は、建物内に配置される部材の配置に対して基準となる目印を入力する。
梁データ1203は、梁の位置、構造種別、断面寸法、ヤング係数、ポアソン比、単位体積重量、鉛直バネ剛性、回転バネ剛性、減衰定数を含む情報である。
壁データ1204では、壁の位置、縦および横の長さ、断面寸法、ヤング係数、ポアソン比、単位体積重量、減衰定数の各データを含む情報である。
床データ1205では、床の縦および横の長さ、厚さ、ヤング係数とポアソン比、曲げ剛性、単位体積重量、減衰定数を含む情報である。
柱データ1206では、柱の位置、構造種別、断面寸法、ヤング係数、ポアソン比、単位体積重量、鉛直バネ剛性、回転バネ剛性、減衰定数を含む情報である。
境界条件1207は、建物の支持条件である。
振動抑制装置データ1208では、振動を抑制するための補助装置の重量、バネ剛性、減衰定数を含む情報である。なお、振動抑制装置を設置しない場合には、このデータ入力の必要はない。
【0016】
外力データ1209は、床に加わる外力の時系列データであり、本実施の形態では、人が床を歩行する際(歩行時)に加わる力であるものとする。
外力データ1209は、床上を様々な人が歩くことを想定して作成した時系列データである。したがって、時系列データは1つではなく、複数(無限に)存在する。この時系列データは、計測データに基づくモデルを用いて乱数を用いて作成される。
このように外力源が人の歩行である場合、床振動の解析に必要となる振動外力の確率的な性質を持つ物理量として、歩調の平均値および変動係数、減衰定数の平均値および変動係数、体重の変動係数、身長の平均値および変動係数、体重と身長の相関係数、そして歩幅と身長、歩調の関係などが考えられる。これらの確率変数を総合的に考慮して外力モデル(外力データ1209)を作成し、ハードディスク装置208等の記憶装置に格納しておく。
入力部12では、記憶装置に格納された外力データファイルを選定する作業を行う。
なお、上記歩行の他、例えば人が床上を飛び跳ね、小走り、かかと衝撃動作ならびにエアロビクス屈伸運動などを行った場合に床に加わる力をそれぞれ外力としてもよい。この場合も、それぞれの動きに対応した確率変数を含む外力データ1209を作成しておき、記憶装置に格納しておく。
【0017】
入力部12は、例えばディスプレイ210、キーボード212、マウス214によって構成される。操作者は、ディスプレイ210に表示された入力画面に対して、キーボード212やマウス214を使用して数値等を入力することにより、上記の各データが床振動解析装置10に取り込まれる。
図12は、床データ1205の入力画面の一例を示す説明図である。
ディスプレイ210には、データ入力用のウインドウ600が表示されている。
ウインドウ600内には、各データを入力するための7つの矩形の領域が表示され、各領域の近傍にはデータの名称など、データに係わる文字や記号を表示が表示される。
領域638、640はそれぞれXおよびY方向の床の長さを入力するための領域である。領域638、640に近接して表示された矩形図形642は床を表し、矢印644、646はXおよびYの各方向を示している。X方向の床の長さを入力するための領域638は矩形図形642の上に配置され、領域638の右側には単位を表す“m”の文字が近接して表示されている。一方、Y方向の床の長さを入力するための領域640は矩形図形642の左側に配置され、領域640の右側には単位を表す“m”の文字が近接して表示されている。
【0018】
領域648は床(スラブ)の厚さを入力するための領域であり、領域648の左側にはこのデータの名称“スラブ厚”が近接して表示され、右には単位“cm”が近接して表示されている。
領域650、652はそれぞれXおよびY方向のヤング係数または曲げ剛性を入力するための領域である。各領域の左側には方向を示す“X方向”および“Y方向”が表示され、各領域の右側には単位を表す“t/cm
2”が表示されている。領域650、652は枠線654により囲まれており、枠線654内の上部にはヤング係数と曲げ剛性のいずれかを選択するための円形の小領域656、658が表示され、各小領域656、658の右側には“ヤング係数”および“曲げ剛性”がそれぞれ表示されている。
枠線654の下側にはそれぞれポアソン比と単位体積重量を入力するための領域660、662が表示され、各領域660、662の左側には“ポアソン比”および“単位体積重量”がそれぞれ表示されている。そして領域662の右側には単位を示す“t/m
3”が表示されている。
【0019】
このような表示に対して操作者は必要なデータを順次入力していく。例えばX方向の床の長さを入力するときは、領域638をまずマウス214によりクリックする。すなわち、ディスプレイ210の画面に表示された不図示のマウスカーソルを、マウス214を操作して領域638内に移動させ、例えばマウス214の左ボタンを1度押す。これにより領域638内に文字入力のためのカーソルが表示され、操作者はキーボード612を操作して、X方向の床の長さのデータを入力する。
入力部12は、このデータの各数字や文字が入力されるごとに、それらを順次、領域638内に表示する。その結果、入力が完了した段階で、領域638には、例えば
図12に示したように“9.00E+0”と表示される。次に、Y方向の床の長さを入力する場合には、操作者は領域640をマウス214によりクリックする。その結果、領域640内に文字入力のためのカーソルが表示され、操作者はキーボード612を操作して、例えば“6.00E+0”と入力する。
操作者はこのような操作を他のデータ入力領域に関しても順次実行し、必要なデータを入力していく。なお、ヤング係数と曲げ剛性に関してはいずれかを選択するようになっており、操作者はヤング係数を入力する場合には小領域656をクリックした上で、一方、曲げ剛性を入力する場合には小領域658をクリックした上で領域650、652にそれぞれヤング係数または曲げ剛性のデータを入力する。
【0020】
図12の例では、一例として、XおよびY方向の床の長さとしてはそれぞれ9mおよび6mが入力され、スラブ厚は12cm、ヤング係数はXおよびY方向共に2.10+2t/cm
2、ポアソン比は0.17、単位体積重量は2.4t/cm
3が入力されている。
【0021】
操作者は、このような床に関するデータの入力を完了すると、表示されたデータに間違いがなければ、設定ボタン664をクリックする。その結果、入力部12はウインドウ600の表示を解消し、入力された各データをメモリ206の所定領域に格納する。
このように、上述したデータ1201〜1218を順次操作者が入力していく。
なお、外力データ1209については、例えばハードディスク装置208等に記憶された複数の外力モデル(外力データ1209)の識別子(ファイル名など)をディスプレイ210に表示させ、今回の解析に用いる外力モデルの識別子をマウス214などにより操作者が選択することによって入力する。
【0022】
解析部14は、入力部12に入力された物理データおよび外力モデルを用いて、振動解析を行う。本実施の形態では、解析部14は、簡易解析法を用いて床の固有値解析と動的応答解析とを行って、床の固有振動数と最大変位とを算出する振動解析部142と、2次モーメント法により床の信頼性評価を示すパラメータ算出する信頼性評価部144とを含んでいる。
【0023】
振動解析部142は、簡易解析法としてレイリーリッツ法を用い、したがって、未定係数を含む床の形状関数により床の変形を定義し、エネルギ最小原理からその未定係数を決定する。
振動解析部142は、固有値解析において、床の1次固有振動数を算出し、さらに、床が1次振動モードで振動した場合の、床上の各位置における変位の大きさを算出する。一方、動的応答解析では、外力データ1209で示される外力が床に加わった場合の床の動的応答特性を算出する。この動的応答特性としては、床の変位と加速度の両方を算出し、さらに、最大変位と、最大加速度を求める。
【0024】
振動解析部142は、簡易解析としてレイリーリッツ法を用いて床振動に関わる解析を行うので、未定係数を含む床の形状関数により床の変形を定義し、エネルギ最小原理からその未定係数を決定することになる。その中で、柱、梁、壁を任意の位置に任意の数量を設定できるようにしているため、実際の床により近い解析モデルを設定して解析を行うことができる。
そのため、柱を考慮することができ、梁および壁も任意の位置に設定できる。また、梁の構造はRC構造とSRC構造に加えてS構造にも対応でき、境界条件も単純支持および固定支持だけでなく、自由端およびこれらの中間の任意の固定度に設定することができる。さらに、受動的制振装置を考慮することも可能である。
【0025】
なお、上記実施例では振動解析部142において、1次の固有振動数を算出するとしたが、より高次の固有値解析を行って高次の固有振動数をも算出する構成とすることも容易である。また、その場合には、モード図の表示において、高次の振動に関するモード図を表示することが可能である。
【0026】
つぎに、信頼性評価部144における信頼性評価手法について説明する。
対数正規分布を仮定した使用限界状態(耐力側)Pと、応答加速度(荷重効果側)Aから得られる性能関数Rを、
図4の式(1)のように定義する。
応答加速度Aが使用限界状態Pを超える確率、すなわち振動を不快と感じる確率である不快確率P
fは、
図4の式(2)から計算される。
なお、信頼性指標βは、
図4の式(3)で計算される。
【0027】
したがって、使用限界状態P(振動を不快と感じる加速度)の平均値、振動を不快と感じる加速度の変動係数V
P、応答加速度Aの平均値、応答加速度の変動係数V
Aが与えられれば信頼性指標βが求まり、よって不快確率P
fを評価することができる。
これらの値は、例えば1自由度系振動に関して
図4の式(4)〜(7)のように設定することができる。
式(4)に示す使用限界状態Pの平均値、および式(5)に示す振動を不快と感じる加速度の変動係数V
Pは、日本建築学会の「居住性能評価指針2004」での鉛直振動に関する性能評価曲線としての知覚確率を参考として設定されたものである。
また、式(6)に示す応答加速度Aの平均値、および式(7)に示す応答加速度の変動係数V
Aは、実際計測された歩行荷重およびモンテカルロ法によって得られた情報から設定されている(中山昌尚他:バラツキを考慮した歩行荷重による床スラブの振動評価、構造工学論文集、Vol.57B、2011.3)。
【0028】
なお、多自由度の場合には、各次数の振動モードが独立であることから、評価点における各振動モードの不快確率の和が全不快確率であると仮定すると、
図4の式(8)のようにして得られる。
また、応答加速度に関しては、i次モードによるj点における平均値を
図4の式(9)のようにおくことで求めることができる。
多自由度系振動の場合には、振動モードを有限要素法などの数値的な計算手段で求めることとなる。
【0029】
出力部16は、解析部14で算出されたパラメータを出力する。
本実施の形態では、出力部16はディスプレイ210に各種パラメータを表示出力するものとするが、例えば各種パラメータをプリンタ216から印刷出力したり、通信インターフェースを介して他の情報端末に送信するようにしてもよい。
【0030】
図5は、表示パラメータ選択画面の一例を示す説明図である。
解析部14による解析が終了すると、出力部16は
図5に示す表示パラメータ選択画面500を表示する。
なお、解析部14による解析結果は、操作者等が消去しなければ自動的にハードディスク装置208等に記録され、後から解析結果を表示することも可能である。よって、各解析計算にはプロジェクト名等を付加して識別可能としておく。
表示パラメータ選択画面500には、今回表示する解析結果のプロジェクト名を選択するファイル選択部502と、時刻歴波形表示選択ボタン504、2D表示選択ボタン506と、3D表示選択ボタン508と、ボード線図表示選択ボタン510と、振動評価表示選択ボタン512と、信頼性設計選択ボタン514とが表示されている。
操作者は、ファイル選択部502で所望の解析結果のプロジェクト名を選択して、所望の選択ボタンを押下する。なお、表示を終了する場合には、キャンセルボタン516を押下する。
【0031】
図6は、時刻歴波形表示の一例を示す説明図である。
時刻歴波形表示選択ボタン504を押下すると、
図6に示す時刻歴波形表示700が表示される。
時刻歴波形表示700は、動的応答解析の結果のグラフであり、解析対象の床の任意の点における加速度、速度、変位の時間変化が示されている。
より詳細には、時刻歴波形表示700は、3つのグラフ領域に分割されており、最上段のグラフ領域には加速度グラフ702が、中段のグラフ領域には速度グラフ704、最下段のグラフ領域には変位グラフ706が、それぞれ表示されている。
各グラフ702,704,706は、縦軸にそれぞれのグラフの値、横軸に時刻が取られ、同時刻における加速度、速度、変位が比較可能となっている。任意のパラメータ同士を比較しやすくするように、それぞれのグラフ領域に表示するパラメータを入れ替えられるようにしてもよい。
【0032】
また、時刻歴波形表示700には、表示対象となる地点を選択する地点選択部708が表示されている。地点選択部708は、解析対象の床全面を示す床面表示710と、床面表示710上に配置された候補地点表示712とを含んでいる。
操作者が任意の候補地点表示712をクリックすると、その地点の加速度、速度、変位を示すグラフに表示が切り替わる。なお、操作者が選択した候補地点表示712は、他の候補地点表示712と表示形態が変更される。例えば
図6では、床の中央に位置する候補地点表示712が選択されているが、他の候補地点表示712と比較して円形の表示の半径が大きくなっている。
【0033】
図7は、3D表示の一例を示す説明図である。
3D表示選択ボタン508を押下すると、
図7に示す3D表示800,802が表示される。
各3D表示800,802は、解析対象の床面を斜め上方から見た表示である。3D表示800,802の視点位置は、視点指定部810への操作で変更することが可能である。
図7Aに示す振動モード3D表示800と、
図7Bに示す変位応答アニメーション表示802とは、画面右上に表示された表示切替部804で切り替え可能である。すなわち、表示切替部804には、表示を振動モードおよび変位応答アニメーション表示のいずれかに選択するための円形の小領域806、808が表示され、各小領域806、806の右側には「振動モード」および「変位応答アニメーション」がそれぞれ表示されている。操作者がいずれかの小領域806、808をクリックすることで、これらの表示が切り替わる。
なお、
図7Bに示す変位応答アニメーション表示802は、ディスプレイ210上ではアニメーションで表示されるが、
図7Bには瞬間の変形状態を表している。
【0034】
図8は、振動評価表示の一例を示す説明図である。
振動評価表示選択ボタン512を押下すると、
図8に示す振動評価表示900が表示される。
日本建築学会は、振動の種類や、建物の用途に応じて、床の変位および加速度に関して種々の評価基準を設定している。振動評価表示900に表示した応答加速度グラフ902は、この評価基準にもとづいて、解析した床の振動を評価するためのものである。
応答加速度グラフ902の縦軸は加速度値、横軸は周波数であり、縦軸、横軸は共に対数目盛となっている。
応答加速度グラフ902上には、ハードディスク装置208に予め格納された応答加速度の評価基準データ、すなわち、日本建築学会が作成した「居住性能評価基準」に基づく評価基準曲線が描画されている。各曲線は、各評価基準V−10、V−30、V−50、V−70、V−90に対応している。なお、各基準は、数値が小さいほど厳しく、許容される応答加速度は小さくなっている。
【0035】
さらに、応答加速度グラフ902上には、床面の1次固有振動数の位置を通る仮想垂直線と、最大加速度の位置を通る仮想水平線との交点の位置に、マークが表示される。なお、
図8においては、知覚確率0.0%であるので、グラフ上にマークは表示されていない。
このマークが、解析対象の床がクリアすべき評価基準の曲線よりも下に表示されている場合には、当該基準を満たしていることがわかる。また、このマークが、解析対象の床がクリアすべき評価基準の曲線よりも上に表示されている場合には、当該基準を満たしておらず、何らかの対策が必要であることを示している。
【0036】
なお、振動評価表示900にも、
図7同様、表示対象となる地点を選択する地点選択部708が表示されており、任意の箇所の応答加速度グラフ902等を表示することが可能である。
【0037】
図9〜
図11は、信頼性評価表示画面の一例を示す説明図である。
上述した
図5〜
図10は、振動解析部142により算出されたパラメータを表示するものであり、
図9〜
図11は、信頼性評価部144により算出された信頼性評価に関するパラメータを表示するものである。信頼性評価に関するパラメータは、床の信頼性指標β、振動を不快と感じる確率である不快確率、振動の応答加速度のV値、振動の知覚確率等である。
出力部16は、これら信頼性評価に関するパラメータの床上における分布をコンター図として出力する。なお、信頼性評価表示画面は、上記コンター図に限らず、例えば3Dグラフなど、床上の各点におけるパラメータの値を識別可能に表示できる表示形態であればよい。
本実施の形態では、信頼性評価に関するパラメータは、床の信頼性指標β、振動を不快と感じる確率である不快確率、振動の応答加速度のV値を含み、出力部16は、ディスプレイ210上に床を示す区画表示を行い、区画表示内にコンター図を表示するとともに、区画表示内にコンター図として表示するパラメータを切り替え可能な切替操作部を表示する。
【0038】
図9は床面における信頼性指標βの分布を示すコンター
図1002を含む信頼性指標表示100であり、
図10は床面における不快確率の分布を示すコンター
図1102を含む不快確率表示1100である。また、
図11は応答加速度の1/3オクターブバンド分析結果を3−8Hzの等間隔加速度に変換した加速度値であるV値の分布を示すコンター
図1202を含むV値表示1200である。なお、本実施の形態におけるV値は、日本建築学会「建築物の振動に関する居住性能評価指針・同解説(1999年)」に定義されているV値に相当する。
【0039】
図9〜
図11の右上には、
図9〜
図11の各表示を切り替える表示切替部1004が表示されている。表示切替部1004には、信頼性指標表示1000、不快確率表示1100、V値表示1200のいずれかを選択するための円形の小領域1010、1012、1014が表示され、各小領域1010、1012、1014の右側には「信頼性指標」、「不快確率」および「等価加速度(V値)」がそれぞれ表示されている。操作者がいずれかの小領域1010、1012、1014をクリックすることで、これらの表示が切り替わる。
【0040】
また、
図9〜
図11には、各コンター図上の色と各パラメータの値とを対応づける凡例1006、1106、1206が表示されている。
各コンター
図1002、1102、1202の外枠1002A、1102A、1202Aは、解析対象の床面全体を示す。外枠1002A、1102A、1202A内の各点は、床面上の対応点おけるパラメータ値に沿った色に表示される。
【0041】
例えば
図9の信頼性指標βのコンター
図1002では、Y軸(縦軸)に沿った一部領域で信頼性指標βが高くなっており、その他の領域では概ね中程度の信頼性指標値となっている。一方、右端よりの領域1020では局部的に信頼性指標βが低くなっている。
なお、信頼性指標βは、その数値が大きいほど破壊確率が小さく、好ましい。
【0042】
また、例えば
図10の不快確率のコンター
図1102では、Y軸(縦軸)に沿った一部領域で不快確率が高くなっており、特に左下側の領域1120では不快確率が高い領域が他の箇所よりやや広くなっている。なお、その他の領域では概ね不快確率は低くなっている。
なお、不快確率は、その数値が小さいほど居住者が不快に感じる可能性が小さく、好ましい。
【0043】
また、例えば
図11のV値のコンター
図1202では、全領域で一定値であるものの、右端よりの領域1220で局部的にV値が大きくなっている。この箇所は
図9において信頼性指標βが局所的に低くなっていた領域1020に対応する箇所である。
このため、この領域1220、1020に何らかの改善(設計変更等)を行うことにより、床面の評価値を向上できる可能性があることがわかる。
【0044】
実施の形態にかかる床振動解析装置10は、床振動居住性能の評価において信頼性設計の概念を導入した上で、この解析結果を表示する点が従来技術と異なっている。
すなわち、建物使用者の振動知覚を確率的に考慮するだけでなく、評価用に入力される外力に関しても確率変数とし、扱い手順の煩雑さを回避するために応答スペクトルの概念を導入することで、合理的かつ効率に床振動性能評価を実施できるようになっている。
さらに、パーソナルコンピュータ20に床振動解析装置10を組み込むことで、データの入力、解析、結果の出力の煩わしさからも設計者を作業の煩雑さから解放することとなる。
【0045】
以上説明したように、実施の形態にかかる床振動解析装置10は、確率変数を用いて作成された外力モデルを用いて、2次モーメント法により床の信頼性評価を示すパラメータ算出するので、モンテカルロ法などを用いる場合と比較してパーソナルコンピュータ20の演算負荷を軽減し、確率変数を用いた外力モデルによる振動解析を汎用コンピュータに実装させることができる。
また、床振動解析装置10は、信頼性評価に関するパラメータの分布を、例えばコンター図を用いて床上の各点に対応して識別可能に表示するので、設計上または構造上問題となる箇所を容易に特定することができ、設計作業や改修作業等を効率的に実施する上で有利となる。
また、床振動解析装置10は、床の信頼性指標、不快確率、応答加速度のV値、知覚確率等の各パラメータを算出することができ、床面の構造の評価を効率的に行う上で有利となる。
また、床振動解析装置10は、コンター図として表示するパラメータを切り替え可能とする切替操作部(表示切替部904)を表示するので、複数のパラメータの表示の切り替えを迅速に行うことができ、作業効率を向上させる上で有利となる。
また、床振動解析装置10は、人の歩行に関する各種の確率変数を用いて外力モデルを作成するので、実際に発生する外力に近い外力モデルを作成することができ、解析の精度を向上させる上で有利となる。
また、床振動解析装置10は、簡易解析法を用いて床の固有値解析と動的応答解析とを行うので、床の基本的な構造性能を評価することができ、より多面的な解析を行う上で有利となる。