特許第6709637号(P6709637)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日東電工株式会社の特許一覧

特許6709637光学補償層付偏光板およびそれを用いた有機ELパネル
<>
  • 特許6709637-光学補償層付偏光板およびそれを用いた有機ELパネル 図000006
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6709637
(24)【登録日】2020年5月27日
(45)【発行日】2020年6月17日
(54)【発明の名称】光学補償層付偏光板およびそれを用いた有機ELパネル
(51)【国際特許分類】
   G02B 5/30 20060101AFI20200608BHJP
   H01L 51/50 20060101ALI20200608BHJP
   H05B 33/02 20060101ALI20200608BHJP
【FI】
   G02B5/30
   H05B33/14 A
   H05B33/02
【請求項の数】3
【全頁数】19
(21)【出願番号】特願2016-43738(P2016-43738)
(22)【出願日】2016年3月7日
(65)【公開番号】特開2017-161606(P2017-161606A)
(43)【公開日】2017年9月14日
【審査請求日】2019年1月22日
(73)【特許権者】
【識別番号】000003964
【氏名又は名称】日東電工株式会社
(74)【代理人】
【識別番号】100122471
【弁理士】
【氏名又は名称】籾井 孝文
(72)【発明者】
【氏名】飯田 敏行
(72)【発明者】
【氏名】柳沼 寛教
(72)【発明者】
【氏名】清水 享
【審査官】 吉川 陽吾
(56)【参考文献】
【文献】 特開2007−286141(JP,A)
【文献】 特開2003−332068(JP,A)
【文献】 特開2015−079256(JP,A)
【文献】 特開2015−079255(JP,A)
【文献】 特開2003−035820(JP,A)
【文献】 特開2015−230386(JP,A)
【文献】 特開2015−106114(JP,A)
【文献】 国際公開第14/073020(WO,A1)
【文献】 特開2008−134546(JP,A)
【文献】 特開平10−068816(JP,A)
【文献】 米国特許出願公開第2014/0168768(US,A1)
【文献】 韓国公開特許第10−2013−0074878(KR,A)
【文献】 特開2012−032418(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 5/30
(57)【特許請求の範囲】
【請求項1】
偏光子と第1の光学補償層と第2の光学補償層と第3の光学補償層とをこの順に備え、
該第1の光学補償層が、nx>nz>nyの屈折率特性を示し、Re(550)が230nm〜310nmであり、
該第2の光学補償層が、nx>ny≧nzの屈折率特性を示し、Re(550)が100nm〜180nmであり、Re(450)<Re(550)の関係を満たし、
該第3の光学補償層が、nz>nx≧nyの屈折率特性を示し、Rth(550)が−260nm〜−10nmであり、
有機ELパネルに用いられ
下記(1)または(2)のいずれかを満たす、
光学補償層付偏光板:
(1)前記第1の光学補償層のNz係数が0.1〜0.4であり、前記偏光子の吸収軸方向と該第1の光学補償層の遅相軸方向とが実質的に直交しており、および、該偏光子の吸収軸と前記第2の光学補償層の遅相軸とのなす角度が35°〜55°である
(2)前記第1の光学補償層のNz係数が0.6〜0.9であり、前記偏光子の吸収軸方向と該第1の光学補償層の遅相軸方向とが実質的に平行であり、および、該偏光子の吸収軸と前記第2の光学補償層の遅相軸とのなす角度が35°〜55°である
ここで、Re(450)およびRe(550)は、それぞれ、23℃における波長450nmおよび550nmの光で測定した面内位相差を表し、Rth(550)は、23℃における波長550nmの光で測定した厚み方向の位相差を表す。
【請求項2】
長尺状の光学補償層付偏光板であって、
前記第2の光学補償層が、長尺方向に対して35°〜55°の方向に遅相軸を有する、請求項1に記載の光学補償層付偏光板。
【請求項3】
請求項1または2に記載の光学補償層付偏光板を備える、有機ELパネル。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学補償層付偏光板およびそれを用いた有機ELパネルに関する。
【背景技術】
【0002】
近年、薄型ディスプレイの普及と共に、有機ELパネルを搭載したディスプレイ(有機EL表示装置)が提案されている。有機ELパネルは反射性の高い金属層を有するため、外光反射や背景の映り込み等の問題を生じやすい。そこで、円偏光板を視認側に設けることにより、これらの問題を防ぐことが知られている。一般的な円偏光板として、位相差フィルム(代表的には、λ/4板)を、その遅相軸が偏光子の吸収軸に対して約45°の角度をなすように積層したものが知られている。加えて、反射防止特性をさらに改善するために、種々の光学特性を有する位相差フィルム(光学補償層)を積層する試みがなされている。しかし、従来の円偏光板はいずれも、斜め方向の反射率が大きい(すなわち、斜め方向の反射防止特性が不十分である)という問題がある。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特許第3325560号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、正面方向の優れた反射防止特性を維持しつつ、斜め方向の反射防止特性にも優れた光学補償層付偏光板を提供することにある。
【課題を解決するための手段】
【0005】
本発明の光学補償層付偏光板は有機ELパネルに用いられる。この光学補償層付偏光板は、偏光子と第1の光学補償層と第2の光学補償層と第3の光学補償層とを備える。該第1の光学補償層は、nx>nz>nyの屈折率特性を示し、Re(550)が230nm〜310nmであり;該第2の光学補償層は、nx>ny≧nzの屈折率特性を示し、Re(550)が100nm〜180nmであり、Re(450)<Re(550)の関係を満たし;該第3の光学補償層が、nz>nx≧nyの屈折率特性を示し、Rth(550)が−260nm〜−10nmである。ここで、Re(450)およびRe(550)は、それぞれ、23℃における波長450nmおよび550nmの光で測定した面内位相差を表し、Rth(550)は、23℃における波長550nmの光で測定した厚み方向の位相差を表す。
1つの実施形態においては、上記第1の光学補償層のNz係数は0.1〜0.4であり、上記偏光子の吸収軸方向と該第1の光学補償層の遅相軸方向とは実質的に直交しており、および、該偏光子の吸収軸と上記第2の光学補償層の遅相軸とのなす角度は35°〜55°である。別の実施形態においては、上記第1の光学補償層のNz係数が0.6〜0.9であり、上記偏光子の吸収軸方向と該第1の光学補償層の遅相軸方向とは実質的に平行であり、および、該偏光子の吸収軸と上記第2の光学補償層の遅相軸とのなす角度は35°〜55°である。
1つの実施形態においては、上記光学補償層付偏光板は長尺状であり、上記第2の光学補償層は、長尺方向に対して35°〜55°の方向に遅相軸を有する。
本発明の別の局面によれば、有機ELパネルが提供される。この有機ELパネルは、上記の光学補償層付偏光板を備える。
【発明の効果】
【0006】
本発明によれば、光学補償層付偏光板において、nx>nz>nyの屈折率特性を示し、かつ、所定の面内位相差を有する第1の光学補償層と、nx>ny≧nzの屈折率特性を示し、所定の面内位相差を有し、かつ、逆分散の波長依存性を示す第2の光学補償層と、nz>nx≧nyの屈折率特性を示し、かつ、所定の厚み方向位相差を有する第3の光学補償層とを配置することにより、正面方向の優れた反射防止特性を維持しつつ、斜め方向の反射防止特性にも優れた光学補償層付偏光板を得ることができる。
【図面の簡単な説明】
【0007】
図1】本発明の1つの実施形態による光学補償層付偏光板の概略断面図である。
【発明を実施するための形態】
【0008】
以下、本発明の好ましい実施形態について説明するが、本発明はこれらの実施形態には限定されない。
【0009】
(用語および記号の定義)
本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re=(nx−ny)×dによって求められる。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。
(3)厚み方向の位相差(Rth)
「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth=(nx−nz)×dによって求められる。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。
(4)Nz係数
Nz係数は、Nz=Rth/Reによって求められる。
(5)実質的に直交または平行
「実質的に直交」および「略直交」という表現は、2つの方向のなす角度が90°±10°である場合を包含し、好ましくは90°±7°であり、さらに好ましくは90°±5°である。「実質的に平行」および「略平行」という表現は、2つの方向のなす角度が0°±10°である場合を包含し、好ましくは0°±7°であり、さらに好ましくは0°±5°である。さらに、本明細書において単に「直交」または「平行」というときは、実質的に直交または実質的に平行な状態を含み得るものとする。
【0010】
A.光学補償層付偏光板の全体構成
図1は、本発明の1つの実施形態による光学補償層付偏光板の概略断面図である。本実施形態の光学補償層付偏光板100は、偏光子10と第1の光学補償層30と第2の光学補償層40と第3の光学補償層50とを備える。図示例では、偏光子10側から順に第1の光学補償層30、第2の光学補償層40および第3の光学補償層50が配置されているが、第2の光学補償層40と第3の光学補償層50の配置順序は入れ替わっていてもよい。実用的には、図示例のように、偏光子10の第1の光学補償層30と反対側に保護層20が設けられ得る。また、光学補償層付偏光板は、偏光子10と第1の光学補償層30との間に別の保護層(内側保護層とも称する)を備えてもよい。図示例においては、内側保護層は省略されている。この場合、第1の光学補償層30が内側保護層としても機能し得る。このような構成であれば、光学補償層付偏光板のさらなる薄型化が実現され得る。さらに、必要に応じて、第3の光学補償層50の第2の光学補償層40と反対側(すなわち、第3の光学補償層50の外側)に導電層および基材をこの順に設けてもよい(いずれも図示せず)。基材は、導電層に密着積層されている。本明細書において「密着積層」とは、2つの層が接着層(例えば、接着剤層、粘着剤層)を介在することなく直接かつ固着して積層されていることをいう。導電層および基材は、代表的には、基材と導電層との積層体として光学補償層付偏光板100に導入され得る。導電層および基材をさらに設けることにより、光学補償層付偏光板100は、インナータッチパネル型入力表示装置に好適に用いられ得る。
【0011】
第1の光学補償層30は、屈折率特性がnx>nz>nyの関係を示し、遅相軸を有する。第1の光学補償層30の面内位相差Re(550)は230nm〜310nmである。1つの実施形態においては、第1の光学補償層のNz係数は好ましくは0.1〜0.4である。この場合、第1の光学補償層30の遅相軸と偏光子10の吸収軸とは、実質的に直交している。別の実施形態においては、第1の光学補償層のNz係数は好ましくは0.6〜0.9である。この場合、第1の光学補償層30の遅相軸と偏光子10の吸収軸とは、実質的に平行である。第2の光学補償層40は、屈折率特性がnx>ny≧nzの関係を示し、遅相軸を有する。第2の光学補償層40の遅相軸と偏光子10の吸収軸とのなす角度は好ましくは35°〜55°であり、より好ましくは38°〜52°であり、さらに好ましくは42°〜48°であり、特に好ましくは約45°である。上記角度がこのような範囲であれば、優れた反射防止機能を実現することができる。第2の光学補償層40はRe(450)<Re(550)の関係を満たし、その面内位相差Re(550)は100nm〜180nmである。第3の光学補償層50は、屈折率特性がnz>nx≧nyの関係を示す。第3の光学補償層50の厚み方向位相差Rth(550)は−260nm〜−10nmである。上記のとおり、nx>nz>nyの屈折率特性を示し、かつ、所定の面内位相差を有する第1の光学補償層と、nx>ny≧nzの屈折率特性を示し、所定の面内位相差を有し、かつ、逆分散の波長依存性を示す第2の光学補償層と、nz>nx≧nyの屈折率特性を示し、かつ、所定の厚み方向位相差を有する第3の光学補償層とを偏光子側からこの順に配置することにより、優れた円偏光機能による正面方向の優れた反射防止特性を維持しつつ、斜め方向から見た場合の偏光子の吸収軸の見かけ上の軸ズレによる光漏れ等を防止することにより、斜め方向の反射防止特性にも優れた光学補償層付偏光板を実現することができる。
【0012】
光学補償層付偏光板は、枚葉状であってもよく、長尺状であってもよい。光学補償層付偏光板が長尺状である場合には、偏光子10は、代表的には、長尺方向に対して実質的に平行な方向に吸収軸を有する。第2の光学補償層40は、代表的には、長尺方向に対して35°〜55°の方向に遅相軸を有する。
【0013】
以下、光学補償層付偏光板を構成する各層および光学フィルムについて詳細に説明する。
【0014】
A−1.偏光子
偏光子10としては、任意の適切な偏光子が採用され得る。例えば、偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。
【0015】
単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。
【0016】
上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3〜7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラなどを防止することができる。
【0017】
積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012−73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。
【0018】
偏光子の厚みは、好ましくは25μm以下であり、より好ましくは1μm〜12μmであり、さらに好ましくは3μm〜12μmであり、特に好ましくは3μm〜8μmである。偏光子の厚みがこのような範囲であれば、加熱時のカールを良好に抑制することができ、および、良好な加熱時の外観耐久性が得られる。
【0019】
偏光子は、好ましくは、波長380nm〜780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、好ましくは42.0%〜46.0%であり、より好ましくは44.5%〜46.0%である。偏光子の偏光度は、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。
【0020】
A−2.第1の光学補償層
第1の光学補償層30は、上述のとおり、屈折率特性がnx>nz>nyの関係を示す。第1の光学補償層の面内位相差Re(550)は、230nm〜310nmであり、好ましくは240nm〜300nmであり、より好ましくは260nm〜280nmである。第1の光学補償層の面内位相差がこのような範囲であれば、第1の光学補償層の遅相軸方向を偏光子の吸収軸方向に対して上記のようにNz係数に応じて実質的に直交または平行とすることにより、偏光子の吸収軸の見かけ上の軸ズレに起因する斜め方向の反射防止機能の低下を防止することができる。
【0021】
第1の光学補償層のNz係数は、1つの実施形態においては、好ましくは0.1〜0.4であり、より好ましくは0.2〜0.3であり、さらに好ましくは0.23〜0.27である。Nz係数は、別の実施形態においては、好ましくは0.6〜0.9であり、より好ましくは0.7〜0.8であり、さらに好ましくは0.73〜0.77である。Nz係数がこのような範囲であれば、第1の光学補償層の遅相軸と偏光子の吸収軸の角度を所定の角度に調整することにより、より優れた斜め方向の反射防止特性を達成し得る。
【0022】
第1の光学補償層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。
【0023】
第1の光学補償層は、代表的には、上記特性を実現し得る任意の適切な樹脂で形成された位相差フィルムである。この位相差フィルムを形成する樹脂としては、例えば、ポリアリレート、ポリアミド、ポリイミド、ポリエステル、ポリアリールエーテルケトン、ポリアミドイミド、ポリエステルイミド、ポリビニルアルコール、ポリフマル酸エステル、ポリエーテルサルフォン、ポリサルフォン、ノルボルネン樹脂、ポリカーボネート樹脂、セルロース樹脂およびポリウレタンが挙げられる。これらの樹脂は、単独で用いてもよく組み合わせて用いてもよい。好ましくは、ポリアリレートまたはポリカーボネート樹脂である。より好ましくは、ポリカーボネート樹脂または下記式(I)で表されるポリアリレートである。ポリカーボネート樹脂については、第2の光学補償層に関して後述する。
【化1】
【0024】
式(I)において、AおよびBは、それぞれ、置換基を表し、ハロゲン原子、炭素原子数1〜6のアルキル基、置換若しくは無置換のアリール基であり、AおよびBは同一でも異なっていてもよい。aおよびbは、対応するAおよびBの置換数を表し、それぞれ、1〜4の整数である。Dは、共有結合、CH基、C(CH基、C(CZ基(ここで、Zはハロゲン原子である)、CO基、O原子、S原子、SO基、Si(CHCH基、N(CH)基である。R1は、炭素原子数1〜10の直鎖若しくは分岐のアルキル基、置換若しくは無置換のアリール基である。R2は、炭素原子数2〜10の直鎖若しくは分岐のアルキル基、置換若しくは無置換のアリール基である。R3、R4、R5およびR6は、それぞれ独立して、水素原子、炭素原子数1〜4の直鎖若しくは分岐のアルキル基であり、R3、R4、R5およびR6は同一でも異なっていてもよい。p1は、0〜3の整数であり、p2は、1〜3の整数であり、nは、2以上の整数である。
【0025】
第1の光学補償層は、例えば、上記樹脂を任意の適切な溶媒に溶解または分散した塗布液を収縮性フィルムに塗布して塗膜を形成し、当該塗膜を収縮させることにより形成され得る。代表的には、塗膜の収縮は、収縮性フィルムと塗膜との積層体を加熱して収縮性フィルムを収縮させ、このような収縮性フィルムの収縮により塗膜を収縮させる。塗膜の収縮率は、好ましくは0.50〜0.99であり、より好ましくは0.60〜0.98であり、さらに好ましくは、0.70〜0.95である。加熱温度は、好ましくは130℃〜170℃であり、より好ましくは150℃〜160℃である。1つの実施形態においては、塗膜を収縮させる際に、当該収縮方向と直交する方向に積層体を延伸してもよい。この場合、積層体の延伸倍率は、好ましくは1.01倍〜3.0倍であり、より好ましくは1.05倍〜2.0倍であり、さらに好ましくは1.10倍〜1.50倍である。収縮性フィルムを構成する材料の具体例としては、ポリオレフィン、ポリエステル、アクリル樹脂、ポリアミド、ポリカーボネート、ノルボルネン樹脂、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、セルロース樹脂、ポリエーテルスルホン、ポリスルホン、ポリイミド、ポリアクリル、アセテート樹脂、ポリアリレート、ポリビニルアルコール、液晶ポリマーが挙げられる。これらは、単独で用いてもよく組み合わせて用いてもよい。収縮性フィルムは、好ましくは、これらの材料から形成される延伸フィルムである。
【0026】
第1の光学補償層の厚みは、好ましくは10μm〜150μmであり、より好ましくは10μm〜50μmであり、さらに好ましくは10μm〜30μmである。このような厚みであれば、上記所望の面内位相差およびNz係数が得られ得る。
【0027】
A−3.第2の光学補償層
第2の光学補償層40は、上述のとおり、屈折率特性がnx>ny≧nzの関係を示す。第2の光学補償層の面内位相差Re(550)は、100nm〜180nmであり、好ましくは110nm〜170nmであり、より好ましくは120nm〜160nmである。第2の光学補償層の面内位相差がこのような範囲であれば、第2の光学補償層の遅相軸方向を偏光子の吸収軸方向に対して上記のように35°〜55°(特に、約45°)の角度をなすよう設定することにより、優れた反射防止機能を実現することができる。
【0028】
第2の光学補償層は、代表的には逆分散波長特性を示す。具体的には、その面内位相差は、Re(450)<Re(550)の関係を満たす。このような関係を満たすことにより、優れた反射色相を達成することができる。Re(450)/Re(550)は、好ましくは0.8以上1未満であり、より好ましくは0.8以上0.95以下である。
【0029】
第2の光学補償層のNz係数は、好ましくは1.0〜2.0であり、より好ましくは1.0〜1.5であり、さらに好ましくは1.0〜1.3である。このような関係を満たすことにより、より優れた反射色相を達成し得る。
【0030】
第2の光学補償層は、その吸水率が好ましくは3%以下であり、より好ましくは2.5%以下、さらに好ましくは2%以下である。このような吸水率を満足することにより、表示特性の経時変化を抑制することができる。なお、吸水率は、JIS K 7209に準拠して求めることができる。
【0031】
第2の光学補償層は、代表的には、上記特性を実現し得る任意の適切な樹脂で形成された位相差フィルムである。この位相差フィルムを形成する樹脂としては、好ましくは、ポリカーボネート樹脂が用いられる。
【0032】
上記ポリカーボネート樹脂としては、本発明の効果が得られる限りにおいて、任意の適切なポリカーボネート樹脂を用いることができる。好ましくは、ポリカーボネート樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジオール、脂環式ジメタノール、ジ、トリまたはポリエチレングリコール、ならびに、アルキレングリコールまたはスピログリコールからなる群から選択される少なくとも1つのジヒドロキシ化合物に由来する構造単位と、を含む。好ましくは、ポリカーボネート樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジメタノールに由来する構造単位ならびに/あるいはジ、トリまたはポリエチレングリコールに由来する構造単位と、を含み;さらに好ましくは、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、ジ、トリまたはポリエチレングリコールに由来する構造単位と、を含む。ポリカーボネート樹脂は、必要に応じてその他のジヒドロキシ化合物に由来する構造単位を含んでいてもよい。なお、本発明に好適に用いられ得るポリカーボネート樹脂の詳細は、例えば、特開2014−10291号公報、特開2014−26266号公報に記載されており、当該記載は本明細書に参考として援用される。
【0033】
前記ポリカーボネート樹脂のガラス転移温度は、110℃以上180℃以下であることが好ましく、より好ましくは120℃以上165℃以下である。ガラス転移温度が過度に低いと耐熱性が悪くなる傾向にあり、フィルム成形後に寸法変化を起こす可能性があり、又、得られる有機ELパネルの画像品質を下げる場合がある。ガラス転移温度が過度に高いと、フィルム成形時の成形安定性が悪くなる場合があり、又フィルムの透明性を損なう場合がある。なお、ガラス転移温度は、JIS K 7121(1987)に準じて求められる。
【0034】
前記ポリカーボネート樹脂の分子量は、還元粘度で表すことができる。還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート濃度を0.6g/dLに精密に調製し、温度20.0℃±0.1℃でウベローデ粘度管を用いて測定される。還元粘度の下限は、通常0.30dL/gが好ましく、より好ましは0.35dL/g以上である。還元粘度の上限は、通常1.20dL/gが好ましく、より好ましくは1.00dL/g、更に好ましくは0.80dL/gである。還元粘度が前記下限値より小さいと成形品の機械的強度が小さくなるという問題が生じる場合がある。一方、還元粘度が前記上限値より大きいと、成形する際の流動性が低下し、生産性や成形性が低下するという問題が生じる場合がある。
【0035】
位相差フィルムは、代表的には、樹脂フィルムを少なくとも一方向に延伸することにより作製される。
【0036】
上記樹脂フィルムの形成方法としては、任意の適切な方法が採用され得る。例えば、溶融押出し法(例えば、Tダイ成形法)、キャスト塗工法(例えば、流延法)、カレンダー成形法、熱プレス法、共押出し法、共溶融法、多層押出し、インフレーション成形法等が挙げられる。好ましくは、Tダイ成形法、流延法およびインフレーション成形法が用いられる。
【0037】
樹脂フィルム(未延伸フィルム)の厚みは、所望の光学特性、後述の延伸条件などに応じて、任意の適切な値に設定され得る。好ましくは50μm〜300μmである。
【0038】
上記延伸は、任意の適切な延伸方法、延伸条件(例えば、延伸温度、延伸倍率、延伸方向)が採用され得る。具体的には、自由端延伸、固定端延伸、自由端収縮、固定端収縮などの様々な延伸方法を、単独で用いることも、同時もしくは逐次で用いることもできる。延伸方向に関しても、水平方向、垂直方向、厚さ方向、対角方向等、様々な方向や次元に行なうことができる。延伸の温度は、樹脂フィルムのガラス転移温度(Tg)に対し、Tg−30℃〜Tg+60℃であることが好ましく、より好ましくはTg−10℃〜Tg+50℃である。
【0039】
上記延伸方法、延伸条件を適宜選択することにより、上記所望の光学特性(例えば、屈折率特性、面内位相差、Nz係数)を有する位相差フィルムを得ることができる。
【0040】
1つの実施形態においては、位相差フィルムは、長尺状の樹脂フィルムを長手方向に対して角度θの方向に連続的に斜め延伸することにより作製される。斜め延伸を採用することにより、フィルムの長手方向に対して角度θの配向角(角度θの方向に遅相軸)を有する長尺状の延伸フィルムが得られ、例えば、偏光子との積層に際してロールツーロールが可能となり、製造工程を簡略化することができる。偏光子の吸収軸は、その製造方法に起因して長尺状フィルムの長手方向または幅方向に発現するので、上記角度θは、偏光子の吸収軸と第2の光学補償層の遅相軸とのなす角度であり得る。
【0041】
斜め延伸に用いる延伸機としては、例えば、横および/または縦方向に、左右異なる速度の送り力もしくは引張り力または引き取り力を付加し得るテンター式延伸機が挙げられる。テンター式延伸機には、横一軸延伸機、同時二軸延伸機等があるが、長尺状の樹脂フィルムを連続的に斜め延伸し得る限り、任意の適切な延伸機が用いられ得る。
【0042】
位相差フィルム(延伸フィルム、すなわち第2の光学補償層)の厚みは、好ましくは20μm〜100μmであり、より好ましくは20μm〜80μmであり、さらに好ましくは20μm〜65μmである。このような厚みであれば、上記所望の面内位相差および厚み方向位相差が得られ得る。
【0043】
A−4.第3の光学補償層
第3の光学補償層50は、上述のとおり、屈折率特性がnz>nx≧nyの関係を示す。第3の光学補償層の厚み方向の位相差Rth(550)は、好ましくは−260nm〜−10nm、より好ましくは−230nm〜−15nm、さらに好ましくは−215nm〜−20nmである。このような光学特性を有する第3の光学補償層を設けることにより、斜め方向から見たときの反射色相が顕著に改善され、結果として、非常に優れた視野角特性を有する光学補償層付偏光板が得られ得る。
【0044】
1つの実施形態においては、第3の光学補償層は、その屈折率がnx=nyの関係を示す。ここで、「nx=ny」は、nxとnyが厳密に等しい場合のみならず、nxとnyが実質的に等しい場合も包含する。具体的には、Re(550)が10nm未満であることをいう。別の実施形態においては、第3の光学補償層は、その屈折率がnx>nyの関係を示す。したがって、第3の光学補償層は、遅相軸を有する場合がある。第3の光学補償層の遅相軸は、偏光子の吸収軸に対して実質的に直交または平行である。また、第3の光学補償層の面内位相差Re(550)は、好ましくは10nm〜150nmであり、より好ましくは10nm〜80nmである。
【0045】
第3の光学補償層は、任意の適切な材料で形成され得る。好ましくは、ホメオトロピック配向に固定された液晶層である。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであっても液晶ポリマーであってもよい。当該液晶化合物および当該液晶層の形成方法の具体例としては、特開2002−333642号公報の[0020]〜[0042]に記載の液晶化合物および形成方法が挙げられる。この場合、厚みは、好ましくは0.1μm〜5μmであり、より好ましくは0.2μm〜3μmである。
【0046】
別の好ましい具体例として、第3の光学補償層は、特開2012−32784号公報に記載のフマル酸ジエステル系樹脂で形成された位相差フィルムであってもよい。この場合、厚みは、好ましくは5μm〜80μmであり、より好ましくは10μm〜50μmである。
【0047】
A−5.保護層
保護層20は、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001−343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN−メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。
【0048】
保護層20には、必要に応じて、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。さらに/あるいは、保護層20には、必要に応じて、偏光サングラスを介して視認する場合の視認性を改善する処理(代表的には、(楕)円偏光機能を付与すること、超高位相差を付与すること)が施されていてもよい。このような処理を施すことにより、偏光サングラス等の偏光レンズを介して表示画面を視認した場合でも、優れた視認性を実現することができる。したがって、光学補償層付偏光板は、屋外で用いられ得る画像表示装置にも好適に適用され得る。
【0049】
保護層20の厚みは、代表的には5mm以下であり、好ましくは1mm以下、より好ましくは1μm〜500μm、さらに好ましくは5μm〜150μmである。なお、表面処理が施されている場合、保護層の厚みは、表面処理層の厚みを含めた厚みである。
【0050】
偏光子10と第1の光学補償層30との間に内側保護層が設けられる場合、当該内側保護層は、光学的に等方性であることが好ましい。本明細書において「光学的に等方性である」とは、面内位相差Re(550)が0nm〜10nmであり、厚み方向の位相差Rth(550)が−10nm〜+10nmであることをいう。内側保護層は、光学的に等方性である限り、任意の適切な材料で構成され得る。当該材料は、例えば、保護層20に関して上記した材料から適切に選択され得る。
【0051】
内側保護層の厚みは、好ましくは5μm〜200μm、より好ましくは10μm〜100μm、さらに好ましくは15μm〜95μmである。
【0052】
A−6.導電層または基材付導電層
導電層は、任意の適切な成膜方法(例えば、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法等)により、任意の適切な基材上に、金属酸化物膜を成膜して形成され得る。成膜後、必要に応じて加熱処理(例えば、100℃〜200℃)を行ってもよい。加熱処理を行うことにより、非晶質膜が結晶化し得る。金属酸化物としては、例えば、酸化インジウム、酸化スズ、酸化亜鉛、インジウム−スズ複合酸化物、スズ−アンチモン複合酸化物、亜鉛−アルミニウム複合酸化物、インジウム−亜鉛複合酸化物が挙げられる。インジウム酸化物には2価金属イオンまたは4価金属イオンがドープされていてもよい。好ましくはインジウム系複合酸化物であり、より好ましくはインジウム−スズ複合酸化物(ITO)である。インジウム系複合酸化物は、可視光領域(380nm〜780nm)で高い透過率(例えば、80%以上)を有し、かつ、単位面積当たりの表面抵抗値が低いという特徴を有している。
【0053】
導電層が金属酸化物を含む場合、該導電層の厚みは、好ましくは50nm以下であり、より好ましくは35nm以下である。導電層の厚みの下限は、好ましくは10nmである。
【0054】
導電層の表面抵抗値は、好ましくは300Ω/□以下であり、より好ましくは150Ω/□以下であり、さらに好ましくは100Ω/□以下である。
【0055】
導電層は、上記基材から第3の光学補償層に転写されて導電層単独で光学補償層付偏光板の構成層とされてもよく、基材との積層体(基材付導電層)として第3の光学補償層に積層されてもよい。代表的には、上記のとおり、導電層および基材は、基材付導電層として光学補償層付偏光板に導入され得る。
【0056】
基材を構成する材料としては、任意の適切な樹脂が挙げられる。好ましくは、透明性に優れた樹脂である。具体例としては、環状オレフィン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリエステル系樹脂、アクリル系樹脂が挙げられる。
【0057】
好ましくは、上記基材は光学的に等方性であり、したがって、導電層は等方性基材付導電層として光学補償層付偏光板に用いられ得る。光学的に等方性の基材(等方性基材)を構成する材料としては、例えば、ノルボルネン系樹脂やオレフィン系樹脂などの共役系を有さない樹脂を主骨格としている材料、ラクトン環やグルタルイミド環などの環状構造をアクリル系樹脂の主鎖中に有する材料などが挙げられる。このような材料を用いると、等方性基材を形成した際に、分子鎖の配向に伴う位相差の発現を小さく抑えることができる。
【0058】
基材の厚みは、好ましくは10μm〜200μmであり、より好ましくは20μm〜60μmである。
【0059】
A−7.その他
本発明の光学補償層付偏光板を構成する各層の積層には、任意の適切な粘着剤層または接着剤層が用いられる。粘着剤層は、代表的にはアクリル系粘着剤で形成される。接着剤層は、代表的にはポリビニルアルコール系接着剤で形成される。
【0060】
図示しないが、光学補償層付偏光板100の第3の光学補償層50側には、粘着剤層が設けられていてもよい。粘着剤層が予め設けられていることにより、他の光学部材(例えば、有機ELセル)へ容易に貼り合わせることができる。なお、この粘着剤層の表面には、使用に供されるまで、剥離フィルムが貼り合わされていることが好ましい。
【0061】
B.有機ELパネル
本発明の有機ELパネルは、有機ELセルと、該有機ELセルの視認側に上記A項に記載の光学補償層付偏光板と、を備える。光学補償層付偏光板は、第3の光学補償層が有機ELセル側となるように(偏光子が視認側となるように)積層されている。
【実施例】
【0062】
以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、各特性の測定方法は以下の通りである。
【0063】
(1)厚み
ダイヤルゲージ(PEACOCK社製、製品名「DG−205」、ダイヤルゲージスタンド(製品名「pds−2」))を用いて測定した。
(2)位相差
各光学補償層から50mm×50mmのサンプルを切り出して測定サンプルとし、Axometrics社製のAxoscanを用いて測定した。測定波長は450nm、550nm、測定温度は23℃であった。
また、アタゴ社製のアッベ屈折率計を用いて平均屈折率を測定し、得られた位相差値から屈折率nx、ny、nzを算出した。
(3)斜め方向の反射特性
実施例および比較例で得られた光学補償層付偏光板の特性を用いて、シミュレーションした。正面方向(極角0°)および斜め方向(極角60°)について評価した。シミュレーションには、シンテック社製、「LCD MASTER Ver.6.084」を用いた。LCD Masterの拡張機能を使用して、反射特性のシミュレーションを行った。より詳細には、正面反射強度、正面反射色相、斜め反射強度および斜め色相の評価を行った。斜め反射強度は極角60°、方位角45°、135°、225°および315°の4点の平均値を評価した。正面反射色相はニュートラルポイントからのΔu‘v’(ニュートラル)、斜め色相は極角60°、方位角0°〜360°におけるカラーシフトΔu‘v’を評価した。
【0064】
[実施例1]
(i)第1の光学補償層の作製
(i−1)ポリアリレートの合成
撹拌装置を備えた反応容器中で、2,2−ビス(4−ヒドロキシフェニル)−4−メチルペンタン27.0kgおよびテトラブチルアンモニウムクロライド0.8kgを、水酸化ナトリウム溶液250Lに溶解させた。この溶液に、テレフタル酸クロライド13.5kgとイソフタル酸クロライド6.30kgを300Lのトルエンに溶解させた溶液を撹拌しながら一度に加え、室温で90分間撹拌して、重縮合溶液とした。その後、前記重縮合溶液を静置分離してポリアリレートを含んだトルエン溶液を分離した。ついで、前記分離液を、酢酸水で洗浄し、さらにイオン交換水で洗浄した後、メタノールに投入してポリアリレートを析出させた。析出したポリアリレートを濾過し、減圧下で乾燥させることで、白色のポリアリレート34.1kg(収率92%)を得た。
【0065】
(i−2)位相差層の作製
上記で得られたポリアリレート10kgをトルエン73kgに溶解させ、塗工液を調製した。その後、当該塗工液を、収縮性フィルム(縦一軸延伸ポリプロピレンフィルム、東京インキ(株)製、商品名「ノーブレン」)の上に直接塗工し、その塗膜を乾燥温度60℃で5分間、80℃で5分間乾燥させ、収縮性フィルム/複屈折層の積層体を形成した。得られた積層体を、同時2軸延伸機を用いて、延伸温度155℃でMD方向に収縮倍率0.70、TD方向に1.15倍延伸することで収縮性フィルム上に位相差フィルムを形成した。ついで、当該位相差フィルムを収縮性フィルムから剥離した。位相差フィルムの厚みは15.0μm、Re(550)=272nm、Nz=0.25であった。この位相差フィルムを第1の光学補償層とした。
【0066】
(ii)第2の光学補償層の作製
(ii−1)ポリカーボネート樹脂フィルムの作製
撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置を用いて重合を行った。9,9−[4−(2−ヒドロキシエトキシ)フェニル]フルオレン(BHEPF)、イソソルビド(ISB)、ジエチレングリコール(DEG)、ジフェニルカーボネート(DPC)、および酢酸マグネシウム4水和物を、モル比率でBHEPF/ISB/DEG/DPC/酢酸マグネシウム=0.348/0.490/0.162/1.005/1.00×10−5になるように仕込んだ。反応器内を十分に窒素置換した後(酸素濃度0.0005〜0.001vol%)、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。
【0067】
第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、反応液をストランドの形態で抜出し、回転式カッターでペレット化を行い、BHEPF/ISB/DEG=34.8/49.0/16.2[mol%]の共重合組成のポリカーボネート樹脂を得た。このポリカーボネート樹脂の還元粘度は0.430dL/g、ガラス転移温度は128℃であった。
【0068】
(ii−2)位相差フィルムの作製
得られたポリカーボネート樹脂を80℃で5時間真空乾燥をした後、単軸押出機(いすず化工機社製、スクリュー径25mm、シリンダー設定温度:220℃)、Tダイ(幅900mm、設定温度:220℃)、チルロール(設定温度:125℃)および巻取機を備えたフィルム製膜装置を用いて、厚み130μmのポリカーボネート樹脂フィルムを作製した。得られたポリカーボネート樹脂フィルムの吸水率は1.2%であった。
【0069】
上記のようにして得られたポリカーボネート樹脂フィルムを、特開2014−194483号公報の実施例1に準じた方法で斜め延伸し、位相差フィルムを得た。
【0070】
位相差フィルムの具体的な作製手順は以下のとおりである:ポリカーボネート樹脂フィルム(厚み130μm、幅765mm)を延伸装置の予熱ゾーンで142℃に予熱した。予熱ゾーンにおいては、左右のクリップのクリップピッチは125mmであった。次に、フィルムが第1の斜め延伸ゾーンC1に入ると同時に、右側クリップのクリップピッチの増大を開始し、第1の斜め延伸ゾーンC1において125mmから177.5mmまで増大させた。クリップピッチ変化率は1.42であった。第1の斜め延伸ゾーンC1において、左側クリップのクリップピッチについてはクリップピッチの減少を開始し、第1の斜め延伸ゾーンC1において125mmから90mmまで減少させた。クリップピッチ変化率は0.72であった。さらに、フィルムが第2の斜め延伸ゾーンC2に入ると同時に、左側クリップのクリップピッチの増大を開始し、第2の斜め延伸ゾーンC2において90mmから177.5mmまで増大させた。一方、右側クリップのクリップピッチは、第2の斜め延伸ゾーンC2において177.5mmのまま維持した。また、上記斜め延伸と同時に、幅方向にも1.9倍の延伸を行った。なお、上記斜め延伸は135℃で行った。次いで、収縮ゾーンにおいて、MD収縮処理を行った。具体的には、左側クリップおよび右側クリップのクリップピッチをともに177.5mmから165mmまで減少させた。MD収縮処理における収縮率は7.0%であった。
【0071】
以上のようにして、位相差フィルム(厚み40μm)を得た。得られた位相差フィルムのRe(550)は147nm、Rth(550)は167nmであり(nx:1.5977、ny:1.59404、nz:1.5935)、nx>ny=nzの屈折率特性を示した。また、得られた位相差フィルムのRe(450)/Re(550)は0.89であった。位相差フィルムの遅相軸方向は、長手方向に対して45°であった。この位相差フィルムを第2の光学補償層とした。
【0072】
(iii)第3の光学補償層の作製
下記化学式(II)(式中の数字65および35はモノマーユニットのモル%を示し、便宜的にブロックポリマー体で表している:重量平均分子量5000)で示される側鎖型液晶ポリマー20重量部、ネマチック液晶相を示す重合性液晶(BASF社製:商品名PaliocolorLC242)80重量部および光重合開始剤(チバスペシャリティーケミカルズ社製:商品名イルガキュア907)5重量部をシクロペンタノン200重量部に溶解して液晶塗工液を調製した。そして、基材フィルム(ノルボルネン系樹脂フィルム:日本ゼオン(株)製、商品名「ゼオネックス」)に当該塗工液をバーコーターにより塗工した後、80℃で4分間加熱乾燥することによって液晶を配向させた。この液晶層に紫外線を照射し、液晶層を硬化させることにより、基材上に第2の光学補償層となる液晶固化層(厚み:1.10μm)を形成した。この層のRe(550)は0nm、Rth(550)は−135nmであり(nx:1.5723、ny:1.5723、nz:1.5757)、nz>nx=nyの屈折率特性を示した。
【0073】
【化2】
【0074】
(iv)積層体の作製
上記(i)の位相差フィルム(第1の光学補償層)と上記(ii)の位相差フィルム(第2の光学補償層)とをアクリル系粘着剤を介してロールツーロールにより貼り合わせ、位相差フィルム積層体を得た。この位相差フィルム積層体の第2の光学補償層に、アクリル系粘着剤を介してロールツーロールにより上記(iii)の液晶固化層(第3の光学補償層)を貼り合わせた後、上記基材フィルムを剥離除去して、第1の光学補償層/第2の光学補償層/第3の光学補償層の積層体を得た。
【0075】
(v)偏光子の作製
厚み30μmのポリビニルアルコール(PVA)系樹脂フィルム(クラレ製、製品名「PE3000」)の長尺ロールを、ロール延伸機により長手方向に5.9倍になるように長手方向に一軸延伸しながら同時に膨潤、染色、架橋、洗浄処理を施し、最後に乾燥処理を施すことにより厚み12μmの偏光子を作製した。
具体的には、膨潤処理は20℃の純水で処理しながら2.2倍に延伸した。次いで、染色処理は得られる偏光子の単体透過率が45.0%になるようにヨウ素濃度が調整されたヨウ素とヨウ化カリウムの重量比が1:7である30℃の水溶液中において処理しながら1.4倍に延伸した。更に、架橋処理は、2段階の架橋処理を採用し、1段階目の架橋処理は40℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.2倍に延伸した。1段階目の架橋処理の水溶液のホウ酸含有量は5.0重量%で、ヨウ化カリウム含有量は3.0重量%とした。2段階目の架橋処理は65℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.6倍に延伸した。2段階目の架橋処理の水溶液のホウ酸含有量は4.3重量%で、ヨウ化カリウム含有量は5.0重量%とした。また、洗浄処理は、20℃のヨウ化カリウム水溶液で処理した。洗浄処理の水溶液のヨウ化カリウム含有量は2.6重量%とした。最後に、乾燥処理は70℃で5分間乾燥させて偏光子を得た。
【0076】
(vi)偏光板の作製
上記偏光子の片側に、ポリビニルアルコール系接着剤を介して、TACフィルムの片面にハードコート処理により形成されたハードコート(HC)層を有するHC−TACフィルム(厚み:32μm、保護層に対応する)をロールツーロールにより貼り合わせ、保護層/偏光子の構成を有する長尺状の偏光板を得た。
【0077】
(vii)光学補償層付偏光板の作製
上記で得られた偏光板の偏光子面と上記で得られた第1の光学補償層/第2の光学補償層/第3の光学補償層の積層体の第1の光学補償層面とを、アクリル系粘着剤を介して貼り合わせ、保護層/偏光子/第1の光学補償層/第2の光学補償層/第3の光学補償層の構成を有する長尺状の光学補償層付偏光板を得た。この際、偏光子の吸収軸と第1の光学補償層の遅相軸が実質的に直交するように、および、偏光子の吸収軸と第2の光学補償層の遅相軸とのなす角度が45°となるようにして貼り合わせた。
【0078】
(viii)有機ELパネルの作製
得られた光学補償層付偏光板の第3の光学補償層側にアクリル系粘着剤で粘着剤層を形成し、寸法50mm×50mmに切り出した。
三星無線社製のスマートフォン(Galaxy−S5)を分解して有機ELパネルを取り出した。この有機ELパネルに貼り付けられている偏光フィルムを剥がし取り、かわりに、上記で切り出した光学補償層付偏光板を貼り合わせて有機ELパネルを得た。
【0079】
得られた光学補償層付偏光板の特性を用いて、上記(3)の反射特性のシミュレーションを行った。結果を表1に示す。
【0080】
[実施例2]
第1の光学補償層として下記のようにして得られたポリカーボネート系樹脂の位相差フィルムを用いたこと、および、偏光子の吸収軸と第1の光学補償層の遅相軸が実質的に平行となるように貼り合わせたこと以外は実施例1と同様にして、保護層/偏光子/第2の光学補償層/第2の光学補償層/第3の光学補償層の構成を有する光学補償層付偏光板を得た。さらに、この光学補償層付偏光板を用いたこと以外は実施例1と同様にして有機ELパネルを作製した。得られた光学補償層付偏光板および有機ELパネルを実施例1と同様の評価に供した。結果を表1に示す。
【0081】
カーボネート前駆物質としてホスゲン、芳香族2価フェノール成分として(A)2,2−ビス(4− ヒドロキシフェニル) プロパンおよび(B)1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンを用いて、常法に従い(A):(B)の重量比が4:6であって、重量平均分子量(Mw)60,000である下記式(3)および(4)の繰り返し単位を含むポリカーボネート系樹脂[数平均分子量(M n)=33,000、Mw/Mn=1.78]を得た。上記ポリカーボネート系樹脂70重量部と、重量平均分子量(Mw)1,300のスチレン系樹脂[数平均分子量(Mn)=716、Mw/Mn=1.78](三洋化成製ハイマーSB75)30重量部とをジクロロメタン300重量部に加え、室温下で4時間攪拌混合して透明な溶液を得た。この溶液をガラス板上にキャストし、室温で15 分間放置した後、ガラス板から剥離して、80℃のオーブンで10分、120℃で20分乾燥して、厚み36μm 、ガラス転移温度(Tg)が140℃ の高分子フィルムを得た。得られた高分子フィルムの波長590nmにおける光透過率は93%であった。また、上記高分子フィルムの面内位相差値:Re(590)は5.0nm、厚み方向の位相差値:Rth(590)は12.0nmであった。平均屈折率は、1.576であった。
【0082】
【化3】
【0083】
上記高分子フィルム(厚み36μm)の両側に、二軸延伸ポリプロピレンフィルム[東レ製、商品名「トレファン」(厚み60μm)] を、アクリル系粘着剤層(厚み15μm)を介して貼り合せた。その後、ロール延伸機でフィルムの長手方向を保持して、147℃の空気循環式恒温オーブン内で1.49倍に延伸した。得られた位相差フィルムは、厚みは40μm、Re(550)=270nm、Nz=0.75であった。
【0084】
[比較例1]
第1の光学補償層を積層しなかったこと以外は実施例1と同様にして、保護層/偏光子/第2の光学補償層/第3の光学補償層の構成を有する光学補償層付偏光板を得た。さらに、この光学補償層付偏光板を用いたこと以外は実施例1と同様にして有機ELパネルを作製した。得られた光学補償層付偏光板および有機ELパネルを実施例1と同様の評価に供した。結果を表1に示す。
【0085】
【0086】
[評価]
表1から明らかなように、本発明の実施例の光学補償層付偏光板は、正面方向の優れた反射防止特性を維持しつつ、斜め方向の反射防止特性も優れたものとすることができる。
【産業上の利用可能性】
【0087】
本発明の光学補償層付偏光板は、有機ELパネルに好適に用いられる。
【符号の説明】
【0088】
10 偏光子
20 保護層
30 第1の光学補償層
40 第2の光学補償層
50 第3の光学補償層
100 光学補償層付偏光板
図1