特許第6712812号(P6712812)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人金沢大学の特許一覧

特許6712812プローブ走査機構、プローブ装置および走査型プローブ顕微鏡
<>
  • 特許6712812-プローブ走査機構、プローブ装置および走査型プローブ顕微鏡 図000002
  • 特許6712812-プローブ走査機構、プローブ装置および走査型プローブ顕微鏡 図000003
  • 特許6712812-プローブ走査機構、プローブ装置および走査型プローブ顕微鏡 図000004
  • 特許6712812-プローブ走査機構、プローブ装置および走査型プローブ顕微鏡 図000005
  • 特許6712812-プローブ走査機構、プローブ装置および走査型プローブ顕微鏡 図000006
  • 特許6712812-プローブ走査機構、プローブ装置および走査型プローブ顕微鏡 図000007
  • 特許6712812-プローブ走査機構、プローブ装置および走査型プローブ顕微鏡 図000008
  • 特許6712812-プローブ走査機構、プローブ装置および走査型プローブ顕微鏡 図000009
  • 特許6712812-プローブ走査機構、プローブ装置および走査型プローブ顕微鏡 図000010
  • 特許6712812-プローブ走査機構、プローブ装置および走査型プローブ顕微鏡 図000011
  • 特許6712812-プローブ走査機構、プローブ装置および走査型プローブ顕微鏡 図000012
  • 特許6712812-プローブ走査機構、プローブ装置および走査型プローブ顕微鏡 図000013
  • 特許6712812-プローブ走査機構、プローブ装置および走査型プローブ顕微鏡 図000014
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6712812
(24)【登録日】2020年6月4日
(45)【発行日】2020年6月24日
(54)【発明の名称】プローブ走査機構、プローブ装置および走査型プローブ顕微鏡
(51)【国際特許分類】
   G01Q 10/04 20100101AFI20200615BHJP
【FI】
   G01Q10/04 101
【請求項の数】12
【全頁数】19
(21)【出願番号】特願2017-552418(P2017-552418)
(86)(22)【出願日】2016年11月22日
(86)【国際出願番号】JP2016084534
(87)【国際公開番号】WO2017090582
(87)【国際公開日】20170601
【審査請求日】2019年10月17日
(31)【優先権主張番号】特願2015-229108(P2015-229108)
(32)【優先日】2015年11月24日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】504160781
【氏名又は名称】国立大学法人金沢大学
(74)【代理人】
【識別番号】100109210
【弁理士】
【氏名又は名称】新居 広守
(72)【発明者】
【氏名】渡邉 信嗣
(72)【発明者】
【氏名】安藤 敏夫
【審査官】 山口 剛
(56)【参考文献】
【文献】 特開平02−297003(JP,A)
【文献】 特開平08−248322(JP,A)
【文献】 特開平01−270602(JP,A)
【文献】 特開2007−147421(JP,A)
【文献】 渡辺信嗣、古寺哲幸、内橋貴之、安藤敏夫、渡辺大輝,“高速イオン伝導顕微鏡による生物試料の高解像観察”,応用物理学会秋季学術講演会講演予稿集(CD-ROM),日本,応用物理学会,2016年 9月 1日,Vol.77th,ROMBUNNO.13a-B10-6
【文献】 渡辺信嗣、安藤敏夫,“生物試料観察のための高速走査型イオン伝導顕微鏡の開発”,応用物理学会春季学術講演会講演予稿集(CD-ROM),日本,応用物理学会,2016年 3月 3日,Vol.63rd,ROMBUNNO.20A-W323-12
(58)【調査した分野】(Int.Cl.,DB名)
G01Q 10/00 − 90/00
JSTPlus(JDreamIII)
JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
長尺のプローブを走査するプローブ走査機構であって、
前記プローブの長尺方向と同一の方向の両端を貫通する第1の貫通孔を有し、前記第1の貫通孔に挿入された前記プローブを前記プローブの長尺方向に走査する圧電素子と、
前記圧電素子を収容する筒状の筐体と、
前記筐体の一端および他端にそれぞれ固定され、前記圧電素子を挟んで前記筐体に支持する一対の支持部材と、
前記一対の支持部材の一方を前記圧電素子の伸縮軸方向の一端に固定し前記一対の支持部材の他方を前記圧電素子の伸縮軸方向の他端に固定する固定部材と、
少なくとも前記プローブの先端側において、前記プローブを前記第1の貫通孔の内部に保持する保持部材とを備える
プローブ走査機構。
【請求項2】
前記固定部材は、前記圧電素子の伸縮軸方向と同一の方向の両端を貫通する第2の貫通孔を有し、
前記保持部材は、前記プローブの先端側と前記プローブの後端側とにおいて、前記プローブを前記第2の貫通孔の内部に保持する
請求項1に記載のプローブ走査機構。
【請求項3】
前記保持部材は、前記プローブの先端側を前記プローブの後端側よりも強固に保持する
請求項2に記載のプローブ走査機構。
【請求項4】
前記保持部材は、弾性部材で形成されている
請求項1〜3のいずれか1項に記載のプローブ走査機構。
【請求項5】
前記弾性部材は、接着剤である
請求項4に記載のプローブ走査機構。
【請求項6】
前記プローブと前記固定部材との間に前記第2の貫通孔に挿入される挿入部材を有し、
前記挿入部材は、側面にネジ山を有し、
前記固定部材は、前記第2の貫通孔の内部の側面にネジ溝を有し、
前記挿入部材は、前記ネジ山が前記ネジ溝とかみ合って前記第2の貫通孔の内部にネジ締めされている
請求項2に記載のプローブ走査機構。
【請求項7】
前記プローブと前記挿入部材との間に中間部材を有し、
前記プローブは、前記中間部材を介して前記第2の貫通孔の内部に保持される
請求項6に記載のプローブ走査機構。
【請求項8】
前記一対の支持部材は、弾性を有する
請求項1〜7のいずれか1項に記載のプローブ走査機構。
【請求項9】
前記支持部材は、ダイアフラム構造を有する
請求項8に記載のプローブ走査機構。
【請求項10】
前記一対の支持部材は、同一の構成である
請求項1〜9のいずれか1項に記載のプローブ走査機構。
【請求項11】
請求項1〜10のいずれか1項に記載のプローブ走査機構と、
前記プローブ走査機構に保持されたプローブとを備える
プローブ装置。
【請求項12】
請求項11に記載のプローブ装置と、
試料を搭載するステージとを備える
走査型プローブ顕微鏡。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、プローブ走査機構、プローブ装置および走査型プローブ顕微鏡に関する。
【背景技術】
【0002】
走査型プローブ顕微鏡は、プローブを試料に対して走査することにより、凹凸などの試料表面の物理情報または試料の化学的性質を信号として取得する顕微鏡である。
【0003】
走査型プローブ顕微鏡には、例えば、原子間力顕微鏡(AFM)、走査型トンネル顕微鏡(STM)、走査型磁気力顕微鏡(MFM)、走査型電気容量顕微鏡(SCaM)、走査型近接場光顕微鏡(SNOM)、走査型熱顕微鏡(SThM)、走査型イオン伝導顕微鏡(SICM)などがある。これらの走査型プローブ顕微鏡では、プローブまたは試料を水平方向(XY方向)と垂直方向(Z方向)に走査し、得られた試料の物理情報または化学的性質を順次表示することにより、試料の物理情報または化学的性質を動的に画像として表している。
【0004】
走査型プローブ顕微鏡は、プローブまたは試料を水平方向と垂直方向に走査するために、X、Y、Zの各方向に移動可能な走査機構(Xスキャナ、Yスキャナ、Zスキャナ)を備えている(例えば、特許文献1参照)。特許文献1には、プローブ顕微鏡用走査機構が開示され、Z方向に伸縮する圧電素子のZ方向の一端を固定し(固定端)、他端(自由端)にプローブまたは試料を取り付ける構成が示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2006−126145号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
走査型プローブ顕微鏡において高速に画像を取得するには、各軸方向の走査機構(スキャナ)が高速にプローブまたは試料を走査する必要がある。スキャナの各方向の走査周波数は、対応する方向のスキャナ(Xスキャナ、Yスキャナ、Zスキャナ)の共振周波数により制限される。特に、Zスキャナは最も高速に走査することが必要であり、Zスキャナの共振周波数により画像取得速度が制限される場合が多い。
【0007】
しかし、従来の走査型プローブ顕微鏡では、Zスキャナの共振周波数が極めて低く、高速にZスキャナを走査して画像を取得することができないという問題がある。例えば、SICMでは、プローブとしてガラスピペットを使用するが、プローブをZスキャナに着脱するためのホルダー構造が大きく重いため、プローブをZスキャナの圧電素子に取り付けた場合に、Zスキャナの共振周波数が大幅に低下する。その結果、プローブをZ方向に高速に走査できないという課題が生じている。
【0008】
上記課題に鑑み、本発明は、プローブを高速に走査することができるプローブ走査機構、プローブ装置および走査型プローブ顕微鏡を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記の課題を解決するため、本発明にかかるプローブ走査機構は、長尺のプローブを走査するプローブ走査機構であって、前記プローブの長尺方向と同一の方向の両端を貫通する第1の貫通孔を有し、前記第1の貫通孔に挿入された前記プローブを前記プローブの長尺方向に走査する圧電素子と、前記圧電素子を収容する筒状の筐体と、前記筐体の一端および他端にそれぞれ固定され、前記圧電素子を挟んで前記筐体に支持する一対の支持部材と、前記一対の支持部材の一方を前記圧電素子の長尺伸縮軸方向の一端に固定し前記一対の支持部材の他方を前記圧電素子の伸縮軸方向の他端に固定する固定部材と、少なくとも前記プローブの先端側において、前記プローブを前記第1の貫通孔の内部に保持する保持部材とを備える。
【0010】
これにより、プローブの着脱を容易に行うことができ、プローブを取り付けても共振周波数がほとんど低下することがないので、プローブを高速に走査することができる。したがって、プローブをZ方向に高速に走査することができるプローブ走査機構を提供することができる。よって、このプローブ走査機構を用いて、計測画像を高速に取得することができるプローブ装置を実現することができ、このプローブ装置を用いた走査型プローブ顕微鏡において、短時間に高解像度の画像を取得することができる。
【0011】
また、前記固定部材は、前記圧電素子の伸縮軸方向と同一の方向の両端を貫通する第2の貫通孔を有し、前記保持部材は、前記プローブの先端側と前記プローブの後端側とにおいて、前記プローブを前記第2の貫通孔の内部に保持してもよい。
【0012】
これにより、プローブを安定して固定部材の第2の貫通孔の内部に保持することができるので、プローブをZ方向に高速に走査することができる。
【0013】
また、前記保持部材は、前記プローブの先端側を前記プローブの後端側よりも強固に保持してもよい。
【0014】
これにより、プローブの先端側が後端側よりも強固に保持されるので、圧電素子の変位とともにプローブも変位し、圧電素子の変位に起因するプローブへの好ましくない振動の混入を抑えることができる。したがって、プローブの先端側を安定して保持することができる。
【0015】
また、前記保持部材は、弾性部材で形成されていてもよい。
【0016】
これにより、圧電素子の変位が大きい場合であっても、弾性の大きさを適切に変更することにより、プローブの先端側と後端側の保持力を変更することができる。したがって、プローブをより安定して保持することができる。
【0017】
また、前記弾性部材は、接着剤であってもよい。
【0018】
これにより、接着剤によりプローブを第1の貫通孔の内部に容易に保持することができる。また、プローブをプローブ走査機構から取り外すときには、プローブの後端側を突起物で押圧することにより接着剤を剥がし、プローブを第2の貫通孔から容易に押し出すことができる。
【0019】
また、前記プローブと前記固定部材との間に前記第2の貫通孔に挿入される挿入部材を有し、前記挿入部材は、側面にネジ山を有し、前記固定部材は、前記第2の貫通孔の内部の側面にネジ溝を有し、前記挿入部材は、前記ネジ山が前記ネジ溝とかみ合って前記第2の貫通孔の内部にネジ締めされていてもよい。
【0020】
これにより、挿入部材を介してプローブを第2の貫通孔の内部に保持することができる。
【0021】
また、前記プローブと前記挿入部材との間に中間部材を有し、前記プローブは、前記中間部材を介して前記第2の貫通孔の内部に保持されてもよい。
【0022】
これにより、プローブと挿入部材との間に中間部材を配置することにより、プローブと挿入部材とが接着剤により接合しにくい材料であっても、中間部材を介して接着材によりプローブを挿入部材に接合することができる。
【0023】
また、前記一対の支持部材は、弾性を有してもよい。
【0024】
これにより、圧電素子の変位に応じて支持部材が振動するので、圧電素子を安定して支持することができる。
【0025】
また、前記支持部材は、ダイアフラム構造を有してもよい。
【0026】
これにより、支持部材は板状であってかつバネ機能を有するいわゆる板バネであるので、圧電素子の両端を挟んで支持部材を弾性的に筐体に固定することができる。したがって、圧電素子を安定して支持することができる。
【0027】
また、前記一対の支持部材は、同一の構成であってもよい。
【0028】
これにより、一対の支持部材の間に支持された圧電素子の変位に応じて支持部材が振動しても、支持部材の振動の撃力が相互に打ち消しあうので、圧電素子の重心がずれることなく、圧電素子の共振周波数が下がらない。
【0029】
また、上記の課題を解決するため、本発明にかかるプローブ装置は、上述した特徴を有するプローブ走査機構と、前記プローブ走査機構に保持されたプローブとを備える。
【0030】
これにより、上述した特徴を有するプローブ走査機構を用いて、計測画像を高速に取得することができるプローブ装置を提供することができる。
【0031】
また、上記の課題を解決するため、本発明にかかる走査型プローブ顕微鏡は、上述した特徴を有するプローブ装置と、試料を搭載するステージとを備える。
【0032】
これにより、上述した特徴を有するプローブ装置を用いた走査型プローブ顕微鏡によって、ステージに搭載された計測試料を高速に走査して、短時間に高解像度の計測画像を取得することができる。なお、走査型プローブ顕微鏡は、ステージではなくプローブ装置にXY走査機構を搭載した構成であってもよい。
【発明の効果】
【0033】
本発明により、プローブを高速に走査することができるプローブ走査機構、プローブ装置および走査型プローブ顕微鏡を提供することができる。
【図面の簡単な説明】
【0034】
図1図1は、実施の形態1にかかるプローブ装置の外観を示す概略図である。
図2図2は、実施の形態1にかかるプローブ装置の分解図である。
図3図3は、図1に示したIII−III線における断面図である。
図4図4は、実施の形態1にかかるプローブ走査機構の筐体の概略図である。
図5A図5Aは、実施の形態1にかかるプローブ走査機構の支持部材の概略図である。
図5B図5Bは、実施の形態1にかかるプローブ走査機構の支持部材の底面図である。
図6図6は、プローブの取付手順について説明するための図である。
図7図7は、実施の形態1にかかるプローブ走査機構の動作を示す概略図である。
図8図8は、実施の形態1にかかるプローブ走査機構の特性を示すグラフである。
図9図9は、実施の形態1にかかる走査型プローブ顕微鏡の構成を示す概略図である。
図10図10は、実施の形態1の変形例にかかるプローブ走査機構の支持部材の他の構成を示す底面図である。
図11図11は、実施の形態2にかかるプローブ装置の断面図である。
図12図12は、実施の形態3にかかるプローブ装置の断面図である。
【発明を実施するための形態】
【0035】
以下、図面を用いて、本発明にかかる実施の形態について説明する。なお、図面において、同一の符号が付された構成要素は、同一または同種の構成要素を示す。
【0036】
また、以下で説明する実施の形態は、本発明の好ましい一具体例を示す。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置、接続形態、ステップおよびステップの順序等は、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、より望ましい形態を構成する任意の構成要素として説明される。
【0037】
(実施の形態1)
本実施の形態における走査型プローブ顕微鏡100は、例えば、SICM(走査型イオン伝導顕微鏡、または、イオンコンダクタンス顕微鏡ともいう。)である。
【0038】
SICMは、内部を電解質で満たしたガラスピペットをプローブとして、ガラスピペット外部の電解液中に留置した対照電極とピペット内電極の間に生じたイオン電流を信号として用いる。このイオン電流は、ガラスピペットの先端が試料に近接して遮蔽されることで変化する。SICMは、この現象を利用しながらガラスピペットを走査して、試料表面の立体形状を画像化するものである。計測試料は、柔らかい生きた真核細胞などであり、SICMは、電解質液中の真核細胞などを生きたまま立体観察することができる顕微鏡である。
【0039】
従来のSICMは、プローブもしくは試料を載置したステージをXYZ方向に走査することにより、試料表面の形状を得ている。走査型プローブ顕微鏡において、プローブと試料表面と非接触の状態で高感度に計測する場合には、プローブと試料表面との距離を一定に保ちながら計測を行う。したがって、SICMでは、試料表面の凹凸形状に応じてプローブをZ方向に走査する必要があり、Z方向の走査はXY方向の走査よりも素早い走査が求められている。
【0040】
[プローブ走査機構およびプローブ装置の構成]
はじめに、本実施の形態にかかるプローブ走査機構およびプローブ装置の構成について、図1〜5Bを用いて説明する。図1は、本実施の形態にかかるプローブ装置の外観を示す概略図である。図2は、本実施の形態にかかるプローブ装置の分解図である。図3は、図1に示したIII−III線における断面図である。図4は、本実施の形態にかかるプローブ走査機構の筐体の概略図である。図5Aは、本実施の形態にかかるプローブ走査機構の支持部材の概略図である。図5Bは、本実施の形態にかかるプローブ走査機構の支持部材の底面図である。
【0041】
図1図3に示すように、本実施の形態にかかるプローブ装置1は、プローブ走査機構10と、プローブ走査機構10に保持されたプローブ20とを備えている。
【0042】
プローブ走査機構10は、図2に示すように、筐体11と、支持部材12aおよび12bと、ネジ部材13と、固定部材14と、圧電素子15と、保持部材16と、挿入部材17とを備えている。
【0043】
筐体11の外観は、図4に示すように、一辺が10mm程度の略四角柱の形状をしている。そして、四角柱の形状において一方向の両端を貫通するように空洞11aが形成されている。空洞11aの、筐体11の両端における形状は、直径8mm程度の円形である。空洞11aには、後に説明する圧電素子15が挿入される。筐体11は、例えばステンレス、ジュラルミン、チタン合金で形成されている。
【0044】
支持部材12aは、図5Aおよび図5Bに示すように、平面視において略正方形の形状を有している。支持部材12aを平面視したとき、支持部材12aの四隅には、それぞれ固定穴31が形成されている。また、支持部材12aを平面視したとき、支持部材12aの中心には、開口部32が形成されている。さらに、図5Aに示すように、支持部材12aの上面には、開口部32を囲むように凹部33が形成されている。また、図5Bに示すように、支持部材12aの底面には、凹部33が形成されていない。なお、支持部材12aの底面にも凹部33が形成されていてもよい。支持部材12aは、凹部33が形成されていない底面が筐体11と当接して固定される。
【0045】
支持部材12aの大きさは、例えば、支持部材12aの正方形の一辺が10mm、厚さが1mm、固定穴31の直径が1.5mm、開口部32の直径が3mm、凹部33の直径が5.1mm、凹部33の深さが0.5mmである。
【0046】
また、凹部33と固定穴31のそれぞれとの間には、溝34が形成されている。溝34は、開口部32の中心から例えば4mmの位置に、開口部32の中心を中心とする円の周方向に沿って形成されている。溝34の周方向の長さは4mm、溝34の幅は0.5mmである。このような構成により、支持部材12aは、開口部32の中心を通る軸方向に弾性を有している。なお、開口部32の中心を通る軸方向は、後に説明する圧電素子15の伸縮軸方向と同一の方向である。支持部材12aは、いわゆるダイアフラム構造を有する。このときの、支持部材12aのばね定数は、後述する圧電素子15のばね定数の1/5以下程度であることが望ましい。
【0047】
この構成により、支持部材12aは、開口部32の中心を通る軸方向に振動することができる。支持部材12aは、例えばジュラルミンで形成されている。
【0048】
なお、支持部材12bは、支持部材12aと同一の構成である。したがって、支持部材12bについては詳細な説明を省略する。支持部材12bと支持部材12aと同一の構成とすることにより、支持部材12aと支持部材12bとの間に支持された圧電素子15の変位に応じて支持部材12aおよび支持部材12bが振動しても、支持部材12aおよび支持部材12bの振動の撃力が相互に打ち消しあうので、圧電素子15の重心がずれることなく、圧電素子15を安定して支持することができる。
【0049】
支持部材12aおよび12bは、図1および図3に示すように、筐体11において、空洞11aが貫通した両端にネジ部材13により固定されている。支持部材12aはプローブ20の先端側に配置され、支持部材12bはプローブ20の後端側に配置される。
【0050】
なお、支持部材12aと支持部材12bとは、材料および形状が同一であってもよいし、異なっていてもよい。支持部材12aと支持部材12bとを異なる材料で構成する場合には、支持部材12aと支持部材12bのばね定数とが同一になるように、支持部材12aおよび支持部材12bの厚さなどの形状を調整することが望ましい。
【0051】
ネジ部材13は、支持部材12aおよび支持部材12bを筐体11に固定するネジである。ネジ部材13は、支持部材12aおよび支持部材12bの固定穴を通して、筐体11のネジ穴11bに固定される。
【0052】
圧電素子15は、例えば、円筒状の圧電素子が複数積層された積層型圧電素子で構成されている。圧電素子15は、例えば、底面の直径が5mm、長さが10mmであり、自由振動の共振周波数が120kHz程度で変位が10μm程度のものである。また、圧電素子15が伸縮する方向を伸縮軸方向といい、伸縮軸方向はプローブの長尺方向に相当する。圧電素子15は、伸縮軸方向の両端を貫通する第1の貫通孔を有している。すなわち、圧電素子15には、積層方向の両端を貫通する第1の貫通孔15aが形成されている。第1の貫通孔15aの直径は、一例として3mmである。圧電素子15は、電圧印加に応じて積層方向すなわちプローブの長尺方向に伸縮する。圧電素子15の中心軸は、プローブ走査機構10の重心を通るように配置されている。
【0053】
圧電素子15は、伸縮軸方向の両端に、支持部材12aおよび支持部材12bが後に説明する固定部材14により固定されている。すなわち、圧電素子15は、支持部材12aおよび支持部材12bにより伸縮軸方向の両端が挟まれ、さらに、筐体11に接続されている。これにより、圧電素子15の伸縮に応じて支持部材12aおよび支持部材12bが振動することになる。
【0054】
固定部材14は、図2および図3に示すように、円筒状の形状を有しており、一端側の直径が、他端側よりも大きく形成されている。固定部材14の一端側の直径は、支持部材12aおよび支持部材12bに形成された凹部33とほぼ同一の大きさである。また、固定部材14の他端側の直径は、圧電素子15に形成された第1の貫通孔15aの直径とほぼ同一である。また、固定部材14は、圧電素子15の伸縮軸方向と同一の方向の両端を貫通する第2の貫通孔を有している。すなわち、固定部材14には、上記した一端側から他端側に貫通する第2の貫通孔14aが形成されている。第2の貫通孔14aの内部は、上記した一端側の一部にネジ溝が形成されている。また、第2の貫通孔14aの内部の他端側は、第2の貫通孔14aの直径が小さくなるように形成されている。なお、第2の貫通孔14aの直径は、プローブ20の直径より大きく形成されている。
【0055】
固定部材14は、図3に示すように、他端側が支持部材12aおよび支持部材12bの開口部32を貫通して圧電素子15の第1の貫通孔15aに挿入される。このとき、固定部材14の一端側は、支持部材12aおよび支持部材12bの凹部33に嵌る構成となっている。これにより、固定部材14は、支持部材12aおよび支持部材12bを圧電素子15に当接して固定される。このとき、支持部材12aおよび支持部材12bの上面と固定部材14の他端側の端面とは面一となっている。固定部材14は、例えば、ステンレス、ジュラルミン、チタン合金等で形成されている。
【0056】
保持部材16は、図3に示すように、固定部材14に形成された第2の貫通孔14aの内部において、第2の貫通孔14aの内壁とプローブ20との間に配置される。保持部材16は、弾性部材で形成されている。例えば、保持部材16は、シリコーンチューブで形成されていてもよい。これにより、保持部材16は、プローブ20を固定部材14に形成された第2の貫通孔14aの内部に保持する。
【0057】
なお、保持部材16は、弾性部材でなくても、プローブ20を固定部材14に固定することができるものであればどのようなものであってもよい。
【0058】
挿入部材17は、プローブ20と固定部材14との間に配置され、保持部材16を固定部材14に形成された第2の貫通孔14aの内部に挿入する部材である。挿入部材17は、例えば、ステンレス、ジュラルミン、チタン合金等で形成されている。挿入部材17は、固定部材14の第2の貫通孔14aの内径とほぼ同一の直径を有する円柱状の形状を有し、円柱状の側面にネジ山を有している。挿入部材17は、ネジ山が固定部材14の第2の貫通孔14aの内部の側面に形成されたネジ溝とかみ合って第2の貫通孔14aの内部にネジ締めされている。
【0059】
よって、保持部材16をプローブ20の周囲に配置して挿入部材17をネジ回しすることで、保持部材16を押し潰しながら、保持部材16を固定部材14の第2の貫通孔14aの奥に挿入することができる。これにより、挿入部材17を介してプローブ20を固定部材14の第2の貫通孔14aに保持することができる。
【0060】
なお、プローブ20は、支持部材12aおよび支持部材12bのそれぞれに固定された固定部材14において、保持部材16および挿入部材17によって固定部材14の第2の貫通孔14aに保持される。すなわち、保持部材16は、プローブ20の先端側と後端側とにおいて、プローブ20を固定部材14の第2の貫通孔14aの内部に保持する。このとき、保持部材16の大きさまたは材質を、プローブ20の先端側と後端側とで変えることにより、保持部材16は、プローブ20の先端側を後端側よりも強固に保持してもよい。例えば、プローブ20の先端側に配置される保持部材16を後端側に配置される保持部材16よりも硬い材質で形成してもよいし、プローブ20の先端側に配置される保持部材16を後端側に配置される保持部材16よりも大きくしてもよい。これにより、プローブ20の先端を安定して固定部材14の第2の貫通孔14aの内部に保持することができる。したがって、プローブ20の先端を安定して圧電素子15の第1の貫通孔15aの内部に保持することができる。
【0061】
プローブ20は、例えばガラスピペットで構成されている。プローブ20は、例えば、直径が1mm、長さが10mm程度である。プローブ20の重量は20mg以下であり、圧電素子15の質量の1%以下である。プローブ20の内部には、プローブ20の長尺方向に導線20aが配置されている。
【0062】
プローブ20は、図3に示すように、固定部材14に形成された第2の貫通孔14aの内部に保持部材16により保持される。プローブ20は、プローブ20の先端側と後端側の2箇所で圧電素子15に保持される。このとき、プローブ20の先端は、支持部材12aから1mm程度突出している。
【0063】
これにより、圧電素子15がプローブの長尺方向に伸縮すると共に、プローブ20も長尺方向に変位する。このときのプローブ20の変位量は、圧電素子15の振幅が10〜12μmに対し、プローブ20の振幅が5〜6μmとなる。
【0064】
なお、プローブ20はガラスピペットに限らず、走査型プローブ顕微鏡の種類に応じて適宜変更してもよい。
【0065】
[プローブの取付手順]
次に、プローブ20のプローブ走査機構10への取付手順について説明する。図6は、プローブの取付手順について説明するための図である。
【0066】
はじめに、プローブ走査機構10の組み立てを行う。筐体11に形成された空洞11aの内部に圧電素子15を挿入し、圧電素子15の伸縮軸方向の両端を支持部材12aおよび支持部材12bにより挟んで支持する。そして、支持部材12aおよび支持部材12bをネジ部材13により筐体11に固定する(ステップS10)。
【0067】
次に、固定部材14を、支持部材12aおよび支持部材12bに形成された開口部32を通して圧電素子15の第1の貫通孔15aに取り付ける。これにより、圧電素子15の長尺方向の両端がそれぞれ支持部材12aおよび支持部材12bに固定される(ステップS12)。
【0068】
図7は、本実施の形態にかかるプローブ走査機構の動作を示す概略図である。図7は、圧電素子15の長尺方向の両端を支持部材12aおよび支持部材12bにより挟んで支持し、支持部材12aおよび支持部材12bをネジ部材13により筐体11に固定し、さらに、支持部材12aおよび支持部材12bを固定部材14により圧電素子15の伸縮軸方向の両端に固定したときのプローブ走査機構10を、正面から透視した図である。図7において、透視した正面側の筐体11は図示を省略している。
【0069】
図7に示すように、圧電素子15と支持部材12aおよび支持部材12bとは固定されているので、支持部材12aおよび支持部材12bは、圧電素子15の伸縮に応じて圧電素子15および筐体11の長尺方向に振動する。すなわち、プローブ装置1において、圧電素子15に電圧を印加することにより、プローブ20はZ方向に変位することとなる。
【0070】
次に、プローブ20の取り付けを行う。
【0071】
はじめに、プローブ20を固定部材14の第2の貫通孔14aに挿入する(ステップS14)。予め、プローブ20の後端側から挿入部材17および保持部材16を通し、先端側の所定の位置に配置しておく。挿入部材17および保持部材16のプローブ20における配置位置は、プローブ20をプローブ走査機構10に取り付けたときに、可能な限り先端を突出しない配置が望ましい。例えば突出の程度が30mm以下であることが望ましい。そして、挿入部材17および保持部材16が配置されたプローブ20を、支持部材12aに配置された固定部材14の第2の貫通孔14aに挿入する。このとき、プローブ20を後端側から第2の貫通孔14aに挿入する。プローブ20の先端の破損を防ぐためである。
【0072】
次に、保持部材16を挿入部材17により固定部材14とプローブ20の間に挿入する(ステップS16)。このとき、挿入部材17を固定部材14の第2の貫通孔14aの内部に形成されたネジ溝にネジ締めしながら、保持部材16を固定部材14の第2の貫通孔14aの内部に押し込む。これにより、保持部材16が第2の貫通孔14a内に潰されながら押し込まれるので、プローブ20の先端側を、支持部材12aに配置された固定部材14に弾性的に固定することができる。プローブ20を固定部材14に固定する強度は、挿入部材17の挿入位置を変更することにより保持部材16の潰れ具合を変更して調整することができる。
【0073】
次に、他の保持部材16および挿入部材17を、プローブ20の後端側に通し、先端側と同様に、保持部材16を挿入部材17により、支持部材12bに配置された固定部材14とプローブ20の間に挿入する。プローブ20の先端側の取り付けと同様に、挿入部材17を固定部材14の第2の貫通孔14aの内部に形成されたネジ溝にネジ締めしながら、保持部材16を固定部材14の第2の貫通孔14aの内部に押し込む。これにより、保持部材16が第2の貫通孔14a内に潰されながら押し込まれるので、プローブ20の後端側を、支持部材12bに配置された固定部材14に弾性的に固定することができる。
【0074】
その後、プローブ20の後端側を所望の長さに切断することにより、プローブ20の取付が終了する。
【0075】
上述したプローブ走査機構10およびプローブ20の取付方法により、例えばSICMにおいて、プローブ装置1の大きさと重量は、従来の1/10以下に低減することができる。
【0076】
図8は、本実施の形態にかかるプローブ走査機構10の特性を示すグラフである。図8は、プローブ走査機構10の圧電素子15として、底面の直径が5mm、第1の貫通孔15aの直径が3mm、長さが10mm、自由振動の共振周波数を120kHz程度としたときの変位が10μm程度となるものを用いて、プローブ20をプローブ走査機構10に取り付けた場合のプローブ20の振動特性を示している。図8において、横軸は圧電素子15を駆動するための電圧信号(駆動信号)の周波数、左側の縦軸は各駆動周波数の振幅に対するプローブ20の先端の変位の割合(Gain)である。
【0077】
上述したプローブ走査機構10およびプローブ20の取付方法により、プローブ装置1の大きさと重量を従来の1/10以下に低減することができたため、図8に示すように、プローブ20の先端の変位は、共振周波数が100Hzから共振周波数が120kHz程度までは急峻な変化や不連続な変化はなく安定している。なお、図示を省略しているが、プローブ20の先端の位相の変化についても、プローブ20の先端の変位の変化と同様である。この結果より、プローブ20をプローブ走査機構10に取り付けたプローブ装置1の共振周波数は、プローブ20を取り付ける前のプローブ走査機構10の共振周波数とほぼ同じ120kHz程度であることがわかる。したがって、プローブ走査機構10の共振周波数が120kHz程度であるプローブ走査機構10では、プローブ20をプローブ走査機構10に取り付けても、プローブ装置1の共振周波数はほとんど低下しないことが確認できた。
【0078】
比較例として、市販のSICMのZスキャナの共振周波数について説明する。圧電素子の変位が25μm程度の市販のSICMのZスキャナでは、Zスキャナの共振周波数は、プローブを取り付けていない場合は3kHz程度であるが、プローブを取り付けた場合は1kHz程度となり、プローブを取り付けていない場合の1/3に低下する。
【0079】
これに対し、本実施の形態にかかるプローブ装置1では、プローブ20をプローブ走査機構10に取り付けたプローブ装置1の共振周波数は、プローブ20を取り付ける前のプローブ走査機構10の共振周波数とほぼ同じであった。したがって、上述した本実施の形態にかかる、共振周波数が100kHzを超えるプローブ走査機構10は、市販のSICMで用いられているZスキャナの100倍以上の高速動作を行うことができるといえる。
【0080】
なお、プローブ20を交換する際には、挿入部材17をネジ溝に沿って緩めて保持部材16のプローブ20に対する固定を緩めることにより、プローブ20を固定部材14から抜き出すことができる。そして、新たなプローブ20を後端側から固定部材14の第2の貫通孔14aに挿入し、挿入部材17をネジ溝に沿って締めることで保持部材16を潰しながら固定部材14の第2の貫通孔14aに挿入する。これにより、新たなプローブ20を固定部材14に再度固定することができる。したがって、本実施の形態にかかるプローブ走査機構10の構成によると、プローブ20の着脱を容易に行うことができる。
【0081】
[走査型プローブ顕微鏡]
次に、上述したプローブ装置1を備える走査型プローブ顕微鏡100について説明する。図9は、本実施の形態にかかる走査型プローブ顕微鏡100の構成を示す概略図である。
【0082】
図9に示すように、本実施の形態にかかる走査型プローブ顕微鏡100は、プローブ装置1と、試料200を搭載するステージ110とを備えている。ステージ110は、プローブ走査機構10の走査方向と直交する方向に移動する。つまり、試料200を載置したステージ110はXY方向、プローブ20を組み込んだプローブ装置1はZ方向に移動する。なお、走査型プローブ顕微鏡100は、ステージ110ではなくプローブ装置1にXY走査機構を搭載した構成であってもよい。
【0083】
また、図9に示すように、走査型プローブ顕微鏡100は、信号検出部120と、制御部130と、XY駆動部140と、Z駆動部150と、表示部160とを備えている。
【0084】
ステージ110は、その一部に透明部材で形成された透光部110aを有している。そして、透光部110aに試料200が搭載される。これにより、ステージ110に搭載された試料200を、透光部110aを通して光学顕微鏡等により視認することができる。
【0085】
なお、試料200は、水滴210で覆われていてもよい。この場合、プローブ20は、水中すなわち水滴210中の試料200の計測を行う。
【0086】
信号検出部120は、試料200においてプローブ装置1が計測した信号を検出する。
【0087】
制御部130は、試料200において計測した信号に基づいて、プローブ装置1およびステージ110を移動するための制御を行う。
【0088】
XY駆動部140は、制御部130からの制御信号に基づいてステージ110をXY方向に移動させるための信号をステージ110に供給する。
【0089】
Z駆動部150は、制御部130からの制御信号に基づいてプローブ装置1をZ方向に移動させるための信号をプローブ装置1に供給する。
【0090】
なお、上述した走査型プローブ顕微鏡100では、ステージ110をXY方向に移動させる構成としているが、プローブ装置1をX、Y、Z方向に移動させてもよい。この場合、XY駆動部140はプローブ装置1に接続され、プローブ装置1はXY方向およびZ方向に移動することができる。
【0091】
表示部160は、信号検出部120で検出された信号を画像表示するモニターである。
【0092】
以上の構成により、走査型プローブ顕微鏡100において、試料200を載置したステージ110をXY方向、プローブ装置1をZ方向に走査することにより、試料200の表面の情報を得ることができる。このとき、プローブ装置1をZ方向に安定して高速に走査することができるので、計測画像を安定して高速に取得することができる。
【0093】
[効果等]
以上、本実施の形態にかかるプローブ走査機構10によると、プローブ20の着脱を容易に行うことができ、プローブ20の先端を安定して固定部材14の第2の貫通孔14aの内部に保持することができる。したがって、プローブ20の先端を安定して圧電素子15の第1の貫通孔15aの内部に保持することができる。よって、プローブ20を取り付けても共振周波数がほとんど低下することがない。これにより、プローブ20を高速に走査することができる。よって、プローブをZ方向に高速に走査することができるプローブ走査機構を提供することができる。さらに、このプローブ走査機構を用いて、計測画像を高速に取得することができるプローブ装置を実現することができ、このプローブ装置を用いた走査型プローブ顕微鏡において、短時間に高解像度の計測画像を取得することができる。
【0094】
(実施の形態1の変形例)
次に、本実施の形態の変形例について説明する。図10は、本変形例にかかるプローブ走査機構の支持部材の他の構成を示す底面図である。
【0095】
本変形例にかかるプローブ走査機構が実施の形態にかかるプローブ走査機構と異なる点は、支持部材の構成が異なる点である。
【0096】
図10に示すように、本変形例にかかる支持部材312aは、実施の形態に示した支持部材12aと同様、平面視において略正方形の形状を有している。また、支持部材312aは、支持部材12aの固定穴31、開口部32、凹部33、溝34に対応する固定穴331、開口部332、凹部(図示せず)、溝334を備えている。
【0097】
ここで、図10に示すように、溝334は、配線を通すための切欠部335および切欠部336を有している。切欠部335および切欠部336は、開口部332の中心を中心とする円の周方向に沿って形成された溝334の円周方向の中央付近において、溝334の幅を広くするように、半径0.5mm程度の半円状に凹状に形成されている。
【0098】
これにより、圧電素子15に電圧を供給するための配線を溝334の切欠部335または切欠部336を通るように配置することができる。したがって、シンプルな構成で圧電素子15に電圧を供給することができる。
【0099】
なお、切欠部335および切欠部336の大きさおよび形状は、支持部材12aおよび12bの機械剛性が著しく変化しない範囲かつ、圧電素子15に電圧を供給するための配線を通すことができる大きさおよび形状であればどのようなものであってもよい。また、溝334において切欠部335および切欠部336を設ける位置は、上述した位置に限らず他の位置であってもよい。
【0100】
(実施の形態2)
次に、実施の形態2にかかるプローブ装置について説明する。図11は、本実施の形態にかかるプローブ装置の断面図である。図11に示す断面図は、図1に示したIII−III線と同一の位置における断面図である。なお、以下では、実施の形態1にかかるプローブ装置1と異なる構成について説明し、プローブ装置1と同一の構成については、説明を省略する。
【0101】
本実施の形態にかかるプローブ装置が実施の形態1にかかるプローブ装置1と異なる点は、プローブ走査機構300において、プローブ20が、接着剤316aにより圧電素子15の第1の貫通孔15aの内部に保持される点である。より詳細には、プローブ20は、第1の貫通孔15a内に配置された挿入部材17に形成された第2の貫通孔14aの内部に接着剤316aにより接着されることで、第1の貫通孔15aの内部に保持される。つまり、プローブ走査機構300において、弾性部材とは接着剤316aである。弾性部材として接着剤316aを用いることにより、プローブ20を第1の貫通孔15aの内部に容易に保持することができる。また、プローブ20をプローブ走査機構300から取り外すときには、プローブ20の後端側を突起物で押圧することにより接着剤316aを剥がし、プローブ20を第2の貫通孔14aから容易に押し出すことができる。
【0102】
図11に示すように、プローブ走査機構300では、プローブ20と挿入部材17との間に接着剤316aが設けられ、接着剤316aによりプローブ20と挿入部材17とが接合されている。また、実施の形態1に係るプローブ走査機構10では、第1の貫通孔14aにプローブ20を保持するための保持部材16を用いたが、プローブ走査機構300では、第1の貫通孔15aの長さに対して挿入部材17の長さが短い場合、保持部材16に代えてスペーサ316を有している。
【0103】
スペーサ316は、第1の貫通孔15aの内部においてプローブ20が移動しないように、第1の貫通孔15a内の孔の大きさとプローブ20の外周との間を埋めるために設けられている。スペーサ316は、例えば金属またはプラスチックで構成されていてもよい。これにより、プローブ20は、プローブ走査機構300に安定して保持される。
【0104】
なお、スペーサ316は、接着剤316aにより第1の貫通孔15aおよびプローブ20の少なくともいずれかと接合されていてもよいし、接合されていなくてもよい。
【0105】
(実施の形態3)
次に、実施の形態3にかかるプローブ装置について説明する。図12は、本実施の形態に係るプローブ装置の断面図である。図12に示す断面図は、図1に示したIII−III線と同一の位置における断面図である。なお、以下では、実施の形態1にかかるプローブ装置1と異なる構成について説明し、プローブ装置1と同一の構成については、説明を省略する。
【0106】
本実施の形態にかかるプローブ装置が実施の形態1にかかるプローブ装置1と異なる点は、プローブ走査機構400が、保持部材16として接着剤を用いており、さらに、挿入部材17とプローブ20との間に中間部材416を有している点である。
【0107】
図12に示すように、プローブ走査機構400では、プローブ20と挿入部材17との間に中間部材416が設けられている。また、プローブ20と中間部材416、および、中間部材416と挿入部材17は、それぞれ接着剤(図示せず)で接合されている。
【0108】
中間部材416は、例えばポリイミド樹脂チューブである。ガラスで形成されているプローブ20と金属で形成されている挿入部材17とは一般的に接合しにくいが、プローブ20と挿入部材17との間に中間部材416を配置することにより、中間部材416を介して接着材によりプローブ20を挿入部材17に接合することができる。したがって、プローブ20を第2の貫通孔14aに容易に固定することができる。
【0109】
なお、プローブ20をプローブ走査機構400から取り外すときには、プローブ20の後端側を突起物で押圧することにより、プローブ20と中間部材416、または、中間部材416と挿入部材17とを剥がし、プローブ20を第2の貫通孔14aから容易に押し出すことができる。したがって、ユーザは、プローブ20の交換を行うことにより、プローブ走査機構400を再利用することができる。
【0110】
以上、本発明にかかるプローブ走査機構、プローブ装置および走査型プローブ顕微鏡について、実施の形態に基づいて説明したが、本発明は実施の形態に限定されるものではない。実施の形態に対して当業者が思いつく変形を施して得られる形態、および、複数の実施の形態における構成要素を任意に組み合わせて実現される別の形態も本発明に含まれる。
【0111】
例えば、上述した実施の形態では、走査型プローブ顕微鏡として、SICMを例として掲げ、プローブをガラスピペットとしたが、プローブはガラスピペットに限らず、例えば、ガラスピペット先端に金属や高分子、酵素、カーボンナノチューブを修飾した探針、または導電性の金属探針などであってもよい。
【0112】
また、上述した実施の形態では、走査型プローブ顕微鏡においてステージをXY方向、プローブをZ方向に移動する構成を示したが、この構成に限らず、例えば、プローブがZ方向だけでなくXY方向にも移動する構成であってもよい。また、ステージがZ方向に移動する構成であってもよい。
【0113】
また、上述した実施の形態では、圧電素子として積層型の圧電素子を例として示したが、圧電素子は積層型でなくてもよい。また、圧電素子の材料は、圧電機能を有する材料であればどのようなものであってもよい。また、圧電素子の大きさおよび形状も適宜変更してもよい。
【0114】
また、上述した実施の形態では、一対の支持部材の構成を同一の構成としたが、一対の支持部材の構成は異なっていてもよい。
【0115】
また、上述した実施の形態では、保持部材を弾性部材としたが、保持部材は弾性部材でなくても、プローブを固定部材に固定することができるものであればどのようなものであってもよい。例えば、保持部材は、接着剤であってもよいし、弾性部材と接着材とを組み合わせた構成であってもよい。また、弾性部材に代えて、金属または樹脂製のスペーサを用い、プローブとスペーサ、スペーサと挿入部材との間を接着剤で接合する構成であってもよい。また、固定部材および挿入部材は、上記した構成に限らず、大きさや形状を変更したものであってもよい。
【0116】
また、上述した実施の形態では、固定部材により支持部材を圧電素子に固定したが、他の方法で支持部材を圧電素子に固定してもよい。例えば、支持部材を接着剤により圧電素子に固定してもよい。
【0117】
また、プローブ顕微鏡の構成は、上記したものに限らず、プローブ顕微鏡の種類に応じて適宜変更してもよい。例えば、走査型プローブ顕微鏡のプローブとして光ファイバーを用いた場合には、光ファイバーの信号を検出するセンサとしてレーザ機構を備えてもよい。
【産業上の利用可能性】
【0118】
本発明にかかるプローブ走査機構は、プローブを試料に対して走査することにより、試料表面の物理情報または試料の化学的性質を信号として取得する走査型のプローブ顕微鏡に有用である。
【符号の説明】
【0119】
1 プローブ装置
10、300、400 プローブ走査機構
11 筐体
11a 空洞
11b ネジ穴
12a、12b、312a 支持部材
13 ネジ部材
14 固定部材
14a 第2の貫通孔
15 圧電素子
15a 第1の貫通孔
16 保持部材
17 挿入部材
20 プローブ
20a 導線
31、331 固定穴
32、332 開口部
33 凹部
34、334 溝
100 走査型プローブ顕微鏡
110 ステージ
110a 透光部
120 信号検出部
130 制御部
140 XY駆動部
150 Z駆動部
160 表示部
200 試料
210 水滴
316 スペーサ
316a 接着剤
335、336 切欠部
416 中間部材
図1
図2
図3
図4
図5A
図5B
図6
図7
図8
図9
図10
図11
図12