【実施例】
【0034】
上記実施形態に従って、リチウムイオンキャパシタを作製し、特性について調べた。
【0035】
(実施例1)
正極10の活物質として、PASを用いた。カルボキシメチルセルロースおよびスチレンブタジエンゴムをバインダとしてスラリを調製し、調製されたスラリを孔空き加工の施されたアルミ箔上に塗布してシート状に作製した。負極20の活物質として、フェノール樹脂原料から成る難黒鉛化炭素を用いた。カルボキシメチルセルロースおよびスチレンブタジエンゴムをバインダとしてスラリを調製し、調製されたスラリを孔空き加工の施された銅箔上に塗布してシート状に作製した。これらの電極間にセルロース系のセパレータ30を挟み、超音波溶接により引出端子41を正極集電体11に取り付け、引出端子42を負極集電体21に取り付けてからこれらを捲回し、ポリイミドの粘着テープで蓄電素子50を固定した。作製した蓄電素子50に封口ゴム60を取付けて約180℃で真空乾燥した後、負極20にリチウム箔を貼りつけ、蓄電素子50を容器70に入れた。その後、PC(100vol%)にLiPF
6を溶解した溶液(1.10mol/L)に対して、第1添加剤としてEMCを3.0wt%添加し、さらに第2添加剤としてVCを0.1wt%添加し、得られた非水電解液を容器70に注入した後、封口ゴム60の部分をかしめることで、リチウムイオンキャパシタ100を作製した。
【0036】
(実施例2)
実施例2では、VCの添加量を0.5wt%とした。その他の条件は、実施例1と同様とした。
【0037】
(実施例3)
実施例3では、VCの添加量を1.0wt%とした。その他の条件は、実施例1と同様とした。
【0038】
(実施例4)
実施例4では、EMCの添加量を0.1wt%とした。その他の条件は、実施例3と同様とした。
【0039】
(実施例5)
実施例5では、EMCの添加量を1.0wt%とした。その他の条件は、実施例3と同様とした。
【0040】
(実施例6)
実施例6では、EMCの添加量を5.0wt%とした。その他の条件は、実施例3と同様とした。
【0041】
(実施例7)
実施例7では、EMCの添加量を9.0wt%とした。その他の条件は、実施例3と同様とした。
【0042】
(実施例8)
実施例8では、EMCの代わりにDMCを3.0wt%添加した。その他の条件は、実施例3と同様とした。
【0043】
(実施例9)
実施例9では、EMCの代わりにDECを3.0wt%添加した。その他の条件は、実施例3と同様とした。
【0044】
(実施例10)
実施例10では、非水溶媒としてPC(80vol%)およびEC(20vol%)を用いた。その他の条件は、実施例3と同様とした。
【0045】
(実施例11)
実施例11では、VCの代わりにFECを1.0wt%添加した。その他の条件は、実施例3と同様とした。
【0046】
(実施例12)
実施例12では、VCの代わりにFECを3.0wt%添加した。その他の条件は、実施例3と同様とした。
【0047】
(実施例13)
実施例13では、VCの代わりにFECを5.0wt%添加した。その他の条件は、実施例3と同様とした。
【0048】
(実施例14)
実施例14では、VCの代わりにMBESを1.0wt%添加した。その他の条件は、実施例3と同様とした。
【0049】
(実施例15)
実施例15では、VCの代わりにLiB(C
2O
4)
2を1.0wt%添加した。その他の条件は、実施例3と同様とした。
【0050】
(実施例16)
実施例16では、VCの代わりにLiPF
2(C
2O
4)
2を1.0wt%添加した。その他の条件は、実施例3と同様とした。
【0051】
(実施例17)
実施例17では、VCの代わりにLiPF
4(C
2O
4)を1.0wt%添加した。その他の条件は、実施例3と同様とした。
【0052】
(実施例18)
実施例18では、EMCの代わりにDMCを3.0wt%添加し、第2添加剤を添加しなかった。その他の条件は、実施例1と同様とした。
【0053】
(実施例19)
実施例19では、第2添加剤を添加しなかった。その他の条件は、実施例1と同様とした。
【0054】
(実施例20)
実施例20では、EMCの代わりにDECを3.0wt%添加し、第2添加剤を添加しなかった。その他の条件は、実施例1と同様とした。
【0055】
(比較例1)
比較例1では、第1添加剤も第2添加剤も添加しなかった。その他の条件は、実施例1と同様とした。
【0056】
(比較例2)
比較例2では、第1添加剤を添加しなかった。その他の条件は、実施例3と同様とした。
【0057】
(比較例3)
比較例3では、第1添加剤を添加しなかった。その他の条件は、実施例11と同様とした。
【0058】
(比較例4)
比較例4では、第1添加剤を添加しなかった。その他の条件は、実施例14と同様とした。
【0059】
(比較例5)
比較例5では、EMCの添加量を18.0wt%とした。その他の条件は、実施例3と同様とした。
【0060】
(評価方法)
実施例1〜20および比較例1〜5のリチウムイオンキャパシタを作製後、初期特性として、室温における静電容量及び内部抵抗を測定した。その後、85℃の恒温槽中で3.8Vの電圧で1000時間連続充電するフロート試験を行った。フロート試験後、セルを室温まで放冷し、静電容量および内部抵抗を測定し、試験前後の変化率を算出した。この結果(容量維持率及び内部抵抗変化率)を
図5に示す。
【0061】
(初期特性)
実施例1〜20および比較例1〜5において、初期特性における静電容量および内部抵抗は、良好な値を示した。これは、環状カーボネートを非水溶媒とし、LiPF
6の濃度を0.8mol/L以上1.6mol/L以下としたからであると考えられる。なお、実施例4〜7の結果からすると、第1添加剤の添加量が多くなるほど、初期の内部抵抗が低くなることが確認された。
【0062】
(高温信頼性)
比較例1では、容量維持率が低くなり、内部抵抗変化率が大きくなった。これは、実施例1と比較例1との比較結果から、非水電解液に第1添加剤も第2添加剤も添加しなかったからであると考えられる。次に、比較例2では、比較例1との比較において容量維持率の低下および内部抵抗変化率の増加は抑制されたものの、内部抵抗変化率は200%以上であり十分に小さくならなかった。これは、実施例3と比較例2との比較結果から、非水電解液に第1添加剤を添加しなかったからであると考えられる。次に、比較例3では、比較例1との比較において容量維持率の低下および内部抵抗変化率の増加は抑制されたものの、内部抵抗変化率は200%以上であり十分に小さくならなかった。これは、実施例11と比較例3との比較結果から、非水電解液に第1添加剤を添加しなかったからであると考えられる。次に、比較例4では、比較例1との比較において容量維持率の低下および内部抵抗変化率の増加は抑制されたものの、内部抵抗変化率は200%以上であり十分に小さくならなかった。これは、実施例14と比較例4との比較結果から、非水電解液に第1添加剤を添加しなかったからであると考えられる。次に、比較例5では、容量維持率が低くなった。これは、実施例3と比較例5との比較結果から、第1添加剤の添加量が多すぎたためであると考えられる。
【0063】
これらに対して、実施例1〜実施例20では、容量維持率の低下が抑制されるとともに、内部抵抗変化率が十分に小さくなった(200%未満)。これは、環状カーボネートを非水溶媒とし、0.8mol/L以上1.6mol/L以下のLiPF
6を電解質とする非水電解液において、非水電解液に対する添加量が0.1wt%以上10.0wt%未満の鎖状カーボネートを含んでいたからであると考えられる。
【0064】
なお、実施例18〜20と実施例1〜17とを比較すると、実施例1〜17では、内部抵抗変化率がより小さくなった。これは、実施例1〜17では、第2添加剤を添加したからであると考えられる。実施例1〜17と実施例18〜20との比較結果からすると、第1添加剤および第2添加剤の種類は影響していないことがわかる。
【0065】
また、実施例1〜3の各結果を比較すると、第2添加剤の添加量を0.5wt%以上とすることが好ましいことがわかる。一方で、実施例11〜13の各結果を比較すると、第2添加剤の添加量を3.0wt%以下とすることが好ましいことがわかる。
【0066】
以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。