特許第6719286号(P6719286)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社キャタラーの特許一覧

<>
  • 特許6719286-排ガス浄化用触媒 図000003
  • 特許6719286-排ガス浄化用触媒 図000004
  • 特許6719286-排ガス浄化用触媒 図000005
  • 特許6719286-排ガス浄化用触媒 図000006
  • 特許6719286-排ガス浄化用触媒 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6719286
(24)【登録日】2020年6月18日
(45)【発行日】2020年7月8日
(54)【発明の名称】排ガス浄化用触媒
(51)【国際特許分類】
   B01J 35/06 20060101AFI20200629BHJP
   B01J 23/63 20060101ALI20200629BHJP
   B01D 53/94 20060101ALI20200629BHJP
   F01N 3/28 20060101ALI20200629BHJP
【FI】
   B01J35/06 C
   B01J23/63 AZAB
   B01D53/94 222
   B01D53/94 245
   B01D53/94 280
   F01N3/28 Q
【請求項の数】7
【全頁数】13
(21)【出願番号】特願2016-116635(P2016-116635)
(22)【出願日】2016年6月10日
(65)【公開番号】特開2017-217641(P2017-217641A)
(43)【公開日】2017年12月14日
【審査請求日】2019年4月3日
(73)【特許権者】
【識別番号】000104607
【氏名又は名称】株式会社キャタラー
(74)【代理人】
【識別番号】100117606
【弁理士】
【氏名又は名称】安部 誠
(74)【代理人】
【識別番号】100142239
【弁理士】
【氏名又は名称】福富 俊輔
(72)【発明者】
【氏名】堀 淳一
(72)【発明者】
【氏名】水上 友人
(72)【発明者】
【氏名】横山 直記
(72)【発明者】
【氏名】松本 豊
(72)【発明者】
【氏名】高田 健太郎
【審査官】 佐藤 慶明
(56)【参考文献】
【文献】 特開2003−301719(JP,A)
【文献】 特開平04−040240(JP,A)
【文献】 実開平02−091634(JP,U)
【文献】 特開昭63−302953(JP,A)
【文献】 特開2006−263947(JP,A)
【文献】 特開平04−048934(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B01J 21/00 − 38/74
B01D 53/86 − 53/96
F01N 3/10 − 3/38
(57)【特許請求の範囲】
【請求項1】
内燃機関の排気通路内に配置され、該内燃機関から排出される排ガスを浄化する排ガス浄化用触媒であって、
外筒と、
金属線材が編成または織成されてなる帯状のメッシュシートが捲回されることで形成され、前記外筒の内周面に接合されるメッシュ基材と、
前記メッシュ基材の表面に形成された触媒コート層と
を備え、
前記メッシュ基材は、該メッシュ基材の軸方向に直交する断面において、メッシュ密度が外周部分と中央部分とで異なっており、
前記メッシュ基材の前記外周部分は、そのメッシュ密度Aが前記中央部分におけるメッシュ密度Bよりも大きい(B<A)高メッシュ密度領域であり
前記高メッシュ密度領域は、前記メッシュシートの捲回終端部から所定幅の領域を圧縮することによって形成されている、排ガス浄化用触媒。
【請求項2】
前記外周部分のメッシュ密度Aに対する前記中央部分のメッシュ密度Bの比が、(B/A)≦0.3である、請求項1に記載の排ガス浄化用触媒。
【請求項3】
前記外周部分のメッシュ密度Aが、前記中央部分のメッシュ密度Bよりも0.2g/mL以上大きい、請求項1または2に記載の排ガス浄化用触媒。
【請求項4】
前記外周部分のメッシュ密度Aが、0.5g/mL〜4.5g/mLであり、
前記中央部分のメッシュ密度Bが、0.05g/mL〜3.5g/mLである、請求項1〜3の何れか一つに記載の排ガス浄化用触媒。
【請求項5】
前記金属線材の線径が、0.04mm〜0.5mmである、請求項1〜4の何れか一つに記載の排ガス浄化用触媒。
【請求項6】
前記メッシュ基材の軸方向に直交する断面は略円形であり、該断面における半径をRとしたときに、
前記中央部分は、前記断面の中心点から前記半径Rの少なくとも80%までの領域として規定され、
前記外周部分は、前記断面の外縁から前記半径Rの少なくとも6%までの領域として規定される、請求項1〜5の何れか一つに記載の排ガス浄化装置。
【請求項7】
排ガス浄化用触媒に用いられるメッシュ基材であって、
金属線材が編成または織成されてなる帯状のメッシュシートが捲回されることで形成され、
該メッシュ基材の軸方向に直交する断面において、メッシュ密度が外周部分と中央部分とで異なっており、
前記メッシュ基材の前記外周部分は、そのメッシュ密度Aが前記中央部分におけるメッシュ密度Bよりも大きい(B<A)高メッシュ密度領域であり
前記高メッシュ密度領域は、前記メッシュシートの捲回終端部から所定幅の領域を圧縮することによって形成されている、メッシュ基材。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、排ガス浄化用触媒に関する。詳しくは、基材と該基材の表面に形成された触媒コート層とを備える排ガス浄化用触媒に関する。
【背景技術】
【0002】
内燃機関から排出される排ガスを浄化するために、Pt(白金)、Pd(パラジウム)、及びRh(ロジウム)の貴金属のうち少なくとも一種を含む三元触媒がよく用いられている。かかる三元触媒の一つの典型的な構成では、ステンレスの平板、波板を捲回または積層して作製されたハニカム基材の表面に触媒コート層を形成し、この触媒コート層にPt、Pd、及びRhの貴金属のうちの一種または二種以上を担持させている。また、自動二輪車などの小型車に搭載される排ガス浄化用触媒として、ハニカム基材に代えてメッシュ基材を用いた排ガス浄化用触媒が検討されている。かかる排ガス浄化用触媒は、一般に、貴金属を含む触媒コート層が表面に形成されたステンレス線材を編み合わせ、これを渦巻状に捲回して作製したメッシュ基材と、該メッシュ基材を内部に充填し、接合固定するための両端が開口した筒状の外筒(金属製ケーシング)とから構成されている。メッシュ基材と外筒との接合は、例えばメッシュ基材の外周面と外筒の内周面をろう付けすることにより行われる。この種のメッシュ基材を用いる触媒技術に関する技術文献として特許文献1、2が挙げられる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】実開平2−91634号公報
【特許文献2】特表平6−503744号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、メッシュ基材の外周面と外筒の内周面をろう付け等により接合する場合、メッシュ基材と外筒との接触面積が小さいため、接合界面において十分な接合強度が得られず、排ガスの流通が筒抜けを起こす場合があり得た。この問題に対処すべく、メッシュ基材を高密度化して外筒との接触面積を増やすことが考えられるが、メッシュ基材の密度を大きくすると、メッシュ基材内を排ガスが通過する際の圧力損失(以下、圧損という。)の上昇を招き、エンジン性能等に悪影響を与えるおそれがある。燃費の悪化やエンジンの故障などの弊害を防止すべく、圧損の上昇は出来るだけ小さく抑えたい。
【0005】
本発明は、上記の事情に鑑みてなされたものであり、その主な目的は、圧損の上昇を抑えつつ、十分な接合強度でメッシュ基材と外筒とが接合固定された排ガス浄化用触媒を提供することである。
【課題を解決するための手段】
【0006】
本発明によって提供される排ガス浄化用触媒は、内燃機関の排気通路内に配置され、該内燃機関から排出される排ガスを浄化する排ガス浄化用触媒である。この排ガス浄化用触媒は、外筒と、金属線材が編成または織成されてなり、前記外筒の内周面に接合されるメッシュ基材と、前記メッシュ基材の表面に形成された触媒コート層とを備える。前記メッシュ基材は、該メッシュ基材の軸方向に直交する断面において、メッシュ密度が外周部分と中央部分とで異なっている。そして、前記外周部分におけるメッシュ密度Aが、前記中央部分におけるメッシュ密度Bよりも大きい(B<A)。
このように外周部分のメッシュ密度Aが中央部分のメッシュ密度Bよりも大きいメッシュ基材を用いることにより、圧損の上昇を抑えつつ、十分な接合強度でメッシュ基材と外筒とが接合固定された排ガス浄化用触媒が実現され得る。
【0007】
ここで開示される排ガス浄化用触媒の好ましい一態様では、前記外周部分のメッシュ密度Aに対する前記中央部分のメッシュ密度Bの比(B/A)が、(B/A)≦0.3である。このようにすれば、外周部分のメッシュ密度Aを中央部分のメッシュ密度Bよりも大きくしたことによる効果(圧損低減と接合強度との両立)をより確実に発揮することができる。
【0008】
ここで開示される排ガス浄化用触媒の好ましい一態様では、前記外周部分のメッシュ密度Aが、前記中央部分のメッシュ密度Bよりも0.2g/mL以上大きい。外周部が中央部分よりも上記特定値以上大きいワイヤ密度を有するメッシュ基材を用いることにより、圧損低減と接合強度との両立がより好適に発揮され得る。
【0009】
ここで開示される排ガス浄化用触媒の好ましい一態様では、前記外周部分のメッシュ密度Aが0.5g/mL〜4.5g/mLであり、前記中央部分のメッシュ密度Bが0.05g/mL〜3.5g/mLである。このような外周部分および中央部分のメッシュ密度の範囲内であると、圧損低減と接合強度との両立がより高いレベルで実現され得る。
【0010】
ここで開示される排ガス浄化用触媒の好ましい一態様では、前記金属線材の線径が、0.04mm〜0.5mmである。かかるワイヤ径を有する金属ワイヤは、浄化性能および耐熱性の向上に効果的に寄与し得る。
【0011】
ここで開示される排ガス浄化用触媒の好ましい一態様では、前記メッシュ基材の軸方向に直交する断面は略円形であり、該断面における半径をRとしたときに、前記中央部分は、前記断面の中心点から前記半径Rの少なくとも80%までの領域として規定され、前記外周部分は、前記断面の外縁から前記半径Rの少なくとも6%までの領域として規定される。メッシュ基材の断面の中心点から半径Rの少なくとも80%までの領域を中央部分とし、かつ、メッシュ基材の断面の外縁から半径Rの少なくとも6%までの領域を外周部分とすることにより、圧損の低減と、接合強度向上と、を効果的に達成することができる。
【0012】
また本発明によると、上記排ガス浄化用触媒に好ましく用いられるメッシュ基材が提供される。このメッシュ基材は、金属線材が編成または織成されてなり、該メッシュ基材の軸方向に直交する断面において、メッシュ密度が外周部分と中央部分とで異なっている。そして、前記外周部分におけるメッシュ密度Aが、前記中央部分におけるメッシュ密度Bよりも大きい(B<A)。かかるメッシュ基材を用いれば、圧損の上昇を抑えつつ、十分な接合強度でメッシュ基材と外筒とが接合固定された、高性能な排ガス浄化用触媒を実現することができる。
【図面の簡単な説明】
【0013】
図1】本発明の一実施形態に係る排ガス浄化用触媒の概略構成説明図である。
図2図1のII−II断面図である。
図3】本発明の一実施形態に係るメッシュ基材における金属線材の表面部分の構成を模式的に示す図である。
図4】メッシュ密度比と抜き強度との関係を示すグラフである。
図5】CO、HCおよびNOxのエミッションを対比するグラフである。
【発明を実施するための形態】
【0014】
以下、本発明の好適な実施形態を図面に基づいて説明する。なお、本明細書において特に言及している事項(例えば多孔質担体の組成など)以外の事柄であって本発明の実施に必要な事柄(例えば排ガス浄化用触媒の配置に関するような一般的事項)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
【0015】
図1は排ガス浄化用触媒の一典型例の模式図である。ここで開示される排ガス浄化用触媒100は、外筒40と、外筒40の内周面に接合されて固定されたメッシュ基材20と、メッシュ基材20の表面に形成された触媒コート層30(図3)とを備える。
【0016】
<外筒>
外筒40は、メッシュ基材20を内部に充填するものとして構成されている。外筒40としては、従来のこの種の用途に用いられる種々の素材および形状のものが使用可能である。例えば、耐酸化性および高温強度の高い金属材料(ステンレス等)から形成され、両端が開口した外筒40を好適に採用することができる。この実施形態では、外筒40は、排気ガスの流れ方向(図1の矢印方向)に延びる円筒状(パイプ状)に形成されている。
【0017】
外筒40の内周面には、メッシュ基材20が接合されている。外筒40とメッシュ基材20との接合方法は特に限定されない。例えば、ろう付け、接着剤による接着、圧着、溶接等の種々の接合方法が採用され得る。この実施形態では、外筒40の内周面とメッシュ基材20の外周面とがろう材によって全周にわたってろう付け接合されている。ろう材としては、従来のこの種の用途に用いられる種々のろう材(例えばNiろう材)が使用可能である。ろう材は、メッシュ基材20の軸方向(長さ方向)の全域に設けられていてもよく、メッシュ基材20の軸方向の一部(例えば軸方向中央位置)に設けられていてもよい。メッシュ基材20の軸方向において、ろう材が塗布される範囲(ろう付け範囲)としては、メッシュ基材20の全長Lに対して0.1L〜1Lとすることが適当である。上記ろう付け範囲は、接合強度の観点から、好ましくは0.3L以上、より好ましくは0.5L以上、さらに好ましくは0.7L以上である。また、ろう材の塗布量は、基材の体積1Lあたり、概ね25g/L以上であり得る。接合強度の観点からは、ろう材の塗布量は、好ましくは40g/L以上、より好ましくは50g/L以上、さらに好ましくは60g/L以上である。ここに開示される技術は、例えばろう材の塗布量が20g/L〜80g/L(好ましくは30g/L〜70g/L)である態様で好ましく実施され得る。
【0018】
<メッシュ基材>
メッシュ基材20は、金属線材22が編成または織成されて形成されている。ここでいう「編成」とは、一本または複数の糸(金属線材)でループを作り、そのループにさらに一本または複数の糸(金属線材)をくぐらせてループを作ることを連続して繰り返すことにより編み合わせることをいう。また「織成」とは、タテ糸(金属線材)とヨコ糸(金属線材)とを直角に配列し、互いに上下に交差させることにより平面的に織り合わせることをいう。好ましい一態様では、メッシュ基材20は、一本または複数(例えば1〜5本、好ましくは1または2本、より好ましくは1本)の金属線材22が編成されて形成された編物(ニットメッシュ)であり得る。編み方としては特に限定されず、トリコット編み、ジャカード編み、ラッシェル編み、サテンステッチ編み、メリヤス編み、平編み、ゴム編み、パール編み、両面編み、鹿の子編みなどの種々の編み方を採用し得る。かかる編物は、典型的には規則的なループ構造を有するものであり得る。ループ形状は特に限定されないが、一方向に延びた縦長ループ状であり得る。この場合、縦長ループの長手方向がメッシュ基材の軸方向(排ガスの流れ方向)となるように編み合わせることが好ましい。これにより排ガス流れに対するメッシュ基材の強度が向上し得る。他の好ましい一態様では、メッシュ基材20は、金属線材22が織成されて形成された織物であり得る。織り方としては特に限定されず、平織り、綾織り、朱子織り等の種々の織り方を採用し得る。
【0019】
ここで開示されるメッシュ基材20を構成する金属線材22の材質としては、この種のメッシュ基材で使用される公知の各種金属線材のなかから適宜選択して使用することができる。そのような公知の金属線材の例として、例えば鉄(Fe)を主成分とするステンレス鋼が挙げられる。かかるステンレス鋼には、Fe以外の金属元素あるいは非金属元素が含まれていてもよい。例えば、クロム(Cr)、アルミニウム(Al)、ニッケル(Ni)、ニオブ(Nb)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)、ジルコニウム(Zr)およびハフニウム(Hf)のうちの1種または2種以上の元素が含まれていてもよい。CrおよびAlの少なくとも一方(好ましくは両方)を含むことが好ましい。また、ステンレス鋼には、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)などの希土類元素が含まれていてもよい。ここで開示される金属線材22の好適例として、鉄‐クロム‐アルミニウム系合金(例えばFe‐20Cr‐5Al合金)、鉄‐クロム‐ニッケル系合金、鉄‐クロム‐モリブデン系合金等が挙げられる。
【0020】
金属線材22としては、その線径(直径)が0.04mm以上のものを好ましく採用することができる。耐酸化性および耐熱性向上等の観点から、金属線材22の線径は、好ましくは0.08mm以上、より好ましくは0.12mm以上、さらに好ましくは0.15mm以上、特に好ましくは0.2mm以上である。金属線材22の線径の上限は特に限定されないが、例えば0.5mm以下にすることが適当であり、通常は0.45mm以下、典型的には0.4mm以下である。幾何学的表面積を増やす(ひいては触媒活性を高める)等の観点から、金属線材22の線径は、好ましくは0.35mm以下、より好ましくは0.3mm以下である。例えば、耐酸化性、耐熱性および触媒活性を両立させる観点から、線径が0.04mm以上0.5mm以下の金属線材22が好ましく、0.1mm以上0.4mm以下の金属線材22がより好ましく、0.18mm以上0.32mm以下の金属線材22が特に好ましい。
【0021】
図2は、図1のII−II断面図である。図2に示すように、この実施形態では、メッシュ基材20の軸方向(長さ方向;排ガスの流れ方向)に直交する断面は略円形である。メッシュ基材20は、メッシュ基材20の軸方向に直交する断面において、メッシュ密度が外周部分24Aと中央部分24Bとで異なっている。ここで「メッシュ密度」とは、メッシュ基材の体積1mL当たり(ここではメッシュ基材の純体積に金属線材間の空隙も含めた全体の嵩容積1mL当たりをいう。以下、同じ。)の金属線材の質量をいう。
【0022】
ここに開示されるメッシュ基材20は、外周部分24Aにおけるメッシュ密度Aが、中央部分24Bにおけるメッシュ密度Bよりも大きい(B<A)。このように外周部分24Aのメッシュ密度Aが中央部分24Bのメッシュ密度Bよりも大きいメッシュ基材20を用いることにより、外周部分24Aにおいてメッシュ基材20と外筒40との接触面積を大きく確保しつつ、中央部分24Bにおいて排ガスが通りやすくなる。そのため、圧損の上昇を抑えつつ、十分な接合強度でメッシュ基材20と外筒40とが接合固定された排ガス浄化用触媒100が実現され得る。
【0023】
外周部分24Aのメッシュ密度Aに対する中央部分24Bのメッシュ密度Bの密度比(B/A)は、1よりも小さければよい(すなわち(B/A)<1)。上記密度比(B/A)は、例えば0.8以下にすることが適当であり、典型的には0.6以下、好ましくは0.4以下、より好ましくは0.3以下、特に好ましくは0.2以下である。上記密度比(B/A)を小さくすることで、メッシュ基材と外筒との接合強度向上効果がより高レベルで実現され得る。上記密度比(B/A)の下限は特に限定されないが、例えば0.01以上とすることができる。圧損低減と接合強度とを両立する観点から、上記密度比(B/A)は、好ましくは0.03以上、より好ましくは0.05以上である。上記密度比(B/A)が0.1以上であってもよい。ここに開示される技術は、例えばメッシュ基材20における外周部分24Aおよび中央部分24Bのメッシュ密度の比(B/A)が0.01以上0.3以下(好ましくは0.05以上0.2以下)である態様で好ましく実施され得る。
【0024】
メッシュ密度が相対的に大きい外周部分24Aおよび相対的に小さい中央部分24Bを設けたことによる効果をより良く発揮させる観点から、メッシュ基材20における外周部分24Aのメッシュ密度Aは、中央部分24Bのメッシュ密度Bよりも0.2g/mL以上大きいことが好ましく、0.25g/mL以上大きいことがより好ましく、0.3g/mL以上大きいことがさらに好ましく、0.35g/mL以上大きいことが特に好ましい。また、外周部分24Aのメッシュ密度Aから中央部分24Bのメッシュ密度Bを減じた値(すなわち、A−B)は、例えば5g/mL以下とすることができ、好ましくは3g/mL以下、より好ましくは1g/mL以下、さらに好ましくは0.8g/mL以下である。例えば、A−Bが0.6g/mL以下であってもよい。
【0025】
メッシュ基材20における外周部分24Aのメッシュ密度Aは、中央部分24Bのメッシュ密度Bとの間で前記関係(B<A)を満たす限りにおいて特に制限はないが、典型的には0.5g/mL以上であり、接合強度を高める等の観点から、0.75g/mL以上にすることが好ましく、1g/mL以上にすることがより好ましく、1.2g/mL以上にすることがさらに好ましい。圧損低減および製造容易性等の観点から、通常、上記外周部分24Aのメッシュ密度Aは、4.5g/mL以下が適当であり、好ましくは4.2g/mL以下、より好ましくは4g/mL以下、さらに好ましくは3.6g/mL以下である。ここに開示される技術は、例えばメッシュ基材20における外周部分24Aのメッシュ密度Aが0.5g/mL以上4.5g/mL以下(好ましくは1.5g/mL以上2g/mL以下)である態様で好ましく実施され得る。
【0026】
メッシュ基材20における中央部分24Bのメッシュ密度Bは、外周部分24Aのメッシュ密度Aとの間で前記関係(B<A)を満たす限りにおいて特に制限はないが、典型的には3.5g/mL以下であり、圧損低減等の観点から、3.2g/mL以下にすることが好ましく、3g/mL以下にすることがより好ましく、2.6g/mL以下にすることがさらに好ましい。機械的強度や触媒性能等の観点から、通常、中央部分24Bのメッシュ密度Bは、0.05g/mL以上が適当であり、好ましくは0.1g/mL以上、より好ましくは0.5g/mL以上、さらに好ましくは1g/mL以上である。ここに開示される技術は、例えばメッシュ基材20における中央部分24Bのメッシュ密度Bが0.05g/mL以上3.5g/mL以下(好ましくは1g/mL以上1.3g/mL以下)である態様で好ましく実施され得る。
【0027】
ここに開示されるメッシュ基材20の好適例として、メッシュ基材20における外周部分24Aのメッシュ密度Aが0.5g/cm以上2g/cm以下であり、中央部分24Bのメッシュ密度Bが0.05g/cm以上1.3g/cm以下であり、かつ、金属線材22の線径が0.04mm以上0.2mm未満であるもの;メッシュ基材20における外周部分24Aのメッシュ密度Aが1.5g/cm以上3.5g/cm以下であり、中央部分24Bのメッシュ密度Bが1g/cm以上2.5g/cm以下であり、かつ、金属線材22の線径が0.2mm以上0.35mm未満であるもの;メッシュ基材20における外周部分24Aのメッシュ密度Aが2.5g/cm以上4.5g/cm以下であり、中央部分24Bのメッシュ密度Bが2g/cm以上3.5g/cm以下であり、かつ、金属線材22の線径が0.35mm以上0.5mm以下であるもの;等が挙げられる。このような所定範囲内のメッシュ密度および金属線材の線径を有することにより、圧損低減と接合強度との両立が高いレベルで実現され得る。
【0028】
好ましい一態様では、メッシュ基材20の断面における半径をRとしたときに、外周部分24Aは、メッシュ基材20の断面の外縁から半径Rの少なくとも6%(すなわち3/50R)までの領域として規定され得る。メッシュ基材20の断面において外周部分24Aの占める面積が大きいほど、メッシュ基材20の外縁において高メッシュ密度領域が確実に増えるため、前述した接合強度向上効果がより良く発揮され得る。その一方で、外周部分24Aの占める面積が大きすぎると、相対的に中央部分24B(低メッシュ密度領域)が減るため、圧損が増大傾向になる場合がある。圧損低減の観点から、外周部分24Aは、好ましくは、メッシュ基材20の断面の外縁から半径Rの多くとも20%(すなわち1/5R)までの領域として規定され得る。
【0029】
好ましい一態様では、メッシュ基材20の断面における半径をRとしたときに、中央部分24Bは、メッシュ基材20の断面の中心点Cから半径Rの少なくとも80%(すなわち4/5R))までの領域として規定され得る。メッシュ基材20の断面において中央部分24Bの占める面積が大きいほど、低メッシュ密度領域が増えるため、前述した圧損低減効果がより良く発揮され得る。また、中央部分24Bは、接合強度等の観点から、メッシュ基材20の断面の中心点Cから半径Rの多くとも94%(すなわち94/100R)までの領域として規定され得る。
【0030】
なお、メッシュ基材20の断面の半径Rとしては特に限定されないが、概ね5mm〜50mm、好ましくは10mm〜40mm、例えば15mm〜25mmであり得る。また、メッシュ基材20の軸方向の長さとしては特に限定されないが、概ね10mm〜100mm、好ましくは12mm〜80mm、例えば15mm〜60mmであり得る。メッシュ基材20の長さおよび半径Rは、周知の長さ計測機器、例えばゲージスケール等によって測定することができる。
【0031】
上記メッシュ基材20における外周部分24Aおよび中央部分24Bのメッシュ密度A、Bは、外周部分24Aとなる部位を圧縮することによって調整することができる。すなわち、上記メッシュ基材20を形成するに際しては、金属線材22が編成または織成されてなる帯状のメッシュシート(編物もしくは織物)を作製し、これを捲回する。その際、メッシュシートの捲回終端部から所定幅の領域を圧縮することにより高メッシュ密度領域を形成する。この高メッシュ密度領域が外周部分24Aとなる。また、圧縮されていない低メッシュ密度領域が中央部分24Bとなる。そのため、高メッシュ密度領域の圧縮条件を適切に設定することにより、外周部分24Aおよび中央部分24Bのメッシュ密度A、Bをここに開示される適切な相対関係および範囲に調整することができる。その他、外周部分24Aおよび中央部分24Bのメッシュ密度A、Bをここに開示される適切な相対関係および範囲に調整する方法として、編成もしくは織成する際のメッシュの目開きを変える等の方法を採用することができる。その後、メッシュ基材20を外筒40内に圧入し、外筒40の内周面とメッシュ基材20の外周面とを全周にわたってろう付け接合することにより、メッシュ基材20が外筒40の内部に固定され得る。
【0032】
<触媒コート層>
図3は、メッシュ基材20における金属線材22の表面部分の構成を模式的に示す図である。ここで開示される排ガス浄化用触媒100では、メッシュ基材20上に触媒コート層30が形成されている。図3に示す構成の排ガス浄化用触媒100では、触媒コート層30がメッシュ基材20の金属線材22の表面上に形成されている。排ガス浄化用触媒100に供給された排ガスは、上記メッシュ基材20の金属線材22の隙間を不規則に流動(乱流)し、触媒コート層30に接触することによって有害成分が浄化される。上記メッシュ基材20を用いた排ガス浄化用触媒100によれば、排ガスが真っ直ぐに流れず乱流を起こすので、有害成分が効率良く浄化され得る。触媒コート層30には、複数種類の貴金属触媒と、該貴金属触媒を担持する担体が含まれている。
【0033】
<貴金属触媒>
上記触媒コート層30に含まれる複数種類の貴金属触媒は、排ガスに含まれる有害成分に対する触媒機能を有していればよい。貴金属触媒として、例えば、パラジウム(Pd)、ロジウム(Rh)、白金(Pt)、ルテニウム(Ru)、イリジウム(Ir)、オスミウム(Os)等を用いることができる
【0034】
<担体>
上記触媒コート層30は、貴金属触媒を担体(典型系には粉体状)に担持させることによって形成されている。上記貴金属触媒を担持する担体は、アルカリ金属元素(典型的にはアルカリ金属酸化物)、アルカリ土類金属元素(典型的にはアルカリ土類金属酸化物)、希土類元素(典型的には希土類酸化物)、Zr(典型的にはジルコニア)、Si(典型的にはシリカ)、Ti(典型的にはチタニア)およびAl(典型的にはアルミナ)などから選択される1種または2種以上の元素(典型的には酸化物)を含み得る。これら成分を含む担体を用いることにより、機械強度の増加、耐久性(熱安定性)の向上、触媒のシンタリング抑制、および触媒の被毒防止のうちの少なくとも一つ(好ましくは全部)を実現し得る。アルカリ土類金属元素としては、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、等が例示される。希土類金属元素としては、ランタン(La)、スカンジウム(Sc)、イットリウム(Y)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、イッテルビウム(Yb)、等が例示される。例えば、アルミナ(Al)、セリア(CeO)、ジルコニア(ZrO)、チタニア(TiO)、シリカ(SiO)等の酸化物の一種または二種以上を好ましく用いることができる。
【0035】
上記触媒コート層に用いられる貴金属触媒は、白金属元素の中から選択される1種または2種以上の元素を含み得る。これら成分を含む貴金属触媒を用いることにより、メッシュ基材20の金属線材22間を通過する排ガス中の有害成分(例えば一酸化炭素(CO)、炭化水素(HC)、NOx等)をより確実に浄化することができる。好ましくは、パラジウム(Pd)または白金(Pt)と、ロジウム(Rh)とを併用するとよい。PdまたはPtと、Rhとを併用することによって、排ガス中の有害成分を一度に効率よく浄化することができる。貴金属触媒の担持量は特に限定されないが、メッシュ基材20の体積1L当たり0.1g〜20g、典型的には0.3g〜15g程度(好ましくは0.4g〜10g)であることが好ましい。貴金属触媒の担持量が少なすぎると、十分な触媒活性が得られない場合があり、貴金属触媒の担持量が多すぎると、貴金属触媒を担持させることによる効果が鈍化することに加えて、コストアップの要因となるため好ましくない。触媒コート層30の上記担体に貴金属を担持させる方法としては特に制限されない。例えば、担体粉末を、貴金属塩(例えば硝酸塩)や貴金属錯体(例えば、テトラアンミン錯体)を含有する水溶液に含浸させた後、乾燥させ、焼成することにより調製することができる。
【0036】
触媒コート層30のコート量(成形量)は特に制限されないが、例えば、メッシュ基材の体積1L当たり、概ね10g/L以上にすることが適当である。触媒コート層としての機能をより良く発揮させる等の観点から、触媒コート層30のコート量は、好ましくは15g/L以上、より好ましくは20g/L以上である。触媒コート層30のコート量は、例えば80g/L以上、典型的には120g/L以上、例えば180g/L以上であってもよい。また、触媒コート層30のコート量の上限は特に限定されないが、概ね350g/L以下にすることが適当である。圧損低減等の観点から、触媒コート層30のコート量は、好ましくは320g/L以下、より好ましくは300g/L以下、さらに好ましくは280g/L以下である。触媒コート層30のコート量は、例えば100g/L以下、典型的には80g/L以下であってもよい。ここに開示される技術は、例えばメッシュ基材20における触媒コート層30のコート量(成形量)が10g/L以上300g/L以下である態様で好ましく実施され得る。
【0037】
触媒コート層30をメッシュ基材20に担持する方法としては特に限定されない。例えば、触媒成分を分散させたスラリーに、メッシュ基材20を浸漬するとよい。スラリーをメッシュ基材20に含浸させた後、乾燥および焼成して、金属線材22の表面に触媒成分を固定担持するといった方法を用いることができる。
【0038】
<試験例1>
本発明者は、かかる排ガス浄化用触媒の作用効果について試験的に評価した。評価用触媒は、図1〜3に示すように、外筒40と、外筒40の内周面に接合され、金属線材22が編成されてなるメッシュ基材20と、メッシュ基材20の表面に形成された触媒コート層30とを備える。
【0039】
(メッシュ基材)
ここで、メッシュ基材20は、金属線材22としてFe‐20Cr‐5Al合金からなる1本の線材が用いられている。かかる金属線材22を編み合わせてメッシュシートを作製し、該メッシュシートを捲回することによりメッシュ基材20を形成した。その際、メッシュシートの捲回終端部から所定幅の領域を圧縮することにより外周部分24Aと中央部分24Bとでメッシュ密度が異なる複数のメッシュ基材20を形成した。金属線材22の線径は0.25mmとした。また、メッシュ基材20の軸方向に直交する断面における半径をRとしたときに、中央部分24Bは、断面の中心点から半径Rの80%までの領域とし、外周部分24Aは、断面の外縁から半径Rの20%までの領域とした。
【0040】
(触媒コート層)
また、OSC材であるCeO−ZrO複合酸化物(担体)にRhを担持してなる粉末と、アルミナにPdを担持してなる粉末とを水溶液に分散させ、スラリーを調製した。このスラリーを用いて、上記得られたメッシュ基材20にウォッシュコートを施し、乾燥および焼成することにより、メッシュ基材20(金属線材22)の表面に触媒コート層30を形成した。メッシュ基材の体積1L当たりの触媒コート層30のコート量は20g/L、Rhの量は0.1g/L、Pdの量は0.3g/Lとした。
【0041】
(メッシュ基材と外筒との接合)
上記触媒コート層30の形成後、メッシュ基材20を外筒(長さ:20mm、直径:34mm、厚み:1mmのパイプを使用した。)40内に圧入し、外筒40の内周面とメッシュ基材20の外周面との間にNiろう材を全周にわたって塗布し、100℃〜200℃で乾燥した。そして、低酸素分圧のろう付け炉にてろう付け接合することにより、メッシュ基材20を外筒40の内部に固着した。ろう材の塗布量は20g/L、前記ろう付け範囲は基材の長さの100%とした。このようにして、排ガス浄化用触媒を作製した。
【0042】
<サンプル1〜4>
サンプル1〜4は、メッシュ基材20の外周部分24Aと中央部分24Bとで、メッシュ密度が異なる。サンプル1〜4は、かかる部分のメッシュ密度を除き、同じ構成にした。かかるメッシュ密度差は、前記メッシュシートの圧縮条件を変えることにより具現化した。
【0043】
ここで、サンプル1〜3では、外周部分24Aにおけるメッシュ密度Aを、中央部分24Bにおけるメッシュ密度Bよりも大きくした(B<A)。具体的には、中央部分24Bのメッシュ密度Bは0.4g/mLで一定とし、かつ、外周部分24Aのメッシュ密度Aに対する中央部分24Bのメッシュ密度Bの密度比(B/A)を、サンプル1〜3の順に、0.7、0.5、0.2とした。
【0044】
サンプル4では、従来のとおり、外周部分24Aと中央部分24Bとで、メッシュ密度の概ね差がない構造(いずれも0.4g/mL)とした。
【0045】
<接合強度の測定>
各サンプルの排ガス浄化用触媒におけるメッシュ基材と外筒との接合強度を評価した。具体的には、アムスラー試験機(株式会社東京衡機製荷重指示装置)を用いて、各サンプルの触媒のメッシュ基材の端面に軸方向に荷重をかけていき、メッシュ基材が外筒から抜けるまでの最大荷重(抜き強度)を測定することで評価した。この最大荷重(抜き強度)が大きいほどメッシュ基材と外筒との接合強度が大きいと云える。結果を表1および図4に示す。図4は、メッシュ密度比と抜き強度との関係を示すグラフである。ここでは、サンプル4の最大荷重を1としたときの相対値で示してある。
【0046】
【表1】
【0047】
表1および図4に示すように、外周部分24Aのメッシュ密度Aを中央部分24Bのメッシュ密度Bよりも大きくしたサンプル1〜3は、サンプル4に比べて抜き強度が大きく、メッシュ基材と外筒との接合強度が良好であった。特に、外周部分24Aおよび中央部分24Bにおける密度比を0.2としたサンプル3は、サンプル4の4.5倍以上という良好な接合強度を示した。この結果から、外周部分24Aのメッシュ密度Aを中央部分24Bのメッシュ密度Bよりも大きくすることにより、十分な接合強度でメッシュ基材と外筒とが接合固定された排ガス浄化用触媒を実現し得ることが確かめられた。
【0048】
<試験例2>
本例では、上記メッシュ基材を用いた排ガス浄化用触媒の触媒性能を確認するため、以下の試験を行った。すなわち、上記メッシュ基材を用いたサンプル2の排ガス浄化用触媒を用意した。また、比較のために、前述した排ガス浄化用触媒の作製過程において、メッシュ基材を円筒状のコージェライト製のハニカム基材に変更して排ガス浄化用触媒を作製した。ハニカム基材としては、触媒コート層の形成後における圧損がサンプル2のメッシュ基材と同程度のものを用いた。
【0049】
各例に係る排ガス浄化用触媒の浄化性能を比較するため、各排ガス浄化用触媒を通過した後の排ガスに含まれるCO、HCおよびNOxの排出量(エミッション)を測定した。評価エンジンは排気量125ccのガソリンエンジンとした。結果を図5に示す。ここでは、ハニカム基材を用いた排ガス浄化用触媒のエミッションを1としたときの相対値で示してある。
【0050】
図5に示すように、メッシュ基材を用いた排ガス浄化用触媒は、ハニカム基材を用いた排ガス浄化用触媒に比べて、CO、HCおよびNOxのエミッションがいずれも低下傾向を示し、浄化性能が良好であった。この結果から、メッシュ基材を用いた排ガス浄化用触媒によると、ハニカム基材よりも良好な浄化性能が得られることが確かめられた。
【0051】
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
【符号の説明】
【0052】
20 メッシュ基材
22 金属線材
24A 外周部分
24B 中央部分
30 触媒コート層
40 外筒
100 排ガス浄化用触媒
図1
図2
図3
図4
図5