(58)【調査した分野】(Int.Cl.,DB名)
【背景技術】
【0002】
従来の金属酸化物半導体(MOS)及び相補型MOS(CMOS)論理及びメモリデバイスは、高速スイッチング時間及び低電力損失の卓越した組み合わせ、並びに大規模集積化のためのそれらの高い密度及び適合性を提供するため、最近の電子デバイス及びシステムにおいて普及している。しかしながら、当分野で根本的であるように、それらのデバイスは、これらの技術に従って構築される論理及びメモリ回路が、バイアス電力の除去時にそれらのデータ状態を保持しないという点において、本質的に揮発性である。特にモバイル及び小規模システムにおいて、メモリ及び論理状態を不揮発性様式でストアする能力が非常に望ましい。結果として、近年、不揮発性デバイスを構築するための様々な技術が開発されてきた。
【0003】
不揮発性ソリッドステートメモリデバイスを実現するために近年開発された技術はキャパシタの構築に関与し、このキャパシタの構築において、誘電材料は、非強誘電性キャパシタで典型的に用いられるような二酸化ケイ素又は窒化ケイ素ではなく、チタン酸ジルコン酸鉛(PZT)又はタンタル酸ストロンチウムビスマス(SBT)などの分極強誘電性材料である。強誘電性材料の分極状態に基づく電荷対電圧(Q−V)特性におけるヒステリシスが、それらのキャパシタにおけるバイナリ状態の不揮発性ストレージを可能にする。これに対して、従来のMOSキャパシタは、デバイスの電源切断時にそれらのストアされた電荷を失う。強誘電性キャパシタは、最近のCMOS集積回路に概ね適合するプロセスによって構築され得ることがわかっている。
【0004】
一般に強誘電性RAM、FeRAM、又はFRAMデバイスと呼ばれるメモリデバイスなどの、強誘電性キャパシタに基づく不揮発性ソリッドステート読取り/書込みランダムアクセスメモリ(RAM)デバイスが、多くの電子システム、特にポータブル電子デバイス及びシステム、において実装されてきている。FRAMは、ペースメーカ及び除細動器などの埋め込み型医療デバイスにおいて特に魅力的である。周知の2T2C(2トランジスタ、2キャパシタ)セルを含む、強誘電性キャパシタを含む様々なセルアーキテクチャが、当分野で知られている。別のタイプのFRAMセルは周知の6T CMOS静的RAMセルに基づいており、このセルは、通常動作の間SRAMセルとして動作するが、各ストレージノードに結合される強誘電性キャパシタが、不揮発性様式でメモリコンテンツを保存するためにストアされたデータ状態を用いてプログラムされ得る。強誘電性キャパシタはまた、いくつかの集積回路においてプログラム可能アナログキャパシタとして実装される。
【0005】
前述のように、強誘電性材料の分極性は、強誘電性キャパシタにおいてバイナリ状態の不揮発性ストレージのためのメカニズムを提供する。
図1は、従来の強誘電性キャパシタのQ−V特性の例を図示する。図に示されるように、導電プレートにわたってストアされる電荷(Q)は、プレートに印加される電圧(V)に、及びその電圧の最近の履歴にも依存する。キャパシタプレートにわたって印加される電圧Vが抗電圧(coercive voltage)+V
αを超える場合、キャパシタは「+1」状態に分極する。この特性によれば、一旦「+1」状態に分極されると、電圧Vが抗電圧−V
βを上回る限り、キャパシタは+Q
1のストアされた電荷を示す。逆に、キャパシタプレートにわたって印加される電圧Vが抗電圧−V
βより負である場合、キャパシタは、「−1」状態に分極され、+V
αを下回る印加電圧Vに対して−Q
2のストアされた電荷を示す。
【0006】
強誘電性キャパシタの重要な特性は、集積回路における不揮発性ストレージの目的で、その分極状態間で強誘電性キャパシタが示すキャパシタンスの差である。典型的なFRAMの動作において、メモリセルによってストアされる論理状態は、その強誘電性キャパシタのキャパシタンス、及びそのため、分極化された状態を調べることによって読み取られる。
図1の例を参照すると、強誘電性キャパシタの「−1」状態から「+1」状態への分極は、相対的に高いキャパシタンスC(−1)で反映され、それを用いて、電圧がその抗電圧V
αを超えると、分極状態の電荷に関与する分極電荷はキャパシタ内で保持され、他方で、既に「+1」状態にあるキャパシタは、その強誘電性ドメインが電圧の印加前に既に整合されているため、分極に起因するわずかなキャパシタンスC(+1)を示す。強誘電性キャパシタの分極能力は、その「−1」分極状態と「+1」分極状態の間の分極電荷における差(すなわち(+Q
1−(−Q
2))に反映され、これは一般にスイッチング分極パラメータP
SWと呼ばれる。スイッチング分極P
SW平均の値が相対的に大きいと、キャパシタンスの値C(+1)に対してキャパシタンスの大きな値C(−1)に反映される。他方で、スイッチング分極P
SWが相対的に低い場合(及び、抗電圧+V
α及び−V
βが一定のままであると仮定すると)、キャパシタンスラインC(−1)は、より低いキャパシタンスを反映してより平坦な傾斜を有することになる。したがって、キャパシタの2つの分極状態間のキャパシタンスの差は、スイッチング分極パラメータP
SWが低下するにつれて減少し、これは、対応するFRAMセルに対する一層乏しい読取りマージンとして現れる。逆に、スイッチング分極パラメータP
SWに対するより高い値は、FRAMセルに対するより向上した読取りマージンに対応する。
【0007】
スイッチング分極のパラメータP
SWは、特にチタン酸ジルコン酸鉛(PZT)の場合、強誘電性キャパシタ誘電性材料が形成される様式に強く依存することがわかっている。参照により本明細書に組み込まれる米国特許第6,730,354号に記載されるように、半導体集積回路の製造におけるPZT膜の形成は、通常、有機金属化学気相成長(MOCVD)により実施される。このMOCVD手法は、キャパシタ誘電体として働くのに十分な品質の非常に薄いPZT膜を堆積することができる。より具体的に言えば、低い前駆体フロー(鉛、ジルコニウム、及びチタニウム前駆体、並びに適切な溶媒の、約1.1 ml/分を下回る集合的流速)及び約640℃を下回る処理温度のMOCVD条件は、強誘電性キャパシタの誘電体として、相対的に高いスイッチング分極P
SWを示し得る薄いPZT膜を提供することができることがわかっている。
【特許文献1】米国特許第6,730,354号
【0008】
しかしながら、低い流速、低温でのPZTのMOCVD堆積は、必然的に非常に低い速堆積及び対応する多くの前駆体消費となることもわかっている。その結果の低い製造スループット及び高い材料コストは、FRAMデバイスの製造コストを上昇させる。低温下のこのように高い流速では、鉛、ジルコニウム、及びチタニウムの相対的な核形成を厳密に制御できないため、前駆体流速を上昇させることによって、この低温でのMOCVD PZTの速堆積を上昇させることはできない。特に、個々の前駆体フローの厳密な制御なしでは、鉛及び酸化鉛の相対的核形成は低温下で増加する傾向にあることがわかっている。鉛の核形成が増加することで、光散乱法を用いて見た場合に堆積膜に「かすみ(haze)」として現れる、粗い空間形態を伴う望ましくない第2の相が形成される。この「かすみ」の粗さの欠陥は、典型的には漏れの増加として、強誘電性要素の電気的性能の低下、及びそのため、電気収量(yield)の減少及びデバイス性能の低下に反映される。
【発明を実施するための形態】
【0020】
図2は、本明細書で開示される実施形態を用いて構築され得るような、強誘電性ランダムアクセスメモリ(FRAM)の一部を含む集積回路の一部を図示する。この例において、強誘電性キャパシタ15及び金属酸化物半導体(MOS)トランジスタ17が、半導体基板の半導体表面に又はその付近に配設される。代替として、これらの実施形態は、当分野で知られるように、シリコンオンインシュレータ(SOI)技術に従うなど、半導体層自体が絶縁体層の上にある集積回路の製造において用いられ得る。
【0021】
図2に示される集積回路の例において、隔離誘電体構造11、ゲート電極16、及びn型ソース/ドレイン領域14が、基板10の表面又は表面付近に、当分野で周知であるように、MOS集積回路のための従来様式で配設される。
図2の例におけるNチャネルMOSトランジスタ17は、従来のように、p型基板10の(又は場合によって、基板10に形成されたp型ウェルの)表面にn型ソース/ドレイン領域14を含み、ゲート電極16がソース/ドレイン領域14間のチャネル領域に重なり、ゲート誘電体によってチャネル領域から分離される。層間誘電体12がトランジスタ17の上に配設され、トランジスタ17のソース/ドレイン領域14の1つと強誘電性キャパシタ15の下部プレート20aとの間に導電接続を提供するために、層間誘電体12を介してコンタクト開口部に導電プラグ13が配設される。
【0022】
図2の例において、強誘電性キャパシタ15は、導電プレート20a、20bの強誘電性サンドイッチスタックから形成され、導電プレート20a、20bの間に強誘電性材料22が配設される。
図2に示されるように、下部プレート20aが、導電プラグ13を用いて下にあるソース/ドレイン領域14と電気的に接触するように、導電プラグ13に重なる位置に形成される。導電プレート20a、20bは、典型的に、互いと同じ導電材料から形成される。導電プレート20a、20bは、しばしば、導電性金属、金属酸化物などのスタックとして形成される。例えば、下部プレート20aを形成する1つのこうしたスタックが、導電プラグ13と接する導電拡散障壁(例えば、TiN、TiAlN、TiAlON、TaSiN、CrN、HfN、TaN、HfAlN、CrAlN、TiSiN、CrSiN)、拡散障壁の上に配設される貴金属(例えば、Ru、Pt、Ir、Rh、Pt、Pd、Au)又は貴金属酸化物(例えば、RuOx、IrOx、PdOx)、及び、中間層に重なり強誘電性材料22と接するイリジウム(Ir)又はストロンチウムルテニウム酸塩(SrRuO
3)などの導体を含み得る。下部導電プレート20a及び上部導電プレート20bは、対称性、製造フローの簡潔さ、及び強誘電性分極性能の向上のために、同じ材料から形成される。その場合、上部導電プレート20bの様々な材料が形成される順序は、下部プレート20aの順序の逆になり得る。下部導電プレート20a及び上部導電プレート20bは、典型的に、スパッタ堆積を用いて形成される。
【0023】
本明細書で開示される実施形態によれば、強誘電性材料22は、一般にPZTと呼ばれるチタン酸ジルコン酸鉛である。キャパシタ15における強誘電性材料22は、電気的性能(例えばキャパシタンス)のため、及び、最近の集積回路を実現するために用いられるディープサブミクロン特徴との整合性のために、実施可能な限り薄いことが望ましい。本明細書で開示される実施形態によれば、PZT強誘電性材料22は有機金属化学気相成長を用いて堆積される。
【0024】
図3は、本発明の実施形態に従った、液体送出有機金属化学気相成長によってPZT膜を形成するためのCVDシステム5の一例の機能的配列を概略的に図示する。本明細書に、及び参照により本明細書に組み込まれる米国特許第6,730,354号に記載されるCVDシステム5の本例は、開示される実施形態との関連を用いて、それらの実施形態に従ったPZT強誘電性材料22を堆積するための適切なシステムの例として提供される。本明細書を参照する当業者であれば、CVDシステム5及び他のタイプのMOCVDシステムの要素のいくつか又はすべてに対する変形及び代替例が代替として用いられ得、こうした変形及び代替例が依然として後述の特許請求の範囲内にあることを容易に理解されるであろうことが当然企図される。
【0025】
CVDシステム5の本例は、デュアル前駆体アンプル液体送出システム25及び気化器27に結合される、化学気相成長(CVD)チャンバ13を含む。CVDチャンバ13は、例えば、所望の直径(例えば、200 mm、300 mmなど)のウェハのための従来の市販CVDチャンバとして実装され得る。本例において、CVDチャンバ13は、適切な条件下でPZT前駆体気相をCVDチャンバ13内に導入するように構成される、ガス分散マニホルド19及びシャワーヘッド21を含み、ここからPZT強誘電性材料22がウェハ23の露出面上に沈殿する。ウェハ23は加熱サセプタ24によって支持され、典型的に数ミリメートル、シャワーヘッド21から間隔が空けられる。ウェハ23の露出面は、シリコンウェハ、シリコンウェハ上に形成される二酸化ケイ素の層、ガリウムヒ素、酸化マグネシウム、サファイヤの、頂部表面に対応し得、又は、例えば、半導体ウェハ上に形成される複雑な集積回路を含む多層構造の頂部表面に対応し得る。例えば、
図2に示された構造を参照すると、ウェハ23は、チャンバ13内に置かれる場合、トランジスタ17、層間誘電体12、導電プラグ13、及び下部プレート20aの形成後の基板10に対応し、その製造段階で、下部プレート20aを構成する一つ又は複数の導電層は、プレート20a、20b、及びPZT強誘電性材料22がスタックとしてエッチングされる従来のプロセスに従って、ウェハ23の全表面に延在する。
【0026】
図3に示されるCVDシステム5の例において、液体送出システム25は、溶媒アンプル31、及び、PZT膜を形成するために必要とされるそれぞれの有機金属化合物又は構成金属の混合物を含むソース試薬アンプル26、28、30を含む。いくつかの実施形態において、ソース試薬アンプル26は鉛前駆体を含み、ソース試薬アンプル28はジルコニウム前駆体を含み、ソース試薬アンプル30はチタニウム前駆体を含み得るが、代替として、1つのアンプルがジルコニウム及びチタニウムの前駆体の混合物を含み得、更に代替として、単一のアンプルが鉛、ジルコニウム、及びチタニウムの3つすべてについての前駆体を含み得る。鉛、ジルコニウム、及びチタニウムについての特定の前駆体、並びに堆積のためにチャンバ13に導入される溶剤の例は、上記で本願に組み込まれた米国特許第6,730,354号に記載されている。
【0027】
図2の例を再度参照すると、ソース試薬及び溶剤アンプル26、28、30、31は、それぞれ、マニホルド38、40、42、43内への流体の精密な量を計測するように構成された、それぞれの液体フローコントローラ32、34、36、39に結合される。計測された溶剤及び有機金属混合物は、液状PZT前駆体組成物に混合するために、最終混合チャンバ44に送出される。この前駆体組成物は、例えば適切な温度に加熱された気化要素上のフラッシュ蒸発によって、前駆体蒸気に気化させるため、気化器27内に導入される。ガスフローコントローラ46が、バルブ47を介して前駆体蒸気をCVDチャンバ13内に移送する、キャリアガス(例えば、アルゴンガス又はヘリウムガス)の流れを制御する。追加のプッシュガスソース(例えば、アルゴン又はヘリウム)が、ガスフローコントローラ45を介して気化器27に直接接続されてもよい。ガスフローコントローラ48、49、50が、ガス分散マニホルド19内への酸化共反応ガス(co-reactant gas)(例えば、O
2、O
3、N
2O、又はこれらのガスの1つ又は複数の組み合わせ)の精密な量を計測し、こういった酸化ガスは、CVDチャンバ13内に導入される前に前駆体蒸気と混合される。
【0028】
CVDシステム5は、チャンバ13の排気及びパージに用いられる構成要素も含む。上記で組み込まれた米国特許第6,730,354号に記載されるように、例として、これらの構成要素は、パージガスフロー制御60、及びパージバルブ47、並びに、冷却トラップ54、56、58、及びバルブ51を含む排気システム52を含む。上記で組み込まれた米国特許第6,730,354号で更に詳細に説明される実施形態を含み、本明細書に開示される実施形態に従ったPZT堆積の目的で、他の従来の特徴がCVDシステム5に含まれてもよい。
【0029】
図2に示されるような1つ又は複数の強誘電性キャパシタ15を含む集積回路を製造する方法が、
図4に示されるプロセス62によって例示される。プロセス62で、トランジスタ17などのトランジスタが、従来のように、基板10又は他の支持ボディの半導体表面に又は表面付近に形成される。プロセス62の一部として、構造の中でも特に、隔離誘電体構造11、適切にドープされたウェル(図示せず)、ゲート誘電体層、ゲート電極16、及びソース/ドレイン領域14が、従来のMOSプロセスに従って基板10の表面又は表面付近に形成される。
図2に示されるNチャネルMOSトランジスタ17は、ゲート誘電体に重なるゲート電極16を画定するように、堆積及びフォトリソグラフィパターニング並びにポリシリコン材料のエッチングによって従来のように形成され得、周知の自己整合方式において、イオン注入及び後続の活性化アニールによってゲート電極16のいずれかの側にn型ソース/ドレイン領域14が形成される。
【0030】
プロセス64において、例えば化学気相成長を用いて、プロセス62で形成されたトランジスタ17などのトランジスタの上に第1の層間誘電体12が堆積され、所望であれば平坦化がそれに続く。プロセス66において、選択された位置に第1の層間誘電体12を介してコンタクト開口部(すなわちバイア)がエッチングされ、従来のようにそれらの開口部内に導電プラグ13が形成されて、MOSトランジスタ17のソース/ドレイン領域14の1つと結果として生じる強誘電性キャパシタ15との間の電気コンタクトを提供する。導電プラグ13は、タングステン、チタニウムなどの金属、又はそれらの合金から形成され得る。
【0031】
プロセス64における第1の層間誘電体12の形成、及びプロセス66におけるコンタクトエッチング及び導体の形成に続き、この例では強誘電性キャパシタ15が形成される。プロセス68において、キャパシタ15のための下部導電プレート層として働くように、第1の層間誘電体12及び導電プラグ13の上に1つ又は複数の導電層が形成される。典型的に、プロセス68は、従来のように、下部導電プレート層と下にある構造との間に配設される適切な障壁金属層と共に、ストロンチウムルテニウム酸塩(SrRuO
3)、イリジウム(Ir)、酸化イリジウム(IrO
2)、プラチナ(Pt)、並びに本出願において用いるために適するその他の金属及び金属酸化物の1つ又は複数など、所望の導電材料の1つ又は複数の層のスパッタ堆積によって実行され得る。多くの実装において、プロセス68において堆積される特定の導体は、残りの製造プロセスにおいて構造が曝されることになる、温度及びその他の条件と共に、この層の上に堆積されることになるPZT強誘電性材料との互換性のために選択される。
【0032】
プロセス68における下部導電プレート層の堆積に続き、プロセス70において、有機金属化学気相成長を用いてPZT強誘電性材料22が全体に堆積される。本明細書で開示される実施形態に従い、また上述したように、前述のCVDシステム5などの化学気相成長システム又はそれらの変形及び代替例を用いて、プロセス70が実施されることが企図される。これらのシステムは、典型的に単一ウェハシステムであるため、所与のウェハ上でのPZT堆積プロセス70の実行の前に特定のシステムに対して適切なように、必要であり従来の、排気及びパージ動作が実行されることが企図される。代替として、用いられているCVDシステムが複数のウェハを受け入れるように配されている場合、複数のこうしたウェハが同時にプロセス70を受け得る。以下の説明において、プロセス70の動作は、
図3に関して上述した単一ウェハCVDシステム5の例を参照して説明されるが、本明細書を参照する当業者であれば、過度の実験なしに、各特定の実装において提示されるCVDシステムのこうした変形に対して積雪なように、特定の動作を容易に適合させ得ることが企図されている。
【0033】
図4を参照すると、堆積プロセス70はまず一般的な意味で説明される。図示されるように、プロセス70は、プロセス72において、基板10と前述のように以前に形成された要素とを含むウェハ23をチャンバ13内に配置すること、並びに、チャンバ13の内部及びウェハ23を所望の温度まで加熱することで開始される。ウェハ23は典型的に、堆積に先立つ予熱期間の間予熱され、例えばこの予熱の一部は加熱サセプタ24上への配置に先立って実行される。上記で組み込まれた米国特許第6,730,354号は、チャンバ13内でウェハ23を所望の処理温度まで徐々に加熱するための一手法を記述している。ウェハ23及びチャンバ13がプロセス72で所望の処理温度に達するこの方式は、開示される実施形態のためのいくつかの方式のいずれか1つにおいて実施され得ることが企図される。いずれの場合でも、プロセス72は、堆積プロセス74の開始に先立ちチャンバ13及びウェハ23を所望の温度まで上昇させる。
【0034】
プロセス72に続き、ウェハ23が所望の温度になると、PZT強誘電性材料22の堆積が第1の堆積プロセス74で開始される。一般的な意味で、プロセス74は、所望の流速の前駆体及び溶剤、並びに所望の混合の酸化ガスを、チャンバ13内に導入することによって実行され、これらの構成物質間の反応の結果、ウェハ23上へのPZTの堆積となる。開示される実施形態によれば、前駆体及び溶剤の流速、酸化ガス組成物、及びチャンバ13において存在する条件は、ウェハ23上へのPZT材料の速堆積が比較的遅くなるようにこのプロセス74について選択される。開示される実施形態のいくつかにおいて、プロセス74は第1の選択された持続時間続行される。プロセス74の結果として、PZT強誘電性材料22の層の第1の下部部分が堆積される。
【0035】
第1の堆積プロセス74に続き、PZT層の堆積を継続するために第2の堆積プロセス75が実施される。ここでも堆積プロセス76は、前駆体、溶剤、及び所望の混合の酸化ガスをチャンバ13内に導入することによって実施される。開示される実施形態によれば、プロセス76における堆積条件(例えば、前駆体流速、酸化ガス組成物、温度など)はプロセス74のものとは異なり、そのため、PZT材料はプロセス74より高速でウェハ23上に堆積される。開示される実施形態において、高速堆積プロセス76は第2の選択された持続時間続行され、その結果、PZT強誘電性材料22の層の第2の上部部分の堆積となる。いくつかの開示される実施形態によれば、プロセス76は、PZT強誘電性材料22のその全厚みまでの堆積を完了する。
【0036】
前述のように、プロセス76の間の堆積条件はプロセス74のものとは異なり、プロセス76での速堆積はプロセス74のものよりも速い。次に、
図5aから
図5dを参照して説明するように、本発明の実施形態は、異なる速堆積で堆積プロセス74、76を実装するために、異なる手法及びそれらの手法の組み合わせを用いることができる。
【0037】
図5aにおいて、PZT堆積プロセス70は、ウェハ23がチャンバ13内に配置され、チャンバ13が所望の処理温度まで加熱される、プロセス72で開始される。当分野で知られているように、CVDのための処理温度は典型的に、堆積のためにウェハがその上に置かれ、温度センサが設置され得る、サセプタで測定される。したがって、サセプタ温度は当分野では処理温度に指すために通常用いられ、ウェハの表面の実際の温度は概してこのサセプタの温度より、例えばおよそ20℃、低くなる。本明細書はその慣例に従い、また、プロセス70の実施形態を説明する際の処理温度としてサセプタ温度を指す。本明細書を参照する当業者であれば、チャンバ13のサセプタ24での温度が基準温度として用いられる本説明に基づき、CVDシステム及びプロセスのそれらの特定の実装について処理が実施されている温度を容易に理解することが企図される。
図5aに示された実施形態によれば、プロセス72は、サセプタ24において、例えば約635℃など、約640℃を下回る温度までチャンバ13を加熱する。前述のように、また当分野で知られるように、加熱プロセス72は、チャンバ13内のウェハ23を用いて実施され、複数の段階(例えば、上記で組み込まれた米国特許第6,730,354号に記載されるように、ウェハ23がサセプタ24上方で支持される予熱ステップを含む)で実施さされ得る。PZTのCVDに適切なように、圧力(例えば2トール)など、チャンバ13での他の条件も、本プロセス72において有効である。
【0038】
プロセス72の動作を介してチャンバ13及びウェハ23が所望の温度となると、相対的に低い速堆積の堆積を用いて、下部導電プレート20a材料の層の表面において第1の厚みのPZT強誘電性材料22を堆積するために、堆積プロセス74aが実施される。この実施形態において、プロセス74aは、相対的に低い流速で、鉛とジルコニウムとチタニウムとの前駆体、並びに溶液を導入することによって実施される。当分野で知られるように、液体前駆体反応物の流速は、ml/分などの流量単位で言及される。本実施形態に一例において、低速堆積プロセス74aは、すべての前駆体(鉛、ジルコニウム、及びチタニウム)及び溶剤を、1.1 ml/分又はそれを下回る集合的流速でアンプル26、28、30、31から気化器27を介して導入することによって実施される。前駆体及び溶剤の導入の間、所望であればガスフローコントローラ46を介してキャリアガスと共に、所望の化学的性質に従い、ガスフローコントローラ48、49、50の1つ又は複数を介して酸化ガスがチャンバ13に導入される。プロセス74aは、この流速及びこれらの条件下で、この低速堆積で堆積されるべきPZTの厚みに従って選択される持続時間続行される。例えば、プロセス74aの持続時間は、典型的におよそ約100秒〜約300秒となることが企図される。このプロセス74aでの予期される速堆積は、これらの条件下で、約0.5〜1.5 Å/秒となる。
【0039】
選択された期間にわたる低速堆積プロセス74aに続き、より高い速堆積でのPZT強誘電性材料22の堆積がプロセス76aにおいて実施される。本実施形態によれば、より高い速堆積は、前駆体及び溶剤の集合的流速を、プロセス74aのものに対して増大させることによって達成される。本実施形態の一例において、高速堆積プロセス76aは、すべての前駆体(鉛、ジルコニウム、及びチタニウム)及び溶剤を、前述のように酸化ガス及びキャリアガスと組み合わせて、1.1 ml/分を上回る集合的流速、例えば約1.5 ml/分〜約2.5 ml/分の速度で、アンプル26、28、30、31から気化器27を介して導入することによって実施される。これらの反応物及びキャリアガスのチャンバ13への導入、並びにその結果のPZT堆積は、PZT強誘電性材料22の所望の全厚みに従って選択される持続時間、例えば約150秒〜約250秒の時間、プロセス76aにおいて続行される。このプロセス76aのための予期される速堆積は、これらの条件下で、約1.5〜3.0 Å/秒となる。
【0040】
高速堆積プロセス76aの持続時間に対する低速堆積プロセス74aの持続時間は、高速堆積プロセス76aにおいて堆積されるPZT強誘電性材料22に対する低速堆積プロセス74aにおいて堆積されるPZT強誘電性材料22の割合を決定する。PZT強誘電性材料22のこれらの構成物質副層の相対的厚みは、例えば、高速堆積プロセス76aによって形成される全厚みの約10%〜約50%まで、広範囲に変化し得る。
【0041】
図6a及び
図6bは、本発明の実施形態に従うが、本実施形態におけるプロセス74a、74bに関して異なる相対堆積時間で形成されるPZT強誘電性材料22の例を図示する。
図6a及び
図6bの各々において、PZT強誘電性材料22は、下部導電プレート20aの上に堆積され、上部導電プレート20bの下にあるように示される。
図6aの例におけるPZT強誘電性材料22は、下部導電プレート層20aに接して低速堆積プロセス74aにおいて形成される相対的に薄いPZT層22
LFRと、PZT層22
LFRの上にあり上部導電プレート層20bの下にある、高速堆積プロセス76aにおいて形成される相対的に厚いPZT層22
HFRとを含む。この例では、PZT層22
LFRの厚みt
22LFRは、PZT強誘電性材料22の全厚みt
22の約10分の1であり、PZT層22
HFRの厚みt
22HFRは全厚みt
22の約10分の9である。したがってこの例では、低速堆積プロセス74aの持続時間は高速堆積プロセス76aの持続時間より長くなく、例えば高速堆積プロセス76aの持続時間の半分の短さである。一方で、
図6bの例では、低速堆積プロセス74aにおいて形成されるPZT層22
LFRは、高速堆積プロセス76aにおいて形成されるPZT層22
HFRとほぼ同じ厚みであり、例えば厚みt
22LFR及びt
22HFRは、各々、全厚みt
22の約半分である。
図6bに示されるような構造を形成するためには、所与の異なる速堆積の場合、同じ厚みの層22
LFR、22
HFRを構築するために、低速堆積プロセス74aの持続時間は高速堆積プロセス76aの持続時間より長い、例えば2倍の長さ、になることが企図される。本明細書を参照する当業者であれば、過度の実験なしに、特定の実装に所望の相対的厚みを生じさせるために適切なプロセス74a、74bに対する堆積時間を容易に選択し得ることが企図される。当然、高速堆積プロセス76aを用いてPZTを堆積するスループット利点は、全PZT厚みの多くの部分が低速堆積プロセス74aにおいて堆積される場合、大幅に低減される。
【0042】
開示される実施形態に従って、低速堆積プロセス74aにおいて形成されるPZT層22
LFRと高速堆積プロセス76aにおいて形成されるPZT層22
HFRとの間の、表面形態、結晶構造、又はその他の物理的属性における差が、典型的に、最終的なPZT強誘電性材料22に存在し得ることが企図される。多くの場合、これらの物理的差は、透過電子顕微鏡法(TEM)及びその他の原子レベルの顕微鏡技術など、最近の分析手法を用いて観測可能であり得ることが企図される。
【0043】
図5bは、PZT強誘電性材料22の組成物も、それが堆積される速度と共に、変化する代替実施形態を図示する。本実施形態において、加熱プロセス72は、
図5aに関して上述したように実施され、サセプタ24で測定されるチャンバ13内部の温度を約640℃を下回る温度まで上昇させる。本実施形態において、低速堆積プロセス74bは、ここでも前駆体(鉛、ジルコニウム、チタニウム)及び溶剤を低い集合的流速で、及び前駆体間でのそれらの選択された割合で、前述のように酸化ガスと共に導入し、チャンバ13におけるその他の堆積条件は、
図5aのプロセス74aに関して上述したものに対応する。当分野で知られるように、チタン酸ジルコン酸鉛は典型的にペロブスカイト結晶構造を有し、鉛は一般に結晶単位格子(crystal unit cell)の「A」部分に割り当てられ、ジルコニウム及びチタニウムは「B」格子部分に割り当てられる。また、当分野で知られるように、PZT材料の化学量論はある程度変化可能であるため、堆積されるPZTのA/B比は、「A」構成物質(Pb)対「B」構成物質(Zr及びTi)の相対的流速に依存するように変化し得る。PZT強誘電性材料の特性はA/B比と共に変化することが観測されており、具体的に言えば、高スイッチング分極P
SWであるが高リーク電流の膜を提供するためには、高鉛含量(すなわち高A/B比)が観測されており、一方で、より低い鉛含量(すなわち低A/B比)は、より低いスイッチング分極P
SWであるがリークレベルも低いPZTとなる。
図5bに示された実施形態によれば、低速堆積プロセス74bは、例えば約1.06である相対的に低いPb/(Zr+Ti)(すなわちA/B)比となる、アンプル26からの鉛の選択された流速、並びに、それぞれ、アンプル28、30からのジルコニウム及びチタニウムの選択された流速で、
図5aのプロセス74aにおけるように、1.1 ml/分又はそれを下回る集合的流速で前駆体(鉛、ジルコニウム、チタニウム)及び溶剤を導入する。ここでも、低速堆積プロセス74bは、PZT強誘電性材料22の第1の部分を所望の厚みまで堆積するために選択された持続時間続行される。
【0044】
その後、前駆体(鉛、ジルコニウム、チタニウム)及び溶剤の集合的流速を上げることによって、高速堆積プロセス76bが実施され、このプロセスにおいて、鉛、ジルコニウム、及びチタニウムの相対的流速は、より高いPb/(Zr+Ti)(すなわちA/B)比に変更される。本実施形態の一例において、プロセス76bでの前駆体及び溶剤の集合的流速は約1.5 ml/分から約2.5 ml/分まで変動し得、Pb/(Zr+Ti)(すなわちA/B)比は約1.10である。これらの条件下で、PZT強誘電性材料22の所望の全厚みまでの堆積を完了するために、酸化ガスの存在下で、別の選択された持続時間、高速堆積プロセス76bが実施される。
【0045】
本実施形態の結果として、プロセス74b、76bにおいて堆積されたPZT強誘電性材料22の構造は、組成物が、特に膜全体の結果として生じる鉛含量部分が、異なることが企図される。その結果、結果として生じるPZT強誘電性材料22の性能は、各部分の構造の優れた特質、すなわち、層上部の鉛の多い部分の高スイッチング分極P
SW、及び、鉛含量の低い下部の低リーク特徴を、反映し得ることが企図される。また、堆積プロセス74b、76bはいずれも低堆積温度(すなわち約640℃未満)で実施されているが、結果として生じるPZT強誘電性材料22は、低温PZT膜がそれに対して脆弱であり、デバイス歩留りに悪影響を及ぼす「かすみ」欠陥が実質的にないことが観察されている。実際に、本実施形態に従って堆積されるPZT強誘電性材料のスイッチング分極は、プロセス76b全体を通じてより高い(例えば1.10)A/B比及びより高速な堆積条件下で堆積される単一のPZT層のスイッチング分極より高く、プロセス74b全体を通じてより低い集合的流速条件で堆積される単一のPZT層によって達成される程度に少なくとも高いデバイス歩留りであることが、実験から観測されている。本実施形態に従って堆積されるPZT強誘電性材料22の低速堆積と高速堆積との間の鉛組成物の差は、最近の分析機器を用いて観測され得ることが企図される。
【0046】
次に
図5cを参照し、別の実施形態に従ったPZT堆積プロセス70を説明する。加熱プロセス72が、
図5a及び
図5bに関して上述したように実施され、このプロセスにおいて、ウェハ23を含むチャンバ13の温度は、
図5aに関して上述したような同様の圧力及び他の条件下で、約640℃を下回るサセプタ温度まで上げられる。次に、低速堆積プロセス74cが実施され、このプロセスにおいて、前駆体(鉛、ジルコニウム、チタニウム)及び溶液が、例えば約1.1 ml/分の又はそれを下回る低い集合的流速で導入される。本実施形態によれば、低速堆積プロセス74cの間導入される酸化ガスの酸素濃度は相対的に低い。本実施形態の一例において、プロセス74cにおいて導入される酸化ガスの酸素濃度は約33%O
2であり、酸化ガスの残りはアルゴンなどの希釈不活性ガスで構成され、この例では、この希釈酸化ガスは、流速約1500 sccmのO
2及び流速約3000 sccmのArの組み合わせとして導入される。前述のように、低速堆積プロセス74cは、PZT強誘電性材料22の第1の部分を所望の厚みで堆積するために、選択された持続時間実行される。
【0047】
低速堆積プロセス74cが完了すると、前駆体(鉛、ジルコニウム、チタニウム)及び溶剤の集合的流速を、例えば、約1.5 ml/分から約2.5 ml/分までに上げることによって、高速堆積プロセス76cが実施される。また、本実施形態において、酸化ガスの酸素濃度は、プロセス74cに対して、例えば不活性ガスによる希釈のない100%酸素(例えば、4500 sccmのO
2及び0 sccmのAr)まで、上昇される。この酸素濃度の増加は、酸化反応速度、及びそのため、PZT材料が堆積される速度、を上昇させるために企図される。チャンバ13における他の条件は、プロセス74cと同様に保たれ得る。その後、高速堆積プロセス76cがその選択された持続時間実施され、PZT強誘電性材料22の所望の全厚みの堆積を完了する。
【0048】
図5dは、別の実施形態に従ったPZT堆積プロセス70を図示する。本実施形態において、加熱プロセス72は、
図5aに関して上述したように実施され、チャンバ13の内部の温度を約640℃を下回るサセプタ温度まで上昇させる。次に本実施形態に従って低速堆積プロセス74aが実施され、このプロセスにおいて、前駆体(鉛、ジルコニウム、チタニウム)及び溶液は、酸化ガスと共に、及び前述のようなチャンバ13における適切な堆積条件下で、例えば約1.1 ml/分の又はそれを下回る、低い集合的流速で導入される。この低速堆積プロセス74aは、前述のように、PZT強誘電性材料22の第1の部分を所望の厚みまで堆積するために選択された持続時間実施される。
【0049】
図5dの本実施形態に従い、その後、プロセス77が、チャンバ13及びウェハ23の温度を上昇させるために実施される。例えば、サセプタ24の温度がプロセス77で約635 ℃から約645 ℃まで上昇され得ることが企図される。所望の一層高いサセプタ温度(及びそのため、ウェハ及びチャンバ温度)に達すると、前述のように、前駆体(鉛、ジルコニウム、チタニウム)及び溶剤を、例えば約1.5 ml/分から約2.5 ml/分までの、上昇した集合的流速でPZT強誘電性材料22の上部を堆積するために、高速堆積プロセス76aが実施される。PZT強誘電性材料22の所望の全厚みまでの堆積を完了するために、酸化ガスの存在下で、別の選択された持続時間高速堆積プロセス76bが実施される。
【0050】
図5aから
図5dに関して上述された実施形態に対する他の代替例及び変形例が企図される。これらの代替例及び変形例には、低速堆積プロセスと高速堆積プロセスとの間で、堆積条件(すなわち、流速、A/B比、酸素濃度、温度など)の組み合わせを変更することが含まれる。例えば、流速、A/B比、酸素濃度、及び温度のすべての条件が、高速堆積プロセスを実施するために低速堆積プロセスにおいて用いられる条件から変更され得、企図される他の変形例には、それらの条件のいくつかの副組み合わせを変更することが含まれる。更に代替例において、低速堆積プロセスに中速堆積プロセスが続き、その後に高速堆積プロセスが続くなど、2つより多くの堆積プロセスが実施され得ることが企図される。更に代替例において、堆積の間堆積条件の1つ又は複数が連続的に変更され得、低速堆積条件下で始まってより高い速堆積条件下で終了する「単一」の堆積プロセスとなることが企図される。本明細書を参照する当業者には明らかとなるように、開示される実施形態に対するこれら及びその他の代替例及び変形例は、本発明の特許請求の範囲内であることが企図される。
【0051】
再度
図4を参照すると、実施形態の1つに従ってPZT堆積プロセス70が完了すると、プロセス78において、PZT強誘電性材料22の上に上部導電プレート層20bが堆積される。上部導電プレート層20bの組成物は典型的に、対称性のため及び各々に同じ材料及びプロセスを用い得るために、下部導電プレート層20aのものと同じであることが企図される。下部及び上部の導電プレート層20a、20bが複数の導電材料のスタックで構成される場合、層20a、20bにおけるそれらの材料の順は典型的に逆になる。堆積プロセス78は典型的にスパッタ堆積によって実施されるが、導電材料を堆積するための他の手法も代替として用いられ得ることが企図される。
【0052】
プロセス80において、フォトレジスト又は別のマスク層の、そのサイズ及び位置を画定するためのフォトリソグラフィパターニング、それに続く、導電プレート20a、20b及び強誘電性材料22の単一マスクスタックエッチングによって、強誘電性キャパシタ15が完了される。参照により本明細書に組み込まれ、本願譲受人に譲渡された米国特許第6,656,748号は、本発明の実施形態に関して用いるために適切な、強誘電性スタック形成及びエッチングプロセス80の例を記載している。参照により本明細書に組み込まれる、本願譲受人に譲渡される同時係属中の米国特許出願番号13/432,736に記載されるようなパッシベーション膜の形成など、強誘電性キャパシタ15を完了するための付加的な処理も実施され得る。集積回路の製造は、様々なレベルの、層間誘電体、導体などを形成するための従来のプロセスによって、プロセス82において完了される。
【特許文献2】米国特許第6,656,748号
【特許文献3】米国特許出願番号13/432,736
【0053】
従来の堆積プロセス及び技術と比較して、開示される実施形態は、強誘電性材料の及びそれらの材料を組み込む集積回路の製造において1つ又は複数の利点を可能にし得る。特に、開示される実施形態は、低リーク特徴との組み合わせで高スイッチング分極を用いた強誘電性材料の堆積を可能にする。これらの実施形態に従い、相対的に高い速堆積で強誘電性材料の少なくとも一部を堆積することにより、開示される実施形態によって達成可能な全体の堆積速度は、低速堆積単一層膜のものより著しく高く、結果として、強誘電性堆積プロセスの製造スループットは、例えばおよそ30から80%、著しく上昇し得る。また、開示される実施形態に従って堆積される強誘電性材料は、約640 ℃未満などの低堆積温度でしばしば発生する「かすみ」欠陥が実質的に無いと観測されている。更に、開示される実施形態は、ディープサブミクロン領域の特徴サイズを有する最近の集積回路と適合し得るように、およそ100 Å及びそれより薄い厚みまで容易にスケーリングされ得る強誘電性膜を堆積することが可能である。これら及び他の重要な利点は、開示される実施形態によって可能となり得ることが企図される。
【0054】
当業者であれば、特許請求の範囲内で、説明された実施形態に対する改変が可能であること、及び多くの他の実施形態が可能であることが理解されよう。