【課題を解決するための手段】
【0009】
この目的は、本発明に係るコーティング法により、及び、従属請求項に記載の対応するコーティング設備により、実現される。
【0010】
まず、本発明では、従来技術に従って、塗布装置はコーティング対象の部品表面の上方を所定のコーティング経路に沿ってガイドされる。この移動の間、塗布装置は部品表面上にコーティング媒体流を放出する。このコーティング媒体流は、その流軸に対して円対称ではなく、そのため、部品表面上に、特定の長手方向を有する細長いスプレーパターンを形成する。例えば、このスプレーパターンは、おおよそ長方形であってもよい。こうした細長いスプレーパターンでは、軌道に対する塗布装置の角度位置は、回転噴霧器の場合とは異なり、無価値などではない。
【0011】
そこで、本発明では、部品表面の上方での移動の間、経路横断方向に対する又は軌道に対するスプレーパターンの長手方向の角度位置がコーティング経路に沿って変化するように、塗布装置を軸流を中心に回転させる。こうして、塗布されたコーティング経路の幅をコーティング経路に沿って変化させることができる。
【0012】
最大経路幅とするには、スプレーパターンの長手方向が軌道と直角を向くように、塗布装置を回転させる。なぜなら、この場合、スプレーパターンは部品表面を最大幅でコーティングするからである。
【0013】
一方、塗布するコーティング経路を最少経路幅とするには、細長いスプレーパターンの長手方向が軌道に平行に延びるように、塗布装置を回転させる。なぜなら、この場合、細長いスプレーパターンは部品表面をより狭い幅でコーティングするからである。
【0014】
コーティング経路に沿った塗布装置の移動の間の塗布装置の回転により、最大値と最小値との間でコーティング経路の幅の調整を連続的に行うことが可能となる。この場合、コーティング経路の経路幅の最大値は、スプレーパターンの長手方向に沿ったスプレーパターンの長手範囲により決定される。一方、コーティング経路の経路幅の最大値は、長手範囲を横断する細長いスプレーパターンの横断範囲により決定される。塗布装置の適切な回転により、最大値及び最小値により決定されるこうした境界内で、経路幅を無段階的に調節することができる。
【0015】
本発明の文脈で用いられる『塗布装置の回転』という表現は、好ましくは、回転される塗布装置の全体に関する。これと区別されるべきものとしては、例えば、従来の回転噴霧器におけるベルカップの回転が挙げられる。具体的には、塗布装置の回転が部品表面上のスプレーパターンの対応する回転をもたらす点が決定的に異なる。
【0016】
ここで、軌道に対する塗布装置の回転角が層厚にも影響することは触れるべきだろう。最大経路幅となるよう塗布装置が回転される場合、他のコーティングパラメータが変わらないなら、最少層厚が得られる。経路幅が最小となるよう塗布装置が回転される場合、他のコーティングパラメータが変わらないなら、最大層厚が得られる。こうして、塗布装置の回転角は結果として生じる層厚に影響するが、層厚は可能な限り一定であるべきなので、このこと自体は望ましいものではない。
【0017】
そこで、本発明の文脈において、一定の層厚を得るために、この厄介な回転角の影響を相殺することが好ましい。しかし、許容される層厚の公差によっては、塗布器の回転を介したスライス厚の狂いを必ずしも相殺する必要がないこともある。
【0018】
層厚への回転角の厄介な影響を相殺する一案として、コーティング経路に沿って塗布装置の移動速度を適宜に調節することが挙げられる。コーティング経路の最大経路幅とこれに対応した最少層厚が得られるように塗布装置が回転される場合、コーティング厚の望ましくない減少は移動速度を遅くすることにより相殺される。一方、最少経路幅とこれに対応した最大コーティング厚が得られるように塗布装置が回転される場合、コーティング厚の望ましくない増加は移動速度を対応して上げることにより相殺される。
【0019】
層厚への塗布装置の回転の厄介な影響を相殺する別案として、コーティング媒体流量を適宜に調節することが挙げられる。塗布幅が最大で層厚が対応して最少となるように塗布装置が回転される場合、層厚の望ましくない低下はコーティング媒体流量(質量流量又は体積流量)を対応して増やすことにより相殺できる。一方、経路幅が最少で層厚が対応して最大となるように塗布装置が回転される場合、層厚の望ましくない増加はコーティング媒体流量を減らすことにより相殺できる。
【0020】
塗布装置の回転角に応じた塗布装置の移動速度の上述の調節は、本発明によれば、以下の式に従って、実行できる。
V(α)=V0/cos(α)
(但し、αは、スプレーパターンの長手方向と経路横断方向との間の回転角であり、
V0は、スプレーパターンの長手方向と経路横断方向との間の回転角αが0のときの塗布装置の移動速度であり、
V(α)は、可能な限り最も一定な層厚を得るための、現在の回転角αでの調節移動速度である。)
【0021】
また、広い部品表面(例えば、自動車車体の屋根)を塗装する場合、本発明では、重複コーティング領域及び下塗り領域(unterbeschichtete Bereiche)の発生を防ぐために、隣接する部品表面が可能な限り隙間なく且つ重複もなく互いに隣接して、複数の隣接するコーティング経路が部品表面に塗布されることが好ましい。
【0022】
これは、長方形の部品表面をコーティングする場合は比較的に簡単である。なぜなら、この場合、単に平行なコーティング経路を塗布できるからである。
【0023】
一方、本発明は、自動車車体部品で通常みられるように全体的に正確に長方形というわけではない部品表面をコーティングする場合にも適している。この場合、本発明では、非長方形部品表面に適合するよう、塗布されるコーティング経路も完全に長方形というわけではない。これは、本発明の文脈において、個別のコーティング経路に沿って移動する最中に、各コーティング経路で所望の経路幅が得られるように、塗布装置を継続的に回転させることにより実現できる。このため、個別のコーティング経路のそれぞれに沿って移動する最中に、隣接するコーティング経路の重複も隣接するコーティング経路間の隙間も生じないように、塗布装置を回転させる。
【0024】
本発明の好ましい例示的な実施形態では、塗布装置は多軸塗布ロボットにより部品表面の上方で移動させられる。こうした塗布ロボット自体は、従来技術より周知なので、詳細な記載は省略する。現時点で触れるべき唯一の点としては、塗布ロボットは、例えば、6又は7軸で連続キネマティクスを有し、任意に、塗布ロボットを固定式又は着脱式で局所的にマウントできる、多軸ロボットであることが好ましいことが挙げられる。
【0025】
塗布ロボット及び塗布装置は、運転中に、パラメータセットに従って、ロボット制御システムにより制御される。このパラメータセットは、例えば、塗布装置の移動速度、塗布装置の加速度、塗布装置の回転角、塗布装置の回転速度、塗布されるコーティング媒体の流量、又はコーティング間隔などを定義するものであってもよい。
【0026】
本発明の文脈において、このパラメータセットは、コーティング経路に沿った、即ち、コーティング経路内での移動の間に、調節されてもよい。
【0027】
このパラメータセットの調節は、例えば、連続的に実行してもよい。また、代わりに、コーティング経路を、順次移動の対象となる複数の連続した経路部に分割して、塗布装置及び塗布ロボットを制御するためのパラメータセットを、各個別経路部内では一定に保ち、ある経路部と次の経路部とでは変えることとしてもよい。
【0028】
上述したように、塗布されるコーティング経路の経路幅は、塗布装置がそれに応じて回転され得るように調節されてもよい。そこで、本発明の文脈において、塗布装置の回転角は、所望の経路幅及びスプレーパターンの長手方向に沿ったスプレーパターンの最大幅に応じて、計算されることが好ましい。例えば、この計算は以下の式に従って実行できる。
α=arccos(SB2/SB1)
(但し、SB1は、スプレーパターンの長手方向に沿ったスプレーパターンの幅であり、
SB2は、コーティング経路の所望の経路幅であり、
αは、スプレーパターンの長手方向と経路横断方向との間の回転角である。)
【0029】
上述したように、塗布ロボット及び塗布装置を制御するためのパラメータセットは、ある経路部から次の経路部にかけて、調節されてもよい。この調節は移行部で実行されることが好ましい。
【0030】
移行部の終端での塗布装置の回転角は以下の式に従って計算されることが好ましい。
α3=arccos(SB3/SB1)
(但し、α3は、移行部の終端での回転角であり、
SB1は、移行部の始端での経路幅であり、
SB3は、移行部の終端での経路幅である。)
【0031】
また、移行部の終端での塗布装置の移動速度は以下の式に従って計算されることが好ましい。
V3=V1/cos(α3)
(但し、V3は、移行部の終端での塗布装置の移動速度であり、
V1は、移行部の始端での塗布装置の移動速度であり、
α3は、移行部の終端での塗布装置の回転角である。)
【0032】
移行部に沿って塗布装置は加速度を受けるが、この加速度は以下の式に従って計算されることが好ましい。
a2=(V3−V1)
2/S2
(但し、a2は、移行部の間の塗布装置の加速度であり、
V3は、移行部の終端での塗布装置の移動速度であり、
V1は、移行部の始端での塗布装置の移動速度であり、
S2は、移行部の長さである。)
【0033】
移行部の部分長さS2は以下の式に従って計算されることが好ましい。
S2=[α3・(V3−V1)]/ω2
(但し、S2は、移行部の長さであり、
α3は、移行部の終端での塗布装置の回転角であり、
V3は、移行部の終端での塗布装置の移動速度であり、
V1は、移行部の始端での塗布装置の移動速度であり、
ω2は、移行部上での塗布装置の回転速度である。)
【0034】
移行部上での塗布装置の回転速度は以下の式に従って計算されることが好ましい。
ω2=V1/SB1・ΔSD%・360°/π
(但し、ω2は、移行部上での塗布装置の回転速度であり、
V1は、移行部の始端での塗布装置の移動速度であり、
SB1は、移行部の始端での経路幅であり、
ΔSD%は、層厚の公差である。)
【0035】
また、スプレーパターンは端が明瞭であることが好ましいので、塗布装置が例えば回転噴霧器などとは異なることにも触れるべきだろう。
【0036】
さらに、スプレーパターンはおおよそ長方形であってもよい。また、本発明の文脈において、スプレーパターンを他の形状とすることも可能であり、例えば、楕円形のスプレーパターンが挙げられる。
【0037】
コーティング経路について、これらを非直線部品端部に整合するように湾曲させてもよいことは触れるべきだろう。さらに、コーティング経路は、例えば、凸形状又は凹形状であってもよい。このため、本発明に係るコーティング法では、経路幅は塗布装置の対応する回転による影響を受けてもよいので、コーティング経路の側端部は互いに平行に延びる必要はない。
【0038】
また、コーティング媒体流の衝突点で、コーティング媒体流が部品表面に実質的に直角に向くように、塗布装置は部品表面の上方でガイドされることが好ましいことにも触れるべきだろう。
【0039】
最後に、本発明は、既に上で述べたように、対応するコーティング設備にも関連するので、コーティング設備に関する個別の記載は現時点では省略できることにも触れるべきだろう。
【0040】
本明細書では、ロボット制御システムはコーティング経路に沿った移動の間に流軸を中心に塗布装置を回転させるので、スプレーパターンの長手方向とコーティング経路との間の回転角はコーティング経路に沿って変化する。
【0041】
本明細書において、本発明の文脈において用いられる『ロボット制御システム』という表現は、本明細書では、広い意味に理解すべきであり、とりわけ、塗布装置及び塗布ロボットの制御に働く全てのハードウェア及びソフトウェア部品を含み得る。
【0042】
ロボット制御システムは、単一の組立体として、中枢に集約されていてもよい。また、代わりに、互いに通信し合う複数の組立体の間でロボット制御システムの異なる機能を分散させてもよい。
【0043】
ロボット制御システムの制御処理の統合は高次ソフトウェアツールにより自動的にもたらされることが好ましい。このソフトウェアツールは、コーティング対象の部品形状と幾つかのパラメータ(例えば、最少及び/又は最大許容移動速度、維持すべき層厚公差、塗布器の最大許容回転角など)とが入力されると、上述した数学的計算に基づき、対応した回転角を有する最適軌道と、塗布装置の適切な向きとを、独立して、計算する。
【0044】
他の有利な発展例については、従属請求項に記載し、又は、以下で、図面を参照しつつ、本発明の好ましい例示的な実施形態の記載とともに、より詳細に説明する。