(58)【調査した分野】(Int.Cl.,DB名)
前記二つ以上の論理チャネルのそれぞれに対してPBR(Prioritized Bit Rate)を構成する段階をさらに含む、請求項1に記載の無線通信システムにおけるUE動作方法。
前記第1セルから受信されるULグラントは前記第1セルに送信可能なデータ量についての情報であり、前記第2セルから受信されるULグラントは前記第2セルに送信可能なデータ量についての情報である、請求項1に記載の無線通信システムにおけるUE動作方法。
前記プロセッサは、前記二つ以上の論理チャネルのそれぞれに対してPBR(Prioritized Bit Rate)を構成するように構成される、請求項9に記載の無線通信システムで動作するUE。
前記第1セルから受信されるULグラントは前記第1セルに送信可能なデータ量についての情報であり、前記第2セルから受信されるULグラントは前記第2セルに送信可能なデータ量についての情報である、請求項9に記載の無線通信システムで動作するUE。
【発明を実施するための形態】
【0016】
UMTS(Universal Mobile Telecommunication System)は、ヨーロッパシステム、GSM(登録商標)(Global system for mobile communication)、及びGPRS(General Packet Radio Service)に基盤したWCDMA(登録商標)(Wideband Code Division Multiple Access)で動作する3世代(3rd Generation、3G)非対称移動通信システムである。UMTSのLTE(Long―Term Evolution)は、UMTSを規格化する3GPPによって議論中にある。
【0017】
3GPP LTEは、高速パケット通信を可能にする技術である。ユーザ及び提供者の費用を減少させ、サービス品質を改善し、カバレッジ(coverage)及びシステム容量を拡張及び改善することを目的とするLTE課題のための多くの方法が提案された。3G LTEは、上位―レベル要求であって、ビット(bit)当たりの費用減少、増加したサービス可用性、周波数帯域の柔軟性、単純な構造、開放型インターフェース、及び端末の適切な電力消耗を要求する。
【0018】
以下で、添付の図面を参照して説明した本発明の各実施例により、本発明の構成、作用及び他の特徴が容易に理解され得るだろう。以下で説明する各実施例は、本発明の技術的特徴が3GPPシステムに適用された各例である。
【0019】
本明細書は、LTEシステム及びLTE―Aシステムを用いて本発明の各実施例を説明するが、これは例示に過ぎない。したがって、本発明の各実施例は、前記定義に該当するいずれの通信システムにも適用することができる。また、本明細書は、FDD方式を基準にして本発明の実施例に対して説明するが、これは例示であって、本発明の実施例は、H―FDD方式又はTDD方式にも容易に変形して適用することができる。
【0020】
図2Aは、E―UTRAN(Evolved―Universal Terrestrial Radio Access Network)網構造を示すブロック図である。E―UMTSは、LTEシステムと称することもできる。通信網は、IMS及びパケットデータを通じたVoIP(Voice over IP)などの多様なサービスを提供するために広く配置される。
【0021】
図2Aに示したように、E―UMTS網は、E―UTRAN(evolved UMTS terrestrial radio access network)、EPC(Evolved Packet Core)、及び一つ以上の端末を含む。E―UTRANは、一つ以上のeNB(evolved NodeB)20を含むことができ、複数の端末10が一つのセルに位置することができる。一つ以上のE―UTRAN MME(Mobility Management Entity)/SAE(System Architecture Evolution)ゲートウェイ30は、ネットワークの終端に位置し、外部ネットワークに接続することもできる。
【0022】
本明細書において、「ダウンリンク(downlink)」は、eNB20から端末10への通信を称し、「アップリンク(uplink)」は、端末10からeNB20への通信を称する。端末10は、ユーザによって運搬される通信装備を称し、また、移動局(Mobile Station、MS)、ユーザ端末(User Terminal、UT)、加入者ステーション(Subscriber Station、SS)又は無線デバイスと称することもできる。
【0023】
図2Bは、一般的なE―UTRANと一般的なEPCの構造を示すブロック図である。
【0024】
図2Bに示したように、eNB20は、ユーザ平面及び制御平面のエンドポイント(end point)をUE10に提供する。MME/SAEゲートウェイ30は、セッション及び移動性管理機能のエンドポイントをUE10に提供する。eNB20及びMME/SAEゲートウェイ30は、S1インターフェースを介して接続することができる。
【0025】
eNB20は、一般にUE10と通信する固定局であって、基地局(BS)又はアクセスポイント(access point)と称することもある。一つのeNB20はセルごとに配置することができる。ユーザトラフィック又は制御トラフィックを送信するためのインターフェースをeNB20間で使用することができる。
【0026】
MMEは、eNB20に対するNASシグナリング、NASシグナリング保安、AS保安制御、3GPP接続ネットワーク間の移動性のためのインター(inter)CNノードシグナリング、(ページング再送信の制御及び実行を含む。)遊休モード(idle mode)UE接近性(Reachability)、(遊休モード及び活性モード(active mode)のUEのための)トラッキング領域リスト管理、PDN GW及びサービングGW選択、MME変化が伴うハンドオーバーのためのMME選択、2G又は3G 3GPP接続ネットワークへのハンドオーバーのためのSGSN選択、ローミング、認証、専用ベアラ設定を含むベアラ管理、(ETWS及びCMASを含む)PWSメッセージ送信のためのサポートを含む多様な機能を行う。SAEゲートウェイホストは、パー―ユーザ(Per―user)ベースのパケットフィルタリング(例えば、深層パケット検査を使用)、適法なインターセプション(Lawful Interception)、UE IPアドレス割り当て、ダウンリンクでの送信(Transport)レベルパケットマーキング、UL及びDLサービスレベル課金、ゲーティング及びレート強化、APN―AMBRに基づいたDLレート強化を含む多様な機能を提供する。MME/SAEゲートウェイ30は、明確性のために、本明細書で単純に「ゲートウェイ」と称する。しかし、MME/SAEゲートウェイ30は、MME及びSAEゲートウェイの両者を全て含む。
【0027】
複数のノードは、eNB20とゲートウェイ30との間でS1インターフェースを介して接続することができる。各eNB20は、X2インターフェースを介して相互接続することができ、各隣接eNBは、X2インターフェースを有するメッシュネットワーク構造(meshed network structure)を有することができる。
【0028】
図2Bに示したように、eNB20は、ゲートウェイ30に対する選択、無線リソース制御(Radio Resource Control、RRC)活性化の間、ゲートウェイに向かうルーティング、ページングメッセージのスケジューリング及び送信、ブロードキャストチャネル(BCCH)情報のスケジューリング及び送信、アップリンク及びダウンリンクの全てにおける各UE10のための動的リソース割り当て、eNB測定の構成及び準備、無線ベアラ制御、無線承認制御(Radio Admission Control、RAC)、及びLTE_ACTIVE状態での接続移動性制御などの各機能を行うことができる。EPCにおいて、ゲートウェイ30は、ページング発信、LTE_IDLE状態管理、ユーザ平面暗号化、システム構造エボリューション(System Architecture Evolution、SAE)ベアラ制御、及び非―接続層(Non―Access Stratum、NAS)シグナリングの暗号化及び無欠性保護などの各機能を行うことができる。
【0029】
EPCは、移動性管理エンティティ(Mobility Management Entity、MME)、サービング―ゲートウェイ(serving―gateway、S―GW)、及びパケットデータネットワーク―ゲートウェイ(Packet Data Network―Gateway、PDN―GW)を含む。MMEは、主に各端末の移動性を管理する目的で用いられる接続及び可用性に対する情報を有する。S―GWは、E―UTRANを終端点として有するゲートウェイであり、PDN―GWは、パケットデータネットワーク(PDN)を終端点として有するゲートウェイである。
【0030】
図3は、3GPP無線接続網規格を基盤にした端末とE―UTRANとの間の無線インターフェースプロトコルの制御平面及びユーザ平面の構造を示す図である。制御平面は、端末(User Equipment;UE)とネットワークがコールを管理するために用いる各制御メッセージが送信される通路を意味する。ユーザ平面は、アプリケーション層で生成されたデータ、例えば、音声データ又はインターネットパケットデータなどが送信される通路を意味する。
【0031】
第1層である物理層は、物理チャネル(Physical Channel)を用いて上位層に情報送信サービス(Information Transfer Service)を提供する。物理層は、上位にある媒体接続制御(Medium Access Control)層とは送信チャネル(Transport Channel)を介して接続されている。前記送信チャネルを介して媒体接続制御層と物理層との間にデータが移動する。送信側と受信側の物理層間には、物理チャネルを介してデータが移動する。前記物理チャネルは、時間と周波数を無線リソースとして活用する。具体的に、物理チャネルは、ダウンリンクでOFDMA(Orthogonal Frequency Division Multiple Access)方式で変調され、アップリンクでSC―FDMA(Single Carrier Frequency Division Multiple Access)方式で変調される。
【0032】
第2層の媒体接続制御(Medium Access Control;MAC)層は、論理チャネル(Logical Channel)を介して上位層である無線リンク制御(Radio Link Control;RLC)層にサービスを提供する。第2層のRLC層は、信頼性のあるデータ送信をサポートする。RLC層の機能は、MAC内部の機能ブロックで具現することもできる。第2層のPDCP(Packet Data Convergence Protocol)層は、帯域幅の狭い無線インターフェースでIPバージョン4(IP version 4、IPv4)パケットやIPバージョン6(IPv6)パケットのようなIP(internet protocol)パケットを効率的に送信するために不必要な制御情報を減少させるヘッダー圧縮(Header Compression)機能を行う。
【0033】
第3層の最下部に位置した無線リソース制御(Radio Resource Control;RRC)層は、制御平面のみで定義される。RRC層は、各無線ベアラ(Radio Bearer;RB)の設定(Configuration)、再設定(Re―configuration)及び解除(Release)と関連して論理チャネル、送信チャネル及び物理チャネルの制御を担当する。RBは、端末とネットワークとの間のデータ伝達のために第2層によって提供されるサービスを意味する。このために、端末とネットワークのRRC層は、互いにRRCメッセージを交換する。
【0034】
eNBの一つのセルは、1.25MHz、2.5MHz、5MHz、10MHz、15MHz及び20MHzなどの各帯域のうち一つで動作するように設定することができ、帯域でダウンリンク又はアップリンク送信サービスを提供するように設定することができる。異なる各セルは、異なる各帯域を提供するように設定することもできる。
【0035】
E―UTRANから端末への送信のためのダウンリンク送信チャネル(Downlink transport Channel)は、システム情報を送信するBCH(Broadcast Channel)、各ページングメッセージを送信するPCH(Paging Channel)、及びユーザトラフィック又は各制御メッセージを送信するためのダウンリンク共有チャネル(Shared Channel、SCH)を含む。ダウンリンクマルチキャスト又はブロードキャストサービスのトラフィック又は制御メッセージの場合、ダウンリンクSCHを介して送信することもでき、又は別途のダウンリンクMCH(Multicast Channel)を介して送信することもできる。
【0036】
端末からネットワークにデータを送信するアップリンク送信チャネルとしては、初期制御メッセージを送信するRACH(Random Access Channel)と、その他にユーザトラフィックや制御メッセージを送信するアップリンクSCH(Shared Channel)とがある。送信チャネルの上位にあり、送信チャネルにマップされる論理チャネルとしては、BCCH(Broadcast Control Channel)、PCCH(Paging Control Channel)、CCCH(Common Control Channel)、MCCH(Multicast Control Channel)、及びMTCH(Multicast Traffic Channel)などがある。
【0037】
図4は、E―UMTSシステムで使用する物理チャネル構造の一例を示した図である。物理チャネルは、時間軸上にある多数のサブフレームと、周波数軸上にある多数のサブキャリア(Sub―carrier)とで構成される。ここで、一つのサブフレーム(Sub―frame)は、時間軸上に複数のシンボル(Symbol)で構成される。一つのサブフレームは、複数のリソースブロック(Resource Block)で構成され、一つのリソースブロックは、複数のシンボル及び複数のサブキャリアで構成される。また、各サブフレームは、PDCCH(Physical Downlink Control Channel)、すなわち、L1/L2制御チャネルのために該当のサブフレームの特定シンボル(例えば、1番目のシンボル)の特定サブキャリアを用いることができる。
図4には、L1/L2制御情報送信領域(PDCCH)とデータ領域(PDSCH)を示した。一実施例において、10msの無線フレーム(radio frame)が使用され、一つの無線フレームは10個のサブフレーム(subframe)で構成される。また、一つのサブフレームは二つの連続するスロットで構成される。一つのスロットの長さは0.5msである。また、一つのサブフレームは多数のOFDMシンボルで構成され、多数のOFDMシンボルのうち一部のシンボル(例えば、1番目のシンボル)は、L1/L2制御情報を送信するために使用することができる。データ送信のための時間単位である送信時間間隔(Transmission Time Interval、TTI)は1msである。
【0038】
基地局と端末は、一般に特定制御信号又は特定サービスデータを除いては、送信チャネルであるDL―SCHを用いる物理チャネルであるPDSCHを介してデータを送信/受信する。PDSCHのデータがいずれの端末(一つ又は複数の端末)に送信されるもので、前記各端末がどのようにPDSCHデータを受信してデコード(decoding)しなければならないのかに対する情報などは、PDCCHに含まれて送信される。
【0039】
例えば、特定PDCCHが「A」というRNTI(Radio Network Temporary Identity)でCRCマスク(masking)されており、「B」という無線リソース(例えば、周波数位置)及び「C」という送信形式情報(例えば、送信ブロックサイズ、変調方式、コーディング情報など)を用いて送信されるデータに関する情報が特定サブフレームを通じて送信されると仮定する。この場合、セル内の端末は、自身が有しているRNTI情報を用いてPDCCHをモニタし、「A」RNTIを有している一つ以上の端末があると、前記各端末はPDCCHを受信し、受信したPDCCHの情報を通じて「B」と「C」によって指示されるPDSCHを受信する。
【0040】
図5は、本発明の実施例に係る通信装置のブロック図である。
【0041】
図5に示された装置は、上述したメカニズムを行うように適応されたユーザ装置(User Equipment、UE)及び/又はeNBであってもよいが、同じ作業を行う任意の装置であってもよい。
【0042】
図5に示したように、装置は、DSP(Digital Signal Processor)/マイクロプロセッサ110及びRF(Radio Frequency)モジュール(送受信機;135)を含むこともできる。DSP/マイクロプロセッサ110は、送受信機135に電気的に接続されて送受信機135を制御する。装置は、設計者の選択によって、電力管理モジュール105、バッテリ155、ディスプレイ115、キーパッド120、SIMカード125、メモリデバイス130、スピーカー145及び入力デバイス150をさらに含むこともできる。
【0043】
特に、
図5は、ネットワークから要求メッセージを受信するように構成された受信機135、及びネットワークに送/受信タイミング情報を送信するように構成された送信機135を含む端末を示してもよい。このような受信機と送信機は送受信機135を構成できる。端末は、送受信機(受信機及び送信機、135)に接続されたプロセッサ110をさらに含むこともできる。
【0044】
また、
図5は、端末に要求メッセージを送信するように構成された送信機135、及び端末から送受信タイミング情報を受信するように構成された受信機135を含むネットワーク装置を示してもよい。送信機及び受信機は送受信機135を構成することもできる。ネットワークは、送信機及び受信機に接続されたプロセッサ110をさらに含む。このプロセッサ110は、送受信タイミング情報に基づいて遅延(latency)を計算することもできる。
【0045】
図6はこの開示の実施例で使われるLTE−AシステムにおけるCCとCAの一例を示す。
【0046】
3GPP LTEシステム(Rel−8又はRel−9による)(以下、LTEシステムと言う)は一つのコンポーネント搬送波(component carrier(CC))が複数の帯域に分けられる多重搬送波変調(multi−carrier modulation(MCM))を用いる。これに対し、3GPP LTE−Aシステム(以下、LTE−Aシステムと言う)は一つ以上のCCを合わせて(aggregate)LTEシステムより広いシステム帯域幅を支援するCAを用いることができる。CAという用語は搬送波結合(carrier combining)、多重CC環境(multi−CC environment)又は多重搬送波環境(multi−carrier environment)に置換可能である。
【0047】
この開示において、多重搬送波はCA(又は搬送波結合)を意味する。ここで、CAは隣接した搬送波の集成(aggregation)及び隣接しない搬送波の集成を含む。集成されたCCの個数はDLとULで互いに違い得る。DL CCの個数とUL CCの個数が同一である場合、対称的な集成(symmetric aggregation)といい、集成されたCCの個数はDLとULで違い得る。DL CCの個数とUL CCの個数が違う場合、非対称的な集成(asymmetric aggregation)という。CAという用語は搬送波結合(carrier combining)、帯域結合(bandwidth aggregation)、スペクトル集成(spectrum aggregation)などに置換可能である。
【0048】
LTE−Aシステムは二つ以上のCCを合わせて(aggregate)、つまりCAによって最大100MHまでの帯域幅を支援することを目標とする。レガシー(legacy)IMTシステムとの下位互換性(backward compatibility)を保障するために、ターゲット帯域幅より狭い帯域幅を有するそれぞれの搬送波はレガシーシステムで使われる帯域幅に制限されることもある。
【0049】
例えば、レガシー3GPP LTEシステムは帯域幅{1.4、3、5、10、15、20MHz}を支援し、3GPP LTE−AシステムはこのようなLTE帯域幅を用いて20MHzより広い帯域幅を支援する。この開示のCAシステムはレガシーシステムで使われる帯域幅に関係なく新しい帯域幅を定義することによってCAを支援することができる。
【0050】
2タイプのCA、つまり帯域内(intra−band)CAと帯域間(inter−band)CAがある。帯域内CAは多数のDL CC及び/又はUL CCが周波数上で連続しるか隣接したものを意味する。言い替えれば、DL CC及び/又はUL CCの搬送波周波数が同じ帯域に位置する。一方、CCが周波数上で互いに遠く離れている環境を帯域間CAと言える。言い替えれば、多数のDL CC及び/又はUL CCの搬送波周波数が互いに異なる帯域に位置する。この場合、UEは多数の無線周波数(Radio Frequency(RF))端を用いてCA環境で通信を行うことができる。
【0051】
LTE−Aシステムは無線リソースを管理するためにセルの概念を採択する。上述したCA環境は多重セル環境と言える。ULリソースは必須なものではないが、セルは一対のDL CCとUL CCと定義される。したがって、セルはDLリソースのみで構成されるかあるいはDLとULリソースで構成できる。
【0052】
例えば、一つのサービングセルが特定のUEに対して構成されれば、このUEは一つのDL CCと一つのUL CCを有し得る。二つ以上のサービングセルがUEに対して構成されれば、UEはサービングセルの個数だけのDL CCとサービングセルの個数と同じかそれより少ないUL CCを有することができ、その反対も可能である。すなわち、多数のサービングセルがUEに対して構成されれば、DL CCより多いUL CCを用いるCA環境も支援できる。
【0053】
CAは互いに異なる搬送波周波数(中心周波数)を有する二つ以上のセルの集成と見なすことができる。ここで、“セル”という用語はeNBがカバーする地理的な領域としての“セル”とは区分されなければならない。以下、帯域内CAを帯域内多重セルといい、帯域間CAを帯域間多重セルと言う。
【0054】
LTE−Aシステムにおいて、プライマリーセル(primary cell(PCell))とセカンダリーセル(secondary cell(SCell))が定義される。PCellとSCellはサービングセルとして利用できる。RRC_CONNECTED状態のUEに対してCAが構成されないとかUEがCAを支援しなければ、PCellのみを含む一つのサービングセルが前記UEのために存在する。一方、UEがRRC_CONNECTED状態にあり、CAがUEに対して構成されれば、PCellと一つ以上のSCellを含む一つ以上のサービングセルがUEのために存在することができる。
【0055】
サービングセル(PCell及びSCell)はRRCパラメータによって構成できる。セルの物理層ID(physical−layer ID)であるPhysCellIdは0から503までの整数値である。SCellの短縮ID(short ID)であるSCellIndexは1から7までの整数値である。ServeCellIndexが0であれば、これはPCellを示し、SCellに対するServeCellIndexの値は前もって割り当てられる。すなわち、ServeCellIndexの最小セルID(又はセルインデックス)はPCellを示す。
【0056】
PCellは一次周波数(primary frequency)(又は一次CC)で動作するセルを意味する。UEは初期連結設定又は連結再設定のためにPCellを用いることができる。PCellはハンドオーバー時に現れるセルであり得る。また、PCellはCA環境で構成されるサービングセルのうち制御関連通信を専担するセルである。すなわち、UEに対するPUCCH割当て及び伝送はPCellでのみ行われる。また、UEはシステム情報獲得又はモニタリング過程変更の際にPCellのみを用いることができる。E−UTRAN(Evolved Universal Terrestrial Radio Access Network(E−UTRAN)はmobilityControlInfoを含む上位階層RRCConnectionReconfiguraitonメッセージによってハンドオーバー過程のためのPCellのみを変更することができる。
【0057】
SCellは二次周波数(又は二次CC)で動作するセルを意味し得る。一つのPCellのみが特定のUEに割り当てられても、一つ以上のSCellがUEに割り当てられることができる。SCellはRRC連結設定以後に構成され、追加的な無線リソースを提供するために用いられることができる。PCell以外のセル、つまりCA環境で構成されたサービングセルのうちSCellにはPUCCHが存在しない。
【0058】
E−UTRANがCAを支援するUEにSCellを追加すれば、E−UTRANはRRC_CONNECTED状態で関連セルの動作に係わる全てのシステム情報を専用シグナリング(dedicated signaling)によってUEに送信する。関連のSCellを配布して追加することによってシステム情報の変更を制御することができる。ここで、上位階層(higher−layer)RRCConnectionReconfigurationメッセージが用いられることができる。E−UTRANは関連のSCellで放送するよりはそれぞれのセルに対して別のパラメータを有する専用信号を送信することができる。
【0059】
初期保安活性化過程が始まった後、E−UTRANは連結設定過程で初期に構成されたPCellに一つ以上のSCellを追加することによって一つ以上のSCellを含むネットワークを構成することができる。CA環境で、PCellとSCellのそれぞれはCCとして動作することができる。以下、この開示の実施例において、一次CC(primary CC)(PCC)とPCellは同じ意味として使われることができ、二次CC(SCC)とSCellは同じ意味として使われることができる。
【0060】
図6(a)はLTEシステムにおける単一搬送波構造を示す。DL CCとUL CCが存在し、一つのCCは20MHzの周波数範囲を有することができる。
【0061】
図6(b)はLTE−AシステムにおけるCA構造を示す。図示の
図6(b)の場合、それぞれ20MHzを有する三つのCCが合わせられる。三つのDL CCと三つのUL CCが構成されるが、DL CCの個数とUL CCの個数は制限されない。CAにおいて、UEは三つのCCを同時にモニタし、この三つのCCでDL信号/DLデータを受信し、この三つのCCでUL信号/ULデータを送信する。
【0062】
特定のセルがN個のDL CCを管理すれば、ネットワークはUEにM個のDL CCを割り当てることができる(M≦N)。UEはM個のDL CCのみをモニタし、このM個のDL CCでDL信号を受信することができる。ネットワークはL個のDL CCを優先順位決定し(L≦M≦N)、UEにメイン(main)DL CCを割り当てることができる。この場合、UEはL個のDL CCをモニタしなければならない。これはUL伝送に同様に適用される。
【0063】
DLリソース(又はDL CCs)の搬送波周波数とULリソース(又はUL CCs)の搬送波周波数間の連関性(linkage)はRRCメッセージのような上位階層メッセージ又はシステム情報によって現すことができる。例えば、DLリソースとULリソースの集合はシステム情報ブロックタイプ2(SIB2)が示す連関性に基づいて構成できる。具体的に、DL−UL連関性はULグラントと一緒にPDCCHを運ぶDL CCとULグラントを用いるUL CC間の関係のマッピングを意味するとか、あるいはHARQデータを運ぶDL CC(又はUL CC)とHARQ ACK/NACK信号を運ぶUL CC(又はDL CC)間の関係のマッピングを意味することができる。
【0064】
図7は例示的なLAA(Licensed−Assisted Access)シナリオに対する図である。
【0065】
非兔許スペクトルで動作する少なくとも一つのSCellを有する搬送波集成をLAA(Licensed−Assisted Access)と言う。LAAにおいて、UEに対する構成されたサービングセルの集合はいつも非兔許スペクトルで動作するLAA SCellと言う少なくとも一つのSCellを含む。特に他の言及がない限り、LAA SCellはレギュラSCellとして動作し、このリリース(release)では下りリンク伝送に制限される。
【0066】
搬送波を共有するIEEE802.11n/11ac装置の部材を長期的に保障することができなく(例えば、規制の次元で)、このリリースに対してE−UTRANが同時に送信できる非兔許チャネルの最大個数が4以下であれば、LAA SCell伝送が行われる二つの搬送波中心周波数間の最大周波数分離は62MHz以下とならなければならない。UEは36.133による周波数分離を支援する必要がある。
【0067】
LAA eNBはLAA SCell上での伝送を行う前にLBT(Listen−Before−Talk)を適用する。LBTが適用されれば、送信機はチャネルを聞いて/感知してチャネルがフリー状態(free)であるかあるいはビジー状態(busy)であるかを判断する。チャネルがフリーであると判断されれば、送信機は伝送を行うことができ、そうではなければ伝送を行わない。LAA eNBがLAAチャネルアクセスを目的とする他の技術のチャネルアクセス信号を使えば、続けてLAA最大エネルギー検出閾値要求事項を満たすであろう。非兔許帯域はWi−Fi帯域又はブルートゥース(登録商標)帯域のために用いられることができる。
【0068】
LTECAフレームワークはLAAのためのベースラインとして再使用され、非兔許搬送波はSCellで構成できるだけであるという意見がある。非兔許スペクトル上のSCellはSIで優先する下りリンクのみのシナリオ又は下りリンクのみを有する両方向シナリオであり得る。LAAはオペレーターが配置された小さなセルにのみ適用される。他の技術との共存及び公正な共有は全ての領域でのLAAのための必須要求事項である。
【0069】
図7を参照すると、LAAは一つ以上の低電力SCellが非兔許スペクトルで動作する搬送波集成動作を目標とする。LAA配置シナリオはマクロカバレージを有するか有しないシナリオ、アウトドア及びインドアスモールセル配置、そして兔許搬送波と非兔許搬送波間のコロケーション(co−location)及びノンコロケーション(non−co−location)(理想的なバックホール(backhaul)を有する)を含む。
図7は4種のLAA配置シナリオを示し、ここで兔許搬送波の個数と非兔許搬送波の個数は一つ以上であり得る。非兔許スモールセルが搬送波集成状況で動作する限り、スモールセル間のバックホール(backhaul)は理想的又は非理想的(non−ideal)であり得る。兔許帯域と非兔許帯域の両方で搬送波を有するスモールセル内で搬送波集成がなされるシナリオにおいて、マクロセルとスモールセル間のバックホールは理想的又は非理想的であり得る。
【0070】
シナリオ1:兔許マクロセル(F1)と非兔許スモールセル(F3)間の搬送波集成
【0071】
シナリオ2:マクロセルカバレージを有しない兔許スモールセル(F2)と非兔許スモールセル(F3)間の搬送波集成
【0072】
シナリオ3:兔許スモールセル(F1)と非兔許スモールセル(F3)間の搬送波集成を有する兔許マクロセル及びスモールセル(F1)
【0073】
シナリオ4:兔許マクロセル(F1)、兔許スモールセル(F2)及び非兔許スモールセル(F3)。この場合、兔許スモールセル(F2)と非兔許スモールセル(F3)間の搬送波集成が存在する。マクロセルとスモールセル間に理想的なバックホールが存在すれば、マクロセル(F1)、兔許スモールセル(F2)及び非兔許スモールセル(F3)の間に搬送波集成が存在することができる。二重連結(dual connectivity)が可能であれば、マクロセルとスモールセル間の二重連結が可能である。
【0074】
前記シナリオのための非兔許スペクトルでの配置を支援するための研究において、兔許搬送波上のPCell/PSCellと非兔許搬送波上のSCellを集成するためのベースラインとしてCA機能(CA functionalities)が用いられる。シナリオ3及び4においてマクロセルとスモールセルクラスタ間に非理想的バックホール(non−ideal backhaul)が適用されれば、スモールセルクラスタで理想的なバックホールによって非兔許搬送波上のスモールセルが兔許搬送波上のスモールセルと集成されなければならない。要点は前述した全てのシナリオで搬送波集成に適用可能なLTE RANプロトコルに対する改善の必要性を識別し、必要によって要求される改善を評価することである。
【0075】
図8はFBE(Frame Based Equipment)のLBT動作の一例を示した図である。
【0076】
LBT(Listen−Before−Talk)過程は装置がチャネルを使う前にCCA(Clear Channel Assessment)をチェックするメカニズムと定義される。CCAは、チャネルが占有状態であるかクリア状態であるかを判断するために、少なくともエネルギー検出によってチャネル上の他の信号の存在有無を判断する。ヨーロッパと日本では非兔許帯域でのLBTの使用を規定している。規制事項は別として、LBTによる搬送波センシングは非兔許スペクトルとの公正な共有のための一つの方法であり、一つのグローバル解法のフレームワークにおいて非兔許スペクトルでの公正で友好的な動作のための必須特徴と見なされる。
【0077】
ヨーロッパのETSI規定(EN 301 893 V1.7.1)によれば、それぞれFBE(Frame Based Equipment)とLBE(Local Based Equipment)と言う二つのLBT動作が例として現れている。FBEは送信機/受信機の構造が直接的な需要主導型(demand−driven)ではなくて固定されたタイミングを有する装置であり、LBEは送信機/受信機の構造が時間的に固定されない需要主導型の装置である。
【0078】
FBEは、通信ノードがチャネルアクセスに成功した場合、伝送を持続することができる時間に相当するチャネル占有時間(例えば、1〜10ms)とチャネル占有時間の最小5%に相当する遊休期間を用いて固定フレームを構成する。CCAは遊休期間の終部でCCSスロット(最小20μs)期間の間にチャネルをモニタする動作によって定義される。
【0079】
この場合、通信ノードは固定されたフレーム単位でCCAを周期的に行う。チャネルが非占有状態であれば、通信ノードはチャネル占有時間の間にデータを送信する。チャネルが占有状態であれば、通信ノードはデータ伝送を延期し、次の周期のCCAスロットまで待つ。
【0080】
CCA(Clear Channel Assessment)チェック及びバックオフメカニズムはチャネル評価段階の二つの主要素である。
図9Aはバックオフメカニズムが必要でないFBEに対するCCAチェック過程を示す。
図9AはLBEに対するCCAチェック及びバックオフ過程を示す。
【0081】
LBEが必要な領域にLAA eNBを配置するため、LAA eNBはこのような領域でLBT要件に従う。また、LAA装置の間で、そしてLAAと他の技術、例えばWiFiの間で非兔許スペクトルの公正な共有がなされるようにLBT過程が規定される。
【0082】
eNBがLBT過程によって非兔許スペクトルを成功的に獲得した後、eNBは自分のUEにその結果を通知して伝送のための準備が行われるように、例えばUEが測定を始めるようにすることができる。
【0083】
CCAチェック(FBE及びLBE)及びバックオフメカニズム(LBE)はLBT動作の二つの主要素なので、LAAシステムでLBT要件を効率的に満たすためにより明確にするか研究する価値がある。LBT過程は非兔許チャネルを介してデータ又は信号の伝送を準備しているので、MACレイヤーとPHYレイヤーが共にLBTプロセスに密接に関連することがLBT過程を容易にする。
図10A〜
図10DはCCAチェック及びバックオフ動作が行われるうちにMACレイヤーとPHYレイヤー間の相互作用及び機能分割についての発明者の見解を示す。
【0084】
図10AはLAA eNBに対する状態遷移図、
図10BはFBE及びLBEに関する受動状態動作に対する図、
図10CはLBEの能動状態動作に対する図、
図10DはFBEの能動状態動作に対する図である。
【0085】
図10Aに示したように、LAA eNB動作状態は能動状態と受動状態に分類される。
【0086】
受動状態はLAA eNBが非兔許チャネルを用いる必要がないことを意味し、能動状態はLAA eNBが非兔許リソースを必要とすることを意味する。受動状態から能動状態への遷移は非兔許チャネルを介しての無線リソースが必要なときにトリガーされる。
【0087】
図10Bは受動状態での動作をより詳細に示した図で、FBEとLBEの両方に適用可能である。能動状態から受動状態への遷移は非兔許チャネルがそれ以上必要ではないときに発生する。
【0088】
図10Cは能動状態での動作を示した図で、LBEオプションB要件を仮定する。
【0089】
図10Cに示したように、PHYは非兔許チャネルの有用性をチェックして送信し(1b、2b、3b、6b段階)、MACはスケジューリングを決定し、非兔許搬送波を介しての無線リソースが必要であるかを決定する(4b及び7b段階)。また、MACはバックオフカウンターNを生成する(5b段階)。
【0090】
4b及び7b段階でのスケジューリング決定は兔許及び非兔許チャネルリソースを全て考慮することに注目しなければならない。使用者データは兔許又は非兔許チャネル上に送信できる。MACが非兔許チャネルリソース(4b及び7b段階)に対する要求を評価すれば、MACはPHYの必要性、例えばDRSが直ぐ送信されるかを考慮する。3b段階は、eNBが非兔許チャネルを介してデータを送信する時間だけではなくLBT要件を実行するのに必要な遊休期間と短い制御シグナリング伝送期間を含む。初期CCAチェック(2b段階)はMACデータ及び/又はPHYシグナリングのような非兔許チャネルリソースに対する要求によってトリガーされる。これはLBEの“需要主導型”の定義と合致するものである。
【0091】
ECCAチェック(5b及び6b段階)のためにMACはバックオフカウンターNを提供してPHYはN個のECCAスロットのそれぞれでCCAチェックを始めて行う。PHYではなくMACがバックオフカウンター値Nを生成する理由は、MACスケジューラが非兔許搬送波を介して送信されるかオフロードされることができるデータの有用性に対してよりよく分かって予測することができるからである。また、N値が分かれば、MACスケジューラがバッファリング遅延をある程度まで予測することができる。ECCAが失敗として終わり、PHYがECCAの新しいラウンドを始める前、PHYは先にMACが非兔許チャネルのリソースを依然としてアクセスする必要があるかを確認することが合理的である。MACスケジューラが次のいくつかのサブフレームでデータ伝送のために兔許搬送波を使うことを好むかMACが既にバッファーを空にすれば、PHYがECCAの新しいラウンドを始めることは意味がない。MACを確認する必要があり(4b段階)MACがN値を知っているので、MACはバックオフカウンターNをPHYに提供する。
【0092】
図10DはFBE要件に従う能動状態での動作を示す。それぞれの段階の解釈は
図10Cと類似している。
【0093】
図11は三つの相異なる上りリンクグラントに対する二つの論理チャネルの優先順位決定を示した図である。
【0094】
下りリンクでと同一のMACマルチプレックシング機能を用いて相異なる優先順位の多数の論理チャネルを同じ伝送ブロック(transport block)にマルチプレックシングすることができる。しかし、優先準位決定がスケジューラによって制御されて実行される下りリンクの場合とは違い、上りリンクマルチプレックシングはスケジューリンググラントが端末内の特定の無線ベアラではなく端末の特定の上りリンク搬送波に適用されることによって端末で一連の明確な規則に従って行われる。無線ベアラ特定スケジューリンググラントを使えば下りリンクで制御シグナリングオーバーヘッドが増加するので、LTEで端末当たり(per−terminal)スケジューリングが用いられる。
【0095】
最も単純なマルチプレックシング規則は論理チャネルを厳格な優先順位でサーブすることである。しかし、これは低優先順位のチャネルの枯渇をもたらすことができる。すなわち、伝送バッファが空になるまで全てのリソースが高優先順位のチャネルに提供できる。一般に、オペレーターは低優先順位のサービスのための少なくとも少しのスループット(throughput)も提供しようとする。したがって、LTE端末においてそれぞれの論理チャネルに対して優先準位値と一緒に優先順位決定されたデータレート(prioritized data rate)が構成される。これにより、論理チャネルは自分の優先順位決定されたデータレート(PRB(Prioritized Bit Rate))に至るまで減少する優先順位でサーブされ、これによってスケジュールされたデータレートが少なくとも優先順位決定されたデータレートの和と同一である間に低優先順位チャネルの枯渇を避けることができる。優先順位決定されたデータレートを超えれば、チャネルグラントが全く活用されるかバッファーが空になるまで厳格な優先順位でサーブされる。これを
図11に示した。
【0096】
論理チャネル優先順位決定過程は新しい伝送が行われるときに適用される。
【0097】
RRCは、それぞれの論理チャネルに対する次のようなシグナリングによって上りリンクデータのスケジューリングを制御する。優先順位(priority)において増加する優先準位値は低優先順位レベルを示し、prioritisedBitRateはPBR(Prioritized Bit Rate)を設定し、bucketSizeDurationはBSD(Bucket Size Duration)を設定する。
【0098】
MAC個体はそれぞれの論理チャネルjに対して変数Bjを維持する。Bjは関連の論理チャネルが設定されれば0に初期化され、それぞれのTTIの間にPBR×TTIだけ増加する。ここで、PBRは論理チャネルjの優先順位決定されたビットレートである。しかし、Bjの値はバケットサイズを超えることができなく、Bjの値が論理チャネルjのバケットサイズより大きければバケットサイズに設定される。論理チャネルのバケットサイズはPBR×BSDと同一である。ここで、PBRとBSDは上位レイヤーによって構成される。
【0099】
MAC個体は、新しい伝送が行われば、次のような論理チャネル優先順位決定過程を行う。MAC個体は次のような段階によって論理チャネルにリソースを割り当てる。
【0100】
段階1:Bj>1の全ての論理チャネルに減少する優先順位でリソースが割り当てられる。論理チャネルのPBRが“無限大”に設定されれば、MAC個体は低優先順位の論理チャネルのPBRと会う前に論理チャネル上の伝送に利用可能な全てのデータにリソースを割り当てる。
【0101】
段階2:MAC個体は段階1で論理チャネルjにサーブされるMAC SDUの総サイズだけBjを減少させる。
【0102】
段階3:リソースが残れば、どちらが先に来るとしても論理チャネルについてのデータ又はULグラントが消尽されるまで(Bj値にかかわらずに)全ての論理チャネルを厳格に減少する優先順位でサーブする。同じ優先順位で構成された論理チャネルは同等にサーブされる。
【0103】
MAC個体は中止された無線ベアラに相当する論理チャネルについてのデータは送信しない。
【0104】
図12A及び
図12Bは搬送波集成におけるプロトコル構成に対する図である。
【0105】
QoSはエアインターフェースで無線リソースを用いて支援される。
図12Aに示したように、現在の搬送波集成では無線ベアラがどのサービングセル上でも送信/受信でき、全てのサービングセル上の無線環境に根本的な違いがないので、QoSに対する特別な処理が存在しない。
【0106】
DL無線ベアラのQoSは、高いQoSのRBを兔許セルにマッピングし、低いQoSのRBを非兔許セルにマッピングすることによって保障することができる。しかし、UL無線ベアラのQoSは、UL RBがどのサービングセル上でも送信でき、CAでサービングセル間の違いがないことを仮定するので、保障することができない。
【0107】
非兔許スペクトルにおいて、無線環境は兔許スペクトルにおけるそれとかなり違う(現在のLTEシステム)。非兔許スペクトルにおいて、他のRAT(例えば、WiFi)又は他のオペレーターのLAA可能なeNB/UEなどのオペレーターの制御から外れる干渉に対する多様なソースがあり得る。極限の場合、非兔許搬送波は非常に強い干渉によってスイッチオフできる。また、LBTとDTXは規制要件を満たすために支援されなければならない。これはいくつかのベアラのQoSに影響を与えることができる。例えば、レイテンシ要件が満たされないこともあり得る。このようなベアラは音声、実時間ゲーム又はSRBであり得る。一方、LAAを用いる時の最大効果(best−effort)サービスのようなサービスのQoSは影響されないと予想される。
【0108】
ここで、非兔許スペクトルでの不安定な無線条件によるレイテンシに対する影響について詳細に論議する。ここで、上りリンクを一例として用いる。RLC UMを介して送信されるベアラを考慮しよう。サービングセルのうち一つにULグラントがある度にUEは論理チャネル優先順位決定を適用してULグラントをどのように用いるかを決定する。この時、UEはULグラントを受信する搬送波がどの搬送波であるかを区別しない。UEは非兔許スペクトル上で遅延に敏感な(delay sensitive)サービスのデータを送信することができ、いくつかのパケットを不安定な無線条件によって失うかあるいはより長いレイテンシによってHARQ動作が成功的に完了すると予想される。したがって、非兔許スペクトルでの不安定な無線条件によって遅延要件が満たされないこともあり得る。
【0109】
このようなQoS問題について幾つかの潜在的な解決策を論議する。
【0110】
一つの可能性は二重連結構成(dual connectivity architecture)を採択することである。兔許搬送波によって処理されるベアラをMCGベアラに分類し、兔許搬送波と非兔許搬送波によって処理されるベアラをスプリットベアラ(split bearer)に分類することでQoS問題を解決することができる。しかし、LAAで搬送波集成構成を仮定し、二重連結はSIの領域外にあり得る。幾つかの欠点、例えばスプリットベアラに対する追加的なPDCP再配列、搬送波集成と比較して追加的なMAC/PHYオーバーヘッド(例えば、SeNBの追加のためにRACHが必要であるものの、CAの場合、SCellの追加のためにRACHは必須ではない)及びスプリットベアラに対するULデータ制限があり得る。このような問題を克服するために二重連結のような構成がLAAのために使われる場合、幾つかの改善が要求される。
【0111】
他の解決策において、遅延に敏感なサービス(例えば、VoIP、実時間ゲーム)又は高い信頼度を要するサービス(例えば、無線ベアラのシグナリング)を兔許搬送波上でのみマッピングすることができる。その原理は
図12Bに示したものと類似している。これはDLにおいてeNB具現で具現できる。ULについて、一つの単純な接近方法は論理チャネル優先順位決定過程(LCP)を修正して、特定の搬送波がスケジュールされればUEが論理チャネルを許すようにすることである。例えば、兔許搬送波がスケジュールされれば、SRB伝送を許すことができる。
【0112】
ULにおいて、UEがULグラントを受信すれば、UEは論理チャネル優先順位決定過程を行ってそれぞれのRBにULリソースを割り当てる。RBとセル間のマッピングには制限がないので、RBのデータはどのセル上でも送信できる。すると、高いQoSのRB、例えば遅延に敏感なRBのデータは非兔許セル上で送信されることができ、この場合、遅延要件はLBT過程によって満たされないこともあり得る。したがって、兔許セルと非兔許セルの間にQoS区別が必要であるかを先に論議しなければならない。
【0113】
図13は本発明の実施例による非兔許スペクトルで動作する少なくとも一つのSCellを有する搬送波集成における論理チャネル優先順位決定の実行に対する概念図である。
【0114】
兔許帯域(L帯域)で高優先順位のデータを送信し、非兔許帯域(U帯域)で低優先順位のデータを送信するために、ULグラントがL帯域セル(Lグラント)から受信されるか又はU帯域セル(Uグラント)から受信されるかによってUEはLCP(Logical Channel Prioritization)過程で相異なる論理チャネル優先順位を適用する。
【0115】
それぞれのRBは兔許セル又は非兔許セル上で送信されるように構成される。LCP過程は免許セルのグループと非兔許セルのグループに対して独立的に行われる。
【0116】
詳細には、eNBは二つ以上の論理チャネルを有するUEを構成する。ここで、二つ以上の論理チャネルはそれぞれ論理チャネル優先順位とLCP過程に対するPRBを有する。UEがL帯域セルからULグラントを受信すれば、UEは従来技術のような減少する優先順位で論理チャネルにLCP過程を適用する。しかし、UEがU帯域セルからULグラントを受信すれば、UEは増加する優先順位で論理チャネルにLCP過程を適用する。
【0117】
eNBは、Uグラントに対するLCP過程を行うとき、UEがどの優先順位に従うかをUEに知らせることができる。
【0118】
図13は本発明の一例を示す。この例で、UEは三つの論理チャネルのLoCH1、LoCH2、LoCH3と論理チャネル優先順位の1、3、5で構成される。もっと低い優先順位番号はもっと高い論理チャネル優先順位を意味する。
【0119】
UEがL帯域セルからULグラントを受信すれば、UEは正常のLCP過程を行う。すなわち、減少する優先順位でそれぞれの論理チャネルのPBRにULリソースを割り当てた後、減少する優先順位でそれぞれの論理チャネルに残りのリソースを割り当てる。
【0120】
UEがU帯域セルからULグラントを受信すれば、UEは逆LCP過程を行う。すなわち、増加する優先順位でそれぞれの論理チャネルのPBRにULリソースを割り当てた後、増加する優先順位でそれぞれの論理チャネルに残りのリソースを割り当てる。
【0121】
L帯域セルから受信されるULグラントはL帯域セルに伝送可能なデータ量についての情報であり、U帯域セルから受信されるULグラントはU帯域セルに伝送可能なデータ量についての情報である。
【0122】
図14は本発明による非兔許スペクトルで動作する少なくとも一つのSCellを有する搬送波集成における論理チャネル優先順位決定の実行に対する一例を示す。
【0123】
UEがUグラントに対してLCP過程を行えば、PRBは非活性化することができる。例えば、PRBはUグラントに対して無限大に設定できる。この場合、
図14のようにULリソースが増加する優先順位でそれぞれの論理チャネルに割り当てられる。
【0124】
図14はPBRが非活性化するUグラントに対して増加する優先順位を有するLCP過程に対する一例を示す。
【0125】
このような解決策は、一つのMAC個体内で兔許セルと非兔許セルに対して別個のバケットを使うものと同様である。このような解決策の利点は、兔許RBと非兔許RB間の明確な分離が保障され、非兔許セル上での高いQoSのRBの伝送に問題がないことである。
【0126】
図15は本発明による非兔許スペクトルで動作する少なくとも一つのSCellを有する搬送波集成における論理チャネル優先順位決定の実行に対する概念図である。
【0127】
それぞれのRBは二つの論理チャネル優先順位で構成され、UEはULグラントが兔許セルのためのものであるか非兔許セルのためのものであるかによってLCP過程で互いに異なる優先順位を適用する。兔許セルのためのULグラントが受信されれば、UEは兔許セルに対する論理チャネル優先順位を用いてRBに対するLCPを行い、非兔許セルのためのULグラントが受信されれば、UEは非兔許セルに対する論理チャネル優先順位を用いてRBに対するLCPを行う。
【0128】
詳細には、UEは2セットの論理チャネル優先順位を構成し、それぞれの論理チャネルはLグラントのための論理チャネル優先順位とUグラントのための論理チャネル優先順位の二つの論理チャネル優先順位を有する。2セットの論理チャネル優先順位によって、UEはULグラントがL帯域セルから受信されるかU帯域セルから受信されるかによって互いに異なる論理チャネル優先順位を適用する。
【0129】
Uグラントに対する優先順位が提供されなければ、UEはLグラントに対する優先順位がUグラントのために使われると仮定する。
【0130】
例えば、
図15で、LoCH1はLグラントに対するP=1とUグラントに対するP=5で構成され、LoCH2はLグラントに対するP=3とUグラントに対するP=4で構成され、LoCH3はLグラントに対するP=5とUグラントに対するP=2で構成される。LCP過程は減少する優先順位で行われる。もっと小さな優先順位の番号はもっと高い論理チャネル優先順位を意味する。
【0131】
L帯域セルから受信されるULグラントはL帯域セルに伝送可能なデータ量についての情報であり、U帯域セルから受信されるULグラントはU帯域セルに伝送可能なデータ量についての情報である。
【0132】
eNBが二つの優先順位を有する論理チャネルでUEを構成すれば、eNBは一つの論理チャネルに対する二つのPRBでもUEを構成する。それぞれの論理チャネルはLグラントに対するPBRとUグラントに対するPBRである二つのPBRで構成されることもできる。例えば、Lグラントに対するPBRはPBR1、PBR2、PBR3に設定され、Uグラントに対するPBRは無限大に設定できる。
【0133】
他の全ての論理チャネル構成パラメータ、例えばbucketSizeDuration、logicalChannelGroup、logicalChannelSR−Mask、logicalChannelSR−ProhibitはLグラントのためのセットとUグラントのためのセットの2セットとしても提供できる。
【0134】
このような解決策は共通バケットを用いるがULグラントによって論理チャネル優先順位を交換するものと同様である。このような解決策の利点はLCP過程を含む現在のMAC機能を維持することができることである。
【0135】
以下で記述する本発明の実施例は本発明の要素と特徴が組み合わせられたものである。前記要素又は特徴は他に言及がなければ選択的なものとして見なすことができる。それぞれの要素又は特徴は他の要素又は特徴と結合されずに具現できる。また、本発明の一実施例は前記要素及び/又は特徴を組み合わせて構成することができる。本発明の実施例で記述される動作順は再配列可能である。実施例の一部構成は他の実施例に含まれることができ、他の実施例の対応する構成に交替できる。添付の請求範囲で明白に引用されない請求範囲が本発明の一実施例として提供されるか出願後の補正によって新しい請求範囲として含まれることができるというのは本発明が属する技術分野で通常の知識を有する者に明らかである。
【0136】
本発明の実施例において、基地局(BS)によって行われると説明された特定の動作は、上位ノードのBSによって行われてもよい。BSを含む複数のネットワークノードで、MSとの通信のために行われる様々な動作が、基地局によって行われたり、基地局以外の他のネットワークノードによって行われ得ることは明らかである。「eNB」は、「固定局(fixed station)」、「NodeB」、「基地局(BS)」、アクセスポイントなどの用語に代替されてもよい。
【0137】
上述した実施例は、例えば、ハードウェア、ファームウェア、ソフトウェア又はこれらの組み合わせのような様々な手段によって具現されてもよい。
【0138】
ハードウェアの設定において、本発明の実施例に係る方法は、1つ以上のASICs(application specific integrated circuits)、DSPs(digital signal processors)、DSPDs(digital signal processing devices)、PLDs(programmable logic devices)、FPGAs(field programmable gate arrays)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサなどによって具現されてもよい。
【0139】
ファームウェアやソフトウェアによる具現の場合、本発明の一実施例は、以上で説明された機能又は動作を行うモジュール、手順、関数などの形態で具現されてもよい。ソフトウェアコードは、メモリユニットに格納され、プロセッサによって駆動され得る。前記メモリユニットは、前記プロセッサの内部又は外部に位置して、公知の様々な手段によって前記プロセッサとデータを交換することができる。
【0140】
本発明は、本発明の特徴を逸脱しない範囲で他の特定の形態に具体化できるということは、当業者にとって自明である。したがって、上記の詳細な説明は、全ての面で制限的に解釈してはならず、例示的なものとして考慮しなければならない。本発明の範囲は、添付の請求項の合理的解釈によって決定されなければならず、本発明の等価的範囲内での全ての変更は本発明の範囲に含まれる。