(58)【調査した分野】(Int.Cl.,DB名)
前記有機層が、カルバゾール、ジベンゾチフェン、ジベンゾフラン、アザカルバゾール、アザ−ジベンゾチオフェン、及びアザ−ジベンゾフランからなる群から選択される少なくとも1つの基を含むホストを含む請求項10に記載のデバイス。
前記第1の連結基が、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択され、R’及びR’’は、独立して、H、1個〜6個の炭素原子を有するアルキル、フェニル、及び置換されたフェニルである、又はR’及びR’’は、結合し、飽和5員環、又は飽和6員環、及びこれらの組合せを形成する請求項12に記載の化合物。
前記有機層が、カルバゾール、ジベンゾチフェン、ジベンゾフラン、アザカルバゾール、アザ−ジベンゾチオフェン、及びアザ−ジベンゾフランからなる群から選択される少なくとも1つの基を含むホストを含む請求項23に記載のデバイス。
【発明の概要】
【0008】
1つの態様においては、本発明は、下記の構造式(1a)で表される化合物を提供する。
【化1】
式中、Aは、任意の好適な連結基であり;本明細書において、窒素原子N
1及びN
2で用いられる整数“1”及び“2”は、分かりやすくするための符号として用いられる以外に、意味はなく;本明細書において、炭素原子C
1a〜C
1cで用いられる符号“
1a”〜“
1c”は、分かりやすくするための符号として用いられる以外に、意味はなく;R
ab、R
ga、及びR
1b〜R
1fは、任意の好適な置換基であり;R
ga、及びR
1b〜R
1fが結合している環原子のいずれか1つは、窒素原子で置換されていてもよく;前記環原子が窒素原子で置換されている場合、対応しているR基は存在しない。
【0009】
構造式(1a)で表される化合物の1つの実施形態においては、Aは、2個〜3個の連結原子を有する連結基である。構造式(1a)で表される化合物の1つの実施形態においては、Aは、2個〜3個の連結原子を有する連結基であり、前記連結原子は、それぞれ独立して、C、Si、O、S、N、B、又はこれらの組合せからなる群から選択される。構造式(1a)で表される化合物の1つの実施形態においては、R
1a〜R
1gは、独立して、水素、アルキル、アルケニル、アルキニル、アラルキル、CN、CF
3、CO
2R、C(O)R、C(O)NR
2、NR
2、NO
2、OR、SR、SO
2、SOR、SO
3R、ハロ、アリール、ヘテロアリール、置換されたアリール、置換されたヘテロアリール、又は複素環基からなる群から選択され、Rは、任意の好適な置換基である。構造式(1a)で表される化合物の1つの実施形態においては、R
1a〜R
1gは、独立して、水素、アルキル、アルケニル、アルキニル、アラルキル、CN、CF
3、CO
2R、C(O)R、C(O)NR
2、NR
2、NO
2、OR、SR、SO
2、SOR、SO
3R、ハロ、アリール、ヘテロアリール、置換されたアリール、置換されたヘテロアリール、又は複素環基から選択され、Rは、それぞれ独立して、H、ハロ、アルキル、アルケニル、アルキニル、ヘテロアルキル、アラルキル、アリール、及びヘテロアリールから選択される。構造式(1a)で表される化合物の1つの実施形態においては、R
1a〜R
1gは、独立して、水素、アルキル、アルケニル、アルキニル、アラルキル、CN、CF
3、CO
2R、C(O)R、C(O)NR
2、NR
2、NO
2、OR、SR、SO
2、SOR、SO
3R、ハロ、アリール、ヘテロアリール、置換されたアリール、置換されたヘテロアリール、又は複素環基から選択される。1つの実施形態においては、構造式(1a)で表される化合物は、配位子(L)を含んでいても含まなくてもよい。1つの実施形態においては、構造式(1a)で表される化合物は、配位子(L)を含む。1つの実施形態においては、構造式(1a)で表される化合物は、配位子(L)を含まない。1つの実施形態においては、構造式(1a)で表される化合物は、置換又は無置換のシクロメタル化された配位子である配位子(L)を含む。
【0010】
構造式(1a)で表される化合物の幾つかの実施形態においては、Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される連結基であり、R’及びR’’は、任意の好適な置換基である。構造式(1a)で表される化合物の幾つかの実施形態においては、Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される連結基であり、R’及びR’’は、独立して、H、1個〜6個の炭素原子を有するアルキル、フェニル、及び置換されたフェニルである。構造式(1a)で表される化合物の幾つかの実施形態においては、Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される連結基であり、R’及びR’’は、共に結合し、環を形成する。構造式(1a)で表される化合物の幾つかの実施形態においては、Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される連結基であり、R’及びR’’は、共に結合し、飽和環を形成する。構造式(1a)で表される化合物の幾つかの実施形態においては、Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される連結基であり、R’及びR’’は、共に結合し、飽和5員環、又は飽和6員環、又はこれらの組合せを形成してもよい。
【0011】
幾つかの実施形態においては、構造式(1a)で表される化合物は、三重項励起状態を有する。幾つかの実施形態においては、構造式(1a)で表される化合物、前記化合物が三重項励起状態にあるとき、連結基Aは、N
2とC
1bとの間の結合を開裂から安定化させる。幾つかの実施形態においては、構造式(1a)で表される化合物は、500nm未満のピーク発光波長を有する。幾つかの実施形態においては、構造式(1a)で表される化合物は、480nm未満のピーク発光波長を有する。幾つかの実施形態においては、構造式(1a)で表される化合物は、400nm〜500nmの範囲のピーク発光波長を有する。
【0012】
他の態様においては、本発明は、構造式(2a)及び構造式(2b)で表される化合物を提供する。
【化2】
式中、A
1及びA
2は、それぞれ第1の連結基であり;R
1b〜R
1f及びR
2b〜R
2fは、任意の好適な置換基であり;構造式(2a)及び構造式(2b)で表される化合物は、R
abとR
acとの間、R
gaとR
gbとの間、又はR
abとR
acとの間且つR
gaとR
gbとの間に形成される第2の連結基を介して共に結合されてもよく;R
1b〜R
1f及びR
2b〜R
2fが結合している環原子のいずれか1つは、窒素原子で置換されていてもよく;前記環原子が窒素原子で置換されている場合、対応しているR基は、存在しない。
【0013】
構造式(2a)及び構造式(2b)で表される化合物の幾つかの実施形態においては、第1の連結基A
1及びA
2は、2個〜3個の連結原子を含む。構造式(2a)及び構造式(2b)で表される化合物の幾つかの実施形態においては、第1の連結基A
1及びA
2は、それぞれ2個〜3個の連結原子を含み、前記連結原子は、それぞれ、C、Si、O、S、N、B、又はこれらの組合せからなる群から選択される。幾つかの実施形態においては、A
1及びA
2は、異なっている。幾つかの他の実施形態においては、A
1及びA
2は、同じである。構造式(2a)及び構造式(2b)で表される化合物の幾つかの実施形態においては、R
1b〜R
1f及びR
2b〜R
2fは、独立して、水素、アルキル、アルケニル、アルキニル、アラルキル、CN、CF
3、CO
2R、C(O)R、C(O)NR
2、NR
2、NO
2、OR、SR、SO
2、SOR、SO
3R、ハロ、アリール、ヘテロアリール、置換されたアリール、置換されたヘテロアリール、又は複素環基から選択される。構造式(2a)及び構造式(2b)で表される化合物の幾つかの実施形態においては、R
ab及びR
ac及び/又はR
ga及びR
gbは、共に結合し、それぞれ独立して、B、N、P、O、S、Se、C、Si、Ge、又はこれらの組合せからなる群から選択される1個〜3個の連結原子を有する第2の連結基を形成してもよい。1つのこのような実施形態においては、前記第2の連結基は、独立して、BR、NR、PR、O、S、Se、C=O、S=O、SO
2、CRR’’’、−CRR’’’−CRR’’’−、SiRR’’’、及びGeRR’’’からなる群から選択され、R又はR’’’は、任意の好適な置換基である。幾つかのこのような実施形態においては、R又はR’’’は、それぞれ独立して、H、ハロ、アルキル、アルケニル、アルキニル、ヘテロアルキル、アラルキル、アリール、及びヘテロアリールから選択される。他のこのような実施形態においては、R
ab及びR
ac及び/又はR
ga及びR
gbは、共に結合し、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される、少なくとも2つの連結原子を有する第2の連結基を形成してもよく、R’及びR’’は、任意の好適な置換基である。第2の連結基の例を、下記に挙げる。
【化3】
式中、Rは、それぞれ独立して、H、メチル、又はフェニルから選択される。
【0014】
構造式(2a)及び構造式(2b)で表される化合物の幾つかの実施形態においては、第1の連結基A
1及びA
2は、それぞれ独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択され、R’及びR’’は、独立して、H、1個〜6個の炭素原子を有するアルキル、フェニル、及び置換されたフェニルである、又はR’及びR’’は、共に結合し、飽和5員環、又は飽和6員環、及びこれらの組合せを形成する。
【0015】
幾つかの実施形態においては、構造式(2a)及び構造式(2b)で表される化合物は、それぞれ、三重項励起状態を有する。幾つかの実施形態においては、構造式(2a)及び構造式(2b)で表される化合物は、それぞれ、三重項励起状態を有し、且つ前記化合物が前記三重項励起状態にあるとき、N
2とC
1bとの間の結合を開裂から安定化させるA
1およびA
2を有する。幾つかの実施形態においては、構造式(2a)及び構造式(2b)で表される化合物は、それぞれ、500nm未満のピーク発光波長を有する。幾つかの実施形態においては、構造式(2a)及び構造式(2b)で表される化合物は、それぞれ、480nm未満のピーク発光波長を有する。幾つかの実施形態においては、構造式(2a)及び構造式(2b)で表される化合物は、それぞれ、400nm〜500nmの範囲のピーク発光波長を有する。
【0016】
構造式(2a)及び構造式(2b)で表される化合物の幾つかの実施形態においては、第1の連結基A
1及びA
2は、それぞれ独立して、−CH
2−CH
2−、−CH
2−CH
2−CH
2−、−CHR’−CHR’’−、−CR’R’’−CH
2−、−CR’R’’−CR’R’’−、−CH
2−CH
2−CH
2−、−CH
2−S−、−S−CH
2−、−O−SiR’R’’−、−SiR’R’’−O−から選択され、R’及びR’’は、独立して、メチル又はフェニルである。構造式(2a)及び構造式(2b)で表される化合物の幾つかの実施形態においては、前記第2の連結基は、NR、O、−CH
2−CH
2−、−CHR’−CHR’−、−CR’R’’’−CH
2−、−CRR’’’−CRR’’’−、及びこれらの組合せから選択され、R’及びR’’’は、独立して、メチル又はフェニルである。
【0017】
他の態様においては、本発明は、構造式(3a)で表される化合物を提供する。
【化4】
【0018】
式中、Aは、第1の連結基であり;L
2及びL
3は、連結基であり;R
1a〜R
1f及びR
3a〜R
3fは、任意の好適な置換基であり;R
1f、R
3a、R
3c、及びR
3dの任意の組合せは、結合して1つ以上の縮合環を形成してもよく;L
2及びR
1f、L
2及びR
3a、又はL
2及びR
1fとR
3aの両方は、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよく;L
3及びR
3c、L
3及びR
3d、又はL
3及びR
3cとR
3dの両方は、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよく;R
1b〜R
1f及びR
2b〜R
2fが結合している環原子のいずれか1つは、窒素原子で置換されていてもよく;前記環原子が窒素原子で置換されている場合、対応しているR基は、存在しない。幾つかの実施形態においては、L
2及びR
1fは、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。幾つかの実施形態においては、L
2及びR
3aは、1つ、2つ、又はそれ以上の縮合環を形成してもよい。幾つかの実施形態においては、L
2及びR
3aとR
1fの両方は、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。幾つかの実施形態においては、L
3及びR
3dは、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。幾つかの実施形態においては、L
3及びR
3cは、結合して、1つ以上の縮合環を形成してもよい。幾つかの実施形態においては、L
3及びR
3cとR
3dの両方は、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。
【0019】
構造式(3a)で表される化合物の幾つかの実施形態においては、第1の連結基Aは、それぞれ、2個〜3個の連結原子を有する。構造式(3a)で表される化合物の幾つかの実施形態においては、第1の連結基Aは、それぞれ、2個〜3個の連結原子を有し、前記連結原子は、それぞれ独立して、C、Si、O、S、N、B、又はこれらの組合せからなる群から選択される。構造式(3a)で表される化合物の幾つかの実施形態においては、L
2及びL
3は、独立して、単結合、BR、NR、PR、O、S、Se、C=O、S=O、SO
2、CRR’、SiRR’、及びGeRR’からなる群から選択される。構造式(3a)で表される化合物の幾つかの実施形態においては、R
1a〜R
1f、R
3a〜R
3f、R、及びR’は、それぞれ独立して、水素、アルキル、アルケニル、アルキニル、アラルキル、CN、CF
3、CO
2R、C(O)R、C(O)NR
2、NR
2、NO
2、OR、SR、SO
2、SOR、SO
3R、ハロ、アリール、ヘテロアリール、置換されたアリール、置換されたヘテロアリール、又は複素環基からなる群から選択される。構造式(3a)で表される化合物の幾つかの実施形態においては、2つの隣接するR
1f、R
3a、R
3c、R
3d、R、及びR’は、共に結合して、縮合環を形成してもよい。
【0020】
構造式(3a)で表される化合物の幾つかの実施形態においては、第1の連結基Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択され、R’及びR’’は、独立して、H、1個〜6個の炭素原子を有するアルキル、フェニル、及び置換されたフェニルである、又はR’及びR’’は、共に結合し、飽和5員環、又は飽和6員環、及びこれらの組合せを形成する。
【0021】
幾つかの実施形態においては、構造式(3a)で表される化合物は、三重項励起状態を有する。幾つかの実施形態においては、構造式(3a)で表される化合物は、三重項励起状態を有し、且つ前記化合物が前記三重項励起状態にあるとき、N
2とC
1bとの間の結合を開裂から安定化させる連結基Aを有する。幾つかの実施形態においては、構造式(3a)で表される化合物は、500nm未満のピーク発光波長を有する。幾つかの実施形態においては、構造式(3a)で表される化合物は、480nm未満のピーク発光波長を有する。幾つかの実施形態においては、構造式(3a)で表される化合物は、400nm〜500nmの範囲のピーク発光波長を有する。
【0022】
構造式(3a)で表される化合物の幾つかの実施形態においては、第1の連結基Aは、−CH
2−CH
2−、−CH
2−CH
2−CH
2−、−CHR’−CHR’’−、−CR’R’’−CH
2−、−CR’R’’−CR’R’’−、−CH
2−CH
2−CH
2−、−CH
2−S−、−S−CH
2−、−O−SiR’R’’−、及び−SiR’R’’−O−から選択され、R’及びR’’は、メチル又はフェニルである。構造式(3a)で表される化合物の幾つかの実施形態においては、L
3は、BR、NR、PR、O、S、Se、C=O、S=O、SO
2、CRR’、SiRR’、及びGeRR’からなる群から選択される。構造式(3a)で表される化合物の幾つかの実施形態においては、R
1f又はR
3a及びR又はR’は、共に結合して縮合環を形成する。構造式(3a)で表される化合物の幾つかの実施形態においては、R
3c又はR
3d及びR又はR’は、共に結合して縮合環を形成する。
【0023】
1つの態様においては、本発明は、構造式(1)で表される化合物を提供する。
【化5】
式中、Mは、40超の原子量を有する金属であり、nは、少なくとも1の値を有し、m+nは、前記金属と結合することができる配位子の最大数である。幾つかの実施形態においては、前記金属は、Re、Ru、Os、Rh、Ir、Pd、Pt,及びAuからなる群から選択される。他の実施形態においては、Mは、イリジウム(Ir)であり;nは、2又は3であり;mは、0又は1であり;m+nは、3である。Aは、任意の好適な連結基である。R
1a〜R
1gは、任意の好適な置換基である。R
1b〜R
1gが結合している環原子のいずれか1つは、窒素原子で置換されていてもよく、前記環原子が窒素原子で置換されている場合、対応しているR基は存在しない。
【0024】
構造式(1)で表される化合物の1つの実施形態においては、Aは、2個〜3個の連結原子を有する連結基である。構造式(1)で表される化合物の1つの実施形態においては、Aは、2個〜3個の連結原子を有する連結基であり、前記連結原子は、それぞれ独立して、C、Si、O、S、N、B、又はこれらの組合せからなる群から選択される。構造式(1)で表される化合物の1つの実施形態においては、R
1a〜R
1gは、独立して、水素、アルキル、アルケニル、アルキニル、アラルキル、CN、CF
3、CO
2R、C(O)R、C(O)NR
2、NR
2、NO
2、OR、SR、SO
2、SOR、SO
3R、ハロ、アリール、ヘテロアリール、置換されたアリール、置換されたヘテロアリール、又は複素環基から選択され、Rは、任意の好適な置換基である。構造式(1)で表される化合物の1つの実施形態においては、R
1a〜R
1gは、独立して、水素、アルキル、アルケニル、アルキニル、アラルキル、CN、CF
3、CO
2R、C(O)R、C(O)NR
2、NR
2、NO
2、OR、SR、SO
2、SOR、SO
3R、ハロ、アリール、ヘテロアリール、置換されたアリール、置換されたヘテロアリール、又は複素環基から選択され、Rは、それぞれ独立して、H、ハロ、アルキル、アルケニル、アルキニル、ヘテロアルキル、アラルキル、アリール、及びヘテロアリールから選択される。構造式(1)で表される化合物の1つの実施形態においては、R
1a〜R
1gは、独立して、水素、アルキル、アルケニル、アルキニル、アラルキル、CN、CF
3、CO
2R、C(O)R、C(O)NR
2、NR
2、NO
2、OR、SR、SO
2、SOR、SO
3R、ハロ、アリール、ヘテロアリール、置換されたアリール、置換されたヘテロアリール、又は複素環基から選択される。1つの実施形態においては、構造式(1)で表される化合物は、配位子(L)を含んでいても含まなくてもよい。1つの実施形態においては、構造式(1)で表される化合物は、配位子(L)を含む。1つの実施形態においては、構造式(1)で表される化合物は、配位子(L)を含まない。1つの実施形態においては、構造式(1)で表される化合物は、置換又は無置換のシクロメタル化された配位子である配位子(L)を含む。
【0025】
構造式(1)で表される化合物の幾つかの実施形態においては、Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される連結基であり、R’及びR’’は、任意の好適な置換基である。構造式(1)で表される化合物の幾つかの実施形態においては、Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される連結基であり、R’及びR’’は、独立して、H、1個〜6個の炭素原子を有するアルキル、フェニル、及び置換されたフェニルである。構造式(1)で表される化合物の幾つかの実施形態においては、Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される連結基であり、R’及びR’’は、共に結合して環を形成する。構造式(1)で表される化合物の幾つかの実施形態においては、Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される連結基であり、R’及びR’’は、共に結合して飽和環を形成する。構造式(1)で表される化合物の幾つかの実施形態においては、Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択され、R’及びR’’は、共に結合して、飽和5員環、又は飽和6員環、及びこれらの組合せを形成する。
【0026】
幾つかの実施形態においては、構造式(1)で表される化合物は、三重項励起状態を有する。幾つかの実施形態においては、構造式(1)で表される化合物、前記化合物が三重項励起状態にあるとき、連結基Aは、N
2とC
1bとの間の結合を開裂から安定化させる。幾つかの実施形態においては、構造式(1)で表される化合物は、500nm未満のピーク発光波長を有する。幾つかの実施形態においては、構造式(1)で表される化合物は、480nm未満のピーク発光波長を有する。幾つかの実施形態においては、構造式(1)で表される化合物は、400nm〜500nmの範囲のピーク発光波長を有する。
【0027】
構造式(1)で表される化合物の幾つかの実施形態においては、連結基Aは、−CH
2−CH
2−、−CH
2−CH
2−CH
2−、−CHR’−CHR’’−、−CR’R’’−CH
2−、−CR’R’’−CR’R’’−、−CH
2−CH
2−CH
2−、−CH
2−S−、−S−CH
2−、−O−SiR’R’’−、−SiR’R’’−O−から選択され、R’及びR’’は、メチル又はフェニルである。
【0028】
他の態様においては、本発明は、構造式(1)で表される化合物を含むデバイスを提供する。幾つかの実施形態においては、前記デバイスは、第1の有機発光デバイスを含み、前記第1の有機発光デバイスは、アノードと;カソードと;前記アノードと前記カソードとの間に配置され、構造式(1)で表される化合物を含む有機層と、を更に含む。前記デバイスの幾つかの実施形態においては、前記有機層は、ホストを更に含む。前記デバイスの幾つかの実施形態においては、前記有機層は、カルバゾール、ジベンゾチフェン、ジベンゾフラン、アザカルバゾール、アザ−ジベンゾチオフェン、及びアザ−ジベンゾフランからなる群から選択される少なくとも1つの基を含む有機分子を含むホストを更に含む。
【0029】
幾つかの実施形態においては、本発明に係るデバイスは、消費者製品又は照明パネルである。
【0030】
他の態様においては、本発明は、構造式(2)で表される化合物を提供する。
【化6】
式中、Mは、白金(Pt)であり;A
1及びA
2は、それぞれ第1の連結基であり;R
1b〜R
1f及びR
2b〜R
2fは、任意の好適な置換基であり;R
ab及びR
ac、又はR
ga及びR
gbは、共に結合し第2の連結基を形成してもよい置換基である。R
1b〜R
1f及びR
2b〜R
2fが結合している環原子のいずれか1つは、窒素原子で置換されていてもよく、前記環原子が窒素原子で置換されている場合、対応しているR基は、存在しない。
【0031】
構造式(2)で表される化合物の幾つかの実施形態においては、第1の連結基A
1及びA
2は、それぞれ、2個〜3個の連結原子を含む。構造式(2)で表される化合物の幾つかの実施形態においては、第1の連結基A
1及びA
2は、それぞれ、2個〜3個の連結原子を含み、前記連結原子は、それぞれ独立して、C、Si、O、S、N、B、又はこれらの組合せからなる群から選択される。幾つかの実施形態においては、A
1及びA
2は、異なっている。幾つかの他の実施形態においては、A
1及びA
2は、同じである。構造式(2)で表される化合物の幾つかの実施形態においては、R
1b〜R
1f及びR
2b〜R
2fは、独立して、水素、アルキル、アルケニル、アルキニル、アラルキル、CN、CF
3、CO
2R、C(O)R、C(O)NR
2、NR
2、NO
2、OR、SR、SO
2、SOR、SO
3R、ハロ、アリール、ヘテロアリール、置換されたアリール、置換されたヘテロアリール、又は複素環基から選択される。構造式(2)で表される化合物の幾つかの実施形態においては、R
ab及びR
ac及び/又はR
ga及びR
gbは、共に結合し、それぞれ独立して、B、N、P、O、S、Se、C、Si、Ge、又はこれらの組合せからなる群から選択される1個〜3個の連結原子を有する第2の連結基を形成する。前記構造式(2)で表される化合物の幾つかのこのような実施形態においては、R
abとR
ac及び/又はR
gaとR
gbは、共に結合し、独立して、BR、NR、PR、O、S、Se、C=O、S=O、SO
2、CRR’’’、−CRR’’’−CRR’’’−、SiRR’’’、及びGeRR’’’からなる群から選択される第2の連結基を形成してもよく、R又はR’’’は、任意の好適な置換基である。幾つかのこのような実施形態においては、R又はR’’’は、それぞれ独立して、H、ハロ、アルキル、アルケニル、アルキニル、ヘテロアルキル、アラルキル、アリール、及びヘテロアリールから選択される。他のこのような実施形態においては、R
ab及びR
ac及び/又はR
ga及びR
gbは、共に結合し、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される、少なくとも2つの連結原子を有する第2の連結基を形成してもよく、R’及びR’’は、任意の好適な置換基である。第2の連結基の例を、下記に挙げる。
【化7】
式中、Rは、それぞれ独立して、H、メチル、又はフェニルから選択される。
【0032】
構造式(2)で表される化合物の幾つかの実施形態においては、第1の連結基A
1及びA
2は、それぞれ独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択され、R’及びR’’は、独立して、H、1個〜6個の炭素原子を有するアルキル、フェニル、及び置換されたフェニルである、又はR’及びR’’は、共に結合し、飽和5員環、又は飽和6員環、及びこれらの組合せを形成する。
【0033】
幾つかの実施形態においては、構造式(2)で表される化合物は、三重項励起状態を有する。幾つかの実施形態においては、構造式(2)で表される化合物は、三重項励起状態を有し、且つ前記化合物が前記三重項励起状態にあるとき、N
2とC
1bとの間の結合を開裂から安定化させる連結基を有する。幾つかの実施形態においては、構造式(2)で表される化合物は、500nm未満のピーク発光波長を有する。幾つかの実施形態においては、構造式(2)で表される化合物は、480nm未満のピーク発光波長を有する。幾つかの実施形態においては、構造式(2)で表される化合物は、400nm〜500nmの範囲のピーク発光波長を有する。
【0034】
構造式(2)で表される化合物の幾つかの実施形態においては、第1の連結基A
1及びA
2は、それぞれ、−CH
2−CH
2−、−CH
2−CH
2−CH
2−、−CHR’−CHR’’−、−CR’R’’−CH
2−、−CR’R’’−CR’R’’−、−CH
2−CH
2−CH
2−、−CH
2−S−、−S−CH
2−、−O−SiR’R’’−、−SiR’R’’−O−から選択され、R’及びR’’は、独立して、メチル又はフェニルである。構造式(2)で表される化合物の幾つかの実施形態においては、前記第2の連結基は、NR、O、−CH
2−CH
2−、−CHR’−CHR’−、−CR’R’’’−CH
2−、−CRR’’’−CRR’’’−、及びこれらの組合せから選択され、R’及びR’’’は、独立して、メチル又はフェニルである。
【0035】
他の態様においては、本発明は、第1の有機発光デバイスを含むデバイスを提供し、前記第1の有機発光デバイスは、アノードと;カソードと;前記アノードと前記カソードとの間に配置され、構造式(2)で表される化合物を含む有機層と、を更に含む。本発明に係る前記デバイスの幾つかの実施形態においては、前記有機層は、ホストを更に含む。本発明に係る前記デバイスの幾つかの実施形態においては、前記ホストは、カルバゾール、ジベンゾチフェン、ジベンゾフラン、アザカルバゾール、アザ−ジベンゾチオフェン、及びアザ−ジベンゾフランからなる群から選択される少なくとも1つの基を含む有機分子を含む。幾つかの実施形態においては、本発明に係るデバイスは、消費者製品又は照明パネルであり、前記デバイスは、第1の有機発光デバイスを含み、前記第1の有機発光デバイスは、アノードと;カソードと;前記アノードと前記カソードとの間に配置され、構造式2で表される化合物を含む有機層と、を更に含む。
【0036】
他の態様においては、本発明は、構造式(3)で表される化合物を提供する。
【化8】
式中、Mは、白金(Pt)であり;Aは、第1の連結基であり;L
2及びL
3は、連結基であり;R
1a〜R
1f及びR
3a〜R
3fは、任意の好適な置換基であり;R
1f、R
3a、R
3c、及びR
3dの任意の組合せは、結合して1つ以上の縮合環を形成してもよい。R
1b〜R
1fが結合している環原子のいずれか1つは、窒素原子で置換されていてもよく;前記環原子が窒素原子で置換されている場合、対応しているR基は、存在しない。L
2及びR
1f、又はL
2及びR
3a、又はL
2及びR
3aとR
1fの両方は、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。L
3及びR
3c、L
3及びR
3d、又はL
3及びR
3cとR
3dの両方は、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。
【0037】
構造式(3)で表される化合物の幾つかの実施形態においては、第1の連結基Aは、2個〜3個の連結原子を含む。構造式(3)で表される化合物の幾つかの実施形態においては、第1の連結基Aは、2個〜3個の連結原子を含み、前記連結原子は、それぞれ独立して、C、Si、O、S、N、B、又はこれらの組合せからなる群から選択される。構造式(3)で表される化合物の幾つかの実施形態においては、L
2及びL
3は、独立して、単結合、BR、NR、PR、O、S、Se、C=O、S=O、SO
2、CRR’、SiRR’、及びGeRR’から選択される。構造式(3)で表される化合物の幾つかの実施形態においては、R
1a〜R
1f及びR
3a〜R
3f、R及びR’は、それぞれ独立して、水素、アルキル、アルケニル、アルキニル、アラルキル、CN、CF
3、CO
2R、C(O)R、C(O)NR
2、NR
2、NO
2、OR、SR、SO
2、SOR、SO
3R、ハロ、アリール、ヘテロアリール、置換されたアリール、置換されたヘテロアリール、又は複素環基からなる群から選択される。構造式(3)で表される化合物の幾つかの実施形態においては、2つの隣接するR
1f、R
3a、R
3c、R
3d、R、及びR’は、共に結合して、縮合環を形成してもよい。幾つかの実施形態においては、L
2及びR
1f、L
2及びR
3a、又はL
2及びR
1fとR
3aとの両方は、結合して、1つ以上の縮合環を形成してもよい。幾つかの他の実施形態においては、L
3及びR
3c、L
3及びR
3d、又はL
3及びR
3cとR
3dとの両方は、結合して、1つ以上の縮合環を形成してもよい。幾つかの実施形態においては、L
2及びR
1fは、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。幾つかの実施形態においては、L
2及びR
3aは、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。幾つかの実施形態においては、L
2及びR
3aとR
1fの両方は、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。幾つかの実施形態においては、L
3及びR
3dは、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。幾つかの実施形態においては、L
3及びR
3cは、結合して、1つ以上の縮合環を形成してもよい。幾つかの実施形態においては、L
3及びR
3cとR
3dの両方は、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。
【0038】
構造式(3)で表される化合物の幾つかの実施形態においては、第1の連結基Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択され、R’及びR’’は独立して、H、1個〜6個の炭素原子を有するアルキル、フェニル、及び置換されたフェニルである、又はR’及びR’’は、共に結合し、飽和5員環、又は飽和6員環、及びこれらの組合せを形成する。
【0039】
幾つかの実施形態においては、構造式(3)で表される化合物は、三重項励起状態を有する。幾つかの実施形態においては、構造式(3)で表される化合物は、三重項励起状態を有し、且つ前記化合物が前記三重項励起状態にあるとき、N
2とC
1bとの間の結合を開裂から安定化させる連結基Aを有する。幾つかの実施形態においては、構造式(3)で表される化合物は、500nm未満のピーク発光波長を有する。幾つかの実施形態においては、構造式(3)で表される化合物は、480nm未満のピーク発光波長を有する。幾つかの実施形態においては、構造式(3)で表される化合物は、400nm〜500nmの範囲のピーク発光波長を有する。
【0040】
構造式(3)で表される化合物の幾つかの実施形態においては、第1の連結基Aは、−CH
2−CH
2−、−CH
2−CH
2−CH
2−、−CHR’−CHR’’−、−CR’R’’−CH
2−、−CR’R’’−CR’R’’−、−CH
2−CH
2−CH
2−、−CH
2−S−、−S−CH
2−、−O−SiR’R’’−、−SiR’R’’−O−から選択され、R’及びR’’は、独立して、メチル又はフェニルである。構造式(3)で表される化合物の幾つかの実施形態においては、L
3は、BR、NR、PR、O、S、Se、C=O、S=O、SO
2、CRR’、SiRR’、及びGeRR’からなる群から選択される。構造式(3)で表される化合物の幾つかの実施形態においては、R
1f又はR
3a及びR又はR’は、共に結合して、縮合環を形成する。構造式(3)で表される化合物の幾つかの実施形態においては、R
3c又はR
3d及びR又はR’は、共に結合して、縮合環を形成する。
【0041】
他の態様においては、本発明は、第1の有機発光デバイスを含むデバイスを提供し、前記第1の有機発光デバイスは、アノードと;カソードと;前記アノードと前記カソードとの間に配置され、構造式(1)、(2)、又は(3)で表される化合物を含む有機層と、を更に含む。幾つかの実施形態においては、本発明に係るデバイスは、構造式(1)、(2)、又は(3)で表される化合物を含む有機層を含み、前記有機層は、ホストを更に含む。幾つかの実施形態においては、本発明に係るデバイスは、構造式(1)、(2)、又は(3)で表される化合物を含む有機層を含み、前記有機層は、ホストを更に含み、前記ホストは、カルバゾール、ジベンゾチフェン、ジベンゾフラン、アザカルバゾール、アザ−ジベンゾチオフェン、及びアザ−ジベンゾフランからなる群から選択される少なくとも1つの基を含む有機分子を含む。
【0042】
幾つかの実施形態においては、本発明に係るデバイスは、消費者製品又は照明パネルであり、前記デバイスは、第1の有機発光デバイスを含み、前記第1の有機発光デバイスは、アノードと;カソードと;前記アノードと前記カソードとの間に配置され、構造式(1)、(2)、又は(3)で表される化合物を含む有機層と、を更に含む。
【発明を実施するための形態】
【0052】
イミダゾフェナントリジンは、白金及びイリジウム金属の両方に結合するとき、460nmの発光を提供することができる有用な配位子である。リン光イミダゾフェナントリジン錯体は、高いリン光量子収率及び高いデバイス効率を有する深い青色発光を提供することができる。残念なことに、青色発光錯体に基づくイリジウム及び白金のいずれも、デバイス寿命が制限されている。本明細書において、我々は、コンピュータ理論、質量スペクトルフラグメント分析、光酸化研究によって、多環環ひずみ及び電子構造によって弱い結合であることが示される配位子上の結合を対処することで、イミダゾフェナントリジン配位子の安定性を改善するための戦略を提供する。
【0053】
図1に関して、典型的な有機発光デバイス100を示す。デバイス100は、基板110、アノード115、正孔注入層120、正孔輸送層125、電子ブロッキング層130、発光層135、正孔ブロッキング層140、電子輸送層145、電子注入層150、保護層155、及びカソード160を含み得る。カソード160は、第一の導電層162及び第二の導電層164を有する複合カソードである。
【0054】
図2に関して、本開示に係る典型的な有機発光デバイス200を示す。デバイス200は、基板210、アノード215、正孔注入層220、発光層235、電子輸送層245、電子注入層250、及びカソード260を含み得る。
【0055】
基板210は、所望の構造的性質をもたらす任意の好適な基板であってよい。基板210は、可撓性であっても剛性であってもよい。基板210は、透明であっても、半透明であっても、不透明であってもよい。好ましい剛性基板材料の例は、プラスチック及びガラスである。好ましい可撓性基板材料の例は、プラスチック及び金属箔である。基板210は、回路の製作を容易にするために半導体材料であってもよい。例えば、基板210は、その上に回路が製作されるシリコンウェーハであってよく、これは、基板上に後に配置されるOLEDを制御することができる。他の基板を用いてもよい。基板210の材料及び厚みは、所望の構造的性質及び光学的性質が得られるように選択してよい。
【0056】
アノード215は、正孔を有機層に輸送するのに十分な程度伝導性である任意の好適なアノードであってよい。アノード215の材料は、好ましくは、約4eVよりも高い仕事関数を有する(「高仕事関数材料」)。好ましいアノード材料としては、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化アルミニウム亜鉛(AlZnO)等の伝導性金属酸化物、及び金属が挙げられる。アノード215(及び基板210)は、底面発光デバイスを作製するのに十分な程度透明であってよい。好ましい透明基板とアノードとの組み合わせは、ガラス又はプラスチック(基板)に堆積している市販のITO(アノード)である。可撓性且つ透明な基板とアノードとの組み合わせは、米国特許第5,844,363号明細書に開示されており、これは、参照することにより全文が本明細書に援用される。アノード215は、不透明及び/又は反射性であってよい。反射性アノード215は、デバイスの上部から発せられる光の量を増加させるために、一部の上面発光デバイスにとって好ましい場合がある。アノード215の材料及び厚みは、所望の伝導性及び光学的性質が得られるように選択してよい。アノード215が透明である場合、特定の材料について、所望の伝導性をもたらすのに十分な程度厚いが、所望の透明度をもたらすのに十分な程度薄い、ある範囲の厚みが存在し得る。他のアノードの材料及び構造を用いてもよい。
I.定義
【0057】
本明細書において、「アルキル」という用語は、任意の好適な置換基で置換されていてもよい直鎖又は分岐鎖飽和非環式炭化水素基を意味する。したがって、本発明に従ったアルキル基は、第一級、第二級、第三級、及び第四級炭素原子のいずれの組合せを含んでいてもよい。例示的なアルキル基としては、炭素数1〜20のアルキル、炭素数1〜18のアルキル、炭素数1〜16のアルキル、炭素数1〜14のアルキル、炭素数1〜12のアルキル、炭素数1〜10のアルキル、炭素数1〜8のアルキル、炭素数1〜6のアルキル、炭素数1〜4のアルキル、炭素数1〜3のアルキル、及び炭素数2のアルキルが挙げられるが、これらに限定されない。具体的には、メチル、エチル、1−プロピル、2−プロピル、2−メチル−1−プロピル、1−ブチル、2−ブチル、t−ブチル、n−オクチル、n−デシル、及びn−ヘキサデシルが挙げられる。
【0058】
本明細書において、「ヘテロアルキル」という用語は、本明細書に記載されるように、1つ以上の炭素原子がヘテロ原子によって置換されるアルキル基を意味する。好適なヘテロ原子としては、酸素、硫黄、窒素、及びリン等が挙げられる。ヘテロアルキル基の例としては、アルコキシ、アミノ、チオエステル、ポリ(エチレングリコール)、アルキル置換アミノが挙げられるが、これらに限定されない。
【0059】
本明細書において、「アルケニル」という用語は、1つ以上の炭素−炭素二重結合を有する、非環式の分岐鎖又は非分岐鎖炭化水素基を意味する。例示的なアルケニル基としては、炭素数1〜20のアルケニル基、炭素数1〜18のアルケニル基、炭素数2〜16のアルケニル基、炭素数2〜14のアルケニル基、炭素数2〜12のアルケニル基、炭素数2〜10のアルケニル基、炭素数2〜8のアルケニル基、炭素数2〜6のアルケニル基、炭素数2〜4のアルケニル基、炭素数2〜3のアルケニル基、及び炭素数2のアルケニル基が挙げられるが、これらに限定されない。具体的な例としては、エチレニル、プロピレニル、1−ブテニル、2−ブテニル,イソブチレニル、1−ペンテニル、2−ペンテニル、3−メチル−1−ブテニル、2−メチル−2−ブテニル、及び2,3−ジメチル−2−ブテニルが挙げられるが、これらに限定されない。
【0060】
本明細書において、「アルキレン」という用語は、置換されていてもよい、飽和直鎖又は分岐鎖炭化水素基を意味する。例示的なアルキレン基としては、炭素数1〜20のアルキレン、炭素数2〜18のアルキレン、炭素数2〜16のアルキレン、炭素数2〜14のアルキレン、炭素数2〜12のアルキレン、炭素数2〜10のアルキレン、炭素数2〜8のアルキレン、炭素数2〜6のアルキレン、炭素数2〜4のアルキレン、炭素数2〜3のアルキレン、及び炭素数2のアルキレンが挙げられるが、これらに限定されない。アルキレンの具体的な例としては、メチレン、ジメチレン、及びトリメチレンが挙げられるが、これらに限定されない。
【0061】
本明細書において、「アルキニル」という用語は、少なくとも1つの炭素−炭素三重結合を有する、非環式の分岐鎖又は非分岐炭化水素を意味する。例示的なアルキレン基としては、炭素数1〜20のアルキニル基、炭素数2〜18のアルキニル基、炭素数2〜16のアルキニル基、炭素数2〜14のアルキニル基、炭素数2〜12のアルキニル基、炭素数2〜10のアルキニル基、炭素数2〜8のアルキニル基、炭素数2〜6のアルキニル基、炭素数2〜4のアルキニル基、炭素数2〜3のアルキニル基、及び炭素数2のアルキニル基が挙げられるが、これらに限定されない。アルキニルの具体的な例としては、プロパギル、及び3−ペンチニル、アセチレニル、プロピニル、1−ブチニル、2−ブチニル、1−ペンチニル、2−ペンチニル、及び3−メチル−1−ブチニルが挙げられるが、これらに限定されない。
【0062】
本明細書において、「アリール」という用語は、置換されていてもよい単環又は多環芳香族炭化水素を意味する。アリールの具体的な例としては、フェニル、4−メチルフェニル、2,6−ジメチルフェニル、ナフチル、アントラニル、及びフェナントレニルが挙げられるが、これらに限定されない。
【0063】
本明細書において、「アラルキル」という用語は、アルキルブリッジ(例えば、−アルキル−(アリール)
j、jは、1、2、又は3である)を通って結合した、本明細書において定義される1つ以上のいずれのアリール基を意味する。アラルキルの具体的な例としては、ベンジル(−CH
2−フェニル、即ち、Bn)、ジフェニルメチル(−CH
2−(フェニル)
2)、及びトリチル(−C−(フェニル)
3)が挙げられるが、これらに限定されない。
【0064】
本明細書において、「ヘテロアリール」という用語は、少なくとも1つのヘテロ原子及び少なくとも1つの炭素原子を有する、置換されていてもよい単環又は多環芳香族炭化水素を意味する。幾つかの実施形態においては、前記少なくとも1つのヘテロ原子は、窒素、酸素、ケイ素、セレン、及び硫黄から選択される。ヘテロアリールの具体的な例としては、フリル、ベンゾフラニル、チオフェニル、ベンゾチオフェニル、ピロリル、インドリル、イソインドリル、アザインドリル、ピリジル、キノリニル、イソキノリニル、オキサゾリル、イソオキサゾリル、ベンゾオキサゾリル、ピラゾリル、イミダゾリル、ベンズイミダゾリル、チアゾリル、ベンゾチアゾリル、イソチアゾリル、ピリダジニル、ピリミジニル、ピラジニル、トリアジニル、シノリニル、フタラジニル、及びキナゾリニルが挙げられるが、これらに限定されない。
【0065】
特に記載がない限り、本明細書において、「複素環基」及び「ヘテロシクリル」を含む、「複素環」という用語及び前記用語のバリアントは、前記少なくとも2つの異なる元素の環員原子(ring members atoms)として有する置換されていてもよい単環又は多環環系を意味し、前記単環又は多環環系は、飽和、不飽和、又は芳香族のいずれかである。幾つかの実施形態においては、複素環は、炭素原子及び少なくとも1つのヘテロ原子を含む。幾つかの実施形態においては、複素環は、炭素原子、及び窒素、酸素、ケイ素、セレン、及び硫黄からなる群から選択される少なくとも1つのヘテロ原子を含み、前記窒素、前記酸素、前記ケイ素、前記セレン、及び前記硫黄のヘテロ原子は、酸化されていてもよく、前記窒素のヘテロ原子は、四級化されてもよい。複素環としては、フリル、ベンゾフラニル、チオフェニル、ベンゾチオフェニル、ピロリル、インドリル、イソインドリル、アザインドリル、ピリジル、キノリニル、イソキノリニル、オキサゾリル、イソオキサゾリル、ベンゾオキサゾリル、ピラゾリル、イミダゾリル、ベンズイミダゾリル、チアゾリル、ベンゾチアゾリル、イソチアゾリル、ピリダジニル、ピリミジニル、ピラジニル、トリアジニル、シノリニル、フタラジニル、及びキナゾリニルが挙げられるが、これらに限定されない。したがって、上記で挙げられた芳香族ヘテロアリールに加えて、複素環としては、モルフォリニル、ピロリジノニル、ピロリジニル、ピペリジニル、ピペリジニル、ヒダントイニル、バレロラクタミル、オキシラニル、オキセタニル、テトラヒドロフラニル、テトラヒドロピラニル、テトラヒドロピリジニル、テトラヒドロピリミジニル、テトラヒドロチオフェニル、テトラヒドロチオピラニル、テトラヒドロピリミジニル、テトラヒドロチオフェニル、及びテトラヒドロチオピラニルが挙げられる(ただし、これらに限定されない)。
【0066】
本明細書において使用される場合、当業者には概して理解されるであろう通り、第一の「最高被占分子軌道」(HOMO)又は「最低空分子軌道」(LUMO)エネルギー準位は、第一のエネルギー準位が真空エネルギー準位に近ければ、第二のHOMO又はLUMOエネルギー準位「よりも大きい」又は「よりも高い」。イオン化ポテンシャル(IP)は、真空準位と比べて負のエネルギーとして測定されるため、より高いHOMOエネルギー準位は、より小さい絶対値を有するIP(あまり負でないIP)に相当する。同様に、より高いLUMOエネルギー準位は、より小さい絶対値を有する電子親和力(EA)(あまり負でないEA)に相当する。頂部に真空準位がある従来のエネルギー準位図において、材料のLUMOエネルギー準位は、同じ材料のHOMOエネルギー準位よりも高い。「より高い」HOMO又はLUMOエネルギー準位は、「より低い」HOMO又はLUMOエネルギー準位よりもそのような図の頂部に近いように思われる。
【0067】
本明細書において、「三重項エネルギー」という用語は、所定の材料のリン光スペクトルにおいて識別可能な最も高いエネルギーの形態に対応するエネルギーを意味する。前記最も高いエネルギーの形態は、必ずしもリン光スペクトルにおいて最も良好な強度を有するピークではなく、例えば、このようなピークの最高エネルギー側ではっきりとしたショルダーの極大値であろう。
II.配位子
【0068】
1つの態様においては、本発明は、下記の構造式(1a)で表される化合物を提供する。
【化9】
式中、Aは、任意の好適な連結基であり;本明細書において、窒素原子N
1及びN
2で用いられる整数“1”及び“2”は、分かりやすくするための符号として用いられる以外に、意味はなく;本明細書において、炭素原子C
1a〜C
1cで用いられる符号“1a”〜“1c”は、分かりやすくするための符号として用いられる以外に、意味はなく;R
1a〜R
1gは、任意の好適な置換基である。R
1b〜R
1fが結合している環原子のいずれか1つは、窒素原子で置換されていてもよく;前記環原子が窒素原子で置換されている場合、対応しているR基は存在しない。
【0069】
構造式(1a)で表される化合物の1つの実施形態においては、Aは、2個〜3個の連結原子を有する連結基である。構造式(1a)で表される化合物の1つの実施形態においては、Aは、2個〜3個の連結原子を有する連結基であり、前記連結原子は、それぞれ独立して、C、Si、O、S、N、B、又はこれらの組合せからなる群から選択される。構造式(1a)で表される化合物の1つの実施形態においては、R
1a〜R
1gは、独立して、水素、アルキル、アルケニル、アルキニル、アラルキル、CN、CF
3、CO
2R、C(O)R、C(O)NR
2、NR
2、NO
2、OR、SR、SO
2、SOR、SO
3R、ハロ、アリール、ヘテロアリール、置換されたアリール、置換されたヘテロアリール、又は複素環基からなる群から選択され、Rは、任意の好適な置換基である。構造式(1a)で表される化合物の1つの実施形態においては、R
1a〜R
1gは、独立して、水素、アルキル、アルケニル、アルキニル、アラルキル、CN、CF
3、CO
2R、C(O)R、C(O)NR
2、NR
2、NO
2、OR、SR、SO
2、SOR、SO
3R、ハロ、アリール、ヘテロアリール、置換されたアリール、置換されたヘテロアリール、又は複素環基からなる群から選択され、Rは、それぞれ独立して、H、ハロ、アルキル、アルケニル、アルキニル、ヘテロアルキル、アラルキル、アリール、及びヘテロアリールから選択される。構造式(1a)で表される化合物の1つの実施形態においては、R
1a〜R
1gは、独立して、水素、アルキル、アルケニル、アルキニル、アラルキル、CN、CF
3、CO
2R、C(O)R、C(O)NR
2、NR
2、NO
2、OR、SR、SO
2、SOR、SO
3R、ハロ、アリール、ヘテロアリール、置換されたアリール、置換されたヘテロアリール、又は複素環基から選択される。1つの実施形態においては、構造式(1a)で表される化合物は、配位子(L)を含んでいても含まなくてもよい。1つの実施形態においては、構造式(1a)で表される化合物は、配位子(L)を含む。1つの実施形態においては、構造式(1a)で表される化合物は、配位子(L)を含まない。1つの実施形態においては、構造式(1a)で表される化合物は、置換又は無置換のシクロメタル化された配位子である配位子(L)を含む。
【0070】
構造式(1a)で表される化合物の幾つかの実施形態においては、Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される連結基であり、R’及びR’’は、任意の好適な置換基である。構造式(1a)で表される化合物の幾つかの実施形態においては、Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される連結基であり、R’及びR’’は、独立して、H、1個〜6個の炭素原子を有するアルキル、フェニル、及び置換されたフェニルである。構造式(1a)で表される化合物の幾つかの実施形態においては、Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される連結基であり、R’及びR’’は、共に結合し、環を形成する。構造式(1a)で表される化合物の幾つかの実施形態においては、Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される連結基であり、R’及びR’’は、共に結合し、飽和環を形成する。構造式(1a)で表される化合物の幾つかの実施形態においては、Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される連結基であり、R’及びR’’は、共に結合し、飽和5員環、又は飽和6員環、又はこれらの組合せを形成する。
【0071】
幾つかの実施形態においては、構造式(1a)で表される化合物は、三重項励起状態を有する。幾つかの実施形態においては、構造式(1a)で表される化合物、前記化合物が三重項励起状態にあるとき、連結基Aは、N
2とC
1bとの間の結合を開裂から安定化させる。幾つかの実施形態においては、構造式(1a)で表される化合物は、500nm未満のピーク発光波長を有する。幾つかの実施形態においては、構造式(1a)で表される化合物は、480nm未満のピーク発光波長を有する。幾つかの実施形態においては、構造式(1a)で表される化合物は、400nm〜500nmの範囲のピーク発光波長を有する。式(1a)の構造で表される化合物の具体例としては、下記に示される化合物(1−1)〜化合物(1−181)が挙げられるが、これらに限定されない。
【化10】
【化11】
【化12】
【化13】
【化14】
【化15】
【化16】
【化17】
【化18】
【化19】
【化20】
【化21】
【化22】
【化23】
【化24】
【化25】
【化26】
【化27】
【化28】
【化29】
【0072】
他の態様においては、本発明は、構造式(2a)及び構造式(2b)で表される化合物を提供する。
【化30】
式中、A
1及びA
2は、それぞれ第1の連結基であり;R
1b〜R
1f及びR
2b〜R
2fは、任意の好適な置換基であり;構造式(2a)及び構造式(2b)で表される化合物のR
ab及びR
acは、R
abとR
acとの間、R
gaとR
gbとの間、又はR
abとR
acとの間且つR
gaとR
gbとの間に形成される第2の連結基を介して共に結合されてもよく;R
1b〜R
1f及びR
2b〜R
2fが結合している環原子のいずれか1つは、窒素原子で置換されていてもよく;前記環原子が窒素原子で置換されている場合、対応しているR基は、存在しない。
【0073】
構造式(2a)及び構造式(2b)で表される化合物の幾つかの実施形態においては、第1の連結基A
1及びA
2は、それぞれ、2個〜3個の連結原子を含む。構造式(2a)及び構造式(2b)で表される化合物の幾つかの実施形態においては、第1の連結基A
1及びA
2は、それぞれ、2個〜3個の連結原子を含み、前記連結原子は、それぞれ独立して、C、Si、O、S、N、B、又はこれらの組合せからなる群から選択される。幾つかの実施形態においては、A
1及びA
2は、異なっている。幾つかの実施形態においては、A
1及びA
2は、同じである。構造式(2a)及び構造式(2b)で表される化合物の幾つかの実施形態においては、R
1b〜R
1f及びR
2b〜R
2fは、独立して、水素、アルキル、アルケニル、アルキニル、アラルキル、CN、CF
3、CO
2R、C(O)R、C(O)NR
2、NR
2、NO
2、OR、SR、SO
2、SOR、SO
3R、ハロ、アリール、ヘテロアリール、置換されたアリール、置換されたヘテロアリール、又は複素環基から選択される。構造式(2a)及び構造式(2b)で表される化合物の幾つかの実施形態においては、R
ab及びR
ac及び/又はR
ga及びR
gbは、共に結合し、独立して、B、N、P、O、S、Se、C、Si、Ge、又はこれらの組合せからなる群から選択される1個〜3個の連結原子を有する第2の連結基を形成してもよい。1つのこのような実施形態においては、前記第2の連結基は、独立して、BR、NR、PR、O、S、Se、C=O、S=O、SO
2、CRR’’’、−CRR’’’−CRR’’’−、SiRR’’’、及びGeRR’’’からなる群から選択され、R又はR’’’は、任意の好適な置換基である。幾つかのこのような実施形態においては、R又はR’’’は、それぞれ独立して、H、ハロ、アルキル、アルケニル、アルキニル、ヘテロアルキル、アラルキル、アリール、及びヘテロアリールから選択される。他のこのような実施形態においては、R
ab及びR
ac及び/又はR
ga及びR
gbは、共に結合し、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される、少なくとも2つの連結原子を有する第2の連結基を形成してもよく、R’及びR’’は、任意の好適な置換基である。第2の連結基の例を、下記に挙げる。
【化31】
式中、Rは、それぞれ独立して、H、メチル、又はフェニルから選択される。
【0074】
構造式(2a)及び構造式(2b)で表される化合物の幾つかの実施形態においては、第1の連結基A
1及びA
2は、それぞれ独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択され、R’及びR’’は、独立して、H、1個〜6個の炭素原子を有するアルキル、フェニル、及び置換されたフェニルである、又はR’及びR’’は、共に結合し、飽和5員環、又は飽和6員環、及びこれらの組合せを形成する。
【0075】
幾つかの実施形態においては、構造式(2a)及び構造式(2b)で表される化合物は、それぞれ、三重項励起状態を有する。幾つかの実施形態においては、構造式(2a)及び構造式(2b)で表される化合物は、それぞれ、三重項励起状態を有し、且つ前記化合物が前記三重項励起状態にあるとき、N
2とC
1bとの間の結合を開裂から安定化させる連結基A
1およびA
2を有する。幾つかの実施形態においては、構造式(2a)及び構造式(2b)で表される化合物は、それぞれ、500nm未満のピーク発光波長を有する。幾つかの実施形態においては、構造式(2a)及び構造式(2b)で表される化合物は、それぞれ、480nm未満のピーク発光波長を有する。幾つかの実施形態においては、構造式(2a)及び構造式(2b)で表される化合物は、それぞれ、400nm〜500nmの範囲のピーク発光波長を有する。
【0076】
構造式(2a)及び構造式(2b)で表される化合物の幾つかの実施形態においては、第1の連結基A
1及びA
2は、それぞれ独立して、−CH
2−CH
2−、−CH
2−CH
2−CH
2−、−CHR’−CHR’’−、−CR’R’’−CH
2−、−CR’R’’−CR’R’’−、−CH
2−CH
2−CH
2−、−CH
2−S−、−S−CH
2−、−O−SiR’R’’−、−SiR’R’’−O−から選択され、R’及びR’’は、独立して、メチル又はフェニルである。構造式(2a)及び構造式(2b)で表される化合物の幾つかの実施形態においては、前記第2の連結基は、NR、O、-CH
2-CH
2-、-CHR’-CHR’-、-CR’R’’’-CH
2-、-CRR’’’-CRR’’’-、及びこれらの組合せから選択される。
【0077】
R
gaとR
gb及び/又はR
abとR
acが共に結合して形成される第2の連結基を介して結合される式(2a)及び式(2b)の構造で表される化合物の例としては、下記に示される化合物(2−1)〜化合物(2−3)が挙げられるが、これらに限定されない。
【化32】
【0078】
他の態様においては、本発明は、構造式(3a)で表される化合物を提供する。
【化33】
式中、Aは、第1の連結基であり;L
2及びL
3は、連結基であり;R
1a〜R
1f及びR
3a〜R
3fは、任意の好適な置換基であり;R
1f、R
3a、R
3c、及びR
3dの任意の組合せは、結合して1つ以上の縮合環を形成してもよく;L
2及びR
1f、L
2及びR
3a、又はL
2及びR
1fとR
3aの両方は、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよく;L
3及びR
3c、L
3及びR
3d、又はL
3及びR
3cとR
3dの両方は、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよく;R
1b〜R
1fが結合している環原子のいずれか1つは、窒素原子で置換されていてもよく;前記環原子が窒素原子で置換されている場合、対応しているR基は、存在しない。
【0079】
構造式(3a)で表される化合物の幾つかの実施形態においては、第1の連結基Aは、2個〜3個の連結原子を有する。構造式(3a)で表される化合物の幾つかの実施形態においては、第1の連結基Aは、2個〜3個の連結原子を有し、前記連結原子は、それぞれ独立して、C、Si、O、S、N、B、又はこれらの組合せからなる群から選択される。構造式(3a)で表される化合物の幾つかの実施形態においては、L
2及びL
3は、独立して、単結合、BR、NR、PR、O、S、Se、C=O、S=O、SO
2、CRR’、SiRR’、及びGeRR’からなる群から選択され、R又はR’は、それぞれ、任意の好適な置換基である。構造式(3a)で表される化合物の幾つかの実施形態においては、R
1a〜R
1f、R
3a〜R
3f、R、及びR’は、それぞれ独立して、水素、アルキル、アルケニル、アルキニル、アラルキル、CN、CF
3、CO
2R、C(O)R、C(O)NR
2、NR
2、NO
2、OR、SR、SO
2、SOR、SO
3R、ハロ、アリール、ヘテロアリール、置換されたアリール、置換されたヘテロアリール、又は複素環基からなる群から選択される。構造式(3a)で表される化合物の幾つかの実施形態においては、2つの隣接するR
1f、R
3a、R
3c、R
3d、R、及びR’は、共に結合して、縮合環を形成してもよい。L
2及びR
1f、又はL
2及びR
3a、又はL
2及びR
3aとR
1fの両方は、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。L
3及びR
3c、L
3及びR
3d、又はL
3及びR
3cとR
3dの両方は、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。幾つかの実施形態においては、L
2及びR
1fは、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。幾つかの実施形態においては、L
2及びR
3aは、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。幾つかの実施形態においては、L
2及びR
3aとR
1fの両方は、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。幾つかの実施形態においては、L
3及びR
3dは、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。幾つかの実施形態においては、L
3及びR
3cは、結合して、1つ以上の縮合環を形成してもよい。幾つかの実施形態においては、L
3及びR
3cとR
3dの両方は、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。
【0080】
構造式(3a)で表される化合物の幾つかの実施形態においては、第1の連結基Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択され、R’及びR’’は、独立して、H、1個〜6個の炭素原子を有するアルキル、フェニル、及び置換されたフェニルである、又はR’及びR’’は、共に結合し、飽和5員環、又は飽和6員環、及びこれらの組合せを形成する。
【0081】
幾つかの実施形態においては、構造式(3a)で表される化合物は、三重項励起状態を有する。幾つかの実施形態においては、構造式(3a)で表される化合物は、三重項励起状態を有し、且つ前記化合物が前記三重項励起状態にあるとき、N
2とC
1bとの間の結合を開裂から安定化させる連結基Aを有する。幾つかの実施形態においては、構造式(3a)で表される化合物は、500nm未満のピーク発光波長を有する。幾つかの実施形態においては、構造式(3a)で表される化合物は、480nm未満のピーク発光波長を有する。幾つかの実施形態においては、構造式(3a)で表される化合物は、400nm〜500nmの範囲のピーク発光波長を有する。
【0082】
構造式(3a)で表される化合物の幾つかの実施形態においては、第1の連結基Aは、−CH
2−CH
2−、−CH
2−CH
2−CH
2−、−CHR’−CHR’’−、−CR’R’’−CH
2−、−CR’R’’−CR’R’’−、−CH
2−CH
2−CH
2−、−CH
2−S−、−S−CH
2−、−O−SiR’R’’−、及び−SiR’R’’−O−から選択され、R’及びR’’は、独立して、メチル又はフェニルである。構造式(3a)で表される化合物の幾つかの実施形態においては、L
2及びL
3は、独立して、BR、NR、PR、O、S、Se、C=O、S=O、SO
2、CRR’、SiRR’、及びGeRR’からなる群から選択される。構造式(3a)で表される化合物の幾つかの実施形態においては、R
1f又はR
3a及びR又はR’は、共に結合して縮合環を形成する。構造式(3a)で表される化合物の幾つかの実施形態においては、R
3c又はR
3d及びR又はR’は、共に結合して縮合環を形成する。
【0083】
式(3a)の構造で表される化合物の例としては、下記に示される化合物(3−1)〜化合物(3−6)が挙げられるが、これらに限定されない。
【化34】
III.有機金属化合物
【0084】
本開示は、有機金属化合物の幾つかの実施形態を提供する。幾つかの実施形態においては、前記化合物は、発光ドーパントであることができる。幾つかの実施形態においては、前記化合物は、リン光、蛍光、熱活性化遅延蛍光、即ちTADF(E型遅延蛍光とも言われる)、三重項−三重項消滅、又はこれらの過程の組合せを介して、発光を生成することができる。
【0085】
1つの態様においては、本発明は、構造式(1)で表される化合物を提供する。
【化35】
式中、Mは、40超の原子量を有する金属であり、nは、少なくとも1の値を有し、m+nは、前記金属と結合することができる配位子の最大数であり;Aは、任意の好適な連結基であり;R
1a〜R
1gは、任意の好適な置換基である。R
1b〜R
1gが結合している環原子のいずれか1つは、窒素原子で置換されていてもよく、前記環原子が窒素原子で置換されている場合、対応しているR基は存在しない。幾つかの実施形態においては、Mは、周期表7族〜11族の遷移金属から選択される金属を表す。幾つかの実施形態においては、Mは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、及び金から選択される金属を表す。幾つかの好ましい実施形態においては、Mは、イリジウム(Ir)を表し、nは、2又は3であり;mは、0又は1であり;m+nは、3である。
【0086】
構造式(1)で表される化合物の1つの実施形態においては、Aは、2個〜3個の連結原子を有する連結基である。構造式(1)で表される化合物の1つの実施形態においては、Aは、2個〜3個の連結原子を有する連結基であり、前記連結原子は、それぞれ独立して、C、Si、O、S、N、B、又はこれらの組合せからなる群から選択される。構造式(1)で表される化合物の幾つかの実施形態においては、Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される連結基であり、R’及びR’’は、任意の好適な置換基である。構造式(1)で表される化合物の幾つかの実施形態においては、Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される連結基であり、R’及びR’’は、独立して、H、1個〜6個の炭素原子を有するアルキル、フェニル、及び置換されたフェニルである。構造式(1)で表される化合物の幾つかの実施形態においては、Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される連結基であり、R’及びR’’は、共に結合し、環を形成する。構造式(1)で表される化合物の幾つかの実施形態においては、Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される連結基であり、R’及びR’’は、共に結合し、飽和環を形成する。構造式(1)で表される化合物の幾つかの実施形態においては、Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される連結基であり、R’及びR’’は、共に結合し、飽和5員環、又は飽和6員環、又はこれらの組合せを形成する。
【0087】
幾つかの好ましい実施形態においては、Aは、アルキレン基である。幾つかの実施形態においては、Aは、メチレン、ジメチレン、及びトリメチレンから選択されるアルキレン基である。幾つかの好ましい実施形態においては、Aは、独立して、−CH
2−Si(CH
3)
2−、−CH
2−Si(Ph)
2−、−CH
2−Si(CH
3)
2−、−CH
2−CH
2−、−CH
2−CH
2−CH
2−、−C(CH
3)
2−C(CH
3)
2−、−CH(CH
3)−CH(CH
3)−、−C(Ph)
2−C(Ph)
2−、−CH(Ph)−CH(Ph)−、及び−CH
2−CH(Ph)
2−からなる群から選択される。幾つかの好ましい実施形態においては、Aは、下記からなる群から選択される。
【化36】
【0088】
構造式(1)で表される化合物の1つの実施形態においては、R
1a〜R
1gは、独立して、水素、アルキル、アルケニル、アルキニル、アラルキル、CN、CF
3、CO
2R、C(O)R、C(O)NR
2、NR
2、NO
2、OR、SR、SO
2、SOR、SO
3R、ハロ、アリール、ヘテロアリール、置換されたアリール、置換されたヘテロアリール、又は複素環基からなる群から選択され、Rは、任意の好適な置換基である。構造式(1)で表される化合物の1つの実施形態においては、R
1a〜R
1gは、独立して、水素、アルキル、アルケニル、アルキニル、アラルキル、CN、CF
3、CO
2R、C(O)R、C(O)NR
2、NR
2、NO
2、OR、SR、SO
2、SOR、SO
3R、ハロ、アリール、ヘテロアリール、置換されたアリール、置換されたヘテロアリール、又は複素環基からなる群から選択され、Rは、それぞれ独立して、H、ハロ、アルキル、アルケニル、アルキニル、ヘテロアルキル、アラルキル、アリール、及びヘテロアリールから選択される。構造式(1)で表される化合物の1つの実施形態においては、R
1a〜R
1gは、独立して、水素、アルキル、アルケニル、アルキニル、アラルキル、CN、CF
3、CO
2R、C(O)R、C(O)NR
2、NR
2、NO
2、OR、SR、SO
2、SOR、SO
3R、ハロ、アリール、ヘテロアリール、置換されたアリール、置換されたヘテロアリール、又は複素環基から選択される。1つの実施形態においては、構造式(1)で表される化合物は、配位子(L)を含んでいても含まなくてもよい。1つの実施形態においては、構造式(1)で表される化合物は、配位子(L)を含む。1つの実施形態においては、構造式(1)で表される化合物は、配位子(L)を含まない。1つの実施形態においては、構造式(1)で表される化合物は、置換又は無置換のシクロメタル化された配位子である配位子(L)を含む。
【0089】
幾つかの実施形態においては、構造式(1)で表される化合物は、三重項励起状態を有する。幾つかの実施形態においては、構造式(1)で表される化合物、連結基Aは、前記化合物が前記三重項励起状態にあるとき、N
2とC
1bとの間の結合を開裂から安定化させる。幾つかの実施形態においては、構造式(1)で表される化合物は、500nm未満のピーク発光波長を有する。幾つかの実施形態においては、構造式(1)で表される化合物は、480nm未満のピーク発光波長を有する。幾つかの実施形態においては、構造式(1)で表される化合物は、400nm〜500nmの範囲のピーク発光波長を有する。
【0090】
構造式(1)で表される化合物の幾つかの実施形態においては、連結基Aは、-CH
2-CH
2-、-CH
2-CH
2-CH
2-、-CHR’-CHR’’-、-CR’R’’-CH
2-、-CR’R’’-CR’R’’-、-CH
2-CH
2-CH
2-、-CH
2-S-、-S-CH
2-、-O-SiR’R’’-、-SiR’R’’-O-から選択され、R’及びR’’は、独立して、メチル又はフェニルである。
【0091】
配位子Lは、金属Mと結合する配位子を表す。幾つかの実施形態においては、配位子Lと金属Mとの間に形成された結合は、共有結合、イオン結合、又は配位結合である。幾つかの実施形態においては、配位子Lは、ヘテロ原子を介して金属と配位する。幾つかの実施形態においては、配位子Lは、窒素、酸素、硫黄からなる群から選択されるヘテロ原子と炭素原子を介して金属Mと配位する。幾つかの実施形態においては、配位子Lは、窒素、酸素からなる群から選択されるヘテロ原子、と炭素原子を介して金属Mと配位する。
【0092】
幾つかの実施形態においては、配位子Lと金属Mとの間に形成された結合は、共有結合、イオン結合、又は配位結合である。幾つかの実施形態においては、配位子Lと金属Mとの間に形成された結合は、イオン性である。幾つかの実施形態においては、配位子Lは、アニオン配位子(即ち、少なくとも1つの配位子のアニオンと金属が結合する配位子)である。幾つかの実施形態においては、配位子Lは、少なくとも1つのアニオン基を含む。幾つかの実施形態においては、配位子Lは、1個〜3個のアニオンを含む。幾つかの実施形態においては、配位子Lは、2個のアニオンを含む。幾つかの実施形態においては、配位子Lは、1個のアニオンを含む。
【0093】
幾つかの実施形態においては、前記結合は、炭素原子を介して配位子Lと金属Mとの間に形成される。炭素原子を介して金属Mと結合する配位子の例としては、イミノ配位子、芳香族炭素環配位子(ベンゼン−、ナフタレン−、アントラセン−、フェナントラセン−系配位子等)、複素環配位子(チオフェン−、ピリジン−、ピラジン−、ピリミジン−、チアゾール−、オキサゾール−、ピロール−、イミダゾール−、ピラゾール−系配位子、及びこれらの環の組合せのいずれかを含む縮合環に基づく配位子等)が挙げられるが、これらに限定されない。
【0094】
幾つかの実施形態においては、配位子Lと金属Mとの間に形成される結合は、窒素原子を介する。窒素原子を介して金属Mと結合する配位子の例としては、含窒素複素環(ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、チアゾール、オキサゾール、ピロール、イミダゾール、ピラゾール、トリアゾール、オキサジアゾール、及びチアジアゾール配位子、及び複素環の組合せのいずれかを有する縮合環等)、アルキルアミノ配位子(テトラメチルエチレンジアミン等)、アリールアミノ配位子(フェニルアミノ等)、アシルアミノ配位子(アセチルアミノ、ベンゾイルアミノ等)、アルコキシカルボニルアミノ配位子(メトキシカルボニルアミノ等)、アリールオキシカルボニルアミノ配位子(フェニルオキシカルボニルアミノ等)、スルホニルアミノ配位子(メタンスルホニルアミノ、ベンゼンスルホニルアミノ等)、及びイミノ配位子が挙げられるが、これらに限定されない。
【0095】
幾つかの実施形態においては、配位子Lと金属Mとの間に形成される結合は、酸素原子を介する。酸素原子を介して金属Mと結合する配位子の例としては、アルコキシ配位子(メトキシ、エトキシ、ブトキシ、2−エチルヘキシルオキシ等)、アリールオキシ配位子(フェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシ等)、複素環オキシ配位子(ピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシ等)、アシルオキシ配位子(アセトキシ、ベンゾイルオキシ等)、シリルオキシ配位子(トリメチルシリルオキシ、トリフェニルシリルオキシ)、カルボニル配位子(ケトン配位子、エステル配位子、アミド配位子等)、及びエーテル配位子(ジアルキルエーテル配位子、ジアリールエーテル配位子、フリル配位子等)が挙げられるが、これらに限定されない。
【0096】
幾つかの実施形態においては、配位子Lと金属Mとの間に形成される結合は、硫黄原子を介する。硫黄原子を介して金属Mと結合する配位子の例としては、アルキルチオ配位子(メチルチオ、エチルチオ等)、アリールチオ配位子(フェニルチオ等)、複素環チオ配位子(ピリジルチオ、2−ベンズイミダゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオ等)、チオカルボニル配位子(チオケトン配位子、チオエステル配位子等)、及びチオエーテル配位子(ジアルキルチオエーテル配位子、ジアリールチオエーテル配位子、チオフリル配位子等)が挙げられるが、これらに限定されない。
【0097】
幾つかの実施形態においては、配位子Lは、芳香族炭素環配位子、アルキルオキシ配位子、アリールオキシ配位子、エーテル配位子、アルキルチオ配位子、アリールチオ配位子、アルキルアミノ配位子、アリールアミノ配位子、アシルアミノ配位子、及び含窒素複素環配位子(ピリジン−、ピラジン−、ピリミジン−、ピリダジン−、トリアジン−、チアゾール−、オキサゾール−、ピロール−、イミダゾール−、ピラゾール−、トリアゾール−、オキサジアゾール−、及びチアジアゾール配位子−、キノリン−、ベンズオキサゾール−、ベンズイミダゾール−系配位子等)であることが好ましい。幾つかの実施形態においては、配位子Lは、芳香族炭素環配位子、アリールオキシ配位子、アリールチオ配位子、アリールアミノ配位子、ピリジン配位子、ピラジン配位子、イミダゾール配位子、これらの配位子のいずれかを含む縮合配位子(キノリン、キノキサリン、ベンズイミダゾール配位子等)であることがより好ましい。幾つかの好ましい実施形態においては、配位子Lは、芳香族炭素環配位子、アリールオキシ配位子、アリールチオ配位子、又はアリールアミノ配位子である。
【0098】
幾つかの実施形態においては、配位子Lは、金属Mと配位結合を形成する。金属Mと配位結合を形成する配位子Lの例としては、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、チアゾール環、オキサゾール環、ピロール環、トリアゾール環、これらの環のいずれかを含む縮合環(キノリン、ベンズオキサゾール、ベンズイミダゾール、及びインドレニン環等)が挙げられるが、これらに限定されない。
【0099】
幾つかの実施形態においては、配位子Lとの間に形成された結合は、単座である。幾つかの実施形態においては、配位子Lとの間に形成された結合は、二座、三座、又は四座である。配位子Lのより具体的な例としては、ハロゲン配位子、1,3−ジケトン配位子(アセチルアセトン配位子等)、ピリジン配位子を含むモノアニオン性二座配位子(ピコリン酸、2−(2−ヒドロキシフェニル)−ピリジン配位子等)が挙げられるが、これらに限定されない。
【0100】
幾つかの実施形態においては、R
1a〜R
1gは、それぞれ独立して、水素原子又は任意の好適な置換基を表す。好適な置換基の例としては、アルキル基(好ましくは、1個〜30個の炭素原子、より好ましくは1個〜20個の炭素原子、特に好ましくは、1個〜10個の炭素原子、メチル、エチル、イソ−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシル等)、アルケニル基(好ましくは、2個〜30個の炭素原子、より好ましくは、2個〜20個の炭素原子、特に好ましくは、2個〜10個の炭素原子、ビニル、アリル、2−ブテニル、3−ペンテニル等)、アルキニル基(好ましくは、2個〜30個の炭素原子、より好ましくは、2個〜20個の炭素原子、特に好ましくは、2個〜10個の炭素原子、プロパギル、3−ペンチニル等)、アリール基(好ましくは、6個〜30個の炭素原子、より好ましくは、6個〜20個の炭素原子、特に好ましくは、6個〜12個の炭素原子、フェニル、p−メチルフェニル、ナフチル、アントラニル等)、アミノ基(好ましくは、0個〜30個の炭素原子、より好ましくは、0個〜の炭素原子、特に好ましくは、0個〜10個の炭素原子、アミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノ等)、アルコキシ基(好ましくは、1個〜30個の炭素原子、より好ましくは、1個〜20個の炭素原子、特に好ましくは、1個〜10個の炭素原子、メトキシ、エトキシ、ブトキシ、2−エチルヘキシルオキシ等)、アリールオキシ基(好ましくは、6個〜30個の炭素原子、より好ましくは、6個〜20個の炭素原子、特に好ましくは、6個〜12個の炭素原子、フェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシ等)、複素環オキシ基(好ましくは、1個〜30個の炭素原子、より好ましくは、1個〜20個の炭素原子、特に好ましくは、1個〜12個の炭素原子、ピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシ等)、アシル基(好ましくは、1個〜30個の炭素原子、より好ましくは、1個〜20個の炭素原子、特に好ましくは、1個〜12個の炭素原子、アセチル、ベンゾイル、ホルミル、ピバロイル等)、アルコキシカルボニル基(好ましくは、2個〜30個の炭素原子、より好ましくは、2個〜20個の炭素原子、特に好ましくは、2個〜12個の炭素原子、メトキシカルボニル、エトキシカルボニル等)、アリールオキシカルボニル基(好ましくは、7個〜30個の炭素原子、より好ましくは、7個〜20個の炭素原子、特に好ましくは、7個〜12個の炭素原子、フェニルオキシカルボニル等)、アシルオキシ基(好ましくは、2個〜30個の炭素原子、より好ましくは、2個〜20個の炭素原子、特に好ましくは、2個〜10個の炭素原子、アセトキシ、ベンゾイルオキシ等)、アシルアミノ基(好ましくは、2個〜30個の炭素原子、より好ましくは、2個〜20個の炭素原子、特に好ましくは、2個〜10個の炭素原子、アセチルアミノ、ベンゾイルアミノ等)、アルコキシカルボニルアミノ基(好ましくは、2個〜30個の炭素原子、より好ましくは、2個〜20個の炭素原子、特に好ましくは、2個〜12個の炭素原子、メトキシカルボニルアミノ等)、アリールオキシカルボニルアミノ基(好ましくは、7個〜30個の炭素原子、より好ましくは、7個〜20個の炭素原子、特に好ましくは、7個〜12個の炭素原子、フェニルオキシカルボニルアミノ等)、スルホニルアミノ基(好ましくは、1個〜30個の炭素原子、より好ましくは、1個〜20個の炭素原子、特に好ましくは、1個〜12個の炭素原子、メタンスルホニルアミノ、ベンゼンスルホニルアミノ等)、スルファモイル基(好ましくは、0個〜30個の炭素原子、より好ましくは、0個〜20個の炭素原子、特に好ましくは、0個〜12個の炭素原子、スルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイル等)、カルバモイル基(好ましくは、1個〜30個の炭素原子、より好ましくは、1個〜20個の炭素原子、特に好ましくは、1個〜12個の炭素原子、カルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイル等)、アルキルチオ基(好ましくは、1個〜30個の炭素原子、より好ましくは、1個〜20個の炭素原子、特に好ましくは、1個〜12個の炭素原子、メチルチオ、エチルチオ等)、アリールチオ基(好ましくは、6個〜30個の炭素原子、より好ましくは、6個〜20個の炭素原子、特に好ましくは、6個〜12個の炭素原子、フェニルチオ等)、複素環チオ基(好ましくは、1個〜30個の炭素原子、より好ましくは、1個〜20個の炭素原子、特に好ましくは、1個〜12個の炭素原子、ピリジルチオ、2−ベンズイミダゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオ等)、スルフォニル基(好ましくは、1個〜30個の炭素原子、より好ましくは、1個〜20個の炭素原子、特に好ましくは、1個〜12個の炭素原子、メシル、トシル等)、スルフィニル基(好ましくは、1個〜30個の炭素原子、より好ましくは、1個〜20個の炭素原子、特に好ましくは、1個〜12個の炭素原子、メタンスルフィニル、ベンゼンスルフィニル等)、ウレイド基(好ましくは、1個〜30個の炭素原子、より好ましくは、1個〜20個の炭素原子、特に好ましくは、1個〜12個の炭素原子、ウレイド、メチルウレイド、フェニルウレイド等)、リン酸アミド基(好ましくは、1個〜30個の炭素原子、より好ましくは、1個〜20個の炭素原子、特に好ましくは、1個〜12個の炭素原子、ジエチルホスホアミド、フェニルホスホアミド等)、水酸基、メルカプト基、ハロゲン原子(フッ素、塩素、臭素、ヨウ素等)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、複素環基(好ましくは、1個〜30個の炭素原子、より好ましくは、1個〜12個の炭素原子、窒素、酸素、硫黄等のヘテロ原子を含み、具体的には、イミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルフォリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル、アゼピニル等)、シリル基(好ましくは、3個〜40個の炭素原子、より好ましくは、3個〜30個の炭素原子、特に好ましくは、3個〜24個の炭素原子、トリメチルシリル、トリフェニルシリル等)、及びシリルオキシ基(好ましくは、3個〜40個の炭素原子、より好ましくは、3個〜30個の炭素原子、特に好ましくは、3個〜24個の炭素原子、トリメチルシリルオキシ、トリフェニルシリルオキシ)が挙げられるが、これらに限定されない。幾つかの実施形態においては、これらの置換基のいずれかは、他の置換基によって更に置換されていてもよい。
【0101】
式(1)の構造で表される化合物の具体例としては、下記に示される化合物1〜化合物98が挙げられるが、これらに限定されない。
【化37】
【化38】
【化39】
【化40】
【化41】
【化42】
【化43】
【化44】
【化45】
【化46】
【化47】
【化48】
【0102】
幾つかの態様において、本発明に係る化合物は、下記の構造式(2)の構造で表される。
【化49】
Mは、任意の好適な金属であり;A
1及びA
2は、それぞれ第1の連結基であり;R
1b〜R
1f及びR
2b〜R
2fは、任意の好適な置換基であり;R
ab及びR
ac又はR
ga及びR
gbは、共に結合して、第2の連結基を形成することができる置換基であり;本明細書中において特段の記載がない限り、又は文脈から明らかでなければ、R
1b〜R
1fは、それぞれ、構造式(1)中のR
1b〜R
1fに定義されるものと同じ意味を有し;本明細書中において特段の記載がない限り、又は文脈から明らかでなければ、R
2b〜R
2fは、それぞれ、構造式(1)中のR
1b〜R
1fに定義されるものと同じ意味を有し;R
1b〜R
1f及びR
2b〜R
2fは、それぞれ独立して、構造式(1)中のR
1b〜R
1fの選択肢から選択される値を有する。R
1b〜R
1f及びR
2b〜R
2fが結合している環原子のいずれか1つは、窒素原子で置換されていてもよく、前記環原子が窒素原子で置換されている場合、対応しているR基は、存在しない。構造式(2)で表される化合物の幾つかの実施形態においては、R
1b〜R
1f及びR
2b〜R
2fは、独立して、水素、アルキル、アルケニル、アルキニル、アラルキル、CN、CF
3、CO
2R、C(O)R、C(O)NR
2、NR
2、NO
2、OR、SR、SO
2、SOR、SO
3R、ハロ、アリール、ヘテロアリール、置換されたアリール、置換されたヘテロアリール、又は複素環基からなる群から選択され、Rは、H、ハロ、アルキル、アルケニル、アルキニル、ヘテロアルキル、アラルキル、アリール、及びヘテロアリールを含む任意の好適な基である。本明細書中において特段の記載がない限り、又は文脈から明らかでなければ、Mは、構造式(1)のMと同じ意味を有する。構造式(2)で表される化合物の幾つかの好ましい実施形態においては、Mは、白金(Pt)である。
【0103】
式(2)の幾つかの実施形態においては、第1の連結基A
1及びA
2は、それぞれ2個〜3個の連結原子を含む。構造式(2)で表される化合物の幾つかの実施形態においては、第1の連結基A
1及びA
2は、2個〜3個の連結原子を含み、前記連結原子は、それぞれ、C、Si、O、S、N、B、又はこれらの組合せからなる群から選択される。幾つかの実施形態においては、A
1及びA
2は、異なっている。幾つかの実施形態においては、A
1及びA
2は、同じである。
【0104】
構造式(2)で表される化合物の幾つかの実施形態においては、第1の連結基A
1及びA
2は、それぞれ独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択され、R’及びR’’は、独立して、H、1個〜6個の炭素原子を有するアルキル、フェニル、及び置換されたフェニルである、又はR’及びR’’は、共に結合し、飽和5員環、又は飽和6員環、及びこれらの組合せを形成する。
【0105】
構造式(2)で表される化合物の幾つかの実施形態においては、第1の連結基A
1及びA
2は、それぞれ、−CH
2−CH
2−、−CH
2−CH
2−CH
2−、−CHR’−CHR’’−、−CR’R’’−CH
2−、−CR’R’’−CR’R’’−、−CH
2−CH
2−CH
2−、−CH
2−S−、−S−CH
2−、−O−SiR’R’’−、−SiR’R’’−O−からなる群から選択され、R’及びR’’は、独立して、メチル又はフェニルである。
【0106】
構造式(2)で表される化合物の幾つかの実施形態においては、R
ab及びR
ac及び/又はR
ga及びR
gbは、共に結合し、それぞれ独立して、1個〜3個の連結原子を有する第2の連結基を形成することができ、前記連結原子は、それぞれ独立して、B、N、P、O、S、Se、C、Si、Ge、又はこれらの組合せからなる群から選択されることができる。構造式(2)で表される化合物の幾つかの実施形態においては、R
ab及びR
ac及び/又はR
ga及びR
gbは、共に結合し、独立して、BR、NR、PR、O、S、Se、C=O、S=O、SO
2、CRR’’’、-CRR’’’-CRR’’’-、SiRR’’’、及びGeRR’’’からなる群から選択される第2の連結基を形成し、R又はR’’’は、それぞれ、任意の好適な基である。幾つかのこのような実施形態においては、R又はR’’’は、それぞれ独立して、H、ハロ、アルキル、アルケニル、アルキニル、ヘテロアルキル、アラルキル、アリール、及びヘテロアリールから選択される。構造式(2)で表される化合物の幾つかの他の実施形態においては、R
ab及びR
ac、及び/又はR
ga及びR
gbは、共に結合し、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択される、少なくとも2つの連結原子を有する第2の連結基を形成してもよく、R’及びR’’は、任意の好適な置換基である。第2の連結基の例を、下記に挙げる。
【化50】
式中、Rは、それぞれ独立して、H、メチル、又はフェニルから選択される。
【0107】
幾つかの実施形態においては、構造式(2)で表される化合物は、三重項励起状態を有する。幾つかの実施形態においては、構造式(2)で表される化合物は、三重項励起状態を有し、且つ前記化合物が前記三重項励起状態にあるとき、N
2とC
1bとの間の結合を開裂から安定化させる連結基を有する。幾つかの実施形態においては、構造式(2)で表される化合物は、500nm未満のピーク発光波長を有する。幾つかの実施形態においては、構造式(2)で表される化合物は、480nm未満のピーク発光波長を有する。幾つかの実施形態においては、構造式(2)で表される化合物は、400nm〜500nmの範囲のピーク発光波長を有する。式(1)の構造で表される化合物の具体例としては、下記に示される化合物99及び化合物100が挙げられるが、これらに限定されない。
【化51】
【0108】
幾つかの態様においては、本発明に係る化合物は、下記の構造式(3)で表される。
【化52】
Mは、任意の好適な金属であり;Aは、第1の連結基であり;R
1a〜R
1f及びR
3a〜R
3gは、任意の好適な置換基であり;L
2及びL
3は、連結基であり;隣接するR
1f、R
3a、R
3c、及びR
3dは、共に結合して、1つ以上の縮合環を形成してよく;L
2及びR
1f、又はL
2及びR
3a、又はL
2及びR
3aとR
1fの両方は、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよく;L
3及びR
3c、L
3及びR
3d、又はL
3及びR
3cとR
3dの両方は、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよく;R
1b〜R
1f及びR
2b〜R
2fが結合している環原子のいずれか1つは、窒素原子で置換されていてもよく;前記環原子が窒素原子で置換されている場合、対応しているR基は、存在しない。L
2及びR
1f、又はL
2及びR
3a、又はL
2及びR
3aとR
1fの両方は、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。L
3及びR
3c、又はL
3及びR
3d、又はL
3及びR
3c及びR
3dの両方は、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。幾つかの実施形態においては、L
2及びR
1fは、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。幾つかの実施形態においては、L
2及びR
3aは、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。幾つかの実施形態においては、L
2及びR
3aとR
1fの両方は、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。幾つかの実施形態においては、L
3及びR
3dは、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。幾つかの実施形態においては、L
3及びR
3cは、結合して、1つ以上の縮合環を形成してもよい。L
3及びR
3cとR
3dの両方は、結合して、1つ、2つ、又はそれ以上の縮合環を形成してもよい。
【0109】
本明細書中において特段の記載がない限り、又は文脈から明らかでなければ、Mは、構造式(1)中のMと同じ意味を有する。構造式(2)で表される化合物の幾つかの好ましい実施形態においては、Mは、白金(Pt)である。構造式(3)で表される化合物の幾つかの好ましい実施形態においては、R
1a〜R
1f及びR
3a〜R
3f、R及びR’は、それぞれ独立して、水素、アルキル、アルケニル、アルキニル、アラルキル、CN、CF
3、CO
2R、C(O)R、C(O)NR
2、NR
2、NO
2、OR、SR、SO
2、SOR、SO
3R、ハロ、アリール、ヘテロアリール、置換されたアリール、置換されたヘテロアリール、又は複素環基から選択される。構造式(3)で表される化合物の幾つかの好ましい実施形態においては、隣接する2つの置換基R
1f、R
3a、R
3c、R
3d、R、及びR’は、共に結合して、縮合環を形成してもよい。構造式(3)で表される化合物の幾つかの好ましい実施形態においては、第1の連結基Aは、独立して、−CR’R’’−CR’R’’−、−CR’R’’−CR’R’’−CR’R’’−、−CR’R’’−NR’’−、−CR’=CR’−CR’R’’−、−O−SiR’R’’−、−CR’R’’−S−、−CR’R’’−O−、−C−SiR’R’’−からなる群から選択され、R’及びR’は、独立して、H、1個〜6個の炭素原子を有するアルキル、フェニル、及び置換されたフェニルである、又はR’及びR’’は、共に結合し、飽和5員環、又は飽和6員環、及びこれらの組合せを形成する。構造式(3)で表される化合物の幾つかの実施形態においては、L
2及びL
3は、独立して、単結合、BR、NR、PR、O、S、Se、C=O、S=O、SO
2、CRR’、SiRR’、及びGeRR’からなる群から選択される。
【0110】
式(1)の構造で表される化合物の具体例としては、下記に示される化合物101〜化合物109が挙げられるが、これらに限定されない。
【化53】
【化54】
【0111】
本発明の様々な実施形態によれば、金属錯体は、数多くの望ましい特徴を示す。幾つかの実施形態においては、構造式(1)〜(3)で表される金属錯体は、高い量子効率、狭いスペクトル幅、及び/又は可視域又は近赤外域等、波長の望ましい幅において位置するピーク発光波長を有するフォトルミネセンスを示すことができる。また、これらのフォトルミネセンスの特徴は、励起波長の広い幅にわたり、比較的不変であることができる。幾つかの実施形態においては、構造式(1)〜(3)で表される金属錯体は、バンドギャップエネルギー及び電気伝導率に関する等、他の望ましい特徴を有することができる。また、構造式(1)〜(3)で表される金属錯体は、市販の出発物質から安価に且つ容易に合成できるところも有利な点である。
【0112】
幾つかの実施形態においては、式(1)、(2)、又は(3)の構造で表される金属錯体は、500nm未満のピーク発光波長を有する。幾つかの実施形態においては、式(1)、(2)、又は(3)の構造で表される金属錯体は、480nm未満のピーク発光波長を有する。幾つかの実施形態においては、式(1)、(2)、又は(3)の構造で表される金属錯体は、400nm〜500nm(含む)のピーク発光波長を有する。
【0113】
幾つかの実施形態においては、構造式(1)、(2)、又は(3)で表される金属錯体は、三重項励起状態、及び前記化合物が三重項励起状態にあるとき、下記に示されるN
2とC
1bとの間の結合を開裂から安定化させる連結基Aを有する。
【化55】
【0114】
したがって、幾つかの実施形態においては、構造式(1)、(2)、又は(3)で表される金属錯体は、リン光発光物質である。幾つかの実施形態においては、構造式(1)、(2)、又は(3)で表される金属錯体は、蛍光発光物質である。幾つかの実施形態においては、構造式(1)、(2)、又は(3)で表される金属錯体は、蛍光発光物質及びリン光発光物質の両方である。
【0115】
構造式(1)〜(3)で表される金属錯体は、電流によって励起し、光を発光する材料の性質を利用する有機発光ダイオード(OLED)等の使用に好適である。したがって、幾つかの態様においては、本発明は、構造式(1)、(2)、又は(3)で表される少なくとも1つの金属錯体を含む有機発光材料を提供する。幾つかの実施形態においては、本発明は、構造式(1)、(2)、又は(3)で表される化合物から少なくとも2つの金属錯体を含む有機発光材料を提供する。
【0116】
本発明の様々な実施形態によれば、有機発光材料は、数多くの望ましい特徴を示す。幾つかの実施形態においては、前記有機発光材料は、高い量子効率、狭いスペクトル幅、及び可視域又は近赤外域等、波長の望ましい幅において位置するピーク発光波長を有するフォトルミネセンスを示すことができる。また、これらのフォトルミネセンスの特徴は、励起波長の広い幅にわたり、比較的不変であることができる。前記有機発光材料は、バンドギャップエネルギー及び電気伝導率に関する等、他の望ましい特徴を有することができる。また、消費者製品及び照明パネル等を含む様々な応用において使用するために、前記有機発光材料は、安価で容易に形成することができる所が有利な点である。
【0117】
幾つかの実施形態においては、本発明の発光材料中のフォトルミネセンス物質の量(例えば、構造式(1)、(2)、又は(3)で表される金属錯体等)は、前記発光材料を含む発光層の全質量に対して、0.1質量%〜50質量%(含む)である。幾つかの実施形態においては、本発明の発光材料中のフォトルミネセンス物質の量は、前記発光材料を含む発光層の全質量に対して、0.3質量%〜40質量%(含む)である。幾つかの実施形態においては、本発明の発光材料中のフォトルミネセンス物質の量は、前記発光材料を含む発光層の全質量に対して、0.5質量%〜30質量%(含む)である。
IV.デバイス
【0118】
幾つかの態様においては、本発明は、構造式(1)、(2)、又(3)で表される少なくとも1つの金属錯体を含む有機エレクトロルミネセンスデバイスを提供する。幾つかの実施形態においては、本発明の有機エレクトロルミネセンスデバイスは、第1の有機発光デバイスを含み、前記第1の有機発光デバイスは、アノードと;カソードと;前記アノードと前記カソードとの間に配置され、構造式(1)、(2)、又(3)で表される少なくとも1つの金属錯体を含む有機層と、を更に含む。前記有機エレクトロルミネセンスデバイスの幾つかの好ましい実施形態においては、前記有機層は、ホスト材料を更に含む。前記有機エレクトロルミネセンスデバイスの幾つかの好ましい実施形態においては、前記ホスト材料は、有機化合物を含む。前記有機エレクトロルミネセンスデバイスの幾つかの好ましい実施形態においては、前記ホスト材料は、カルバゾール、ジベンゾチオフェン、ジベンゾフラン、アザカルバゾール、アザ−ジベンゾチオフェン、及びアザ−ジベンゾフランからなる群から選択される少なくとも1つの基を含む分子を有する有機化合物を含む。
【0119】
一般的には、本発明の有機エレクトロルミネセンスデバイス中の使用に好適な有機層は、例えば、前記有機エレクトロルミネセンスデバイスの適用及び目的に応じて、好適な層の構成のいずれも有することができる。したがって、前記有機エレクトロルミネセンスデバイスの幾つかの実施形態においては、前記有機層は、透明電極又は半導体電極上に形成される。幾つかのこのような実施形態においては、前記有機層は、前記透明電極又は前記半導体電極のフロント表面或いは好適な表面のいずれかに形成される。また、前記有機エレクトロルミネセンスデバイスの適用及び目的に応じて、前記有機層の好適な形状、大きさ、及び/又は厚みを採用することができる。基板、カソード、アノード、及び有機層を有する本発明の有機エレクトロルミネセンスデバイスの構成の具体的な例としては、下記が挙げられるが、これらに限定されない。
(A)アノード/正孔輸送層/発光層/電子輸送層/カソード;
(B)アノード/正孔輸送層/発光層/ブロック層/電子輸送層/カソード;
(C)アノード/正孔輸送層/発光層/ブロック層/電子輸送層/電子注入層/カソード;
(D)アノード/正孔注入層/正孔輸送層/発光層/ブロック層/電子輸送層/カソード;
(E)アノード/正孔注入層/正孔輸送層/発光層/ブロック層/電子輸送層/電子注入層/カソード;
【0120】
基板、カソード、及びアノードを含む有機エレクトロルミネセンスデバイスの追加のデバイス構成は、特許公報第2008−270736号に記載される。
【0122】
本発明の有機エレクトロルミネセンスデバイスに利用できる好適な基板は、有機層から照射される光を散乱させない、又は減少させない基板であることが好ましい。幾つかの実施形態においては、前記基板は、優れた耐熱性、寸度安定性、耐溶剤性、絶縁性、及び/又は加工性を示す有機材料からなることが好ましい。
【0123】
本発明の使用に好適な基板は、有機化合物層から発する光を散乱させない又は減少させない基板が好ましい。前記基板の材料の具体的な例としては、ジルコニア安定化イットリア(YSZ)及びガラス等の無機材料;ポリエチレンテレフタレート、ポリブチレンフタレート、及びポリエチレンナフタレート等のポリエステル;及びポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリーレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、及びポリクロロトリフルオロエチレン等の有機材料が挙げられるが、これらに限定されない。
【0124】
幾つかの実施形態においては、前記基板として、ガラスが用いられる場合、無アルカリガラスが使われることが好ましい。好適な無アルカリガラスの具体的な例としては、2013年9月12日に出版された、川口貴弘による米国特許出願公開第2013/0237401号において確認される。幾つかの実施形態においては、前記基板として、ソーダ石灰ガラスが用いられる場合、シリカなどのバリアコートが施されているガラスを用いることが好ましい。幾つかの実施形態においては、前記基板として、有機材料が用いられる場合、耐熱性、寸度安定性、耐溶剤性、絶縁性、及び加工性に優れた特性の1つ以上を有する材料を用いることが好ましい。
【0125】
一般的には、基板の形状、構造、大きさ等に関して特に限定はないが、これらの性質のいずれも発光素子の適用、目的などに応じて、好適に選択されることができる。一般的には、基板の形状としては、プレート状の基板が好ましい。基板の構造としては、単層構造又は積層構造であることができる。更に、基板は、1つの部材又は2つ以上の部材から形成されることができる。
【0126】
前記基板は、透明及び無色、又は透明及び有色であることができるが、前記基板は有機発光層から発する光を散乱及び減少させない基板という観点から、透明及び無色であることが好ましい。幾つかの実施形態においては、水蒸気透過防止層(ガスバリア層)を前記基板のフロント表面又は下面表面に設けることができる。前記水蒸気透過防止層(ガスバリア層)の材料としては、窒化ケイ素及び酸化ケイ素等の無機物質が挙げられるが、これらに限定されない。前記水蒸気透過防止層(ガスバリア層)は、例えば、高周波スパッタリング法等に従って作製されることができる。
【0127】
熱可塑性基板に適用する場合、必要に応じて、ハードコート層又はアンダーコート層を更に設けることができる。
【0129】
アノードはいずれも、正孔を有機層に供給する電極として機能するのであれば、本発明の有機エレクトロルミネセンスデバイスに用いられることができる。本発明の有機エレクトロルミネセンスデバイスの幾つかの実施形態においては、例えば、前記有機エレクトロルミネセンスデバイスの適用及び目的に応じて、公知の電極材料の好適な形状、構造、及び/又は大きさを用いることができる。幾つかの実施形態においては、透明なアノードが好ましい。
【0130】
前記アノードは、一般的には、正孔を有機化合物層に供給する電極として機能するのであれば、いずれの材料であることができ、形状、構造、大きさ等に関しては限定はない。しかし、発光素子の適用及び目的に従って、公知の電極材料から好適に選択されることができる。幾つかの実施形態においては、前記アノードは、透明アノードとして提供される。
【0131】
前記アノード材料としては、例えば、金属、合金、酸化金属、導電性化合物、及びこれらの混合物等が挙げられる。4.0eV以上の仕事関数を有する材料が好ましい。前記アノード材料の具体的な例としては、アンチモン、フッ素等でドープした酸化スズ(ATO及びFTO)、酸化スズ、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)、及び酸化インジウム亜鉛(IZO)等の導電性金属酸化物;金属、銀、クロム、及びニッケル等の金属;これらの金属及び前記導電性金属酸化物との混合物又は積層物;ヨウ化銅及び硫化銅等の無機導電性材料;ポリアニリン、ポリチオフェン、及びポリピロール等の有機導電性材料;及びこれらの無機又は有機導電性材料とITOとの積層物等が挙げられる。これらの中でも、生産性、高導電性、透明性等の観点から、前記導電性金属酸化物が好ましく、特にITOが好ましい。
【0132】
アノードを構成する材料に対する適合性を考慮して、プリンティング法、コーティング法等のウェット法;真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方法;CVD(化学蒸着)及びプラズマCVD法等の化学法から適切に選択される方法に従って、アノードは、基板上に形成されることができる。例えば、アノードの材料として、ITOが選択される場合、DC又は高周波スパッタリング法、真空蒸着法又はイオンプレーティング法等に従って、アノードを形成することができる。
【0133】
本発明の有機エレクトロルミネセンス素子においては、アノードが形成される位置は、特に限定されないが、発光素子の適用及び目的に応じて好適に選択されることができる。アノードは、基板のいずれかにおいて、表面全体又は表面の一部に、形成されることができる。
【0134】
アノードを形成するためのパターニングをするために、フォトリソグラフィー等の化学エッチング法、レーザーによるエッチング等の物理的エッチング法、重ねあわせマスク(superposing masks)を通した真空蒸着又はスパッタリング等の方法、リフトオフ法、又はプリンティング法等が適用されることができる。
【0135】
アノードの厚みは、アノードを構成する材料に応じて好適に選択されることができるため、明確に決められないが、一般的には、10nm〜50μmの範囲であり、50nm〜20μmの範囲が好ましい。アノード層の厚みは、用いられる材料に応じて適切に制御されることができる。アノードの抵抗は、A 10
3Ω/squar以下が好ましく、10
2Ω/square□以下がより好ましい。アノードが透明である場合、透明且つ無色、又は透明かつ有色のいずれかであることができる。透明アノード側から発光を取り出すには、アノードの光透過率は60%以上であることが好ましく、70%以上であることがより好ましい。透明アノードの詳細な記載は、1999年CMC社から出版された、沢田豊著の「透明電極膜の新展開(透明電極膜の新開発)」において確認することができる。
【0136】
本発明において、耐熱性が低いプラスチック基板が用いられる場合、ITO又はIZOを用いて、150℃以下の低い温度で膜を形成することで作製される透明アノードを得ることが好ましい。
【0138】
カソードはいずれも、有機層に電子を供給する電極として機能するのであれば、本発明の有機エレクトロルミネセンスデバイスに用いられることができる。本発明の有機エレクトロルミネセンスデバイスの幾つかの実施形態においては、公知の電極材料の好適な形状、構造、及び/又は大きさのいずれも、例えば、有機エレクトロルミネセンスデバイスの適応及び目的等に応じて、用いられることができる。幾つかの実施形態においては、透明カソードが好ましい。
【0139】
カソードは、一般には、電子を有機化合物層に注入するための電極としての機能を有するのであれば、いずれの材料であることができ、形状、構造、大きさ等に関しては特に限定はない。しかし、発光素子の適用及び目的に応じて、公知の電極材料から好適に選択されることができる。
【0140】
カソードを構成する材料としては、例えば、金属、合金、金属酸化物、電気伝導性化合物、及びこれらの混合物等が挙げられる。4.0eV以上の仕事関数を有する材料が好ましい。具体的な例としては、アルカリ金属(例えば、Li、Na、K、Cs等)、アルカリ土類金属(例えば、Mg、Ca等)、金、銀、鉛、アルミニウム、ナトリウム−カリウム合金、リチウム−アルミニウム合金、マグネシウム−銀合金、インジウム及びイッテルビウム等の希土類金属等が挙げられる。これらは単独で用いることができるが、安定性及び電子注入性の両方を満たす観点から、これらを2つ以上組み合わせて用いることが好ましい。
【0141】
幾つかの実施形態においては、カソードを構成する材料として、電子注入性の観点で、アルカリ金属又はアルカリ土類金属が好ましく、優れた保存安定性の観点から、アルミニウムを主成分として含む材料が好ましい。
【0142】
「アルミニウムを主成分として含む材料」という用語は、アルミニウムのみによって構成される材料;アルミニウム及び0.01重量%〜10重量%のアルカリ金属又はアルカリ土類金属を含む合金;又はこれらの混合物(例えば、リチウム−アルミニウム合金、マグネシウム−アルミニウム合金等)を意味する。カソードの例示材料は、特開平第2−15595号公報及び特開平第5−121172号公報に詳細に記載される。
【0143】
カソードを形成する方法としては、特に限定はないが、公知の方法に従って形成されることができる。例えば、カソードは、カソードを構成する材料に対する適合性を考慮して、プリンティング法、コーティング法等のウェット法;真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方法;CVD及びプラズマCVD法等の化学法から適切に選択される方法に従って形成されることができる。例えば、金属(金属類)が、カソードの材料として選択される場合、スパッタリング法等に従って、同時又は順次に1つ又は2つ以上の金属を塗布することができる。
【0144】
カソードを形成するためのパターニングをするために、フォトリソグラフィー等の化学エッチング法、レーザーによるエッチング等の物理的エッチング法、重ねあわせマスクを通した真空蒸着又はスパッタリング等の方法、リフトオフ法、又はプリンティング法等が適用されることができる。
【0145】
本発明においては、カソードが形成される位置は、特に限定されないが、有機化合物層の全体又はその一部に形成されることができる。
【0146】
更に、アルカリ金属又はアルカリ土類金属のフッ化物又は酸化物等からなる誘電体材料層は、0.1nm〜5nmの厚みで、カソードと有機化合物層との間に挿入されることができる。前記誘電体層は、電子注入層の一種として考えられることができる。前記誘電体材料層は、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等に従って形成されることができる。
【0147】
カソードの厚みは、カソードを構成する材料に応じて好適に選択されることができるため、明確に決められないが、一般的には、10nm〜50μmの範囲であり、50nm〜1μmの範囲が好ましい。
【0148】
更に、カソードは、透明又は不透明であることができる。透明カソードは、カソードのための材料を1nm〜10nmの僅かな厚みに調整し、ITO又はIZO等の透明な導電性材料をその上に更に積層することで形成されることができる。
【0150】
本発明の有機ELの全体は、保護層によって保護されることができる。素子の悪化を加速させる水分、酸素等の成分が素子への浸透を防ぐ機能を有する材料であれば、いずれの材料も保護層に適用させることができる。前記保護層のための材料の具体的な例としては、In、Sn、Pb、Au、Cu、Ag、Al、Ti、及びNi等の金属;MgO、SiO、SiO
2、Al
2O
3、GeO、NiO、CaO、BaO、Fe
2O
3、Y
2O
3、及びTiO
2等の金属酸化物;SiN
x及びSiN
xO
y等の金属窒化物;MgF
2、LiF、AlF
3、及びCaF
2等の金属フッ化物;ポリエチレン;ポリプロピレン;ポリメチルメタクリレート;ポリイミド;ポリウレア;ポリテトラフルオロエチレン;ポリクロロトリフルオロエチレン;ポリジクロロジフルオロエチレン;クロロトリフルオロエチレンとジクロロジフルオロエチレンとの共重合体;テトラフルオロエチレン及び少なくとも1つのコモノマーを含むモノマー混合物を共重合して得られる共重合体;共重合主鎖中に環状構造を有するフッ素含有共重合体;1%以上の吸水率を有する吸水性材料;及び0.1%以下の吸水率を有する水分浸透防止物質等が挙げられる。
【0151】
前記保護層を形成する方法に関しては、特に限定はない。例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシャル)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、プラズマCVD法、レーザーCVD法、熱CVD法、ガス源CVD法、コーティング法、プリンティング法、又はトランスファー法を適用することができる。
【0153】
本発明の有機エレクトロルミネセンス素子は全て、封止キャップで封止されることができる。更に、吸湿剤又は不活性液体は、前記封止キャップと前記発光素子との間の規定されたスペースを封止するために用いられることができる。前記吸湿剤としては、特に限定されないが、具体的な例としては、酸化バリウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、五酸化リン、塩化カルシウム、塩化マグネシウム、塩化銅、フッ化セシウム、フッ化ニオブ、臭化カルシウム、臭化バナジウム、モレキュラーシーブ、ゼオライト、及び酸化マグネシウム等が挙げられる。前記不活性液体としては、特に限定されないが、具体的な例としては、パラフィン;流動パラフィン;パーフルオロアルカン、パーフルオロアミン、パーフルオロエーテル等のフッ素系溶媒;塩素系溶媒;及びシリコーンオイル等が挙げられる。
【0155】
前記本発明の有機エレクトロルミネセンス素子においては、DC(必要に応じて、AC成分を含むことができる)電圧(通常、2ボルト〜15ボルト)又はDCを前記アノード及び前記カソードを渡って印加すると、発光を得ることができる。前記本発明の有機エレクトロルミネセンス素子の駆動方法としては、特開平第2−148687号、特開平第6−301355号、特開平第5−29080号、特開平第7−134558号、特開平第8−234685号、及び特開平第8−241047号;及び特許公報第2784615号、米国特許第5,828,429号及び米国特許第6,023,308号に記載された駆動方法が適用可能である。
【0157】
本明細書中に記載される発明の実施形態に従って作製されたデバイスは、フラットパネルディスプレイ、コンピュータモニター、テレビ、掲示板、屋内若しくは屋外照明及び/又は信号送信用のライト、ヘッドアップディスプレイ、完全透明ディスプレイ、フレキシブルディスプレイ、レーザープリンター、電話、携帯電話、パーソナルデジタルアシスタント(PDA)、ラップトップコンピュータ、デジタルカメラ、カムコーダー、ビューファインダー、マイクロディスプレイ、車、大面積壁、劇場又はスタジアムのスクリーン、或いは看板等、多種多様な消費者製品に組み込まれることができるが、これらに限定されない。
【0159】
本発明の有機エレクトロルミネセンスデバイスの使用に好適な有機層は、例えば、発光層、ホスト材料、電荷輸送層、正孔注入層、及び正孔輸送層等を含む、複数の層を含むことができる。本発明の有機エレクトロルミネセンスデバイスの幾つかの実施形態においては、有機層は、それぞれ、堆積法又はスパッタリング法等の乾式成膜法、トランスファー法、プリンティング法、スピンコーティング法、又はバーコーティング法等の溶液塗布法によって形成されることができる。本発明の有機エレクトロルミネセンスデバイスの幾つかの実施形態においては、前記有機層の少なくとも1つの層は、溶液塗布法によって形成されることが好ましい。
A.発光層
発光材料:
【0160】
本発明に従った発光材料は、式(1)、式(2)、又は式(3)の構造で表される少なくとも1つの金属錯体を含むことが好ましい。本発明の有機エレクトロルミネセンスデバイスの幾つかの実施形態は、前記発光層を構成する化合物の全量に対し、約0.1質量%〜約50質量%の量の前記発光材料を含む。幾つかの実施形態においては、本発明の有機エレクトロルミネセンスデバイスは、前記発光層を構成する化合物の全量に対し、約1質量%〜約50質量%の量の前記発光材料を含む。幾つかの実施形態においては、本発明の有機エレクトロルミネセンスデバイスは、前記発光層を構成する化合物の全量に対し、約2質量%〜約40質量%の量の前記発光材料を含む。幾つかの実施形態においては、前記発光層中の前記発光材料の全量は、前記発光層中に含まれる化合物の全量に対し、約0.1重量%〜約30重量%の量であることが好ましい。幾つかの実施形態においては、前記発光層中の前記発光材料の全量は、耐久性及び外部量子効率の観点から、約1重量%〜約20重量%であることが好ましい。幾つかの実施形態においては、前記発光層中の前記ホスト材料の全量は、約70重量%〜約99.9重量%であることが好ましい。幾つかの実施形態においては、前記発光層中のホスト材料の全量は、耐久性及び外部量子効率の観点から、約80重量%〜99重量%であることが好ましい。
【0161】
幾つかの実施形態においては、ホスト材料及び一重項励起子を通して発光(蛍光)する蛍光発光材料との組合せとして、又はホスト材料及び三重項励起子を通して発光(リン光)するリン光発光材料との組合せとして、本発明における発光層は、発光層中に含まれる発光材料及びホスト材料を含むことができる。幾つかの実施形態においては、本発明における発光層は、リン光発光材料及びホスト材料との組合せとして、発光層中に含まれるホスト材料及び発光材料を含むことができる。
B.ホスト材料
【0162】
本発明の使用のための好適なホスト材料は、正孔輸送ホスト材料(正孔輸送ホストと言われることもある)及び/又は電子輸送ホスト材料(電子輸送ホストと言われることもある)であることができる。
正孔輸送ホスト材料
【0163】
前記正孔輸送ホスト材料の具体的な例としては、ピロール、カルバゾール、アザカルバゾール、ピラゾール、インドール、アザインドール、イミダゾール、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリラントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族三級アミン化合物、スチルアミン化合物、芳香族ジメチリジン化合物、ポルフィリン化合物、ポリシラン化合物、ポリ(N−ビニルカルバゾール)、アニリン共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、炭素膜、及びこれらの誘導体等が挙げられるが、これらに限定されない。幾つかの好ましいホスト材料としては、カルバゾール誘導体、インドール誘導体、イミダゾール誘導体、芳香族三級アミン化合物、及びチオフェン誘導体等が挙げられる。
【0164】
前記電子輸送ホスト材料の具体的な例としては、8−キノリノール誘導体、金属フタロシアニン、及び配位子として、ベンゾキサゾール又はベンゾチアゾールを有する金属錯体等の金属錯体によって表される様々な金属錯体を含む、ピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾール、オキサゾール、オキサジアゾール、フルオレノン、アントラキノンジメタン、アントロン、ジフェニルキノン、チオピランジオキサイド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレン、ペリレン等の芳香族環状テトラカルボキシ無水物、フタロシアニン、これらの誘導体等がが挙げられるが、これらに限定されない。
【0165】
電子輸送ホストは、金属錯体、アゾール誘導体(ベンズイミダゾール誘導体及びイミダゾピリジン誘導体等)、及びアジン誘導体(ピリジン誘導体、ピリミジン誘導体、及びトリアジン誘導体等)が好ましい。
【0166】
上記に記載される正孔輸送ホスト材料の具体例として、下記の化合物が示されるが、本発明は、これらに限定されない。
C.膜厚
【0167】
幾つかの実施形態においては、発光層の膜厚は、約10nm〜約500nmが好ましい。幾つかの実施形態においては、発光層の膜厚は、例えば、所望の輝度均一性、駆動電圧及び輝度に応じて、約20nm〜約100nmであることが好ましい。幾つかの実施形態においては、発光層は、光発光効率を低減することなく、発光層から隣接する層へ電荷の通過を最適化する厚みを有するように構成される。幾つかの実施形態においては、発光層は、最小限の駆動電圧で最大光発光効率を維持する厚みを有するように構成される。
D.層構成
【0168】
発光層は、1つの層又は2つ以上の層から構成されることができ、各層は、異なる発光色で発光を引き起こすことができる。また、発光層が積層構造を有する場合、前記積層構造を形成する各層の膜厚は、特に限定されないが、各発光層の膜厚の合計が前述の範囲であることが好ましい。
E.正孔注入層及び正孔輸送層
【0169】
正孔注入層及び正孔輸送層は、アノード又はアノード側から正孔を受け取り、カソード側へ前記正孔を輸送するために機能する層である。正孔注入層又は正孔輸送層に導入される材料としては、特に限定されないが、低分子化合物又は高分子化合物のいずれも用いることができる。
【0170】
正孔注入層及び正孔輸送層中に含まれる材料の具体的な例としては、ピロール誘導体、カルバゾール誘導体、アザカルバゾール誘導体、インドール誘導体、アザインドール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリラントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族三級アミン化合物、スチルアミン化合物、芳香族ジメチリジン化合物、フタロシアニン化合物、ポルフィリン化合物、オルガノシラン誘導体、及びカーボン等が挙げられるが、これらに限定されない。
【0171】
電子受容性ドーパントは、本発明の有機EL素子中の正孔注入層又は正孔輸送層中に導入されることができる。前記正孔注入層又は前記正孔輸送層に導入される前記電子受容性ドーパントとして、前記化合物が電子受容性及び有機化合物を酸化する機能を有していれば、無機化合物又は有機化合物のいずれも用いることができる。
【0172】
具体的には、前記無機化合物は、塩化第二鉄、塩化アルミニウム、塩化ガリウム、塩化インジウム、及び五塩化アンチモン等の金属ハライド、及び五酸化バナジウム及び三酸化モリブデン等の金属酸化物等が挙げられる。
【0173】
前記有機化合物を用いる場合、ニトロ基、ハロゲン、シアノ基、及びトリフルオロメチル基等の置換基を有する化合物;キノリン化合物;酸無水物化合物;及びフラーレン等をを適用することができるのが好ましい。
【0174】
正孔注入材料及び正孔輸送材料の具体例としては、特開平第6−212153号公報、特開平第11−111463号公報、特開平第11−251067号公報、特開第2000−196140号公報、特開第2000−286054号公報、特開第2000−315580号公報、特開第2001−102175号公報、特開第2001−160493号公報、特開第2002−252085号公報、特開第2002−56985号公報、特開第2003−157981号公報、特開第2003−217862号公報、特開第2003−229278号公報、特開第2004−342614号公報、特開第2005−72012号公報、特開第2005−166637号公報、及び特開第2005−209643号公報等の特許文書に記載される化合物が挙げられる。
【0175】
正孔注入材料及び正孔輸送材料の具体例としては、ヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、p−ベンゾキノン、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、1,2,4,5−テトラシアノベンゼン、1,4−ジシアノテトラフルオロベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、p−ジニトロベンゼン、m−ジニトロベンゼン、o−ジニトロベンゼン、1,4−ナフトキノン、2,3−ジクロロナフトキノン、1,3−ジニトロナフタレン、1,5−ジニトロナフタレン、9,10−アントラキノン、1,3,6,8−テトラニトロカルバゾール、2,4,7−トリニトロ−9−フルオレノン、2,3,5,6−テトラシアノピリジン、及びフラーレンC60等の有機化合物が挙げられる。これらの中でも、ヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、2,3−ジクロロナフトキノン、1,2,4,5−テトラシアノベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、及び2,3,5,6−テトラシアノピリジンが好ましく、テトラフルオロテトラシアノキノジメタン。
【0176】
1つ以上の電子受容性ドーパントは、本発明の有機EL素子中の正孔注入層又は正孔輸送層に組み込まれることができるため、これらの電子受容性ドーパントは、単独で使用してもよいし、2つ以上を併用してもよい。用いられるこれらの電子受容性ドーパントの正確な量は、材料の種類に依存するが、正孔輸送層又は正孔注入層の総重量の約0.01重量%〜約50重量%が好ましい。幾つかの実施形態においては、これらの電子受容性ドーパントの量は、正孔輸送層又は正孔注入層の総重量の約0.05重量%〜約20重量%の範囲である。幾つかの実施形態においては、これらの電子受容性ドーパントの量は、正孔輸送層又は正孔注入層の総重量の約0.1重量%〜約10重量%の範囲である。
【0177】
幾つかの実施形態においては、正孔注入層の厚み及び正孔輸送層の厚みは、駆動電圧を減少させる観点で、それぞれ、約500nm以下であることが好ましい。幾つかの実施形態においては、前記正孔輸送層の厚みは、約1nm〜約500nmが好ましい。幾つかの実施形態においては、前記正孔輸送層の厚みは、約5nm〜約50nmであることが好ましい。幾つかの実施形態においては、前記正孔輸送層の厚みは、約10nm〜約40nmであることが好ましい。幾つかの実施形態においては、前記正孔注入層の厚みは、約0.1nm〜約500nmであることが好ましい。幾つかの実施形態においては、前記正孔注入層の厚みは、約0.5nm〜約300nmであることが好ましい。幾つかの実施形態においては、前記正孔注入層の厚みは、約1nm〜約200nmであることが好ましい。
【0178】
正孔注入層及び正孔輸送層は、1つ又は2つ以上の上記で述べられた材料を含む単層構造、又は同種組成物又は異種組成物の複数の層からなる多層構造からなることができる。
F.電子注入層及び電子輸送層
【0179】
電子注入層及び電子輸送層は、カソード又はカソード側から電子を受け取り、アノード側へ電子を輸送するための機能を有する層である。これらの層に用いられる電子注入材料又は電子輸送材料は、低分子化合物又は高分子化合物であることができる。電子注入層及び電子輸送層中に用いられるのに好適な材料の具体的な例としては、ピリジン誘導体、キノリン誘導体、ピリミジン誘導体、ピラジン誘導体、フタラジン誘導体、フェナントロリン誘導体、トリアジン誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキサイド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ペリレン及びナフタレン等の芳香族環状テトラカルボン無水物、フタロシアニン誘導体、8−キノリノール誘導体の金属錯体で表される金属錯体、金属フタロシアニン、配位子としてベンゾキサゾール又はベンゾチアゾールを含む金属錯体、及びシロールで例示される有機シラン誘導体等が挙げられるが、これらに限定されない。
【0180】
電子注入層又は電子輸送層は、電子供与性ドーパントを含むことができる。前記電子注入層又は前記電子輸送層中の使用のための好適な電子供与性ドーパントは、電子供与性及び有機化合物を還元する性質を有していれば、用いられることができる好適な材料のいずれも挙げられる。電子供与性ドーパントの具体例としては、Li等のアルカリ金属、Mg等のアルカリ土類金属、希土類金属を含む遷移金属、及び還元性有機化合物等が挙げられる。金属供与性ドーパントの他の例としては、例えば、Li、Na、K、Be、Mg、Ca、Sr、Ba、Y、Cs、La、Sm、Gd、及びYb等の4.2V以下の仕事関数を有する金属が挙げられる。前記還元性有機化合物の具体例としては、窒素含有化合物、硫黄含有化合物、及びリン含有化合物等が挙げられる。
【0181】
電子供与性ドーパントは、単独で使用してもよいし、2つ以上を併用してもよい。幾つかの実施形態においては、電子供与性ドーパントは、電子注入層又は電子輸送層中に、電子輸送層材料又は電子注入層材料の総重量の約0.1重量%〜約99重量%の範囲の量で含まれる。幾つかの実施形態においては、電子供与性ドーパントは、電子注入層又は電子輸送層中に、電子輸送層材料又は電子注入層材料の総重量の約1.0重量%〜約80重量%の範囲の量で含まれる。幾つかの実施形態においては、電子供与性ドーパントは、電子注入層又は電子輸送層中に、電子輸送層材料又は電子注入層材料の総重量の約2.0重量%〜約70重量%の範囲の量で含まれる。
【0182】
電子注入層の厚み及び電子輸送層の厚みは、それぞれ、駆動電圧を減少させる観点で500nm以下であることが好ましい。前記電子輸送層の厚みは、1nm〜500nmが好ましく、5nm〜200nmが更に好ましく、10nm〜100nmが更に一層好ましい。前記電子注入層の厚みは、0.1nm〜200nmが好ましく、0.2nm〜100nmがより好ましく、0.5nm〜50nmが更に一層好ましい。
【0183】
電子注入層及び電子輸送層は、上記で述べられた材料の1つ又は2つ以上を含む単層構造、又は同種組成物、又は異種組成物の複数の層からなる多層構造からなることができる。
【0184】
発明は、制限しようとすることなく、下記の実施例によってより詳細に説明される。当業者であれば、独創性のない記載に基づき電子デバイスを更に作製することができ、それによって権利が主張された範囲内で発明を実行することができるであろう。
【0186】
特段の指示がない限り、保護気体雰囲気下において、乾燥溶媒中で下記の合成が行われる。更に、金属錯体は、光を排除して扱われる。溶媒及び試薬は、例えば、シグマアルドリッチ社又はABCR社から購入することができる。
【0187】
実施例1:3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンをスキーム1に従って調製した。
【化56】
【化57】
A.4−クロロブタナールの合成:
【化58】
【0188】
DCM(400ml)中、塩化オキサリル(22.54ml、263mmol)の溶液を
iPrOH/CO
2バスの中で冷却した。DMSO(37.3ml、525mmol)をシリンジを介して徐々に添加し、冷却下で1時間撹拌した。50mL中、4−クロロブタン−1−オール(19g、175mmol)の溶液を滴下した。冷却した混合物を1時間撹拌し、その後トリエチルアミン(110ml、788mmol)を徐々に添加した。懸濁液を冷却下で30分間撹拌し、その後室温まで加温させた。反応物を水でクエンチし、酸性化し、有機物を分離した。蒸留して溶媒を除去し、無色の油状物として8gの生成物を得た。
B.2−ブロモ−4−クロロブタナールの合成:
【化59】
【0189】
4−クロロブタナール(7.939g、74.5mmol)をDCM(300ml)中に溶解し、アイスバス中で冷却した。DCM(50ml)中、ジブロミン(4.00ml、78mmol)の溶液を約1時間以上かけて添加した。添加後、赤色の溶液を冷却下で30分間撹拌し、その後室温まで徐々に加温し、更に1時間撹拌した。水を添加し、有機物を分離し、乾燥し、溶媒を除去すると、淡黄色の油状物として、1.57gの粗生成物を得た(80%)。
C.4−ブロモフェナントリジン−6−アミンの合成:
【化60】
【0190】
2,6−ジブロモアニリン(15.33g、61.1mmol)、2−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゾニトリル(7.0g、30.6mmol)、及びリン酸カリウム一水和物(21.11g、92mmol)をジオキサン(120ml)及び水(7.49ml)中で合わせた。混合物を脱気し、添加したDCM中の(dppf)PdCl
2錯体(0.749g、0.917mmol)を添加し、混合物を4時間還流した。黒色の混合物をEtOAcと水/食塩水との間で分画した。有機相を食塩水で洗浄し、乾燥し、溶媒を除去した。500mLのEtOAc中に溶解し、EtOAcを用いてシリカプラグに通して溶離し、溶媒を除去して、橙色の残渣を得て、カラムクロマトグラフィーで精製し、黄色/橙色の固体として、5.86gの生成物を得た(70%)。
D.5−ブロモ−3−(2−クロロエチル)イミダゾ[1,2−f]フェナントリジンの合成:
【化61】
【0191】
2−プロパノール(102ml)及び水(5.11ml)中に、4−ブロモフェナントリジン−6−アミン(5.86g、21.46mmol)、2−ブロモ−4−クロロブタナール(5.36g、28.9mmol)、及び重炭酸ナトリウム(3.60g、42.9mmol)を合わせた。懸濁液を室温で4時間撹拌し、その後一晩還流した。真空下で溶媒を除去し、セライト上に残渣を塗布した。カラムクロマトグラフィーによって、生成物と出発物質であるアミジンとの混合物を得て、DCM中で過剰なアセチルクロライド及びトリエチルアミンで処理した。ワークアップ後、ヘプタンへ繰り返し抽出することによって所望の生成物をアセトアミドから抽出し、3.93gの黄色の、粘性がある残渣を得た(51%)。
E.3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンの合成:
【化62】
【0192】
5−ブロモ−3−((2−クロロエチル)イミダゾ[1,2−f]フェナントリジン(3.93g、10.93mmol)をTHF(200ml)中に溶解し、アイスバス中で冷却し、THF中、イソプロピルマグネシウムクロライド溶液(2.0M、6.01ml、12.02mmol)を徐々に添加した。溶液を冷却下で30分間撹拌して、その後室温まで加温し、2時間撹拌した。反応物をクエンチし、DCM中に抽出し、カラムクロマトグラフィーを用いて反応生成物を精製し、淡色のベージュの結晶固体を1.90g得た(71%)。
【0193】
3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンのX線構造を
図5に示す。3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンの結晶構造は、下記表の中で表される特徴の1つ以上で定義されることができる。
【化63】
aR
1=Σ||F
o|-|F
c||/Σ|F
o|;wR
2=[Σ[w(F
o2−F
c2)
2]/Σ[w(F
o2)
2]]
1/2;GOF=[Σw(|F
o|−|F
c|)
2/(n−m)]
1/2
【0194】
実施例2:4,4−ジメチル−3,4−ジヒドロ−1,2a1−ジアザ−4−シラベンゾ[fg]アセアントリレン及び3,3−ジメチル−3,4−ジヒドロ−1,2a1−ジアザ−3−シラベンゾ[fg]アセアントリレンの合成:
【化64】
【化65】
上記の配位子を下記スキーム2に従って調製した。
【化66】
A.5−ブロモイミダゾ[1,2−f]フェナントリジンの合成:
【化67】
【0195】
4−ブロモフェナントリジン−6−アミン(4.0g、14.7mmol)を100mLのiPrOH中に溶解した。クロロアセトアルデヒド(水中、50%、3.6g、22mmol、1.5当量)を添加し、その後NaHCO
3(2.5g、2当量)を添加し、混合物を2時間還流し、その後アイスバス中で冷却した。黄褐色の固体を濾過し、MeOHで洗浄した。受けているフラスコを換え、水で固体を洗浄し、清澄でオフホワイトの生成物を3.2g得た。水の洗浄物をEtOAcで抽出し、これらの抽出物を最初の濾過から得たアルコール洗浄物と合わせた。溶媒を除去し、橙色の固体を1.3g得て、これをEtOAcから再結晶化し、黄褐色の針状物として、更に清澄な生成物0.46gを得た。全収率:3.5g(80%)
B.3,5−ジブロモイミダゾ[1,2−f]フェナントリジンの合成:
【化68】
【0196】
DMF(125ml)中、5−ブロモイミダゾ[1,2−f]フェナントリジン(2.0g、6.73mmol)を溶解し、その後窒素下で10mLのDMF中、NBS(1.318g、7.40mmol)の溶液を徐々に添加した。室温で3時間撹拌した後、一晩穏やかに加熱し、反応混合物を300mLの水とEtOAcとの間で分画した。水相をEtOAcで更に抽出し、有機物を水で洗浄し、カラムクロマトグラフィーで淡黄色の固体として、1.99gの生成物を単離した(79%)。
C.5−ブロモ−3−((クロロメチル)ジメチルシリル)イミダゾ[1,2−f]フェナントリジンの合成:
【化69】
【0197】
3,5−ジブロモイミダゾ[1,2−f]フェナントリジン(0.48g、1.28mmol)及びクロロ(クロロメチル)ジメチルシラン(0.17ml、1.28mmol)をTHF(25ml)に溶解し、iPrOH/CO2バスの中で冷却した。ヘキサン中、ブチルリチウムの溶液(2.5M、0.51ml、1.28mmol)を徐々に添加し、混合物を冷却下で30分間撹拌し、その後室温まで加温させた。食塩水を添加し、反応物をクエンチし、有機物をEtOAcで抽出し、カラムクロマトグラフィーで精製し、無色で粘性のある残渣として、0.16gの生成物を得た(31%)。
D.4,4−ジメチル−3,4−ジヒドロ−1,2a1−ジアザ−4−シラベンゾ[fg]アセアントリレン及び3,3−ジメチル−3,4−ジヒドロ−1,2a1−ジアザ−3−シラベンゾ[fg]アセアントリレンの合成:
【化70】
【0198】
5−ブロモ−3−((クロロメチル)ジメチルシリル)イミダゾ[1,2−f]フェナントリジン(0.13g、0.322mmol)をTHF(25ml)中に溶解し、アイスバス中で冷却した。THF中、イソプロピルマグネシウムクロライド溶液(2.0M、0.18ml、0.36mmol)を徐々に添加し、その後室温まで加温した。食塩水で反応物をクエンチし、DCMで有機物を抽出し、混合物をクロマトグラフィーにかけ、粘性の残渣として、16mgの4,4−ジメチル−3,4−ジヒドロ−1,2a1−ジアザ−4−シラベンゾ[fg]アセアントリレン(17%)、及び結晶固体として、33mgの3,3−ジメチル−3,4−ジヒドロ−1,2a1−ジアザ−3−シラベンゾ[fg]アセアントリレンを得た(36%)。
【0199】
更に、本実施例で用いられた有機材料は、全て昇華精製をし、高速液体クロマトグラフィー(Tosoh TSKgel ODS−100Z)で分析し、254nmで99.9%以上の面積比吸収強度を有する材料を使用した。
【0200】
3,3−ジメチル−3,4−ジヒドロ−1,2a1−ジアザ−3−シラベンゾ[fg]アセアントリレンのX線構造を
図6に示す。3,3−ジメチル−3,4−ジヒドロ−1,2a1−ジアザ−3−シラベンゾ[fg]アセアントリレンの結晶構造は、下記表の中で表される特徴の1つ以上で定義されることができる。
aR
1=Σ||F
o|−|F
c||/Σ|F
o|;wR
2=[Σ[w(F
o2−F
c2)
2]/Σ[w(F
o2)
2]]
1/2;GOF=[Σw(|F
o|−|F
c|)
2/(n−m)]
1/2
【0201】
実施例3:6−イソプロピル−10−((9−(4−イソプロピルピリジン−2−イル)−9H−カルバゾール−2−イル)オキシ)−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンの白金(II)錯体の合成:
【化71】
A.A.2−ブロモ−5−メトキシベンゾニトリルの合成:
【化72】
【0202】
2−ブロモ−5−メトキシベンズアルデヒド(100g、0.47mol、1当量)、塩酸ヒドロキシルアミン(64.8g、0.93mol、2当量)、酢酸ナトリウム(76.42g、0.93mol、2当量)、及び氷酢酸(500mL)の混合物を一晩還流した。酢酸を減圧下で除去し、残渣をジクロロメタン(約400mL)で抽出した。有機相を飽和食塩水で洗浄し(3×200mL)、硫酸ナトリウムで乾燥し、減圧下で濃縮した。得られた残渣をヘプタン(50mL)で粉砕し、追加のヘプタンで固体を洗浄し(2×50mL)、白色の粉末として目的生成物を得た(82.6g、収率86%)。
B.5−メトキシ−2−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゾニトリルの合成:
【化73】
【0203】
1,4−ジオキサン(400mL)及びDMSO(40mL)の混合物中、2−ブロモ−5−メトキシベンゾニトリル(82.6g、0.39mol、1当量)、ビス(ピナコラト)ジボロン(109.1g、0.43mol、1.1当量)及び酢酸カリウム(115.3g、1.17mol、3当量)の混合物に1時間窒素を注入した。Pd(dppf)Cl
2(7.13g、5mol%)を添加し、反応混合物を60℃で2時間穏やかに加熱し、その後一晩還流した。混合物をセライトに通して濾過し、濾液から単離した固体をイソプロパノール及びヘプタンで洗浄し、オフホワイトの固体として目的生成物を得た(57.41g、収率57%)。追加の生成物(約10g)を濾液から単離した。
C.4−ブロモ−2−イソプロピル−8−メトキシフェナントリジン−6−アミンの合成:
【化74】
【0204】
トルエン及び水の4:1混合物(1250mL)中、5−メトキシ−2−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゾニトリル(57.41g、0.22mol、1当量)、2,6−ジブロモ−4−イソプロピルアニリン(64.92g、0.22mol、1当量)、及びリン酸カリウム(153.1g、0.66mol、3当量)の混合物に窒素を1時間注入した。トランス−Pd(PPh
3)
2Cl
2(7.8g、11mmol、0.05当量)を添加し、反応混合物を20時間間撹拌した。追加のリン酸カリウム(77g、0.33mol、1.5当量)及びトランス−Pd(PPh
3)
2Cl
2(1g、1.43mmol、0.0065当量)を添加し、反応混合物を更に3時間還流した。相を分離し、有機相を温水で洗浄した(2×400mL)。有機相を硫酸ナトリウムで乾燥し、減圧下で濃縮した。得られた固体をジクロロメタン及びヘプタンの順に粉砕した。カラムクロマトグラフィーによって、目的生成物(30g)を得た。
D.6−イソプロピル−10−((9−(4−イソプロピルピリジン−2−イル)−9H−カルバゾール−2−イル)オキシ)−3,4ジヒドロ−ジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンの合成:
【化75】
【0205】
4−ブロモ−2−イソプロピル−8−メトキシフェナントリジン−6−アミン(8.9g、25.8mmol、1当量)、p−トルエンスルホン酸一水和物(348mg)、新たに調製した2−ブロモ−4−クロロブタナール(24g、129mmol、5当量)、及びイソ−プロパノール(500mL)の懸濁液を室温で2.5時間撹拌した。炭酸ナトリウム(6.5g、77.4mmol、3当量)及び脱イオン水(32ml)を添加し、反応混合物を一晩還流した。室温まで冷却した後、減圧下で反応混合物の体積を約100mLに減少させた。混合物を酢酸エチル(350mL)で希釈し、飽和食塩水(200mL)で洗浄した。有機相を硫酸ナトリウムで乾燥し、減圧下で濃縮した。カラムクロマトグラフィーで粗生成物を精製し、8.44gの生成物を得た(収率76%)。
E.6−イソプロピル−10−メトキシ−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンの合成:
【化76】
【0206】
乾燥THF(250mL)中、6−イソプロピル−10−((9−(4−イソプロピルピリジン−2−イル)−9H−カルバゾール−2−イル)オキシ)−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン(8.44g、19.6mmol、1.0当量)の溶液を窒素で30分間注入した。0℃まで冷却した後、THF中、2Mのイソプロピルマグネシウムクロライド(14.7mL、29.4mmol、1.5当量)を滴下した。反応混合物を室温まで加温し、一晩撹拌した。反応物を水(10mL)でクエンチし、減圧下でTHFを除去した。残渣を酢酸エチル(400mL)で希釈し、飽和食塩水で洗浄した(2×200mL)。有機相を硫酸ナトリウムで乾燥し、カラムクロマトグラフィーで残渣を精製し、3.6gの生成物を得た(収率58%)。
F.6−イソプロピル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン−10−オールの合成:
【化77】
【0207】
ジクロロメタン(200mL)中、6−イソプロピル−10−メトキシ−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン(3.6g、11.36mmol、1当量)の溶液に、三臭化ホウ素(5.4mL、56.78mmol、5当量)を−78℃で滴下した。反応物を室温まで加温し、一晩撹拌した。300mlの氷水に反応混合物を注意深く注ぎ、得られた固体を濾過し、水(70mL)、酢酸エチル(40mL)、及びヘプタン(40mL)の順に洗浄し、3.6gの生成物を得た(定量的収率)。
G.4’−ブロモ−2−ニトロ−1,1’−ビフェニルの合成:
【化78】
【0208】
1,2−ジメトキシエタン(660mL)中、2−ヨード−ニトロベンゼン(50g、200mmol、1.0当量)及び4−ブロモベンゼンボロン酸(40.7g、202mol、1.0当量)の混合物に、水(450mL)中、炭酸カリウム(84g、608mmol、3.0当量)の溶液を添加した。反応物に窒素を5.0分間注入した。テトラキス(トリフェニルホスフィン)パラジウム(0)(2.32g、2mmol、1mol%)を添加し、混合物に窒素を更に10分間注入した。一晩還流した後、反応物を室温まで冷却し、相を分離した。水相を酢酸エチル(500mL)で抽出した。合わせた有機抽出物を飽和食塩水(500mL)で洗浄し、硫酸ナトリウムで乾燥し、濾過し、減圧下で濃縮した。ヘプタン(300mL)中、25%酢酸エチル中に残渣を溶解し、シリカゲルのパッドに通して真空濾過した(135g)。ヘプタン中、25%酢酸エチルを用いてパッドをすすいだ(3×350mL)。合わせた濾液を減圧下で濃縮し、橙色の固体を得た。この残渣をヘプタン(150mL)中で懸濁し、20分で40℃まで加熱した。室温まで1.0時間かけて、懸濁液を冷却させた。固体を真空濾過で回収し、ヘプタン(50mL)で洗浄し、乾燥し、黄色固体として、4’−ブロモ−2−ニトロ−1,1’−ビフェニルを得た(49.16g、収率88.4%)。
H.2−ブロモ−9H−カルバゾールの合成:
【化79】
1,2−ジクロロベンゼン(460mL)中、4’−ブロモ−2−ニトロ−1,1’−ビフェニル(66.25g、238mmol、1.0当量)の溶液に、トリフェニルホスフィン(156.3g、596mmol、2.5当量)を5分かけて添加した。反応物に窒素を5分間注入し、その後一晩還流した。反応物を室温まで冷却し、減圧蒸留し、殆どの1,2−ジクロロベンゼン(450mL)を除去した。酢酸エチル(1.5L)中に暗い残渣を溶解し、50℃で30分、脱色炭(50g)で処理した。冷却後、混合物をセライトに通して濾過し(200g)、その後酢酸エチル洗浄物で洗浄した(2×650mL)。合わせた濾液を減圧下で約500mLの体積に濃縮した。溶液を室温まで冷却し、1.5時間後、得られた淡い黄褐色の固体(トリフェニルホスフィンオキサイド)を濾過により除去し、処分した。濾液を減圧下で濃縮した。メタノール(600mL)中に残渣を溶解し、室温で一晩保管した。得られた黄褐色の固体を濾過し、メタノールで洗浄し(2×100mL)、真空下で40℃で乾燥し、淡い黄褐色の固体として、2−ブロモ−9H−カルバゾールを得た(33.5g、収率57.2%)。
I.2−ブロモ−9−(4−イソプロピルピリジン−2−イル)−9H−カルバゾールの合成:
【化80】
【0209】
2−ブロモ−9H−カルバゾール(13.9g、56.5mmol、1当量)、4−イソプロピル−2−クロロビリジン(15.86g、101.7mmol、1.8当量)、L−プロリン(1.3g、11.3mmol、0.2当量)、ヨウ化銅(1)(0.95g、5.65mmol、0.1当量)、炭酸カリウム(19.48g、141.25mmol、2.5当量)、及びDMSO(80mL)の懸濁液に窒素を5分間注入した。混合物を95℃で一晩加熱した。追加の4−イソプロピル−2−クロロビリジン(1.58g、10.12mmol、0.18当量)を添加し、反応混合物を更に24時間155℃で加熱した。反応混合物を室温まで冷却し、酢酸エチル(750mL)で希釈し、セライトに通して真空濾過した(70g)。セライトのパッドを酢酸エチル洗浄物で洗浄した(2×100mL)。合わせた濾液を飽和食塩水で洗浄し(3×500mL)、硫酸ナトリウムで乾燥し、濾過し、減圧下で濃縮した。この残渣をカラムクロマトグラフィーで精製し、茶色の油状物として1.8gの生成物を得た(収率8.6%)。
J.6−イソプロピル−10−((9−(4−イソプロピルピリジン−2−イル)−9H−カルバゾール−2−イル)オキシ)−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンの合成:
【化81】
【0210】
6−イソプロピル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン−10−オール(1.5g、4.93mmol、1当量)、2−ブロモ−9−(4−イソプロピルピリジン−2−イル)−9H−カルバゾール(1.8g、4.93mmol、1当量)、リン酸カリウム(5.68g、24.65mmol、5当量)、ヨウ化銅(I)(0.47g、2.47mmol、0.5当量)、ピコリン酸(1.52g、12.33mmol、2.5当量)、及びDMSO(150mL)の混合物を150℃で4.5時間加熱した。室温まで冷却した後、反応混合物を水(700mL)に注ぎ、酢酸エチルで抽出した(4×150mL)。合わせた有機相を硫酸ナトリウムで乾燥し、減圧下で濃縮した。カラムクロマトグラフィーで粗生成物を精製し、黄褐色の固体として1.25gの生成物を得た(収率43%)。
K.6−イソプロピル−10−((9−(4−イソプロピルピリジン−2−イル)−9H−カルバゾール−2−イル)オキシ)−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンの白金(II)錯体の合成:
【化82】
【0211】
60mlの氷酢酸中に、6−イソプロピル−10−((9−(4−イソプロピルピリジン−2−イル)−9H−カルバゾール−2−イル)オキシ)−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン(400mg、0.68mmol、1当量)を溶解し、窒素を30分間注入した。その後、K
2PtCl
4(283mg、0.68mmol、1当量)を添加し、反応混合物を40時間還流した。室温まで冷却した後、橙色の沈殿物を濾過し、水(3×15mL)、ヘプタン(10ml×2回)の順に洗浄した。10mlのジクロロメタン中に、粗生成物(340mg)を溶解し、シリカゲルのプラグに通して濾過し、残りのK
2PtCl
4を除去し、追加のジクロロメタン(10mL)で溶離した。濾液を体積の半分まで減らし、ヘプタン(10mL)で希釈した。生成物を濾過し、ヘプタン(10mL)中、10%のジクロロメタンの溶液で粉砕し、淡黄色の固体として生成物を得た(140mg、収率26%)。酢酸及びジクロロメタン/ヘプタンの濾液から更に生成物を単離した。
【0212】
実施例4:(3−フェニル−1H−ピラゾール)
2Ir(MeOH)
2(OTf)の合成
【化83】
A.(3−フェニル−1H−ピラゾール)
2IrCl
2二量体の合成
【0213】
2−エトキシエタノール(120ml)及び水(40ml)中で、塩化イリジウム水和物(6.00g、17.02mmol)及び1−フェニル−1H−ピラゾール(5.89g、40.9mmol)を合わせた。反応混合物を加熱し、窒素下で一晩還流した。得られた固体を濾過し、メタノールで洗浄し、乾燥し、8.3gのイリジウム二量体を得た。
【0214】
実施例4Aのイリジウム二量体(8.3g、8.07mmol)を100mLのDCM中に溶解し、20mLのメタノール中、銀トリフレート(4.36g、16.96mmol)の溶液を添加した。反応混合物を室温で、窒素下、1時間撹拌した。混合物をセライトに通して濾過し、ケーキをDMCで洗浄した。濾液を蒸発させ、10.85gの(3−フェニル−1H−ピラゾール)
2Ir(MeOH)
2(OTf)を得た(97%)。
【0215】
実施例5:実施例化合物35をスキーム5に従って調製した。
【化84】
A.イミダゾ[1,2−f]フェナントリジンの合成
【化85】
【0216】
DMF(550mL)中、2−フェニル−1H−イミダゾール(10.0g、69.3mmol、1当量)、1,2−ジブロモベンゼン(19.63g、83.2mmol、1.2当量)、炭酸セシウム(67.79g、208.0mmol、3当量)、キサントホス(4.01g、6.9mmol、0.1当量)、及びテトラキス(トリフェニルホスフィン)パラジウム(8.01g、6.9mmol、0.1当量)の混合物に窒素気流を15分間注入した。混合物を140℃で24時間加熱し、その後減圧下で濃縮した。カラムクロマトグラフィーで残渣を精製し、淡黄色の固体として、イミダゾ[1,2−f]フェナントリジンを得た(10g、収率67%)。
B.3−ブロモイミダゾ[1,2−f]フェナントリジンの合成
【化86】
【0217】
DMF(32mL)中、15(1.99g、9.1mmol、1当量)の溶液に、N−ブロモサクシミド(1.62g、9.1mmol、1当量)を0℃で添加した。室温で18時間撹拌した後、反応物を水(300mL)で希釈し、メチルt−ブチルエーテル中、10%ジクロロメタン(3×500mL)、酢酸エチル(2×300mL)、及びジクロロメタン(400mL)の順に抽出した。合わせた有機相を硫酸ナトリウムで乾燥し、濾過し、減圧下で濃縮した。カラムクロマトグラフィーで残渣を精製し、オフホワイトの固体として、3−ブロモイミダゾ[1,2−f]フェナントリジンを得た(1.66g、収率65%)。
C.tert−ブチル2−(イミダゾ[1,2−f]フェナントリジン−3−イル)アセテートの合成
【化87】
【0218】
無水テトラヒドロフラン(220mL)中、16(15.4g、51.8mmol、1当量)の溶液に、ジ−μ−ブロモビス(トリ−t−ブチルホスフィノ)ジパラジウム(I)(2.01g、2.5mmol、0.05当量)を添加し、溶液に窒素気流を15分間注入した。ジエチルエーテル中、0.5Mの2−tert−ブトキシ−2−オキソエチル臭化亜鉛(155mL、77.7mmol、1.5当量)を窒素下で添加した。反応物を60℃で16時間撹拌した。追加の0.5Mの2−tert−ブトキシ−2−オキソエチル塩化亜鉛溶液(155mL、77.7mmol、1.5当量)及びジ−μ−ブロモビス(トリ−t−ブチルホスフィノ)−ジパラジウム(I)(2.01g、2.5mmol、0.05当量)を添加し、LC/MS分析で完了したことが示されるまで、反応物を60℃で撹拌した。反応混合物を減圧下で濃縮した。残渣をジクロロメタン(1L)中に溶解し、セライトのパッドに通して濾過した。濾液を減圧下で濃縮した。カラムクロマトグラフィーで残渣を精製し、橙色の固体として、tert−ブチル2−(イミダゾ[1,2−f]フェナントリジン−3−イル)アセテートを得た(5g、収率30%)。
D.メチル2−(イミダゾ[1,2−f]フェナントリジン−3−イル)アセテートハイドロクロライドの合成
【化88】
【0219】
メタノール中、1.25MのHCl(55mL、68.7mmol、6.5当量)中、17(2.8g、8.4mmol、1当量)の溶液を60℃で一晩撹拌した。反応混合物を減圧下で濃縮した。残渣をジエチルエーテルで洗浄し、40℃で一晩真空下で乾燥し、オフホワイトの固体として、メチル2−(イミダゾ[1,2−f]フェナントリジン−3−イル)アセテートハイドロクロライドを得た(2.5g、収率100%)。
E.メチル2−(イミダゾ[1,2−f]フェナントリジン−3−イル)−2−プロパン酸メチルの合成
【化89】
【0220】
5℃で、無水DMF(45mL)中、メチル2−(イミダゾ[1,2−f]フェナントリジン−3−イル)アセテートハイドロクロライド(4.0g、12.24mmol、1当量)の溶液に、鉱油中、水素化ナトリウムの60%分散体(2.45g、61.2mmol、5当量)、及びヨードメタン(2mL、32.1mmol、2.6当量)を順に添加した。混合物を冷却バス中で30分間撹拌し、室温まで加温し、6時間撹拌した。追加のヨードメタン(1.2mL、19.2mmol、1.6当量)を添加した。反応物を室温で1週間かけて撹拌し、メタノール(32mL)でクエンチし、減圧下で濃縮した。残っている油状物をジクロロメタン(350mL)で希釈し、水(100mL)で洗浄した。水相をジクロロメタンで洗浄した(2×100mL)。合わせた有機相を飽和塩化アンモニウム(100mL)で洗浄し、硫酸ナトリウムで乾燥し、濾過し、減圧下で濃縮した。カラムクロマトグラフィーで残渣を精製し、オフホワイトの固体として、メチル2−(イミダゾ[1,2−f]フェナントリジン−3−イル)−2−プロパン酸メチルを得た(1.6g、収率41%)。
F.2−(イミダゾ[1,2−f]フェナントリジン−3−イル)−2−メチルプロパン酸の合成
【化90】
【0221】
メタノール(100mL)中、メチル2−(イミダゾ[1,2−f]フェナントリジン−3−イル)−2−プロパン酸メチル(1.6g、5.0mmol、1当量)の溶液を1Nの水酸化ナトリウム水溶液(30mL、30mmol、6当量)で処理し、更に水(100mL)で希釈した。5日間還流した後、反応物を減圧下で濃縮した。水(100mL)中に残渣を溶解し、濃HClでpH5〜6まで酸性化した。得られた白色懸濁液をイソプロパノール及びジクロロメタンの1:2混合物で抽出した(4×200mL)。合わせた有機相を硫酸ナトリウムで乾燥し、濾過し、減圧下で濃縮した。残渣を高真空下で、40℃、一晩乾燥し、白色固体として2−(イミダゾ[1,2−f]フェナントリジン−3−イル)−2−メチルプロパン酸を得た(1.3g、収率82%)。
G.2−(イミダゾ[1,2−f]フェナントリジン−3−イル)−2−メチルプロパノイルクロライドの合成
【化91】
【0222】
無水ジクロロメタン(100mL)中、2−(イミダゾ[1,2−f]フェナントリジン−3−イル)−2−メチルプロパン酸(1.3g、4.2mmol、1当量)の懸濁液に、塩化チオニル(1mL、13.7mmol、2当量)及び無水DMF(0.05mL、0.6mmol、0.11当量)を添加した。室温で一晩撹拌した後、減圧下で混合物を濃縮し、オフホワイトの固体として2−(イミダゾ[1,2−f]フェナントリジン−3−イル)−2−メチルプロパノイルクロライド(1.37g、収率100%)を得た。
H.3,3−ジメチルジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン−4(3H)−オンの合成
【化92】
【0223】
無水ジクロロメタン(60mL)中、2−(イミダゾ[1,2−f]フェナントリジン−3−イル)−2−メチルプロパノイルクロライド(1.37g、4.2mmol、1当量)及び無水塩化アルミニウム(6.0g、44.9mmol、10当量)の混合物を室温で6時間撹拌した。アイスウォーターバスを用いて、反応物を冷却し、氷でクエンチし、飽和重炭酸ナトリウム(300mL)で希釈し、ジクロロメタンで抽出した(4×400mL)。合わせた有機相を硫酸ナトリウムで乾燥し、濾過し、減圧下で濃縮した。カラムクロマトグラフィーを用いて残渣を精製し、白色固体として、3,3−ジメチルジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン−4(3H)−オンを得た(1g、収率81%)。
I.3,3−ジメチル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン−4−オールの合成
【化93】
【0224】
5℃で、エタノール(70mL)中、3,3−ジメチルジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン−4(3H)−オン(0.9g、3.1mmol、1当量)の溶液に、水素化ホウ素ナトリウム(0.24g、6.3mmol、2当量)を一度に添加した。反応物を室温で1.5時間撹拌し、その後アセトン(2mL)でクエンチした。反応混合物を減圧下で濃縮した。残渣をメチルt−ブチルエーテル(300mL)中に溶解し、飽和重炭酸ナトリウム(2×60mL)及び飽和食塩水(60mL)で洗浄した。有機相を硫酸ナトリウムで乾燥し、濾過し、減圧下で濃縮した。カラムクロマトグラフィーで粗生成物を精製し、白色固体として、3,3−ジメチル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン−4−オールを得た(0.9g、収率100%)。
J.o−(3,3−ジメチル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン−4−イル)S−メチルカーバノジチオエート
【化94】
【0225】
0℃で、無水THF(70mL)中、3,3−ジメチル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン−4−オール(0.71g、2.46mmol、1当量)の溶液に、鉱油中、水素化ナトリウムの60%分散体(0.48g、20.2mmol、5当量)を添加した。5℃で30分間撹拌した後、無水テトラヒドロフラン(3.2mL)中、イミダゾール(0.0168g、0.24mmol、0.1当量)の溶液を添加し、二硫化炭素(0.89mL、14.8mmol、6当量)を滴下した。反応物を30分かけて徐々に12℃まで加温させた。ヨードメタン(0.92mL、14.7mmol、6当量)を滴下し(発熱)、反応物を室温で1時間撹拌した。反応物を5℃まで冷却し、飽和食塩水(140mL)を希釈し、ジクロロメタンで抽出した(5×100mL)。合わせた有機相を硫酸ナトリウムで乾燥し、濾過し、減圧下で濃縮した。カラムクロマトグラフィーで粗生成物を精製し、白色固体として、o−(3,3−ジメチル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン−4−イル)S−メチルカーバノジチオエートを得た(0.86g、収率93%)。
K.3,3−ジメチル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンの合成
【化95】
【0226】
無水トルエン(70mL)中、o−(3,3−ジメチル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン−4−イル)S−メチルカーバノジチオエート(0.98g、2.6mmol、1当量)、2,2’−アザビス(2−メチルプロピオニトリル)(0.098g、0.6mmol、0.2当量)、及び水素化トリブチルスズ(1.81mL、6.7mmol、2.6当量)の溶液を80℃で3.5時間撹拌した。室温まで冷却した後、反応混合物を減圧下で35℃で濃縮し、シリカゲルに吸収させた(10g)。カラムクロマトグラフィーで粗材料を精製し、白色固体として、3,3−ジメチル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンを得た(0.53g、収率72%)。
L.(3−クロロプロピル)(メチル)スルファンの合成
【化96】
【0227】
150mLのEtOH中にナトリウムメタンチオレート(6.14g、88mmol)を溶解し、アイスバス中で冷却し、その後1−ブロモ−3−クロロプロパン(8.6ml、87mmol)を添加した。溶液を室温まで加温し、2時間撹拌した。沈殿させた固体を濾過し、濾液を真空下で凝縮させた。残渣を真空下で蒸留させ、無色の油状物として、生成物を得た(36%)。
【0228】
M.トリス−[(3−メチルチオ)プロピル]イリジウム(III)の合成
【化97】
【0229】
(3−クロロプロピル)(メチル)スルファン及びマグネシウム(削り状)によって得られたグリニャール試薬を、THF中でIrCl
3(THT)
3と共に撹拌し、トリス−[(3−メチルチオ)プロピル]イリジウム(III)を合成し、カラムクロマトグラフィーによって、白色固体を得た(32%)。
N.化合物35の合成
【化98】
【0230】
実施例5のMからのトリス−[(3−メチルチオ)プロピル]イリジウム(III)(0.020g、0.044mmol)及び実施例5のKからの3,3−ジメチル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン(0.036g、0.131mmol)をエチレングリコール(0.5ml)中で合わせ、真空/バックフィル(backfill)のサイクルで脱気し、撹拌して還流すると、黄色から黒色に変わった。冷却した残渣を水とDCMの間で分画し、有機物を乾燥し、セライトに塗布した。カラムクロマトグラフィーによる精製によって、ベージュの固体として、4mgの化合物35を得た(9%)。
実施例6:スキーム6に従って、化合物48の合成を行った。
【化99】
2−エトキシエタノール(0.5ml)中で、実施例4から(3−フェニル−1H−ピラゾール)
2Ir(MeOH)
2(OTf)(0.031g、0.045mmol)及び実施例5のKから3,3−ジメチル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン(0.024g、0.090mmol)を合わせて、直ちに真空/バックフィルを3回行い、その後窒素下で2時間還流下で加熱した。反応混合物をDCM中に溶解し、セライトに塗布し、カラムクロマトグラフィーで精製し、殆ど無色の残渣として化合物35を6mg得た(18%)。
【0231】
実施例7:下記スキーム7に従って化合物49の合成を行った。
【化100】
A.1−メチルフェナントリジン6−アミンの合成:
【化101】
【0232】
THF(832mL)中、2−ブロモ−3−メチルアニリン(38.8g、208mmol、1当量)、(クロロ(2−ジシクロヘキシルホスフィノ−2’,6’−ジメトキシ−1,1’−ビフェニル)[2−(2’−アミノ−1,1’−ビフェニル)]パラジウム(II)(2.99g、4.16mmol、0.02当量)、及び2−ジシクロヘキシルホスフィノ−2’,6’−ジメトキシビフェニル(1.71g、4.16mmol、0.02当量)の混合物に窒素を15分間注入した。(2−シアノフェニル)臭化亜鉛溶液(500mL、THF中0.5M、250mmol、1.2当量)を混合物に添加し、反応物を一晩還流した。室温まで冷却した後、反応物を飽和食塩水(10mL)で希釈し、減圧下で濃縮した。固体をジクロロメタン(500mL)及び24重量%の水酸化ナトリウム水溶液(500mL)中、10%のメタノールに溶解した。相を分離し、水相をジクロロメタンで抽出した(3×500mL)。合わせた有機相を硫酸ナトリウムで乾燥し、減圧下で濃縮した。茶色の固体をヘプタン(1.5L)中25%MTBE、及びジクロロメタン(5×25mL)で順に粉砕し、淡黄色の固体として、26を得た(10.7g、収率25%、純度95%超)。
B.8−メチルイミダゾ[1,2−f]フェナントリジンの合成:
【化102】
【0233】
水中、1−メチルフェナントリジン−6−アミン(10.7g、51mmol、1当量)、及びイソプロパノール(340mL)中、炭酸ナトリウム(13.5g、128mmol、2.5当量)との混合物(16mL、102mmol、2当量)を2時間還流した。反応物を4℃まで冷却し、ジクロロメタン(250mL)及び飽和重炭酸ナトリウム(500mL)で冷却した。相を分離し、水相をジクロロメタンで抽出した(3×250mL)。合わせた有機物相を硫酸ナトリウムで乾燥し、減圧下で濃縮し、茶色の固体として、粗生成物の8−メチルイミダゾ[1,2−f]フェナントリジン(23.8g)を得て、その後使用した。
C.3−ブロモ−8−メチルイミダゾ[1,2−f]フェナントリジンの合成
【化103】
【0234】
ジクロロメタン(306mL)中、粗生成物の8−メチルイミダゾ[1,2−f]フェナントリジン(23.8g)及びN−ブロモサクシミド(9.1g、51mmol、1当量)の混合物を室温で2時間撹拌した。水(500mL)を添加し、相を分離した。水相をジクロロメタンで抽出した(3×500mL)。合わせた有機相を硫酸ナトリウムで乾燥し、減圧下で濃縮した。固体をシリカゲル上へ予吸収させ、カラムクロマトグラフィーで精製し、明るい茶色の固体として、3−ブロモ−8−メチルイミダゾ[1,2−f]フェナントリジンを得た(12g、純度98%)。
D.8−メチル−3−(2−メチルプロプ−1−エン−1−イル)イミダゾ[1,2−f]フェナントリジンの合成:
【化104】
【0235】
1,4−ジオキサン及び水の5:1の混合物(185mL)中、3−ブロモ−8−メチルイミダゾ[1,2−f]フェナントリジン(12g、38.5mmol、1当量)、4,4,5,5−テトラメチル−2−(2−メチルプロプ−1−エン−1−イル)−1,3,2−ジオキサボロラン(10.5g、58mmol、1.5当量)、及び炭酸カリウム(16g、115.5mmol、3当量)の混合物に窒素を15分間注入した。(クロロ(2−ジシクロヘキシルホスフィノ2’,6’−ジメトキシ−1,1’−ビフェニル)[2−(2’−アミノ−1,1’−ビフェニル)]パラジウム(II)(4.16g、5.78mmol、0.15当量)、及び2−ジシクロヘキシルホスフィノ−2’,6’−ジメトキシビフェニル(2.38g、5.78mmol、0.15当量)を添加し、反応物を36時間還流した。室温まで冷却した後、反応物を水(200mL)で希釈した。相を分離し、水相を酢酸エチルで抽出した(3×200mL)。合わせた有機物相を硫酸ナトリウムで乾燥し、減圧下で濃縮した。カラムクロマトグラフィーで粗固体を精製し、明るい茶色の固体として、8−メチル−3−(2−メチルプロプ−1−エン−1−イル)イミダゾ[1,2−f]フェナントリジンを得た(8.5g、収率70%、純度90%)。
E.4,4,7−トリメチル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンの合成:
【化105】
【0236】
ジクロロメタン(57mL)中、8−メチル−3−(2−メチルプロプ−1−エン−1−イル)イミダゾ[1,2−f]フェナントリジン(1.6g、5.69mmol、1当量)及び無水塩化アルミニウム(3.8g、28.4mmol、5当量)の混合物を室温で一晩撹拌した。反応物をアイスバス中で冷却し、水(10mL)を滴下した。相を分離し、水相をジクロロメタンで抽出した(3×50mL)。合わせた有機相を硫酸ナトリウムで乾燥し、減圧下で濃縮した。カラムクロマトグラフィーによって、粗固体を精製し、明るい黄色の固体として、4,4,7−トリメチル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンを得た(1.43g、収率88%、純度98%)。
F.2−ブロモ−4,4,7−トリメチル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンの合成:
【化106】
【0237】
ジクロロメタン(11mL)中、4,4,7−トリメチル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン(500mg、1.75mmol、1当量)、及びN−ブロモサクシミド(311mg、1.75mmol、1当量)の混合物を室温で2時間撹拌した。反応物を水(20mL)及びジクロロメタン(10mL)で希釈した。相を分離し、水相をジクロロメタンで抽出した(3×20mL)。合わせた有機相を硫酸ナトリウムで乾燥し、減圧下で濃縮した。カラムクロマトグラフィーで残渣を精製して、明るい茶色の固体として、2−ブロモ−4,4,7−トリメチル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンを得た(575mg、収率90%、純度97%)。
G.2,4,4,7−テトラメチル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンの合成:
【化107】
【0238】
1,4−ジオキサン及び水の10:1の混合物(7mL)中、2−ブロモ−4,4,7−トリメチル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン(265mg、0.73mmol、1当量)、トリメチルボロキシン(0.6mL、4.4mmol、6当量)及び炭酸カリウム(608mg、4.4mmol、6当量)の混合物に窒素を15分間注入した。(クロロ(2−ジシクロヘキシルホスフィノ2’,6’−ジメトキシ−1,1’−ビフェニル)[2−(2’−アミノ−1,1’−ビフェニル)]パラジウム(II)(108mg、0.15mmol、0.2当量)及び2−ジシクロヘキシルホスフィノ−2’,6’−ジメトキシビフェニル(62mg、0.15mmol、0.2当量)を添加し、反応物を一晩還流した。室温まで冷却した後、反応物を水(10mL)及び酢酸エチル(10mL)で希釈した。相を分離し、水相を酢酸エチルで抽出した(3×20mL)。合わせた有機相を硫酸ナトリウムで乾燥し、減圧下で濃縮した。カラムクロマトグラフィーで残渣を精製し、淡黄色の固体として、2,4,4,7−テトラメチル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンを得た(100mg、収率46%、純度95%)。
H.化合物49の合成:
【化108】
【0239】
化合物49を化合物35と類似の方法で合成し、13mgの黄色粉末を得た(15%)。
【0240】
実施例8:下記のスキーム8に従って、化合物50の合成を行った。
【化109】
A.1−クロロフェナントリジン−6−アミンの合成:
【化110】
【0241】
3−クロロ−2−ヨードアニリン(8.77g、34.6mmol)、CyJohnPhos(0.462g、1.319mmol)、及びPd(CH
3CN)
2Cl
2(0.171g、0.659mmol)の混合物をジオキサン(80ml)中に溶解した。シリンジに介して、トリエチルアミン(13.78ml、99mmol)、4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(10.04ml、69.2mmol)の順に、溶液に添加した。反応物を4時間還流した。反応物を室温まで冷却し、2−ブロモベンゾニトリル(6g、33.0mmol)、S−PhosPdG2(0.475g、0.659mmol)、S−Phos(0.271g、0.659mmol)、及び炭酸カリウム(9.11g、65.9mmol)の固体混合物を反応混合物に添加し、その後ジオキサン(20ml)及び水(20ml)を添加し、反応物を85℃まで一晩加熱した。粗生成物をDCMで抽出し、真空濾過によって、橙色の油状物を得た。これをTHF(80mL)中に溶解し、水素化ナトリウム(1.978g、49.4mmol)を0℃で添加し、20分間撹拌した。食塩水で反応混合物をクエンチし、DCMで抽出した。エーテルで粉砕し、反応混合物を蒸発させると、オフホワイトの固体として、1−クロロフェナントリジン−6−アミンを得た(収率52%)。
B.8−クロロイミダゾ[1,2−f]フェナントリジンの合成:
【化111】
【0242】
1−クロロフェナントリジン−6−アミン(864mg、3.78mmol)、2−クロロアセトアルデヒド(水中50重量%、1.02mL、7.56mmol)、及び重炭酸ナトリウム(635mg、7.56mmol)をiPrOH中で合わせ、1時間還流した。混合物を室温まで冷却し、水に注ぎ、濾過した(収率99%)。
C.8−フェニルイミダゾ[1,2−f]フェナントリジンの合成:
【化112】
【0243】
8−クロロイミダゾ[1,2−f]フェナントリジン(955mg、3.78mmol)、フェニルボロン酸(829mg、6.80mmol)、S−PhosPdG2(109mg、0.151mmol)、S−Phos(62.1mg、0.151mmol)、及び炭酸カリウム(522mg、3.78mmol)の混合物を脱気と窒素充填を数回繰り返した。ジオキサン(20ml)及び水(4ml)を添加し、1時間還流した。粗生成物をDCM及び食塩水で抽出し、カラムクロマトグラフィーで精製し、生成物を得た(収率99%)。
D.3−ブロモ−8−フェニルイミダゾ[1,2−f]フェナントリジンの合成:
【化113】
【0244】
DMF中に、8−フェニルイミダゾ[1,2−f]フェナントリジン(1.15mg、3.91mmol)及びNBS(0.765g、4.30mmol)を合わせ、室温で30分間撹拌し、水でクエンチした。得られた固体を濾過し、真空で乾燥し、75%の収率で3−ブロモ−8−フェニルイミダゾ[1,2−f]フェナントリジンを得た。
E.3−(2−メチルプロプ−1−エン−1−イル)−8−フェニルイミダゾ[1,2−f]フェナントリジンの合成:
【化114】
【0245】
3−ブロモ−8−フェニルイミダゾ[1,2−f]フェナントリジン(980mg、2.63mmol)、SPhosPdG2(76mg、0.105mmol)、SPhos(43.1mg、0.105mmol)、及び炭酸カリウム(363mg、2.63mmol)の混合物を脱気と窒素充填を数回繰り返した。トルエン(15ml)、水(3ml)、及び4,4,5,5−テトラメチル−2−(2−メチルプロプ−1−エン−1−イル)−1,3,2−ジオキサボロラン(1.077ml、5.25mmol)を添加し、一晩還流下で加熱した。生成物をDCM及び食塩水で抽出し、カラムクロマトグラフィーで精製し、20%の収率で3−(2−メチルプロプ−1−エン−1−イル)−8−フェニルイミダゾ[1,2−f]フェナントリジンを得た。
F.4,4−ジメチル−7−フェニル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンの合成:
【化115】
【0246】
DCM中に、3−(2−メチルプロプ−1−エン−1−イル)−8−フェニルイミダゾ[1,2−f]フェナントリジン(160mg、0.459mmol)を溶解し、塩化アルミニウム(184mg、1.378mmol)を添加した。反応物を40分間室温で撹拌した。混合物をKOH(aq)/食塩水でクエンチし、DCMで数回抽出した。カラムクロマトグラフィーで生成物を精製し、63%の収率で4,4−ジメチル−7−フェニル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンを得た。
G.化合物50の合成:
【化116】
【0247】
実施例4からの(3−フェニル−1H−ピラゾール)
2Ir(MeOH)
2(OTf)(0.03g、0.043mmol)及び4,4−ジメチル−7−フェニル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン(0.030g、0.087mmol)を2−エトキシエタノール(0.5ml)中で合わせて、直ちに脱気と窒素充填を3回行い、その後窒素下において、2時間還流下で加熱した。カラムクロマトグラフィーで生成物を精製し、収率56%で化合物50を得た。
【0248】
実施例9:下記スキーム9に従って、化合物108の合成を行った。
【化117】
A.tert−ブチル(4−((トリイソプロピルシリル)オキシ)フェニル)カルバメートの合成:
【化118】
【0249】
THF(200mL)中、tert−ブチル(4−ヒドロキシフェニル)カルバメート(26.1g、0.125mol、1当量)の溶液に、トリイソプロピルクロロシラン(32mL、0.15mol、1.2当量)、及びトリエチルアミン(21mL、0.15mol、1.2当量)の順に添加した。反応混合物を室温で16時間撹拌した。反応物を濾過し、固体をTHFで洗浄した(2×30mL)。合わせた濾液を減圧下で濃縮した。カラムクロマトグラフィーで粗生成物を精製し、黄色の油状物として、tert−ブチル(4−((トリイソプロピルシリル)オキシ)フェニル)カルバメートを得た(39.66g、収率87%)。
B.4−((トリイソプロピルシリル)オキシ)アニリンの合成:
【化119】
【0250】
ジクロロメタン(400mL)中、tert−ブチル(4−((トリイソプロピルシリル)オキシ)フェニル)カルバメート(39.66g、0.1085mol、1当量)の溶液に、トリフルオロ酢酸(41.51mL、0.54mol、5当量)を室温で添加した。16時間撹拌した後、減圧下で溶媒を除去した。残渣をトルエンで共沸させた(3×50mL)。粗生成物をシリカ上で精製し、4−((トリイソプロピルシリル)オキシ)アニリンを得た(25g、収率87%)。
C.2,6−ジブロモ−4−((トリイソプロピルシリル)オキシ)アニリンの合成:
【化120】
【0251】
ジクロロメタン及びメタノールの1:1の混合物(60mL)中、4−((トリイソプロピルシリル)オキシ)アニリン(17g、64.4mmol、1当量)の溶液に、臭素(8.2mL、0.16mol、2.5当量)を0℃で滴下した。反応混合物を室温まで加温させ、16時間撹拌した。反応混合物をジクロロメタン(200mL)で希釈し、1MのNaOH(2×100mL)及び飽和食塩水(2×100mL)で順に洗浄した。有機相を硫酸ナトリウムで乾燥し、減圧下で濃縮し、茶色の油状物として2,6−ジブロモ−4−((トリイソプロピルシリル)オキシ)アニリンを得て(26.37g、収率97%)、その後使用した。
D.4−ブロモ−8−メトキシ−2−((トリイソプロピルシリル)オキシ)フェナントリジン−6−アミンの合成:
【化121】
【0252】
トルエン及び水の4:1の混合物(500mL)中、5−メトキシ−2−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゾニトリル(16.14g、62.3mmol、1当量)、51(26.37g、62.3mmol、1当量)、及びリン酸カリウム(43.04g、0.187mol、3当量)の混合物に窒素を1時間注入した。トランス−Pd(PPh
3)
2Cl
2(2.8g、3.11mmol、0.05当量)を添加し、反応混合物を20時間還流した。追加の5−メトキシ−2−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゾニトリル(2.2g、8.5mmol、0.14当量)、及びトランス−Pd(PPh
3)
2Cl
2(0.3g、0.43mmol、0.0069当量)を添加し、反応混合物を更に4時間還流した。相を分離し、有機相を温水で洗浄した(2×200mL)。有機相を硫酸ナトリウムで乾燥し、減圧下で濃縮した。カラムクロマトグラフィーで残渣を精製し、20%の収率で4−ブロモ−8−メトキシ−2−((トリイソプロピルシリル)オキシ)フェナントリジン−6−アミンを得た。
E.5−ブロモ−3−(2−クロロエチル)−11−メトキシ−7−((トリイソプロピルシリル)オキシ)イミダゾ[1,2−f]フェナントリジンの合成:
【化122】
【0253】
i−プロパノール(500mL)中、4−ブロモ−8−メトキシ−2−((トリイソプロピルシリル)オキシ)フェナントリジン−6−アミン(5.95g、12.53mmol、1当量)、p−トルエンスルホン酸一水和物(175mg)、及び新たに調製した2(6.67g、62.63mmol、5当量)の懸濁液を室温で2時間撹拌した。炭酸ナトリウム(3.25g、37.6mmol、3当量)及び脱イオン水(12ml)を添加し、反応混合物を一晩還流した。室温まで冷却した後、反応混合物の体積を減圧下で約60mlまで減少させた。混合物を酢酸エチル(300mL)で希釈し、飽和食塩水(200mL)で洗浄した。有機相を硫酸ナトリウムで乾燥し、減圧下で濃縮した。カラムクロマトグラフィーで粗生成物を精製し、5−ブロモ−3−(2−クロロエチル)−11−メトキシ−7−((トリイソプロピルシリル)オキシ)イミダゾ[1,2−f]フェナントリジンを得た(5.53g、収率79%)。
F.10−メトキシ−6−((トリイソプロピルシリル)オキシ)−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンの合成:
【化123】
【0254】
乾燥THF(300mL)中、5−ブロモ−3−(2−クロロエチル)−11−メトキシ−7−((トリイソプロピルシリル)オキシ)イミダゾ[1,2−f]フェナントリジン(5.53g、9.84mmol、1.0当量)の溶液を窒素で30分間注入した。0℃まで冷却した後、シリンジに介して、THF(7.4mL、14.76mmol、1.5当量)中、2Mのイソプロピルマグネシウムクロライドを滴下した。反応混合物を室温まで加温し、一晩撹拌した。反応物を水(10mL)でクエンチし、THFを減圧下で除去した。残渣をジクロロメタン(500mL)で抽出した。有機相を水で洗浄し(2×200mL)、硫酸ナトリウムで乾燥し、減圧下で濃縮した。カラムクロマトグラフィーで粗生成物を精製し、10−メトキシ−6−((トリイソプロピルシリル)オキシ)−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンを得た(3g、収率68%)。
G.10−メトキシ−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン−6−オールの合成:
【化124】
【0255】
THF(100mL)中、10−メトキシ−6−((トリイソプロピルシリル)オキシ)−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン(3g、6.72mmol、1当量)の溶液に、THF(30mL)中、フッ化テトラブチルアンモニウム三水和物を滴下した。室温で16時間撹拌した後、溶媒を減圧下で除去し、残渣をジクロロメタン(80mL)で抽出した。有機相を飽和食塩水で洗浄した(2×100mL)。飽和食塩水で洗浄すると、大きな沈殿物が有機相中に形成し始めた。沈殿物を濾過し、ヘプタンで洗浄し(2×10mL)、10−メトキシ−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン−6−オールを得た(1.83g、収率94%)。
H.10−メトキシ−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン−6−イル トリフルオロメタンスルホネートの合成:
【化125】
【0256】
ジクロロメタン(100mL)中、10−メトキシ−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン−6−オール(1.79g、6.16mmol、1当量)の混合物に、トリフルオロ酢酸無水物(1.14mL、6.77mmol、1.1当量)及びピリジン(0.744mL、9.24mmol、1.5当量)を0℃で順に添加した。15分間撹拌した後、反応物を室温まで加温し、6時間撹拌した。反応混合物をジクロロメタン(200mL)で希釈し、水で洗浄した(3×100mL)。硫酸ナトリウムで有機相を乾燥し、溶媒を減圧下で除去した。ヘプタン及びジクロロメタンの10:1の混合物(10mL)で、残渣を粉砕し、10−メトキシ−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン−6−イル トリフルオロメタンスルホネートを得た(2.17g、収率83%)。
I.10−メトキシ−6−フェニル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンの合成:
【化126】
【0257】
トルエン:1,4−ジオキサン:水の3:1:1の混合物(500mL)中、10−メトキシ−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン−6−イル トリフルオロメタンスルホネート(0.65g、1.54mmol、1当量)、フェニルボロン酸(0.188g、1.54mmol、1当量)、及びリン酸カリウム(1.06g、4.62mmol、3当量)の混合物に窒素を1時間注入した。トランス−Pd(PPh
3)
2Cl
2(54mg、0.077mmol、0.05当量)を添加し、反応混合物を16時間還流した。反応混合物をジクロロメタン(200mL)で希釈した。有機相を温水で洗浄し(2×100mL)、硫酸ナトリウムで乾燥し、減圧下で濃縮し、10−メトキシ−6−フェニル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンを得た(0.527g、収率97%)。
J.6−フェニル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン−10−オールの合成:
【化127】
【0258】
ジクロロメタン(100mL)中、10−メトキシ−6−フェニル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンの溶液(0.527g、1.5mmol、1当量)に、ジクロロメタン中、1Mの三臭化ホウ素(7.5mL、7.5mmol、5当量)を−78℃で滴下した。反応物を室温まで加温させ、一晩撹拌した。反応混合物を注意深く氷水(150mL)に注ぎ、得られた固体を濾過し、水(30ml)及びヘプタン(10mL)の順に洗浄し、6−フェニル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン−10−オールを得た(0.47g、収率93%)。
K.10−((9−(4−イソプロピルピリジン−2−イル)−9H−カルバゾール−2−イル)オキシ)−6−フェニル−3,4−ジヒドロ−ジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンの合成:
【化128】
【0259】
DMSO(50mL)中、2−ブロモ−9−(4−イソプロピルピリジン−2−イル)−9H−カルバゾール(0.528g、1.446mmol、1当量)、6−フェニル−3,4−ジヒドロジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン−10−オール(0.486g、1.446mmol、1当量)、リン酸カリウム(1.67g、7.23mmol、5当量)、ヨウ化銅(I)(0.138g、0.723mmol、0.5当量)、及びピコリン酸(0.445g、3.62mmol、2.5当量)の混合物を150℃で4.5時間加熱した。室温まで冷却した後、反応混合物を水(300mL)に注ぎ、酢酸エチルで抽出した(4×100mL)。合わせた有機相を硫酸ナトリウムで乾燥し、減圧下で濃縮した。カラムクロマトグラフィーで粗生成物を精製し、黄褐色の固体として、10−((9−(4−イソプロピルピリジン−2−イル)−9H−カルバゾール−2−イル)オキシ)−6−フェニル−3,4−ジヒドロ−ジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジンを得た(0.55g、収率61%)。
L.化合物108の合成:
【化129】
【0260】
氷酢酸(60mL)中、10−((9−(4−イソプロピルピリジン−2−イル)−9H−カルバゾール−2−イル)オキシ)−6−フェニル−3,4−ジヒドロ−ジベンゾ[b,ij]イミダゾ[2,1,5−de]キノリジン(350mg、0.564mmol、1当量)の溶液にアルゴンを40分間注入した。K
2PtCl
4(234mg、0.564mmol、1当量)を添加し、反応混合物を16時間還流した。室温まで冷却した後、黄緑がかった沈殿物を濾過し、水(4×15mL)及びヘプタン(2×10mL)の順に洗浄し、真空下、20℃で18時間乾燥した。粗生成物をジクロロメタン(500mL)中に溶解し、シリカゲル10g)のプラグに通して、残っているK
2PtCl
4を除去した。溶媒を減圧下で除去した。ジクロロメタン及びヘプタンの1:1の混合物(20mL)で残渣を粉砕し、濾過し、ジクロロメタンで洗浄し(2×3mL)、化合物108を得た(40mg、収率8.7%、収率、83.2%)。
【0261】
考察:金属が配位されたイミダゾフェナントリジン配位子の1つの実施形態の一般構造を下記に示す。コンピュータ上での検証において、興味ある結合は、4つの炭素−窒素(C−N)単結合である。これらは、窒素が3つのC−Nの単結合を有するC−N
1、C−N
2、及びC−N
ph、及び窒素が金属に配位しているC−N
mとしてラベルされる。
【化130】
【0262】
ハイブリッドB3LYPファンクショナル(hybrid B3LYP functional)及びCEP−31g有効コアポテンシャル基底関数系を用いてGaussian09ソフトウェアパッケージにおいて、全ての錯体及び配位子のジオメトリー最適化を行った。結果及び考察において特段に述べられていない限り、全ての結果はこの方法を用いる。
【0263】
結合を切断し、イミダゾフェナントリジン配位子にジラジカル種を形成することで、結合強度を算出した。通常、三重項状態は、ジラジカル一重項よりもエネルギーが低く、それゆえ結合が切断されたときに、よりふさわしくありそうな生成物が形成されるので、三重項状態として結合が切断されたジラジカル種を算出した。B3LYP/6−31g(d)レベルで算出を行い、基底状態一重項→結合が切断された三重項及び最も低いエネルギー三重項(励起状態)→結合が切断された三重項の熱力学を報告する。
【0264】
最も低い三重項励起状態(T1)の算出されたTD−DFT値も理論のB3LYP/CEP−31gレベルで行ったが、実験結果により良好にマッチさせるようになる溶媒として、THFを用いたCPCM連続溶媒場(CPCM continuum solvent field)を用いた。
【0265】
結合強度の算出を下記の化合物で行った。
【化131】
【0266】
算出された結合強度を表1に示す。
【表1】
【0267】
表1は、一連の比較例及び発明化合物1の算出された結合強度を示す。同一セル上で2つの数字が見られる場合、上の数字は、励起状態の三重項→結合が切断された三重項との間の熱力学的差を示す。下の数字は、基底状態一重項→結合が切断された三重項を表す。セル上に数字が1つしかない場合、三重項→三重項結合強度(T→T)を示す。比較化合物1〜4の全てにおいて、C−N
1結合は最も弱い結合であることが示される。基底状態一重項と比較して、励起された三重項状態において、結合強度がより弱いことが分かる。これは、励起状態のエネルギーを有する錯体が、一般的により高エネルギーである結合が切断された状態の出発点として利用可能であるからである。幾つかの場合においては、比較化合物2及び3に示されるように、結合が切断された状態は、出発点の三重項状態よりもエネルギーが低い。したがって、結合が切断される現象は、熱力学的に有利である又は発熱であると考えられることができる。比較化合物1と比較化合物2及び3を比較して分かるように、アリール置換がC−N
1結合の炭素原子に加えられると、結合強度が減少することが分かる。この効果は、結合が切断された場所において、アリール置換によって安定化された、ラジカル種の共鳴安定化によるものであることができる。
【0268】
式(1a)の“A”に示されるように、弱いC−N
1結合の安定化は、C−N
1の炭素と隣接した縮合アリール環上の炭素と結合する連結置換によって達成されることができる。この連結基は、フェナントリジン環系の2つの炭素を渡ってブリッジを形成するための適切な構造ジオメトリーを提供する元素を含むことが好ましく、それによって得られた配位子及び錯体の三重項エネルギーを低減することなく、C−N
1結合を安定化させる必要な剛直性を提供する。
【0269】
安定化リンカーの効果は、発明化合物1の表1に示される。ここで、三重項C−N
1結合強度は、類似体比較化合物1の11.81kcal/molから、発明化合物の35.38kcal/molへ、熱力学的結合強度が20kcal/mol超の増加をもって大幅に改善した。2つの炭素が連結する置換基は、配位子が、CN
1結合が切断された状態の適切な緩和ジオメトリーを得られないようにする。重要な事として、発明化合物1及び比較化合物1はいずれも、計算によれば468nmの同じ三重項エネルギーを有していることから、三重項エネルギーは、この置換によって影響されない。
【0270】
比較例1の、最小化された結合が切断されていないジオメトリー及び結合が切断されたジオメトリーは、
図3a及び
図3bに示される。結合が切断されたジオメトリーは、イミダゾフェナントリジン配位子の縮合環系の環ひずみを緩和する。発明化合物1に示されているように、結合(束縛)している置換は、結合が切断された緩和ジオメトリーを防ぎ、それによってC−N
1結合の熱力学的結合強度を高める。
【0271】
C−N
1結合の弱さの更なる実験的根拠は、マトリックス支援レーザー脱離イオン化質量分析(MALDI−MS)によって示される。MALDI−MSを用いて、分子の励起状態における結合の弱さを調べることができる。光化学的な安定性の測定として、MALDI−MSは、帯電及び励起状態が存在しているOLEDデバイス中で見られる幾つかの状態について、モデル化を行うことができると考えられている。
図3は、比較化合物3をネガティブモードで捉えたMALDI−MSを示す。親イオンのピークは、1529amuで確認される。しかし、最も高い強度のピークは、1275amuで確認される。この質量は、イミダゾール環が2つの炭素及びターフェニル置換の質量を失った比較化合物3のフラグメントに対応する。示されたフラグメントの構造を
図3に示す。このフラグメントがイリジウムを含み、示されたフラグメントの化学式と一致していることが同位体パターンによって確認される。更に、
図4に示されるように、1083amuで、フラグメントが配位子を損失することが確認され、1020amuで、2つの配位子においてイミダゾール環の分解が確認された。このデータによって、主要なフラグメントの形成は、計算により、弱い結合と考えられるC−N
1結合の切断が必要であることが示唆される。
【0273】
発明化合物の測定された光物理特性は、下記表2に示される。室温及び77Kにおいて、かなり希釈された濃度での2−メチルテトラヒドロフラン溶媒中にて、錯体を測定した。1重量%ポリメチルメタクリレート(PMMA)固相マトリックス、又は0.4重量%ポリスチレン(PS)固相マトリックス中で、キセノンランプ、積分球、及びフォトニックマルチチャンネル分析器モデルC10027を装備した浜松C9920システムを用い、フォトルミネセンス量子収率(PLQY、Φ
PL)を測定した。励起源として335nmのナノLEDを用いたIBHデータステーションハブで積算したHoriba Jobin Yvon社のFluorolog−3を用いて、時間相関単一光子計数法によりPLの過渡測定(τ)を行った。
【0275】
化合物35を測定し、深い青色発光を表し、77Kで451nmの最も高いエネルギーピークを表すが、錯体のPLQYは、僅か5%である。配位子に対する修飾がどのようにPLQYを改善するために使われることができるかが、化合物49によって実証される。イミダゾール環上のメチル置換は、エチレンブリッジされていないフェナントリジンイミダゾール類似体のPLQYを改善することが分かってきている。更に、外側のフェニル環上のメチル置換は、計算によって、メチル置換基と隣接するアリール環上のプロトンの立体的作用により、配位子の配位挟角に影響することが示される。この立体効果は、配位している場所が金属に更に近く結合することができる、ブリッジされていない配位子のジオメトリーに対して、フェナントリジンイミダゾール多環系ジオメトリーが近くなるように押す。配位子のジオメトリーにおける微妙な変化は、金属と、中性の配位窒素との間のより強い相互作用を可能にし、それによって金属―窒素の結合強度を改善する。金属―窒素結合の非輻射減衰を低減させることで、より強い金属―窒素の結合強度が錯体の放射効率を改善することができると考えられている。したがって、両方のメチル置換は、化合物35と比較して、化合物49のPLQYを高めることをもたらすであろう。化合物49を測定したところ、PMMAマトリックス中で62%のPLQYを有し、これは、ブリッジされていない類似体であり、且つ68%のPLQYを有すると測定される比較化合物6のPLQY値に極めて近い。更に、化合物35の5.1マイクロ秒の励起状態の寿命と比べて、化合物49は、77Kで2.9マイクロ秒と更に短い励起状態の寿命を有すると測定される。これは、これらのメチル置換基が化合物49の放射特性を改善したことを実証する。
【0276】
フェニルピラゾール配位子(ppz)を有するヘテロレプティック例である化合物48、及び化合物50を測定したところ、青色発光を示したが、PLQYは低かった。しかし、ブリッジされていない参照化合物である比較化合物8も測定したところ、14%の低いPLQYを示した。低い効率は、ピラゾール配位子の弱い金属−窒素結合によるものであると考えられている。この仮説を更に支持するものとして、トリスIr(ppz)
3は、室温の溶液中で非発光であるが、77Kではかなり高い発光性であることが文献中に示されている。室温での非放射効率は、弱い金属―窒素結合に起因する。
【0277】
ブリッジされたフェナントリジンイミダゾール配位子を有するプラチナ錯体も、深い青色発光を有するかなり高い発光性があることが分かる。光学的に不活性なポリスチレンマトリックス中において、化合物105及び比較化合物7は、いずれも測定したところ、それぞれ85%及び87%の高いPLQY値を示した。イリジウム類似体である化合物49に記載されているように、プラチナ錯体は、イリジウムと比較して、相対的に強いプラチナ−窒素結合強度のために、PLQYを改善するための配位子の修飾を必要としないらしい。
【0278】
当業者であれば、広い発明思想を逸脱することなく、上記に示され、記載された例示的な実施形態の変更を行うことは想像されるであろう。したがって、本発明は、提示され、記載された例示的な実施形態に制限されず、請求項によって規定された本発明の主旨及び範囲内において、変更が及ぶことが意図されることが理解される。例えば、例示的な実施形態の特徴は、主張された発明の一部であってもなくてもよく、開示された実施形態の特徴は、組み合わせてもよい。特段の記載がない限り、用語「a」、「an」、及び「the」は、1つのエレメントに限定されず、代わりに「少なくとも1つの」という意味で読まれることもある。
【0279】
発明の図面及び記載の一部は、発明の明確な理解に関連しているエレメントに着目するために単純化され、一方、明確にするために、当業者が予期するであろう他のエレメントが除外されているものも本発明の一部分を含むことがある。しかし、このようなエレメントは、この分野においては公知であり、発明の更なる理解を促進する必要がないため、このようなエレメントの記載は、本明細書においては提供されない。
【0280】
更に、本発明のいずれの方法も、本明細書中に記載されている工程の特定の順番に依存しない範囲においては、工程の特定の順番は、請求項の制限として解釈されるべきでない。このような方法に指示された請求項は、記載された順番における工程の性質に制限されるべきではなく、当業者であれば、この工程が、本発明の主旨及び範囲内において変更し、維持してもよい事を容易に想像することができる。
【0281】
本明細書中に記載される刊行物、特許出願、及び特許を含む全ての文献は、それぞれの文献が個々に且つ具体的に参照により組み込まれ、本明細書中にその全内容が記載されているものとされる。