(58)【調査した分野】(Int.Cl.,DB名)
前記粒子に会合した反応促進剤を有するポリ塩化ビニル粒子が、ハロゲン化炭化水素化合物を含んでいないことを特徴とする、請求項1に記載のポリ塩化ビニルの粒子の提供方法。
前記活性重合混合物中の前記塩化ビニルモノマーを重合させる工程が、前記塩化ビニルモノマーの少なくとも50%の転化を含むことを特徴とする、請求項1に記載のポリ塩化ビニルの粒子の提供方法。
前記塩化ビニルモノマーを含む活性重合混合物を提供する工程が、ポリ塩化ビニル粒子を水に分散させたポリ塩化ビニル粒子の分散液を提供することを含み、前記塩素化促進剤を導入する工程が、塩素化促進剤を前記分散液に添加し、それによって、前記塩素化促進剤を前記ポリ塩化ビニル粒子に会合させ、前記粒子に会合した促進剤を有するポリ塩化ビニル粒子を提供することを特徴とする、請求項4に記載のポリ塩化ビニルの粒子の提供方法。
前記塩素化促進剤が、脂肪族結合主鎖、エーテル結合主鎖、及び、脂肪族とエーテル結合主鎖からなる群から選択される少なくとも一つの結合主鎖に機能的に結合した水酸基を含有する、非イオン性のオリゴマー又はポリマーであることを特徴とする、請求項4に記載のポリ塩化ビニルの粒子の提供方法。
前記塩素化促進剤が、ポリビニルアルコール、部分的に加水分解されたポリ酢酸ビニルホモポリマー、部分的に加水分解された酢酸ビニルとコモノマーのコポリマー、加熱処理して部分的に加水分解したポリ酢酸ビニルホモポリマー、加熱処理して部分的に加水分解した酢酸ビニルとコモノマーのコポリマー、ポリエチレングリコール、ポリ(アルキレン)オキサイド(例えば、ポリ(エチレン)オキサイド及びポリ(プロピレン)オキサイド)、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、及び、水溶性セルロースエステルからなる群から選択されることを特徴とする、請求項4に記載のポリ塩化ビニルの粒子の提供方法。
前記ポリ塩化ビニル粒子に塩素化促進剤を導入する工程が、前記ポリ塩化ビニル粒子の総重量に基づいて、少なくとも500ppmの重量基準の塩素化促進剤を導入すること含むことを特徴とする、請求項4に記載のポリ塩化ビニルの粒子の提供方法。
【発明を実施するための形態】
【0012】
本発明の実施形態は、少なくとも一部分が、ポリ塩化ビニル粒子に会合した塩素化促進剤を有する同ポリ塩化ビニル粒子(以下、PVC粒子と称する場合がある。)の発見に基づいている。
予期せぬことに、これらのポリ塩化ビニル粒子は、高率で塩素化を受けて、塩素化プロセスでの効率を大きく改善することが見出された。
また、予期せぬことに、塩素化促進剤がポリ塩化ビニル粒子と会合する手法は、塩素化が起こる比率に対して影響を与えることが見出された。
したがって、本発明の実施形態は、ポリ塩化ビニル粒子に塩素化促進剤を会合させてなる塩素化ポリ塩化ビニルの製造方法る方法に関する。
【0013】
1.プロセス概説
プロセスを概説すると、1つ以上の実施形態において、PVC粒子とも称されているポリ塩化ビニルの粒子を製造するための製造プロセスの一部として、塩素化促進剤は、PVC粒子と会合する。
【0014】
ここで、PVC粒子を製造するためのプロセスは、
図1を参照して説明することができる。
すなわち、かかるプロセス11が、塩化ビニルモノマー24(別名、VCM24)、水26、及び、安定剤28を組み合わせることによって、重合混合物22を形成する工程21を含むことが示されている。
まず、開始工程23において、重合混合物22に対して開始剤30を添加すると、活性重合混合物32が形成され、VCMは、重合工程25で重合を受けて、活性ポリ塩化ビニル粒子を形成する。
かかる用語としての「活性ポリ塩化ビニル粒子」は、ポリ塩化ビニル粒子が反応性であり、そして、この反応性を介してポリマー構造に対して追加の塩化ビニルモノマーを加えることができる、という事実を意味する。
そして、活性重合混合物32に対して、停止剤34を加えることで、ポリ塩化ビニル粒子の活動性(重合性)を抑えて、VCMの重合を停止する。新たに形成されたポリ塩化ビニル粒子は、ポリ塩化ビニル懸濁液36、別名、PVC懸濁液36として、水性媒体に懸濁したままである。
【0015】
次いで、典型的なPVC製造プロセスは、様々な周知の技術を用いて、PVC懸濁液からVCMを除去する分離工程27を含むことが好ましい。
かかる分離工程27は、実質的にVCMを含まない、浄化VCM懸濁液38を提供することができる。
次いで、浄化VCM懸濁液38を、例えば、脱水工程29において、水からポリ塩化ビニル粒子を分離することによって、さらに処理することができる。
次いで、得られた脱水PVC粒子40を、乾燥工程31においてさらに乾燥させて、乾燥PVC粒子42を製造することができる。したがって、後続の工程33で、貯蔵又は出荷し得ることになる。
【0016】
上記で示唆したように、PVC製造プロセスの1つ以上の箇所又はプロセス工程で、PVCに対して塩素化促進剤を導入することによって、塩素化促進剤は、PVC粒子と会合することになる。
【0017】
図1にも示したように、塩素化促進剤50は、全体的なプロセス11の幾つかの箇所で加えることができる。
例えば、塩素化促進剤50は、活性重合混合物32に対して加えることができる。
また、他の実施形態においては、塩素化促進剤50は、重合工程25における最後の停止工程の後のPVC懸濁液36に対して加えることができる。
また、他の実施形態において、塩素化促進剤50は、VCM分離工程27の後の浄化VCM懸濁液38に対して加えることができる。
さらに他の実施形態において、塩素化促進剤50は、乾燥工程29(脱水工程と称する場合もある。)の間に、PVC粒子に対して導入することができる。
さらにまた、他の実施形態において、塩素化促進剤50は、脱水PVC粒子40に対して加えることができる。
その上、さらに他の実施形態において、塩素化促進剤50は、乾燥工程29の間に、PVC粒子に対して導入することもできる。
その上、さらに他の実施形態において、塩素化促進剤50は、乾燥PVC粒子42に対して加えることができる。
【0018】
2.塩素化促進剤
塩素化促進剤は、PVC粒子と会合して、PVC粒子が塩素化したときに、高い塩素化率を提供する化合物を含む。
すなわち、1つ以上の実施形態において、塩素化促進剤、別名、塩素処理促進剤とは、非イオン性のオリゴマー又はポリマーであり、脂肪族結合、及び/又は、エーテル結合主鎖に機能的に結合した水酸基を含有する。
【0019】
また、1つ以上の実施形態において、オリゴマー又はポリマーは、少なくとも10個、他の実施形態において、少なくとも15個、及び、他の実施形態において、少なくとも20個の炭素原子を有する主鎖を含む。これらの、又は、他の実施形態において、オリゴマー又はポリマーは、少なくとも1個、他の実施形態において、少なくとも2個、及び、他の実施形態において、少なくとも3個の水酸基を含む。1つ以上の実施形態において、塩素化促進剤は、少なくとも水に容易に溶解することが好ましい。
【0020】
また、有用な塩素化促進剤の好適例としては、ポリビニルアルコール、部分的に加水分解されたポリ酢酸ビニルホモポリマー、部分的に加水分解された酢酸ビニルとコモノマーのコポリマー、加熱処理して部分的に加水分解したポリ酢酸ビニルホモポリマー、加熱処理して部分的に加水分解した酢酸ビニルとコモノマーのコポリマー、ポリエチレングリコール、ポリ(アルキレン)オキサイド(例えば、ポリ(エチレン)オキサイド及びポリ(プロピレン)オキサイド等)、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、及び、水溶性セルロースエステルの少なくとも一つの化合物やポリマーである。
【0021】
また、上述した塩素化促進剤は、分子内に不飽和結合を含み得る。
すなわち、当業者であれば、かかる不飽和結合につき、特に、ポリ酢酸ビニルの場合において、コモノマーから、又は、ポリマーの熱処理を介して、誘導し得るものと理解することができる。
【0022】
なお、その他の、幾つかの有用な塩素化促進剤は、米国特許第4226966号、同第7070731号、及び、同第8222325号、ならびに、米国公報第2010/0234508号、及び、同第2012/0309880号に開示されており、これらの文献の内容は、本明細書の一部を構成するものとして援用することができる。
【0023】
また、1つ以上の実施形態において、塩素化促進剤(例えば、部分的に加水分解されたポリ酢酸ビニル)は、加水分解性基等がある場合において、60モル%超の加水分解の程度であることが好ましい。
そして、他の実施形態において、70モル%超の加水分解、他の実施形態において、72モル%超の加水分解、他の実施形態において、80モル%超の加水分解、他の実施形態において、85モル%超の加水分解、他の実施形態において、90モル%超の加水分解、他の実施形態において、95モル%超の加水分解、及び、他の実施形態において、99モル%超の加水分解等の平均加水分解の程度を有することが好ましい。
【0024】
また、1つ以上の実施形態において、塩素化促進剤(例えば、部分的に加水分解されたポリ酢酸ビニル)は、99.5モル%未満の加水分解、他の実施形態において、99モル%未満の加水分解、他の実施形態において、98モル%未満の加水分解、他の実施形態において、95モル%未満の加水分解、他の実施形態において、90モル%未満の加水分解、他の実施形態において、85モル%未満の加水分解、他の実施形態において、80モル%未満の加水分解、及び、他の実施形態において、75モル%未満の加水分解の平均加水分解の程度を有することが好ましい。
【0025】
したがって、1つ以上の実施形態において、塩素化促進剤(例えば、部分的に加水分解されたポリ酢酸ビニル)は、加水分解性基等がある場合において、約60モル%〜約99.5モル%の範囲内の加水分解の程度、他の実施形態において、約70モル%〜約98モル%の範囲内の加水分解の程度、及び、他の実施形態において、約70モル%〜約80モル%の範囲内の加水分解の平均加水分解の程度を有することが好ましい。
【0026】
また、1つ以上の実施形態において、塩素化促進剤(例えば、ヒドロキシプロピルメチルセルロース)は、約3〜約15重量%の範囲内、及び、他の実施形態において、約5〜約12重量%の範囲内のヒドロキシプロポキシル含量を有することが好ましい。
また、1つ以上の実施形態において、塩素化促進剤(例えば、ヒドロキシプロピルメチルセルロース)は、約15〜約35重量%の範囲内、及び、他の実施形態において、約18〜約30重量%の範囲内のメトキシル含量を有することが好ましい。
【0027】
3.塩素化促進剤の量
PVC粒子に会合した塩素化促進剤(反応促進剤)の量は、PVC粒子の重量部に対する塩素化促進剤の重量部に基づいて、定量的に配合することができる。
すなわち、1つ以上の実施形態において、本発明の実施に従えば、PVC粒子に会合した塩素化促進剤の量は、百万重量部のPVC粒子あたり(PVC粒子の重量に対する重量ppm)、少なくとも50重量部、他の実施形態において、少なくとも500重量部、他の実施形態において、少なくとも750重量部である。
【0028】
また、他の実施形態において、少なくとも1,000重量ppm、及び、他の実施形態において、少なくとも1,250重量ppmとなる塩素化促進剤の配合量である。
一方、これらの実施形態、又は、他の実施形態において、本発明の実施に従えば、PVC粒子に会合した塩素化促進剤(反応促進剤)の量は、PVC粒子の重量に対して、多くとも10,000重量ppm、他の実施形態において、多くとも7,500重量ppm、他の実施形態において、多くとも5,000重量ppm、及び、他の実施形態において、多くとも2,500重量ppmである。
【0029】
したがって、1つ以上の実施形態において、本発明の実施に従えば、PVC粒子に会合した塩素化促進剤(反応促進剤)の量は、PVC粒子の重量に対して、約50〜約10,000重量ppmの範囲内、他の実施形態において、約500〜約7,500重量ppmの範囲内、及び、他の実施形態において、約750〜約5,000重量ppmの範囲内の値であることがそれぞれ好ましい。
【0030】
4.PVC合成
PVC粒子の合成の説明に戻ると、開始剤30の導入によって開始されるVCMの重合は、懸濁重合によって進行し、VCM24と、水26及び懸濁安定剤28とを合わせることによって、VCMは、水性媒体での不連続相(例えば、液滴)として懸濁する。
この重合混合物22は、典型的に、機械的エネルギー(例えば、撹拌)を導入することによって、懸濁液で維持される。
【0031】
また、1つ以上の実施形態において、懸濁安定剤28は、当該技術分野で、PVC粒子懸濁の形成において、従来から使用されてきた化合物を含み、及び、それ故に、水溶性ポリマー及び不溶性無機粉体を含むが、これらに限定されない。
例となる水溶性ポリマーとして、ポリ(ビニルアルコール)、ヒドロキシル−プロピルセルロース、ナトリウムポリ(スチレンスルホネート)、及び、アクリル酸−アクリル酸エステルコポリマーのナトリウム塩を含む。例となる無機粉体は、タルク、ハイドロキシアパタイト、亜硫酸バリウム、カオリン、炭酸マグネシウム、水酸化マグネシウム、リン酸カルシウム、及び、水酸化アルミニウムの少なくとも一つを含むことが好ましい。
【0032】
また、1つ以上の実施形態において、水26に懸濁したVCM24を含む重合混合物22は、少なくとも0.9:1、他の実施形態において、少なくとも2:1、他の実施形態において、少なくとも3:1、及び、他の実施形態において、少なくとも4:1のVCMに対する水の重量比によって特徴づけられる。
【0033】
これらの実施形態、又は、他の実施形態において、懸濁液は、多くとも10:1、他の実施形態において、多くとも9:1、及び、他の実施形態において、多くとも8:1のVCMに対する水の重量比によって特徴づけることができる。
したがって、1つ以上の実施形態において、懸濁液は、約0.9:1〜約10:1の範囲内、他の実施形態において、約2:1〜約9:1の範囲内、及び、他の実施形態において、約3:1〜約8:1の範囲内のVCMに対する水の重量比とすることが、それぞれ好ましい。
【0034】
また、1つ以上の実施形態において、重合混合物22に含まれる懸濁安定剤28の量は、VCM液滴の重量部に対する安定剤の重量部として、定量し得る。
すなわち、1つ以上の実施形態において、重合混合物22に含まれる安定剤の量は、百万重量部のVCM液滴あたり(VCM液滴の重量に対する重量ppm)、少なくとも10重量ppm、他の実施形態において、少なくとも50重量ppm、他の実施形態において、少なくとも100重量ppm、及び、他の実施形態において、少なくとも500重量ppmとなる安定剤であることがそれぞれ好ましい。
一方、これらの実施形態、又は、他の実施形態において、重合混合物22に含まれる安定剤の量は、VCM液滴の重量に対して、多くとも1,000重量ppm、他の実施形態において、多くとも750重量ppm、他の実施形態において、多くとも500重量ppm、及び、他の実施形態において、 多くとも400重量ppmであることが好ましい。
したがって、1つ以上の実施形態において、重合混合物22に含まれる安定剤の量は、VCM液滴の重量に対して、約10〜約1,000重量ppmの範囲内、他の実施形態において、約50〜約750重量ppmの範囲内、及び、他の実施形態において、約100〜約500重量ppmの範囲内の値であることが、それぞれ好ましい。
【0035】
また、重合混合物22は、PVC粒子の合成を行うための従来の容器で調製したり、製造したりすることができる。
例えば、重合混合物22は、連続撹拌タンク反応器内で調製し得る。
また、1つ以上の実施形態において、反応器はコンデンサーを備え得る。1つ以上の実施形態において、VCMの重合は、バッチ式重合技術を使用して行われる。
【0036】
また、1つ以上の実施形態において、有用な開始剤は、VCM液滴に溶解するラジカル開始剤を含む。
好適な開始剤としては、ジ−イソブチリルペルオキシド、1,3−ジ(2−ネオデカノイルペルオキシイソプロピル)ベンゼン、アルファクミルペルオキシネオデカノエート、1,1,3,3−テトラメチルブチル−ペルオキシネオデカノエート、sec−ブチルペルオキシジカルボネート、ジ−2−エチルヘキシルペルオキシジカルボネート、ジーエチルペルオキシジカルボネート、ビス(4−tert−ブチルシクロヘキシル)ペルオキシジカルボネート、ジセチルペルオキシジカルボネート、ジミリスチルペルオキシジカルボネート、tert−ブチルペルオキシネオデカノエート、tert−ブチルペルオキシネオヘプタノエート、ジラウロリルペルオキシド、及び、アゾビスイソブチロニトリル(AIBN)の少なくとも一つであるが、これらに限定されるものでない。
【0037】
また、上記で示したように、一旦、開始剤30が導入されて、活性重合混合物32が形成されると、VCMの重合が起こる。当該技術分野で公知のように、懸濁安定剤は、重合の初期段階(例えば、VCMの50%転化まで)に添加することができる。
同様に、機械的エネルギーの導入は、典型的に、攪拌の形態で、重合工程25の間は継続される。
【0038】
また、VCMの重合は、所望の転化が達成されるまで進行させることでき、その時点で、停止剤34の導入によって、VCMの重合は、停止又は終了(例えば、短く停止)する。
ここで、有用な停止剤は、過酸化物と反応して、安定な、又は、非フリーラジカルの部分を形成するフリーラジカルスカベンジャー又は化合物などのフリーラジカルトラップを少なくなくとも一つ含む。
【0039】
また、1つ以上の実施形態において、重合は、利用可能なVCMの75%の転化、他の実施形態において、80%の転化、他の実施形態において、85%の転化、及び、他の実施形態において、90%の転化の後に停止させることが好ましい。
活性重合混合物32の停止によって、PVC粒子、未反応VCM、及び、安定剤を含むPVC懸濁液36を生成することになる。
【0040】
また、1つ以上の実施形態において、懸濁液36は、少なくとも1:1、他の実施形態において、少なくとも2:1、他の実施形態において、少なくとも3:1、及び、他の実施形態において、少なくとも4:1のポリマーに対する水の重量比によって特徴づけられる。
一方、これらの実施形態、又は、他の実施形態において、PVC粒子の水性懸濁液は、多くとも10:1、他の実施形態において、多くとも9:1、及び、他の実施形態において、多くとも8:1のポリマーに対する水の重量比を有する。
したがって、1つ以上の実施形態において、PVC粒子の水性懸濁液は、約1:1〜約10:1の範囲内、他の実施形態において、約2:1〜約9:1の範囲内、及び、他の実施形態において、約3:1〜約8:1の範囲内のポリマーに対する水の重量比を有することが、それぞれ好ましい。
【0041】
また、1つ以上の実施形態において、懸濁液36内のPVC粒子は、小さくとも30μm超、他の実施形態において、50μm超、他の実施形態において、70μm超、他の実施形態において、90μm超、他の実施形態において、110μm超、及び、他の実施形態において、130μm超の平均粒径としてのメジアン径(粒径中央値、D50)によって特徴づけられる。
一方、これらの実施形態、又は、他の実施形態において、懸濁液36内のPVC粒子は、大きくとも900μm未満、他の実施形態において、750μm未満、及び、他の実施形態において、500μm未満の平均粒径としてのメジアン径によって特徴づけられる。
したがって、1つ以上の実施形態において、懸濁液36内のPVC粒子は、約30〜約900μmの範囲内、他の実施形態において、約50〜約750μmの範囲内、他の実施形態において、約70〜約500μmの範囲内、他の実施形態において、約90〜約500μmの範囲内、及び、他の実施形態において、約110〜約500μmの範囲内の値となる平均粒径としてのメジアン径を有することが好ましい。
なお、当業者であれば、PVCの粒径(平均粒径としてのメジアン径)は、レーザー回折分析によって測定し、決定することができる。
【0042】
また、PVC懸濁液36は、任意で、重合の停止後に、1つ以上の媒介容器に移し得る。例えば、PVC懸濁液36は、ブローダウンタンク、又は、カラム供給タンクに移し得る。
【0043】
また、媒介容器への移動の有無にかかわらず、PVC懸濁液36を、次に、処理をして、VCM分離工程27においてPVC懸濁液36からVCM(すなわち、未反応のVCM)を分離し得る。
この工程は、ストリッピングカラムなどの分離カラムの使用を含み、実質的にすべてのVCMが、懸濁液から除去される。
【0044】
回収したVCMは、重合工程に戻されるか、又は、再生又は廃棄することができる。そして、分離工程27の結果として、精製したPVC懸濁液38(別名、浄化VCM懸濁)が得られる。
すなわち、1つ以上の実施形態において、浄化VCM懸濁液は、PVC粒子の重量に対して、33ppm未満のVCM、他の実施形態において、15ppm未満のVCM、他の実施形態において、10ppm未満のVCM、及び、他の実施形態において、8ppm未満のVCMを含む。
また、1つ以上の実施形態において、精製したPVC懸濁液38は、実質的にVCMを含んでおらず、懸濁液及び/又は本発明の実施に関して相当の影響を与えない量以下のVCMを含む。
【0045】
浄化VCM懸濁液38は、次いで、所定の分離処理を実施して、水からPVC粒子を分離し得る。
例えば、1つ以上の実施形態において、浄化VCM懸濁液38は、脱水工程29において脱水をして、脱水PVC粒子40を製造し得る。
また、当業者であれば、脱水が、水性媒体内で懸濁した固形分を分離するために使用される様々な技術を含み得ることを理解するだろう。例えば、これらの方法は、PVC懸濁液38を遠心分離する工程を含み得る。
【0046】
また、1つ以上の実施形態において、脱水PVC粒子40、別名、PVC湿潤ケーキ40は、約20〜約30重量%の範囲内の水、他の実施形態において、約22〜約28重量%の範囲内の水、及び、他の実施形態において、約23〜約26重量%の範囲内の水分によって特徴づけられる。
【0047】
一旦、脱水PVC粒子40が提供されれば、次に、これらの粒子を、乾燥工程31で乾燥して、乾燥PVC粒子42を製造する。
PVC粒子を乾燥するための従来技術は周知であり、かつ、様々な技術を本発明の実施において使用することができる。
例えば、1つ以上の実施形態において、湿潤ケーキの乾燥は、気流乾燥機、多段階気流乾燥機、流動層乾燥機、気流/流動層乾燥機の組み合わせ、又は、回転式乾燥機で実施することができる。
【0048】
次いで、これらの乾燥PVC粒子42を、貯蔵及び/又は輸送することができる。
本発明の実施において、乾燥PVC粒子42を、PVC粒子の塩素化を行う場所まで輸送することができる。
【0049】
5.反応促進剤の導入
上記で示唆したように、PVC製造プロセスの1つ以上の段階で、塩素化促進剤を、PVC粒子と会合させることができる。
【0050】
すなわち、活性重合混合物32に対して、塩素化促進剤50が導入される数々の実施形態において、塩素化促進剤50は、重合が行われている容器に直接に添加し得る。
1つ以上の実施形態において、VCMの少なくとも一部が重合した後に(すなわち、開始剤を導入した後に)、塩素化促進剤を導入する。したがって、活性重合混合物に対して塩素化促進剤を加える1つ以上の実施形態において、相当量のVCMが転化された後に、この添加を行う。
【0051】
なお、当業者であれば、本明細書において塩素化促進剤として使用している化合物などの特定の構成要素を添加することが、重合混合物、又は、VCMの重合に相当の影響を及ぼし、及び、それにより、結果として得られるPVC粒子、及び/又は、懸濁液の特性が変化することを理解するだろう。
【0052】
したがって、1つ以上の実施形態において、活性重合混合物に対して添加した場合では、結果として得られるPVC粒子、及び/又は、懸濁液に関して反応促進剤が相当の影響を及ぼすと思しき時点の後に、塩素化促進剤が加えられる。すなわち、活性重合混合物にも懸濁液にも添加することができる。
例えば、塩素化促進剤は、50%、他の実施形態において、60%、他の実施形態において、70%、及び、他の実施形態において、80%のVCMがPVCへと転化又は重合した後に添加し得る。重合混合物は、反応促進剤の添加中又は添加後に撹拌を受け得る。
【0053】
また、重合工程25における最後の停止工程の後に、得られたPVC懸濁液36に対して、塩素化促進剤50が加えられる数々の実施形態において、塩素化促進剤50は、重合と停止が行われていた容器に直接に添加し得るものであって、又は、他の実施形態において、塩素化促進剤50は、ブローダウンタンク又はカラム供給タンクを含む上記した媒介容器の1つ以上などの下流側の容器に添加される。懸濁液は、反応促進剤の添加中又は添加後に撹拌を受け得る。
【0054】
また、VCM分離工程27の後に、浄化VCM 懸濁液38に対して塩素化促進剤50が加えられる数々の実施形態において、塩素化促進剤50は、脱水工程29に先行して、浄化VCM懸濁液38を貯蔵するために使用し得る混合タンク又は貯蔵タンクの1つ以上などの下流側の容器に添加され得る。そして、懸濁液は、反応促進剤の添加中又は添加後に撹拌を受け得る。
【0055】
また、脱水工程29の間に、PVC粒子に対して塩素化促進剤50が加えられる数々の実施形態において、塩素化促進剤50は、遠心分離機に対して直接に添加し得る。
また、所定粒子を脱水するために複数のサイクルが採用されている場合には、塩素化促進剤50は、サイクルの間においても導入し得る。
さらにまた、脱水PVC粒子40に対して塩素化促進剤50が加えられる数々の実施形態において、塩素化促進剤50は、脱水工程を終えたばかりの脱水PVC粒子に対しても、直接に導入し得る。
【0056】
そして、反応促進剤が液体の形態である1つ以上の実施形態において、反応促進剤は、噴霧することによって、湿潤ケーキPVCに対して導入し得る。
他の技術は、スクリュー式フィーダー又は振動フィーダーなどの幾つかの混合手段を利用して、湿潤ケーキに対して直接に液体反応促進剤を添加することを含み得る。
【0057】
塩素化促進剤50を、乾燥工程31の間又は後にPVC粒子に対して導入し、かつ、反応促進剤が、液体又は溶液の形態である数々の実施形態において、反応促進剤は、同様に、噴霧することによって、乾燥PVCに対して導入し得る。
【0058】
6.最終的なPVC生成物の特徴付け
上記で示唆したように、塩素化促進剤は、PVC粒子と会合する。いかなる特定の理論にも拘束されることを望むものではないが、塩素化促進剤は、PVC粒子に吸収及び/又は吸着するものと考えられる。
1つ以上の実施形態において、塩素化促進剤は、PVCポリマー又は粒子とは化学的に結合しない(すなわち、化学的に取り込まれない)。1つ以上の実施形態において、塩素化促進剤は、PVC粒子から実質的に抽出可能である。
【0059】
また、1つ以上の実施形態において、塩素化促進剤が会合している乾燥PVC粒子42は、小さくとも30μm超、他の実施形態において、50μm超、他の実施形態において、70μm超、他の実施形態において、90μm超、他の実施形態において、110μm超、及び、他の実施形態において、130μm超の平均粒径としてのメジアン径(粒径中央値、D50)によって特徴づけられる。
一方、これらの実施形態、又は、他の実施形態において、PVC粒子42は、大きくとも900μm未満、他の実施形態において、750μm未満、及び、他の実施形態において、500μm未満のメジアン径によって特徴づけることができる。
したがって、1つ以上の実施形態において、PVC粒子42は、約30〜約900μmの範囲内、他の実施形態において、約50〜約750μmの範囲内、他の実施形態において、約70〜約500μmの範囲内、他の実施形態において、約90〜約500μmの範囲内、及び、他の実施形態において、約110〜約500μmの範囲内のメジアン径によって特徴づけられる。
なお、当業者であれば、PVCの平均粒径(メジアン径)は、レーザー回折分析によって、測定し、決定することができる。
【0060】
また、1つ以上の実施形態において、塩素化促進剤が会合している乾燥PVC粒子42は、ASTM D 3367−75に準拠して測定した多孔性を示す値(単位重量当たりの吸着量)によって、少なくとも0.18cc/g超の多孔性を示すことが好ましく、他の実施形態において、0.19cc/g超、及び、他の実施形態において、0.20cc/g超の多孔性を示す値によって、特徴づけられる。
一方、これらの実施形態、又は、他の実施形態において、PVC粒子42は、かかる多孔性につき、多くとも0.48cc/g未満であることが好ましく、他の実施形態においては、0.46cc/g未満、他の実施形態において、0.44cc/g未満、他の実施形態において、0.42cc/g未満、他の実施形態において、0.40cc/g未満、他の実施形態において、0.38cc/g未満、及び、他の実施形態において、0.36cc/g未満の多孔性を示す値によって特徴づけられる。
したがって、1つ以上の実施形態において、PVC粒子42の多孔性としては、約0.18〜約0.48cc/gの範囲内であることが好ましく、他の実施形態において、約0.19〜約0.46cc/gの範囲内、及び、他の実施形態において、約0.20〜約0.44cc/gの範囲内の多孔性を示す値によって特徴づけられる。
【0061】
また、1つ以上の実施形態において、塩素化促進剤が会合している乾燥PVC粒子42は、ASTM D 1243−79(1984)によって測定した、少なくとも0.46dl/g超の固有粘度、他の実施形態において、0.50dl/g超の固有粘度、及び、他の実施形態において、0.55dl/g超の固有粘度によって特徴づけられる。
一方、これらの実施形態、又は、他の実施形態において、PVC粒子42は、多くとも1.55dl/g未満、他の実施形態において、1.40dl/g未満、及び、他の実施形態において、1.15dl/g未満の固有粘度によって特徴づけられる。
したがって、1つ以上の実施形態において、PVC粒子42は、約0.46〜約1.55dl/gの範囲内の固有粘度、他の実施形態において、約0.50〜約1.40dl/gの範囲内の固有粘度、及び、他の実施形態において、約0.55〜約1.15dl/gの範囲内の固有粘度を有することが好ましい。
【0062】
7.塩素化PVC粒子
上記で示したように、本発明の実施によって製造されたPVC粒子は塩素化することができる。
そして、予期せぬことに、本発明の実施形態にしたがって、塩素化促進剤が会合されたPVC粒子を提供することによって、塩素化率が、従来のPVC粒子よりも改善されることが見出された
【0063】
したがって、本発明のPVC粒子を塩素化する方法としては、1つ以上の本発明の実施形態には影響を与えない。
さらに、特定の実施形態において、本明細書の一部を構成するものとしてその内容を援用する米国特許第4412898号に開示された技術などの公知の塩素化技術を利用することができる。
【0064】
また、1つ以上の実施形態において、本発明のPVC粒子の塩素化は、フリーラジカル塩素化など従来技術を使用することによって進行し得る。
例えば、1つ以上の実施形態において、塩素などの塩素化剤を水性媒体に分散させることができ、その中にPVC粒子を同様に分散させる。塩素化剤、又は、その誘導体が、吸収又は吸着のいずれかによって、PVC粒子と会合しているものと考えられる。
PVCと塩素化剤又はその誘導体との間の反応は、化学的、光化学的、又は、熱的開始剤などの開始剤の導入によって開始される。
例えば、UV光は、塩素をフリーラジカル塩素へと分解し、その後、PVCと反応して、塩素化PVCを生成するものと考えられている。
【0065】
また、1つ以上の実施形態において、本発明の利点は、概ね同様のPVC粒子の間での塩素化率の増加率に基づいて定量することができる。
本発明の1つ以上の実施形態によると、本発明の実施は、概ね同様のPVC粒子の間で少なくとも5%、他の実施形態において、少なくとも7%、他の実施形態において、少なくとも10%、他の実施形態において、少なくとも12%、他の実施形態において、少なくとも15%、及び、他の実施形態において、少なくとも20%の塩素化率の増加をもたらすことが判明している。
【0066】
また、本明細書の目的のために、概ね同様のPVC粒子の性質は、ASTM D3367−75に準拠して決定した、多くとも0.10cc/g未満、他の実施形態において、0.09cc/g未満、他の実施形態において、少なくとも0.08cc/g未満、他の実施形態において、0.07cc/g未満、及び、他の実施形態において、0.06cc/g未満の多孔性という値の差異を有する数々のPVC粒子を含む。
【0067】
同様に、1つ以上の実施形態において、概ね同様のPVC粒子の性質は、大きくとも50μm未満、他の実施形態において、40μm未満、他の実施形態において、30μm未満、他の実施形態において、25μm未満、及び、他の実施形態において、20μm未満の平均粒径としてのメジアン粒において差異を有する数々のPVC粒子を含む。
また、1つ以上の実施形態において、概ね同様の粒子の性質は、多孔性及びメジアン粒の双方についての前出の差異を具備した数々のPVC粒子を含む。
【0068】
本発明の実施を実証するために、以下の実施例が調製され、そして、試験が行われた。しかしながら、これらの実施例は、本発明の範囲を限縮するものと見るべきではない。特許請求の範囲が、発明を定義する役割を担っている。
【実施例】
【0069】
[実施例1(コントロール)]
水性懸濁液において塩化ビニルモノマーを重合して、ポリ塩化ビニル(PVC)粒子を調製した。重合混合物は、重合を開始する前に、重合混合物に対して、約500ppmの加水分解したポリ酢酸ビニル(PVA)(70〜80%の平均加水分解)を、すなわち、安定剤として取り込むことによって調製をした。
重合条件を制御して、171μmのメジアン径、0.291cc/gの多孔性を示す値、及び、0.945dl/gの固有粘度を特徴とするポリ塩化ビニル粒子が製造できるようにした。
次いで、停止剤を重合反応器に加えて重合を停止した。
次いで、懸濁液を遠心分離することによって粒子を脱水して、PVC粒子の湿潤ケーキを製造し、及び、次に、湿潤ケーキを乾燥して、乾燥PVC粒子を製造した。
この実験セクションの目的のために、ASTM D3367−75と同等の技術を用いて多孔性を決定し、また、ASTM D1243−79(1984)と同等の技術を用いて固有粘度を決定し、そして、双方の方法に変更を加えて技術的効率を獲得させた。
【0070】
すなわち、上記で調製した乾燥PVC粒子を、次に、以下の手順によって塩素化して、塩素化PVC(CPVC)を製造した。
30gのPVC粒子及び500gの蒸留水を、1リットルのガラス製光塩素化反応器に充填した。素早く撹拌して、PVC粒子の水性懸濁液を製造した。
次いで、窒素ガスを、熱式質量流量コントローラを使用して、スラリーに対して夜通し散布をして、システムから酸素を除去した。液体の表面から約2インチ下方で、窒素散布をした。次いで、夜通しで窒素散布をした後に、反応器及びその内容物を、それぞれ40℃にまで加熱した。
そして、一旦、温度が安定したら、窒素流を止め、その後、塩素ガスの散布を開始した。かかる塩素ガスは、スラリーに対して、及び、スラリーを介して、10.3〜11.0グラム/時間の速度で散布した。
【0071】
次いで、1時間の塩素ガス散布の後に、UVランプを照射して、PVC粒子の塩素化を開始した。
かかるUVランプは、液体の表面から約4分の1インチ上方に適切に設置されたジャケット形UVランプとした。
450ワットの中圧Ace7825浸漬UVランプで、ランプをしっかり塞いだ。1時間の時間枠に基づいて、UV光が照射される前に、水と塩化ビニル樹脂スラリーを、完全に塩素で飽和させた。
【0072】
次いで、反応器通気孔を苛性溶液へ向けて散布することによって、溶液からの塩素発生を連続的にモニターした。あらゆる所定の時点でのPVC粒子と反応した塩素の量は、供給量から通気孔で回収した塩素の量を控除することによって決定した。
【0073】
手順の他の詳細は、以下の手順を含んでいた。
すなわち、恒温槽から出た調節された水は、反応器及びランプウェルジャケットを通って循環した。したがって、通気ガスは、水冷コンデンサーを介して排出されて、あらゆる取り込んだ液体を反応器に戻すことを補助し、次いで、約7%NaOHの水溶液を含有するガス吸収ビンへと送った。重量増加、そして、次に、反応器からの塩素発生率の連続測定が可能なデジタル式実験用秤に、吸収ビンを置いた。そして、反応器を、アルミ箔とガラス繊維断熱材で包んだ。
【0074】
また、塩素ガス散布流は、約10.5〜約10.8グラム/時間であった。複数の試験から、12.0グラムの塩素が、平均2.86時間、樹脂と反応することを決定した。30.0グラムのPVCと12.0グラムの塩素との反応は、CPVC樹脂において、64.24%の最終塩素含有量を示した。
この実施例1は、コントロールを示しているので、表Iに記載したように、この塩素化率を、100%基準点とした。
【0075】
[実施例2]
実施例1において合成したPVC粒子の試料を、この実施例2で使用した。
すなわち、このPVC粒子の試料に対して、粒子を脱水した後であって、かつ、乾燥をする前に、1,000ppmのさらに加水分解したポリ酢酸ビニル(PVA)(約70〜80%の平均加水分解)を粒子に導入した。すなわち、湿潤ケーキに対してPVAを導入した。
具体的には、湿潤ケーキに対して、所望の付加成分に対する反応促進剤(PVA)の溶液を噴霧した。続いて、PVC湿潤ケーキを乾燥させた。
次に、調製した乾燥PVC粒子を、実施例1に記載したものと同様の手順を用いて塩素化した。単一の試験において、12.0グラムの塩素は、2.20時間、PVC粒子と反応した。よって、実施例2の平均塩素化率は、表Iに示した実施例1の塩素化率の123%であった。
【0076】
[実施例3]
実施例3では、実施例1において合成したPVC粒子の試料を使用した。
このPVC粒子の試料に対して、実施例2に記載の方法で、粒子を脱水した後、かつ、乾燥をする前に、2,000ppmのさらに加水分解したポリ酢酸ビニル(PVA)(約70〜80%の平均加水分解)を粒子に導入し、すなわち、湿潤ケーキに対して導入し、そして、同様にして乾燥した。
この実施例3で調製した乾燥PVC粒子を、次に、実施例1に記載したものと同様の手順を用いて塩素化した。単一の試験において、12.0グラムの塩素は、2.34時間、PVC粒子と反応した。
よって、実施例3の平均塩素化率は、表Iに示した実施例1の塩素化率の118%であった。
【0077】
[実施例4]
実施例4では、実施例1において合成したPVC粒子の試料を使用した。
このPVC粒子の試料に対して、実施例2に記載の方法で、粒子を脱水した後であって、かつ、乾燥をする前に、2,000ppmのヒドロキシプロピルメチルセルロース(HPMC)、5〜12重量%のヒドロキシプロポキシル含量と、18〜29%のメトキシル含量と、を有する、別名、HPMCを粒子に導入し、すなわち、湿潤ケーキに対して導入し、そして、同様にして乾燥した。
この実施例4で調製した乾燥PVC粒子を、次に、実施例1に記載したものと同様の手順を用いて塩素化した。単一の試験において、12.0グラムの塩素は、2.42時間、PVC粒子と反応した。
よって、実施例4の平均塩素化率は、表Iに示した実施例1の塩素化率の115%であった。
【0078】
【表1】
【0079】
表Iのデータは、PVC粒子に対する反応促進剤の添加が、塩素化率に相当の影響を及ぼすことを示している。
特に、PVAについては、湿潤ケーキに対して反応促進剤を1,000ppmと2,000ppmの量で加えた時に効果が認められている。そして、この効果は、HPMCを反応促進剤として使用する場合にも同様に認められる。
【0080】
[実施例5(コントロール)]
実施例5では、水性懸濁液において塩化ビニルモノマーを重合して、ポリ塩化ビニル(PVC)粒子を調製した。重合混合物は、重合を開始する前に、重合混合物に対して、約500ppmの加水分解したポリ酢酸ビニル(約70〜80%の平均加水分解)を取り込むことによって調製した。
そして、重合条件を制御して、172μmのメジアン径、0.284cc/gの多孔性を示す吸着量、及び、0.940dl/gの固有粘度を有するポリ塩化ビニル粒子を製造した。
次いで、停止剤を重合反応器に加えて重合を停止した。
得られた懸濁液を遠心分離することによって粒子を脱水して、PVC粒子の湿潤ケーキを製造し、及び、次に、湿潤ケーキを乾燥して、乾燥PVC粒子を製造した。
【0081】
この実施例5で調製した乾燥PVC粒子は、次に、実施例1に記載の手順と同様の手順を用いて塩素化した。複数の試験から、12.0グラムの塩素が、平均3.82時間、樹脂と反応することを決定した。30.0グラムのPVCと12.0グラムの塩素との反応は、CPVC樹脂において、64.24%の最終塩素含有量を示した。
この実施例5では、コントロールを示しているので、表IIに記載したように、この塩素化率を、100%基準点とした。
【0082】
[実施例6]
実施例6は、約70%の塩化ビニルモノマーが転化した後であって、かつ、停止剤を添加する前に、1,000ppmのさらに加水分解したポリ酢酸ビニル(PVA)(約70〜80%の平均加水分解)を重合反応器に導入した以外は、実施例5に記載の手順と同じ手順を用いてPVC粒子を合成した。
得られた粒子は、同様に、脱水及び乾燥した。結果として得られたPVC粒子は、166μmのメジアン径、0.284cc/gの多孔性、及び、0.932dl/gの固有粘度を有していた。
【0083】
次に、この実施例6で調製した乾燥PVC粒子を、実施例1に記載したものと同様の手順を用いて塩素化した。単一の試験において、12.0グラムの塩素は、2.99時間、樹脂と反応した。よって、実施例6の平均塩素化率は、表IIに示した実施例5の塩素化率の122%であった。
【0084】
[実施例7]
実施例7では、約70%の塩化ビニルモノマーが転化した後であって、かつ、停止剤を添加する前に、1,000ppmのヒドロキシプロピルメチルセルロース(HPMC)(5〜12重量%のヒドロキシプロポキシル含量と18〜29%のメトキシル含量とを有する)を重合反応器に導入した以外は、実施例5に記載の手順と同じ手順を用いてPVC粒子を合成した。
粒子は、同様に、脱水及び乾燥した。結果として得られたPVC粒子は、175μmのメジアン径、0.291cc/gの多孔性を示す吸着量、及び、0.932dl/gの固有粘度を有していた。
【0085】
次に、この実施例7で調製した乾燥PVC粒子を、実施例1に記載したものと同様の手順を用いて塩素化した。単一の試験において、12.0グラムの塩素は、3.09時間、樹脂と反応した。よって、実施例7の平均塩素化率は、表IIに示した実施例5の塩素化率の119%であった。
【0086】
[実施例8]
実施例8では、約70%の塩化ビニルモノマーが転化した後であって、かつ、停止剤を添加する前に、500ppmのヒドロキシプロピルメチルセルロース(HPMC)(5〜12重量%のヒドロキシプロポキシル含量と18〜29%のメトキシル含量とを有する)を重合反応器に導入した以外は、実施例5に記載の手順と同じ手順でPVC粒子を合成した。
得られた粒子は、同様に、脱水及び乾燥した。結果として得られたPVC粒子は、176μmのメジアン径、0.298cc/gの多孔性の示す吸着量、及び、0.941dl/gの固有粘度を有していた。
【0087】
次に、この実施例8で調製した乾燥PVC粒子を、実施例1に記載したものと同様の手順を用いて塩素化した。単一の試験において、12.0グラムの塩素は、3.59時間、樹脂と反応した。
よって、実施例8の平均塩素化率は、表IIに示した実施例30の塩素化率の106%であった。
【0088】
【表2】
【0089】
表IIのデータは、本発明の実施にしたがって反応促進剤を用いることによって塩素化率が増大しており、重合がかなり進行した後にPVC粒子に対して反応促進剤を導入した時でさえも塩素化率が増大したことを実証している。
表Iのデータと同様に、PVA及びHPMCの双方で効果が認められており、及び、500ppmのHPMCを添加しても効果は認められている。
加えて、表IIのデータは、重合がかなり進行した後で、かつ、重合が完了する前に、反応促進剤を添加しても、PVC粒子の性質に対して目立った影響は認められなかった。特に、多孔性を示す吸着量とメジアン径については、統計的に、それぞれに対する影響は認められなかった。
【0090】
[実施例9(コントロール)]
実施例9は、水性懸濁液において塩化ビニルモノマーを重合して、ポリ塩化ビニル(PVC)粒子を調製した。
得られた重合混合物は、重合を開始する前に、重合混合物に対して、約600ppmの加水分解したポリ酢酸ビニル(PVA)(約70〜80%の平均加水分解)を、すなわち、安定剤として取り込むことによって調製をした。
そして、重合条件を制御して、156μmのメジアン径、0.293cc/gの多孔性を示す吸着量、及び、0.916dl/gの固有粘度を有するポリ塩化ビニル粒子が製造できるようにした。
次いで、停止剤を重合反応器に加えて重合を停止した。得られた懸濁液を遠心分離することによって粒子を脱水して、PVC粒子の湿潤ケーキを製造し、及び、次に、湿潤ケーキを乾燥して、乾燥PVC粒子を製造した。
【0091】
この実施例9で調製した乾燥PVC粒子は、次に、実施例1に記載の手順と同様の手順を用いて塩素化した。
この実施例9では、コントロールを示しているので、表IIIに記載したように、この塩素化率を、100%基準点とした。
【0092】
[実施例10]
実施例10は、水性懸濁液において塩化ビニルモノマーを重合して、PVC粒子を調製した。重合混合物は、重合を開始する前に、重合混合物に対して、約1,700ppmの加水分解したポリ酢酸ビニル(PVA)(約70〜80%の平均加水分解)を取り込むことによって調製をした。重合条件は、実施例9に記載したものと違うやり方で、維持をした。
次いで、停止剤を重合反応器に加えて重合を停止した。結果として得られるPVC粒子は、52μmのメジアン径、0.384cc/gの多孔性を示す吸着量、及び、0.904dl/gの固有粘度を有していた。
また、懸濁液を遠心分離することによって粒子を脱水して、PVC粒子の湿潤ケーキを製造し、及び、次に、湿潤ケーキを乾燥して、乾燥PVC粒子を製造した。
【0093】
この実施例10で調製した乾燥PVC粒子は、次に、実施例1に記載の手順と同様の手順を用いて塩素化した。
【0094】
【表3】
【0095】
表IIIのデータから、重合前の反応促進剤の(安定剤の増量分と等しい)添加が、PVC粒子の性質に相当の影響を及ぼすことを実証している。
上記で概説した塩素化手順を使用した場合、比較的小さなPVC粒子が懸濁液から浮き出るため、塩素化を完了できなかった。
また、当業者であれば、塩素化システムが、比較的小さいPVC粒子を塩素化するために操作していたとしても、多孔性及び粒子サイズの著しい違いは、正確な比較を排除してしまうので、コントロールに対する正確な比較ができなかったことを理解するだろう。
実際、当業者であれば、大きな多孔性及び/又は小さな粒径を有する粒子も、本発明の反応促進剤の非存在下でも、迅速に塩素化することを理解するだろう。
【0096】
その他、本明細書で引用した全文献は、本明細書の一部を構成するものとしてその全内容を援用する。本発明の実施形態について多くを説明してきた。それでもなお、本発明の要旨と範囲から逸脱することなく、様々な変更をし得ることが理解される。したがって、他の実施形態は、以下の請求項の範囲内にある。