特許第6724459号(P6724459)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ TDK株式会社の特許一覧

<>
  • 特許6724459-磁気センサ 図000002
  • 特許6724459-磁気センサ 図000003
  • 特許6724459-磁気センサ 図000004
  • 特許6724459-磁気センサ 図000005
  • 特許6724459-磁気センサ 図000006
  • 特許6724459-磁気センサ 図000007
  • 特許6724459-磁気センサ 図000008
  • 特許6724459-磁気センサ 図000009
  • 特許6724459-磁気センサ 図000010
  • 特許6724459-磁気センサ 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6724459
(24)【登録日】2020年6月29日
(45)【発行日】2020年7月15日
(54)【発明の名称】磁気センサ
(51)【国際特許分類】
   G01R 33/09 20060101AFI20200706BHJP
   G01R 33/02 20060101ALI20200706BHJP
   H01L 43/08 20060101ALI20200706BHJP
【FI】
   G01R33/09
   G01R33/02 V
   H01L43/08 Z
【請求項の数】9
【全頁数】12
(21)【出願番号】特願2016-59004(P2016-59004)
(22)【出願日】2016年3月23日
(65)【公開番号】特開2017-173118(P2017-173118A)
(43)【公開日】2017年9月28日
【審査請求日】2018年11月9日
(73)【特許権者】
【識別番号】000003067
【氏名又は名称】TDK株式会社
(74)【代理人】
【識別番号】100115738
【弁理士】
【氏名又は名称】鷲頭 光宏
(74)【代理人】
【識別番号】100121681
【弁理士】
【氏名又は名称】緒方 和文
(74)【代理人】
【識別番号】100130982
【弁理士】
【氏名又は名称】黒瀬 泰之
(72)【発明者】
【氏名】田邊 圭
【審査官】 菅藤 政明
(56)【参考文献】
【文献】 特開2013−210335(JP,A)
【文献】 特開2015−001467(JP,A)
【文献】 国際公開第2009/151023(WO,A1)
【文献】 特開2016−125901(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01R 33/02−33/10
H01L 43/08
(57)【特許請求の範囲】
【請求項1】
第1乃至第4の端子と、
前記第1及び第2の端子間に電気的に接続され、第1の方向に延在する第1の磁気抵抗効果素子と、
前記第3及び第4の端子間に電気的に接続され、前記第1の磁気抵抗効果素子に沿って前記第1の方向に延在する第1の磁性体と、
前記第1又は第2の端子に現れる電位に基づいて、前記第3の端子と前記第4の端子との間に帰還電流を流すフィードバック回路と、を備え、
前記第1の磁気抵抗効果素子は、前記第1の方向と交差する第2の方向における前記第1の磁性体の中心位置に対してオフセットして配置されていることを特徴とする磁気センサ。
【請求項2】
前記第1の磁気抵抗効果素子は、前記第1及び第2の方向と交差する第3の方向から見て、前記第1の磁性体と重ならない位置に配置されていることを特徴とする請求項1に記載の磁気センサ。
【請求項3】
前記第1の磁性体の前記第1の方向における長さは、前記第1の磁気抵抗効果素子の前記第1の方向における長さ以上であることを特徴とする請求項1又は2に記載の磁気センサ。
【請求項4】
第5の端子と、
前記第2及び第5の端子間に電気的に接続され、所定の方向に延在する第2の磁気抵抗効果素子と、
前記第3及び第4の端子間に電気的に接続され、前記第2の磁気抵抗効果素子に沿って前記所定の方向に延在する第2の磁性体と、をさらに備え、
前記第2の磁気抵抗効果素子は、前記所定の方向と交差する方向における前記第2の磁性体の中心位置に対してオフセットして配置されていることを特徴とする請求項1乃至3のいずれか一項に記載の磁気センサ。
【請求項5】
前記第1の磁気抵抗効果素子はセンサチップの第1の配線層に形成され、前記第1の磁性体は前記センサチップの前記第1の配線層とは異なる第2の配線層に形成されていることを特徴とする請求項1乃至4のいずれか一項に記載の磁気センサ。
【請求項6】
前記第1の磁性体は、前記第2の配線層に固定された磁性材料からなるブロック体であることを特徴とする請求項1乃至5のいずれか一項に記載の磁気センサ。
【請求項7】
前記第1の磁性体は、前記第2の配線層に形成された磁性材料からなる薄膜であることを特徴とする請求項1乃至5のいずれか一項に記載の磁気センサ。
【請求項8】
前記第1の磁性体は、軟磁性材料からなることを特徴とする請求項1乃至7のいずれか一項に記載の磁気センサ。
【請求項9】
磁気抵抗効果素子と、
検出すべき磁束を集め、前記磁気抵抗効果素子の磁化固定方向と平行な方向に前記磁束を誘導する磁性体と、
前記磁気抵抗効果素子の抵抗値に応じて前記磁性体に帰還電流を流すフィードバック回路と、を備えることを特徴とする磁気センサ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は磁気センサに関し、特に、クローズドループ制御に適した磁気センサに関する。
【背景技術】
【0002】
人体などから発せられる微弱な磁界を検出する磁気センサは、地磁気などの環境磁界の影響を強く受ける。このため、この種の装置においては、環境磁界の影響をキャンセルすることが必須となる。
【0003】
特許文献1に記載された磁気センサは、センサチップの表面にキャンセルコイル、磁気抵抗効果素子及び磁性体をこの順に積層した構成を有しており、検出すべき磁界によって生じる磁束を磁気抵抗効果素子に誘導するとともに、磁気抵抗効果素子の抵抗値の変化に応じてキャンセルコイルに電流を流すことによってクローズドループ制御を実現している。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2015−219061号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1に記載された磁気センサは、キャンセルコイル、磁気抵抗効果素子及び磁性体が1つのセンサチップに集積されていることから、全体のサイズが非常に小型であるという優れた特徴を有している。しかしながら、近年、磁気センサにはよりいっそうの小型化及び低コスト化が求められている。
【0006】
したがって、本発明は、クローズドループ制御に適した磁気センサをよりいっそう小型化及び低コスト化することを目的とする。
【課題を解決するための手段】
【0007】
本発明による磁気センサは、第1乃至第4の端子と、前記第1及び第2の端子間に電気的に接続され、第1の方向に延在する第1の磁気抵抗効果素子と、前記第3及び第4の端子間に電気的に接続され、前記第1の磁気抵抗効果素子に沿って前記第1の方向に延在する第1の磁性体とを備え、前記第1の磁気抵抗効果素子は、前記第1の方向と交差する第2の方向における前記第1の磁性体の中心位置に対してオフセットして配置されていることを特徴とする。
【0008】
本発明によれば、検出すべき磁束が第1の磁性体によって集められるとともに、第1の磁気抵抗効果素子の抵抗値に応じて第1の磁性体に電流を流すことにより、クローズドループ制御を実現することができる。つまり、第1の磁性体は、集磁機能とキャンセルコイルの機能を併せ持っていることから、必要な回路素子数を削減することができ、小型化及び低コスト化を実現することができる。実際にクローズドループ制御を行うためには、第1又は第2の端子に現れる電位に基づいて、第3の端子と第4の端子との間に帰還電流を流すフィードバック回路を付加すればよい。ここで、第1の磁性体は、軟磁性材料からなるものであることが好ましい。
【0009】
本発明において、前記第1の磁気抵抗効果素子は、前記第1及び第2の方向と交差する第3の方向から見て、前記第1の磁性体と重ならない位置に配置されていることが好ましい。これによれば、第1の磁性体によって第2の方向に曲げられた磁束成分の多くが第1の磁気抵抗効果素子に与えられることから、第1の磁気抵抗効果素子の固定磁化方向が第2の方向である場合により高い検出感度を得ることが可能となる。
【0010】
本発明において、前記第1の磁性体の前記第1の方向における長さは、前記第1の磁気抵抗効果素子の前記第1の方向における長さ以上であることが好ましい。これによれば、第1の磁気抵抗効果素子のより長い領域に亘って第2の方向の磁界が得られることから、第1の磁気抵抗効果素子の固定磁化方向が第2の方向である場合により高い検出感度を得ることが可能となる。
【0011】
本発明による磁気センサは、第5の端子と、前記第2及び第5の端子間に電気的に接続され、所定の方向に延在する第2の磁気抵抗効果素子と、前記第3及び第4の端子間に電気的に接続され、前記第2の磁気抵抗効果素子に沿って前記所定の方向に延在する第2の磁性体とをさらに備え、前記第2の磁気抵抗効果素子は、前記所定の方向と交差する方向における前記第2の磁性体の中心位置に対してオフセットして配置されていることが好ましい。これによれば、2つの磁気抵抗効果素子によって差動信号が得られることから、検出感度をより高めることが可能となる。
【0012】
本発明において、前記第1の磁気抵抗効果素子はセンサチップの第1の配線層に形成され、前記第1の磁性体は前記センサチップの前記第1の配線層とは異なる第2の配線層に形成されていることが好ましい。これによれば、2層の配線層によって集磁、磁気検出及び磁界のキャンセルという3つの機能を実現することができる。この場合、前記第1の磁性体は、前記第2の配線層に固定された磁性材料からなるブロック体であっても構わないし、前記第2の配線層に形成された磁性材料からなる薄膜であっても構わない。
【発明の効果】
【0013】
本発明によれば、クローズドループ制御に適した磁気センサのよりいっそうの小型化及び低コスト化を実現することが可能となる。
【図面の簡単な説明】
【0014】
図1図1は、本発明の第1の実施形態による磁気センサ10Aの外観を示す略斜視図である。
図2図2は、磁気センサ10Aの上面図である。
図3図3は、磁気センサ10Aの側面図である。
図4図4は、第1〜第4の端子41〜44に接続されるフィードバック回路60の回路図である。
図5図5は、磁束φ1及びφ2の向き説明するための模式図である。
図6図6は、磁気抵抗効果素子MR1と磁性体31のy方向における位置関係をより詳細に説明するための模式的な断面図である。
図7図7は、本発明の第2の実施形態による磁気センサ10Bの構成を示す上面図である。
図8図8は、磁束φ1〜φ3の向きを説明するための模式図である。
図9図9は、第2の実施形態の変形例による磁気センサ10Bの構成を示す上面図である。
図10図10は、第2の実施形態の別の変形例による磁気センサ10Bの構成を示す上面図である。
【発明を実施するための形態】
【0015】
以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。
【0016】
<第1の実施形態>
図1は、本発明の第1の実施形態による磁気センサ10Aの外観を示す略斜視図である。また、図2は磁気センサ10Aの上面図であり、図3は磁気センサ10Aの側面図である。
【0017】
図1図3に示すように、本実施形態による磁気センサ10Aは、センサチップ20と、センサチップ20に固定された第1の磁性体31を備えている。
【0018】
センサチップ20は、略直方体形状を有する基板21及びその表面を覆う絶縁膜22を備える。基板21の表面は第1の配線層L1を構成し、絶縁膜22の表面は第2の配線層L2を構成する。本実施形態においては、センサチップの配線層数が2層である。第1の配線層L1はxy面からなり、第1の方向であるx方向に延在する第1の磁気抵抗効果素子MR1が形成されている。第2の配線層L2もxy面からなり、第1〜第4の端子41〜44と、第1〜第4の配線51〜54が形成されているとともに、磁性体31が固定されている。センサチップ20の作製方法としては、集合基板に多数のセンサチップ20を同時に形成し、これらを分離することによって多数個取りする方法が一般的であるが、本発明がこれに限定されるものではなく、個々のセンサチップ20を別個に作製しても構わない。
【0019】
磁気抵抗効果素子MR1は、磁界の向き及び強度に応じて電気抵抗が変化する素子であり、その磁化固定方向は、図2及び図3の矢印Aが示す第2の方向(y方向)である。磁気抵抗効果素子MR1のx方向における一端は第1の配線51を介して第1の端子41に電気的に接続され、x方向における他端は第2の配線52を介して第2の端子42に電気的に接続される。尚、磁気抵抗効果素子MR1と配線51,52との電気的接続は、絶縁膜22を貫通して設けられた貫通導体58,59を介して行われる。或いは、配線51,52のうち磁気抵抗効果素子MR1と接する部分を第1の配線層L1に形成し、配線51,52のうち第1の配線層L1に形成された部分と第2の配線層L2に形成された部分を貫通導体58,59によって接続しても構わない。かかる構成により、磁気抵抗効果素子MR1は、第1の端子41と第2の端子42との間に電気的に接続されることになる。
【0020】
磁性体31は、透磁率が高く且つ電気抵抗の低い軟磁性材料からなるブロック体である。磁性体31の材料については特に限定されないが、透磁率が100以上、抵抗値が1MΩ以下の材料を用いることが好ましく、具体的な材料としては、軟鉄、パーマロイ、ニッケル、珪素鋼板、センダスト,アモルファス金属(ナノ結晶軟磁性材)などが挙げられる。磁性体31は、磁気抵抗効果素子MR1に沿ってx方向に延在しているが、両者は平面視で(つまりz方向から見て)重なりを有しておらず、磁性体31に対して磁気抵抗効果素子MR1がy方向にオフセットして配置されている。磁性体31のx方向における一端は第3の配線53を介して第3の端子43に電気的に接続され、x方向における他端は第4の配線54を介して第4の端子44に電気的に接続される。かかる構成により、磁性体31は、第3の端子43と第4の端子44との間に電気的に接続されることになる。
【0021】
磁性体31のx方向における長さL1は、磁気抵抗効果素子MR1のx方向における長さL2以上であり(L1≧L2)、且つ、磁気抵抗効果素子MR1のx方向における全長が磁性体31と隣接している。磁性体31はz方向の磁束を集め、これをy方向に曲げて磁気抵抗効果素子MR1に印加する役割を果たす。そして、磁気抵抗効果素子MR1のx方向における全長に亘って磁性体31を隣接させることにより、磁気抵抗効果素子MR1のより長い領域に亘ってy方向の磁界が得られることになる。
【0022】
図4は、第1〜第4の端子41〜44に接続されるフィードバック回路60の回路図である。
【0023】
図4に示すように、フィードバック回路60は、オペアンプ61と、定電圧源62と、定電流源63と、抵抗64とを備えている。オペアンプ61の非反転入力端子(+)は定電圧源62に接続され、反転入力端子(−)は第2の端子42に接続されている。定電流源63も第2の端子42に接続されている。オペアンプ61の出力端子は、第3の端子43に接続される。また、第1の端子41はグランドに接続され、第4の端子44は抵抗64を介してグランドに接続されている。また、第4の端子44の出力レベルOutは、図示しない検出回路に供給される。かかる構成により、本実施形態による磁気センサ10Aは、フィードバック回路60によってクローズドループ制御が行われる。
【0024】
具体的には、図5に示すように、検出すべき磁束φ1がz方向から与えられると、磁束φ1は磁性体31によって集磁された後、y方向に曲げられて磁束の発生源に戻る。そして、磁性体31のy方向側には磁気抵抗効果素子MR1が配置されていることから、かかる磁束φ1によって磁気抵抗効果素子MR1の抵抗値が変化する(例えば抵抗値が高くなる)。図5に示す例では、磁気抵抗効果素子MR1に対して磁束φ1がyマイナス方向に印加されている。
【0025】
ここで、図4に示すように、第2の端子42には定電流源63が接続されていることから、磁気抵抗効果素子MR1の抵抗値が変化すると、第2の端子42の電位レベルが変化する。例えば、磁気抵抗効果素子MR1の抵抗値が高くなった場合、第2の端子42の電位レベルが高くなる。第2の端子42の電位レベルが変化すると、これに応じてオペアンプ61の出力端子の電位レベルも変化する。例えば、第2の端子42の電位レベルが高くなると、オペアンプ61の出力端子の電位レベルが低下し、第4の端子44から第3の端子43へと帰還電流Iが流れる。
【0026】
磁性体31に帰還電流Iが流れると、いわゆる右ねじの法則によって磁性体31の周囲には磁界が発生する。例えば、第4の端子44から第3の端子43へと帰還電流Iが流れた場合、これにより発生する磁束φ2は図5に示す方向となり、磁気抵抗効果素子MR1が設けられている位置においては、磁束φ2がyプラス方向となる。つまり、磁束φ1と磁束φ2は、互いに打ち消し合うことになる。これにより、検出すべき磁束φ1に起因する磁気抵抗効果素子MR1の抵抗値の変化が元に戻る方向にフィードバックされるため、クローズドループ制御が実現される。実際の検出結果は、第4の端子44の出力レベルOutに基づき、図示しない検出回路によって検出される。
【0027】
このように、本実施形態による磁気センサ10Aは、検出すべき磁束φ1を集磁する磁性体31がキャンセルコイルの役割を兼ねている。このため、集磁用の磁性体とキャンセルコイルをそれぞれ別個に設ける必要がなくなり、必要な素子数が低減される。これにより、磁気センサのよりいっそうの小型化及び低コスト化を実現することが可能となる。
【0028】
例えば、本実施形態においては、第1の配線層L1に磁気抵抗効果素子MR1を配置し、第2の配線層L2に磁性体31を配置することにより、2層の配線層によって磁気センサ10Aを構成することが可能であり、これにより小型化及び低コスト化が実現される。尚、磁気抵抗効果素子MR1と磁性体31を同一の配線層に配置することも可能であり、この場合には、1層の配線層によって磁気センサを構成することができる。
【0029】
ここで、フィードバック回路60を構成する素子の一部又は全部は、センサチップ20に集積しても構わないし、他の基板上に形成しても構わない。例えば、センサチップ20をプリント基板上に搭載する場合、プリント基板にフィードバック回路60を形成し、ボンディングワイヤなどを用いてプリント基板と磁気センサ10Aを接続しても構わない。
【0030】
図6は、磁気抵抗効果素子MR1と磁性体31のy方向における位置関係をより詳細に説明するための模式的な断面図である。
【0031】
図6には、磁気抵抗効果素子MR1の位置として4箇所の位置(a)〜(d)が例示されている。このうち、位置(a)は図1図3を用いて説明したとおりであり、平面視で磁性体31と重ならず、且つ、磁性体31と隣接している位置である。位置(a)においては、磁性体31のy方向における中心位置Bから磁気抵抗効果素子MR1のy方向における中心まで距離が1mm以下である。本発明において、磁気抵抗効果素子MR1は、位置(a)に配置することが最も好ましい。
【0032】
一方、位置(b)は、平面視で磁性体31と重ならないものの、磁性体31からの距離が離れている位置である。位置(b)のように、z方向から見た磁気抵抗効果素子MR1と磁性体31のy方向における距離が離れていると、磁束φ1,φ2が磁気抵抗効果素子MR1に及ぼす影響が小さくなってしまい、検出感度が低下してしまう。この点を考慮すれば、z方向から見た磁気抵抗効果素子MR1と磁性体31のy方向における中心間距離は、上述の通り、1mm以下であることが好ましい。
【0033】
これに対し、位置(c)は、磁性体31のy方向における中心位置Bと一致する位置である。このような位置(c)に磁気抵抗効果素子MR1を配置すると、磁束φ1のy方向成分が磁気抵抗効果素子MR1に全く与えられないことから、磁気センサとして機能しない。したがって、磁気抵抗効果素子MR1をこのような位置(c)に配置することは不適切である。
【0034】
一方、位置(d)は、平面視で磁性体31と重なるものの、磁性体31のy方向における中心位置Bからオフセットされている。この場合は、磁束φ1のy方向成分がある程度磁気抵抗効果素子MR1に与えられることから、磁気センサとして正しく機能する。但し、位置(d)のように、磁気抵抗効果素子MR1がz方向から見て磁性体31と重なりを有していると、磁気抵抗効果素子MR1に与えられる磁束φ1のy方向成分が少なくなるため、位置(a)のように、両者が重ならない位置に磁気抵抗効果素子MR1を配置することが望ましい。
【0035】
<第2の実施形態>
図7は、本発明の第2の実施形態による磁気センサ10Bの構成を示す上面図である。
【0036】
図7に示すように、本実施形態による磁気センサ10Bは、第2の磁気抵抗効果素子MR2、第2の磁性体32及び第5の端子45が追加されている。磁気抵抗効果素子MR2は、第2の端子42と第5の端子45との間に接続されており、磁気抵抗効果素子MR1と同様、x方向に延在している。磁気抵抗効果素子MR2の磁化固定方向は、矢印Aが示すとおり、磁気抵抗効果素子MR1と同じ方向である。
【0037】
磁気抵抗効果素子MR2のx方向における一端は、第5の配線55を介して第2の端子42に電気的に接続され、x方向における他端は第6の配線56を介して第5の端子45に電気的に接続される。かかる構成により、磁気抵抗効果素子MR2は、第2の端子42と第5の端子45との間に電気的に接続されることになる。そして、第1の端子41と第5の端子45との間に電流が流れると、磁気抵抗効果素子MR1と磁気抵抗効果素子MR2に流れる電流の方向は互いに逆方向となる。例えば、第5の端子45から第1の端子41に電流が流れると、磁気抵抗効果素子MR1に流れる電流の方向はxプラス方向となり、磁気抵抗効果素子MR2に流れる電流の方向はxマイナス方向となる。
【0038】
磁性体32は、磁気抵抗効果素子MR2に沿ってx方向に延在しているが、両者は平面視で(つまりz方向から見て)重なりを有しておらず、磁性体32に対して磁気抵抗効果素子MR2がy方向にオフセットして配置されている。そのオフセット方向は磁性体31に対する磁気抵抗効果素子MR1のオフセット方向とは逆である。つまり、磁気抵抗効果素子MR1は磁性体31に対してyマイナス方向にオフセットされているのに対し、磁気抵抗効果素子MR2は磁性体32に対してyプラス方向にオフセットされている。磁性体32のx方向における一端は第4の配線54を介して磁性体31に電気的に接続され、x方向における他端は第7の配線57を介して第4の端子44に電気的に接続される。かかる構成により、磁性体31,32は、第3の端子43と第4の端子44との間に電気的に直列に接続されることになる。
【0039】
図7には、第1〜第5の端子41〜45に接続されるフィードバック回路60についても図示されている。本実施形態においても、オペアンプ61の非反転入力端子(+)は定電圧源62に接続され、反転入力端子(−)は第2の端子42に接続されている。但し、図4に示した定電流源63は用いられず、その代わりに、第5の端子が電源Vccに接続される。
【0040】
このような回路構成により、図8に示すように、検出すべき磁束φ1がz方向から与えられると、磁束φ1は磁性体31,32によって集磁された後、y方向に曲げられて磁束の発生源に戻る。そして、磁性体31のy方向におけるマイナス側には磁気抵抗効果素子MR1が配置され、磁性体32のy方向におけるプラス側には磁気抵抗効果素子MR2が配置されていることから、かかる磁束φ1によって磁気抵抗効果素子MR1,MR2の抵抗値が変化する。図8に示す例では、磁気抵抗効果素子MR1に対して磁束φ1がyマイナス方向に印加され、磁気抵抗効果素子MR2に対して磁束φ1がyプラス方向に印加されている。上述のとおり、磁気抵抗効果素子MR1,MR2の固定磁化方向は互いに同方向であることから、例えば、磁束φ1によって磁気抵抗効果素子MR1の抵抗値が高くなると、磁気抵抗効果素子MR2の抵抗値は低くなる。逆に、磁束φ1によって磁気抵抗効果素子MR1の抵抗値が低くなると、磁気抵抗効果素子MR2の抵抗値は高くなる。つまり、磁気抵抗効果素子MR1,MR2は差動回路を構成することになる。
【0041】
このため、磁気抵抗効果素子MR1と磁気抵抗効果素子MR2の接続点である第2の端子42の電位レベルは、磁束φ1の強度によって変化する。例えば、磁気抵抗効果素子MR1の抵抗値が高くなり、磁気抵抗効果素子MR2の抵抗値が低くなった場合、第2の端子42の電位レベルが高くなる。第2の端子42の電位レベルが変化すると、これに応じてオペアンプ61の出力端子の電位レベルも変化する。例えば、第2の端子42の電位レベルが高くなると、オペアンプ61の出力端子の電位レベルが低下し、第4の端子44から第3の端子43へと帰還電流Iが流れる。
【0042】
本実施形態においては、帰還電流Iが磁性体31,32に流れる。ここで、磁性体31,32は、折り返すように接続されていることから、磁性体31,32に流れる帰還電流Iの方向は互いに逆となる。このため、例えば、第4の端子44から第3の端子43へと帰還電流Iが流れた場合、これにより磁性体31に発生する磁束φ2は図8に示す方向となり、磁気抵抗効果素子MR1が設けられている位置においては、磁束φ2がyプラス方向となる。一方、磁性体32に発生する磁束φ3は図8に示す方向となり、磁気抵抗効果素子MR2が設けられている位置においては、磁束φ3がyマイナス方向となる。つまり、磁束φ1と磁束φ2が互いに打ち消し合うとともに、磁束φ1と磁束φ3が互いに打ち消し合うことになる。これにより、検出すべき磁束φ1に起因する磁気抵抗効果素子MR1,MR2の抵抗値の変化が元に戻る方向にフィードバックされるため、クローズドループ制御が実現される。実際の検出結果は、第4の端子44の出力レベルOutに基づき、図示しない検出回路によって検出される。
【0043】
このように、本実施形態による磁気センサ10Bは、2つの磁気抵抗効果素子MR1,MR2と2つの磁性体31,32を用いていることから、検出すべき磁束φ1に起因する第2の端子42の電位レベルの変化が大きくなる。このため、第1の実施形態による磁気センサ10Aよりも高感度な検出を行うことが可能となる。
【0044】
図9は、第2の実施形態の変形例による磁気センサ10Bの構成を示す上面図である。図9に示す磁気センサ10Bは、磁性体31と磁性体32が一体化されたU字型形状を有している点において、図7に示した磁気センサ10Bと相違している。その他の構成は、図7に示した磁気センサ10Bと同一である。このように、2つの磁気抵抗効果素子MR1,MR2を使用して差動信号を得る場合、これらに対応する磁性体31,32を別部材とする必要はなく、図9に示す変形例のように磁性体31,32を単一の部材によって構成しても構わない。
【0045】
図10は、第2の実施形態の別の変形例による磁気センサ10Bの構成を示す上面図である。図10に示す磁気センサ10Bは、磁気抵抗効果素子MR2及び磁性体32がx方向に延在している点において、図7に示した磁気センサ10Bと相違している。その他の構成は、図7に示した磁気センサ10Bと同一である。このように、2つの磁気抵抗効果素子MR1,MR2を使用して差動信号を得る場合、磁気抵抗効果素子MR1,MR2の延在方向を互いに同一方向とする必要はなく、図10に示す変形例のように互いに直交させても構わない。
【0046】
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
【0047】
例えば、上記の実施形態では、磁性体31,32として磁性材料からなるブロック体を用いているが、本発明がこれに限定されるものではなく、ブロック体の代わりに磁性材料からなる薄膜を用いても構わない。この場合、スパッタリング法などの薄膜工法を用いて磁性体31,32を配線層L2に形成すればよい。
【符号の説明】
【0048】
10A,10B〜10B 磁気センサ
20 センサチップ
21 基板
22 絶縁膜
31 第1の磁性体
32 第2の磁性体
41〜45 端子
51〜57 配線
58,59 貫通導体
60 フィードバック回路
61 オペアンプ
62 定電圧源
63 定電流源
64 抵抗
I 帰還電流
L1 第1の配線層
L2 第2の配線層
MR1 第1の磁気抵抗効果素子
MR2 第2の磁気抵抗効果素子
φ1〜φ3 磁束
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10