(58)【調査した分野】(Int.Cl.,DB名)
タイヤ周方向に1degあたりの各前記凸部の質量のタイヤ周方向での変動量が0.1g/deg以下であることを特徴とする請求項1または2に記載の空気入りタイヤ。
前記凸部は、正規リムに組み込んで正規内圧を充填した場合の無負荷状態の子午断面において、タイヤ最大幅位置におけるタイヤ断面幅からタイヤ幅方向外側に5mm以下の範囲で突出して設けられていることを特徴とする請求項1〜4のいずれか1つに記載の空気入りタイヤ。
車両装着時での車両内外の向きが指定されており、少なくとも車両外側となるタイヤサイド部に前記凸部が形成されていることを特徴とする請求項1〜8のいずれか1つに記載の空気入りタイヤ。
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献1および特許文献2に記載の空気入りタイヤは、突出部や突条や周方向凸部によりタイヤ周方向の均一性が低下する場合がありユニフォミティを良好に保つことができない。
【0007】
本発明は、上記に鑑みてなされたものであって、ユニフォミティを良好に保ちつつ、リフトを低減すると共に空気抵抗を低減することのできる空気入りタイヤを提供することを目的とする。
【課題を解決するための手段】
【0008】
上述した課題を解決し、目的を達成するために、本発明の空気入りタイヤは、タイヤサイド部のタイヤサイド面に沿ってタイヤ周方向およびタイヤ径方向に交差して延在する複数の凸部を備え、前記凸部は、延在方向における中間部が前記タイヤサイド面からの突出高さの最大位置を含み、かつ前記中間部の延在方向の両端側に設けられた各先端部が前記タイヤサイド面からの突出高さの最小位置を含んでおり、タイヤ最大幅位置よりタイヤ径方向内側にのみ、少なくとも前記中間部が配置され、さらに総幅SWと外径ODとの比が、SW/OD≦0.3の関係を満たすことを特徴とする。
【0009】
この空気入りタイヤによれば、車両の走行時に回転移動する凸部が空気を乱流化させて空気入りタイヤの周辺の空気の流れのよどみを改善する。具体的に、空気入りタイヤの回転時の下部では、車両の底部を流れる空気流速を増加することで、下方から上方に向かう空気の流れが低減され、上方への空気の圧力が抑制される。この結果、リフトを抑制することができ、空気入りタイヤの接地性を向上させ、車両の走行性能である操縦安定性能の向上に寄与する。一方、空気入りタイヤの回転時の上部では、乱流境界層が発生し、空気入りタイヤにおける空気の流れが促進される。この結果、通過する空気の広がりが抑えられ、空気入りタイヤの空気抵抗を低減することができる。空気抵抗の低減は、車両の燃費の向上に寄与する。
【0010】
しかも、この空気入りタイヤによれば、凸部は、タイヤ周方向およびタイヤ径方向に交差する延在方向における中間部がタイヤサイド面からの突出高さの最大位置を含み、かつ中間部の延在方向の両端側に設けられた各先端部がタイヤサイド面からの突出高さの最小位置を含んでいるため、先端部において凸部の質量が少なくなる。この結果、凸部の先端部付近においてタイヤサイド面側との急激な質量変化が抑えられるので、タイヤ周方向の均一性が向上するため、ユニフォミティを向上することができる。
【0011】
しかも、この空気入りタイヤによれば、凸部は、突出高さの最大位置を含む中間部がタイヤ最大幅位置よりタイヤ径方向内側にのみ配置されるため、最もタイヤ幅方向に張り出して空気抵抗が大きくなるタイヤ最大幅位置での空気抵抗が低減されるので、空気抵抗をより低減することができる。
【0012】
しかも、本実施形態の空気入りタイヤによれば、総幅SWと外径ODとの比が、SW/OD≦0.3の関係を満たしていることで、一般的な空気入りタイヤと比較して総幅が狭く外径が大きくなるため、走行時における転がり抵抗および空気抵抗を低減することができる。特に、大外径タイヤでは、タイヤ上部のサイド部と空気との相対速度の低下により空気流れが乱流化されず空気抵抗が増加してしまう傾向にあるが、本実施形態の空気入りタイヤによれば、上記総幅SWと外径ODとの比の関係を満たすことに加えて上記凸部を配置することで、タイヤ上部のサイド部の空気流れを乱流化でき、空気抵抗の低減効果を維持できる。
【0013】
従って、この空気入りタイヤによれば、ユニフォミティを良好に保ちつつ、リフトを低減すると共に空気抵抗を低減することができる。
【0014】
本発明の空気入りタイヤでは、前記凸部は、タイヤ最大幅位置よりタイヤ径方向内側に前記中間部および前記先端部が配置されていることを特徴とする。
【0015】
この空気入りタイヤによれば、先端部がタイヤ最大幅位置を超えないため、最もタイヤ幅方向に張り出して空気抵抗が大きくなるタイヤ最大幅位置での空気抵抗が低減されるので、空気抵抗を低減する効果を顕著に得ることができる。
【0016】
本発明の空気入りタイヤでは、タイヤ周方向に1degあたりの各前記凸部の質量のタイヤ周方向での変動量が0.1g/deg以下であることを特徴とする。
【0017】
この空気入りタイヤによれば、凸部を含むタイヤ周方向での質量の変動を規定することでタイヤ周方向の均一性が向上するため、ユニフォミティを向上する効果を顕著に得ることができる。
【0018】
本発明の空気入りタイヤでは、前記凸部は、前記中間部の突出高さが1mm以上10mm以下であることを特徴とする。
【0019】
中間部の突出高さが1mm未満であると、車両の底部を流れる空気流速を増加させたり、乱流境界層を発生させたりする作用が得難くなる。一方、中間部の突出高さが10mmを超えると、凸部に衝突する空気の流れが増加することで空気抵抗が増加する傾向となる。このため、リフトを低減すると共に空気抵抗を低減する効果を顕著に得るうえで、中間部の突出高さを1mm以上10mm以下とすることが好ましい。
【0020】
本発明の空気入りタイヤでは、前記凸部は、正規リムに組み込んで正規内圧を充填した場合の無負荷状態の子午断面において、タイヤ最大幅位置におけるタイヤ断面幅からタイヤ幅方向外側に5mm以下の範囲で突出して設けられていることを特徴とする。
【0021】
タイヤ最大幅位置におけるタイヤ断面幅からタイヤ幅方向外側に5mmの範囲を超えて凸部が設けられると、凸部に衝突する空気の流れが増加することから、凸部が空気抵抗となり易い。従って、凸部のタイヤ最大幅位置におけるタイヤ断面幅からタイヤ幅方向外側への配置範囲を規定することで、凸部に起因する空気抵抗の増加を抑えつつ、凸部による空気の流れのよどみを改善する効果を顕著に得ることができる。
【0022】
本発明の空気入りタイヤでは、前記凸部の表面に溝を形成することを特徴とする。
【0023】
この空気入りタイヤによれば、溝が形成されていることにより、凸部の剛性が低下するため、凸部によりタイヤサイド部が剛構造となることによる乗り心地性の低下を抑えることができる。しかも、溝が形成されていることにより、凸部の質量を低下させるため、凸部によりタイヤサイド部の質量増加によるユニフォミティの低下を抑えることができる。
【0024】
本発明の空気入りタイヤでは、前記凸部の表面に凹部を形成することを特徴とする。
【0025】
この空気入りタイヤによれば、凹部が形成されていることにより、凸部の剛性が低下するため、凸部によりタイヤサイド部が剛構造となることによる乗り心地性の低下を抑えることができる。しかも、凹部が形成されていることにより、凸部の質量が低下するため、凸部によりタイヤサイド部の質量増加によるユニフォミティの低下を抑えることができる。また、凹部および溝が形成されていることで、上記効果をより向上することができる。
【0026】
本発明の空気入りタイヤでは、各前記凸部のタイヤ周方向における間隔が不均一であることを特徴とする。
【0027】
この空気入りタイヤによれば、タイヤサイド部のタイヤサイド面に沿う空気流に対して各凸部のタイヤ周方向の周期性を打ち消すことから、各凸部から発生する音圧が周波数の違いにより互いに分散されたり打ち消されたりするため、騒音を低減することができる。
【0028】
本発明の空気入りタイヤでは、車両装着時での車両内外の向きが指定されており、少なくとも車両外側となるタイヤサイド部に前記凸部が形成されていることを特徴とする。
【0029】
この空気入りタイヤによれば、車両外側のタイヤサイド部は、車両への装着時にタイヤハウスから外側に現れるため、この車両外側のタイヤサイド部に凸部を設けることで、空気の流れを車両外側に押し出すことができるので、リフトを低減すると共に空気抵抗を低減する効果を顕著に得ることができる。
【発明の効果】
【0030】
本発明に係る空気入りタイヤは、ユニフォミティを良好に保ちつつ、リフトを低減すると共に空気抵抗を低減することができる。
【発明を実施するための形態】
【0032】
以下に、本発明の実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、この実施形態の構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。また、この実施形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。
【0033】
図1は、本実施形態に係る空気入りタイヤの子午断面図である。
図2は、本実施形態に係る空気入りタイヤの子午断面全体図である。
【0034】
以下の説明において、タイヤ径方向とは、空気入りタイヤ1の回転軸P(
図2など参照)と直交する方向をいい、タイヤ径方向内側とはタイヤ径方向において回転軸Pに向かう側、タイヤ径方向外側とはタイヤ径方向において回転軸Pから離れる側をいう。また、タイヤ周方向とは、回転軸Pを中心軸とする周り方向をいう。また、タイヤ幅方向とは、回転軸Pと平行な方向をいい、タイヤ幅方向内側とはタイヤ幅方向においてタイヤ赤道面(タイヤ赤道線)CLに向かう側、タイヤ幅方向外側とはタイヤ幅方向においてタイヤ赤道面CLから離れる側をいう。タイヤ赤道面CLとは、空気入りタイヤ1の回転軸Pに直交するとともに、空気入りタイヤ1のタイヤ幅の中心を通る平面である。タイヤ幅は、タイヤ幅方向の外側に位置する部分同士のタイヤ幅方向における幅、つまり、タイヤ幅方向においてタイヤ赤道面CLから最も離れている部分間の距離である。タイヤ赤道線とは、タイヤ赤道面CL上にあって空気入りタイヤ1のタイヤ周方向に沿う線をいう。本実施形態では、タイヤ赤道線にタイヤ赤道面と同じ符号「CL」を付す。
【0035】
空気入りタイヤ1は、主に、乗用車に用いられるもので、
図1に示すように、トレッド部2と、その両側のショルダー部3と、各ショルダー部3から順次連続するサイドウォール部4およびビード部5とを有している。また、この空気入りタイヤ1は、カーカス層6と、ベルト層7と、ベルト補強層8とを備えている。
【0036】
トレッド部2は、ゴム材(トレッドゴム)からなり、空気入りタイヤ1のタイヤ径方向の最も外側で露出し、その表面が空気入りタイヤ1の輪郭となる。トレッド部2の外周表面、つまり、走行時に路面と接触する踏面には、トレッド面21が形成されている。トレッド面21は、タイヤ周方向に沿って延び、タイヤ赤道線CLと平行なストレート主溝である複数(本実施形態では4本)の主溝22が設けられている。そして、トレッド面21は、これら複数の主溝22により、タイヤ周方向に沿って延び、タイヤ赤道線CLと平行なリブ状の陸部23が複数形成されている。また、図には明示しないが、トレッド面21は、各陸部23において、主溝22に交差するラグ溝が設けられている。陸部23は、ラグ溝によってタイヤ周方向で複数に分割されている。また、ラグ溝は、トレッド部2のタイヤ幅方向最外側でタイヤ幅方向外側に開口して形成されている。なお、ラグ溝は、主溝22に連通している形態、または主溝22に連通していない形態の何れであってもよい。
【0037】
ショルダー部3は、トレッド部2のタイヤ幅方向両外側の部位である。また、サイドウォール部4は、空気入りタイヤ1におけるタイヤ幅方向の最も外側に露出したものである。また、ビード部5は、ビードコア51とビードフィラー52とを有する。ビードコア51は、スチールワイヤであるビードワイヤをリング状に巻くことにより形成されている。ビードフィラー52は、カーカス層6のタイヤ幅方向端部がビードコア51の位置で折り返されることにより形成された空間に配置されるゴム材である。
【0038】
カーカス層6は、各タイヤ幅方向端部が、一対のビードコア51でタイヤ幅方向内側からタイヤ幅方向外側に折り返され、かつタイヤ周方向にトロイド状に掛け回されてタイヤの骨格を構成するものである。このカーカス層6は、タイヤ周方向に対する角度がタイヤ子午線方向に沿いつつタイヤ周方向にある角度を持って複数並設されたカーカスコード(図示せず)が、コートゴムで被覆されたものである。カーカスコードは、有機繊維(ポリエステルやレーヨンやナイロンなど)からなる。このカーカス層6は、少なくとも1層で設けられている。
【0039】
ベルト層7は、少なくとも2層のベルト71,72を積層した多層構造をなし、トレッド部2においてカーカス層6の外周であるタイヤ径方向外側に配置され、カーカス層6をタイヤ周方向に覆うものである。ベルト71,72は、タイヤ周方向に対して所定の角度(例えば、20°〜30°)で複数並設されたコード(図示せず)が、コートゴムで被覆されたものである。コードは、スチールまたは有機繊維(ポリエステルやレーヨンやナイロンなど)からなる。また、重なり合うベルト71,72は、互いのコードが交差するように配置されている。
【0040】
ベルト補強層8は、ベルト層7の外周であるタイヤ径方向外側に配置されてベルト層7をタイヤ周方向に覆うものである。ベルト補強層8は、タイヤ周方向に略平行(±5°)でタイヤ幅方向に複数並設されたコード(図示せず)がコートゴムで被覆されたものである。コードは、スチールまたは有機繊維(ポリエステルやレーヨンやナイロンなど)からなる。
図1で示すベルト補強層8は、ベルト層7のタイヤ幅方向端部を覆うように配置されている。ベルト補強層8の構成は、上記に限らず、図には明示しないが、ベルト層7全体を覆うように配置された構成、または、例えば2層の補強層を有し、タイヤ径方向内側の補強層がベルト層7よりもタイヤ幅方向で大きく形成されてベルト層7全体を覆うように配置され、タイヤ径方向外側の補強層がベルト層7のタイヤ幅方向端部のみを覆うように配置されている構成、あるいは、例えば2層の補強層を有し、各補強層がベルト層7のタイヤ幅方向端部のみを覆うように配置されている構成であってもよい。すなわち、ベルト補強層8は、ベルト層7の少なくともタイヤ幅方向端部に重なるものである。また、ベルト補強層8は、帯状(例えば幅10[mm])のストリップ材をタイヤ周方向に巻き付けて設けられている。
【0041】
図3は、偏平比により定められる係数を示す図表である。
図4は、
図3の図表によって定められる係数との積で求めた値に最も近い規定リム幅を示す図表である。
図5は、本発明の実施形態に係る空気入りタイヤの側面図である。
図6は、凸部を空気入りタイヤの側面から視た拡大図である。
図7は、凸部の側面図である。
図8〜
図11は、本実施形態に係る空気入りタイヤの他の例の側面図である。
図12〜
図23は、凸部の短手方向の断面図である。
図24および
図25は、本実施形態に係る空気入りタイヤの作用の説明図である。
図26は、本実施形態に係る空気入りタイヤの一部の子午断面図である。
図27は、溝が形成された凸部を空気入りタイヤの側面から視た拡大図である。
図28は、
図27におけるA−A断面図である。
図29は、溝が形成された凸部の他の例を空気入りタイヤの側面から視た拡大図である。
図30は、凹部が形成された凸部を空気入りタイヤの側面から視た拡大図である。
図31は、
図30におけるB−B断面図である。
図32は、溝および凹部が形成された凸部を空気入りタイヤの側面から視た拡大図である。
【0042】
以下の説明において、総幅SWは、空気入りタイヤ1を正規リムにリム組みし、かつ正規内圧(例えば、230[kPa])を充填した無負荷状態のときに、サイドウォール部4上のデザイン(タイヤ側面の模様・文字など)を含んだサイドウォール部4同士の間の間隔である。外径ODは、このときのタイヤの外径であり、内径RDは、このときのタイヤの内径である。なお、上述のように230[kPa]という内圧は、総幅SWなどの空気入りタイヤの寸法を規定するために選択されたものであり、本明細書に記載されているタイヤ寸法に係るパラメータは全て、内圧230[kPa]かつ無負荷状態において規定されているものとする。しかしながら、本発明に係る空気入りタイヤ1は、通常に使用される範囲の内圧が充填されているものであれば、本発明の効果を発揮するものであり、230[kPa]の内圧が充填されていることが本発明を実施する上で必須ではないことに留意されたい。
【0043】
また、タイヤサイド部Sとは、
図1に示すように、トレッド部2の接地端Tからタイヤ幅方向外側であってリムチェックラインRからタイヤ径方向外側の範囲で一様に連続する面をいう。また、接地端Tとは、空気入りタイヤ1を正規リムにリム組みし、かつ正規内圧を充填するとともに正規荷重の70%をかけたとき、この空気入りタイヤ1のトレッド部2のトレッド面21が路面と接地する領域において、タイヤ幅方向の両最外端をいい、タイヤ周方向に連続する。また、リムチェックラインRとは、タイヤのリム組みが正常に行われているか否かを確認するためのラインであり、一般には、ビード部5の表側面において、リムフランジよりもタイヤ径方向外側であってリムフランジ近傍となる部分に沿ってタイヤ周方向に連続する環状の凸線として示されている。
【0044】
また、タイヤ最大幅位置Hとは、
図1に示すように、タイヤ断面幅HWの端となり、最もタイヤ幅方向の大きい位置である。タイヤ断面幅HWとは、空気入りタイヤ1を正規リムにリム組みし、かつ正規内圧を充填した無負荷状態のときに、最もタイヤ幅方向の大きいタイヤ総幅SWからタイヤ側面の模様・文字などを除いた幅である。なお、リムを保護するリムプロテクトバー(タイヤ周方向に沿って設けられてタイヤ幅方向外側に突出するもの)が設けられたタイヤにおいては、当該リムプロテクトバーが最もタイヤ幅方向の大きい部分となるが、本実施形態で定義するタイヤ断面幅HWは、リムプロテクトバーを除外する。
【0045】
なお、正規リムとは、JATMAで規定する「標準リム」、TRAで規定する「Design Rim」、あるいは、ETRTOで規定する「Measuring Rim」である。また、正規内圧とは、JATMAで規定する「最高空気圧」、TRAで規定する「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に記載の最大値、あるいはETRTOで規定する「INFLATION PRESSURES」である。また、正規荷重とは、JATMAで規定する「最大負荷能力」、TRAで規定する「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に記載の最大値、あるいはETRTOで規定する「LOAD CAPACITY」である。
【0046】
本実施形態の空気入りタイヤ1は、
図2に示すように、総幅SWと外径ODとの比がSW/OD≦0.3の関係を満たす。また、本実施形態の空気入りタイヤ1は、内径RDと外径ODとの比が、RD/OD≧0.7の関係を満たす。
【0047】
ここで、本実施形態において使用されるリムは、空気入りタイヤ1の内径に適合したリム径を有し、かつISO4000−1:2001に準拠して、タイヤ断面幅の呼びSnと、リム組みされるタイヤの偏平比により
図3の対応表によって定められる係数K1との積で求めた値(Rm=K1×Sn)に最も近い、
図4に示されている規定リム幅Rm[mm]に対応するリム幅の呼びを有するリムである。
【0048】
本実施形態の空気入りタイヤ1は、
図5〜
図7に示すように、少なくとも一方のタイヤサイド部Sにおいて、当該タイヤサイド部Sの表面のプロファイルであるタイヤサイド面Saよりタイヤの外側に突出する凸部9が設けられている。凸部9は、ゴム材(タイヤサイド部Sを構成するゴム材であっても、当該ゴム材とは異なるゴム材であってもよい)からなり、タイヤサイド部Sのタイヤサイド面Saに沿ってタイヤ周方向およびタイヤ径方向に交差して延在する突条として形成されている。本実施形態において、各図に示す凸部9は、空気入りタイヤ1の側面視でC字状に湾曲して形成されている。凸部9は、湾曲に限らず、空気入りタイヤ1の側面視で直線状に形成されていても、くの字に屈曲して形成されていても、S字状に形成されていても、蛇行して構成されていても、ジグザグ状に形成されていてもよい。
【0049】
また、凸部9は、
図6および
図7に示すように、延在方向における中間部9A、および中間部9Aの延在方向の両側に連続して設けられた各先端部9Bで構成されている。中間部9Aは、凸部9の延在方向の長さLの中央9Cから延在方向の両側に長さLの25%の範囲の部分である。先端部9Bは、中間部9Aの延在方向の両側にさらに延在して設けられ、延在方向の各端9Dから凸部9の延在方向の長さLの5%を除く範囲の部分である。凸部9の延在方向の長さLは、凸部9の各端9D間の最短距離とする。
【0050】
そして、中間部9Aは、タイヤサイド面Saからの突出高さhの最大位置hHを含む。また、先端部9Bは、タイヤサイド面Saからの突出高さhの最小位置hLを含む。
図7では、凸部9の延在方向の突出高さhは、一方の端9Dから中央9Cに向かって徐々に高くなり、中央9Cから他方の端9Dに向かって徐々に低くなっている。この場合、突出高さhの最大位置hHは中央9Cに一致し、最小位置hLは端9Dから長さLの5%の位置であって先端部9Bの端に一致する。なお、
図7において、凸部9の延在方向の突出高さhは、円弧状に変化して示しているが、この限りではなく、直線状に変化していてもよい。また、最大位置hHは、中間部9A全体であってもよく、この場合に先端部9Bは中間部9Aから徐々に突出高さhが低くなる。
【0051】
また、凸部9は、
図5に示すように、タイヤサイド部Sの範囲において、タイヤ最大幅位置Hよりタイヤ径方向内側に配置される。凸部9は、タイヤ周方向に所定間隔をおいて多数配置されている。
【0052】
なお、凸部9は、
図8に示すように、その一部がタイヤ最大幅位置Hよりタイヤ径方向外側に延在してもよい。この場合、中間部9Aは、タイヤ最大幅位置Hよりタイヤ径方向内側に配置され、少なくとも一方の先端部9B(または端9Dから長さLの5%の範囲)がタイヤ最大幅位置Hを超えてタイヤ径方向外側に延在する。また、
図8では、全ての凸部9の一部がタイヤ最大幅位置Hを超えてタイヤ径方向外側に延在しているが、多数のうちの一部であってもよい。従って、凸部9は、タイヤサイド部Sの範囲において、主(中間部9A)がタイヤ最大幅位置Hよりタイヤ径方向内側に配置される。
【0053】
なお、凸部9は、リムプロテクトバーが設けられたタイヤにおいて、タイヤ径方向内側の端部がリムプロテクトバーに至らない構成、タイヤ径方向内側の端部がリムプロテクトバーの突出の途中まで至る構成、タイヤ径方向内側の端部がリムプロテクトバーの頂部まで至る構成などがある。
【0054】
凸部9の配置について、
図5および
図9や、
図10および
図11に示すように、タイヤ周方向における凸部9の数に限定はない。また、
図10および
図11に示すように、各凸部9は、タイヤ周方向およびタイヤ径方向に対する延在方向の傾きが異なっていてもよい。
【0055】
凸部9の延在方向に直交する短手方向の断面形状について、
図12に示す凸部9は、短手方向の断面形状が四角形状とされている。
図13に示す凸部9は、短手方向の断面形状が三角形状とされている。
図14に示す凸部9は、短手方向の断面形状が台形状とされている。
【0056】
また、凸部9の短手方向の断面形状は、曲線を基にした外形であってもよい。
図15に示す凸部9は、短手方向の断面形状が半円形状とされている。その他、図には明示しないが、凸部9の短手方向の断面形状は、例えば、半楕円形状であったり、半長円形状であったりする様々な円弧に基づく形状であってもよい。
【0057】
また、凸部9の短手方向の断面形状は、直線および曲線を組み合わせた外形であってもよい。
図16に示す凸部9は、短手方向の断面形状が四角形状の角を曲線とされている。
図17に示す凸部9は、短手方向の断面形状が三角形状の角を曲線とされている。また、凸部9の短手方向の断面形状は、
図16〜
図18に示すように、タイヤサイド部Sから突出する根元部分を曲線とした形状とされていてもよい。
【0058】
また、凸部9の短手方向の断面形状は、様々な形状の組み合わせであってもよい。
図19に示す凸部9は、四角形状の頂部が複数(
図19では2つ)の三角形状でジグザグ状とされている。
図20に示す凸部9は、四角形状の頂部が1つの三角形状で尖って形成されている。
図21に示す凸部9は、四角形状の頂部が四角形状に凹んで形成されている。
図22に示す凸部9は、四角形状の頂部が四角形に凹んで形成され、凹みの両側が突出高さを変えて形成されている。
図23に示す凸部9は、四角形状の台部9aがタイヤサイド部Sから突出形成され、その台部9aの上部に四角形状が複数(
図23では2つ)突出形成されている。その他、図には明示しないが、凸部9の短手方向の断面形状は、四角形状の頂部が波形であったりする様々な形状であってもよい。
【0059】
そして、上述したような凸部9の短手方向の断面形状において、本実施形態では、中間部9Aにおける突出高さhの最大位置hHで断面積が最も大きく、先端部9Bにおける突出高さhの最小位置hLで断面積が小さい。そして、短手方向の幅Wは、突出高さhの変化に合わせて最大位置hHで最も大きく、最小位置hLで小さくなるように変化しても、変化しなくてもよい。
【0060】
空気入りタイヤ1の作用について、
図24に示すように、空気入りタイヤ1は、リム50に組み込んで車両100に装着した場合、車両100のタイヤハウス101内に配置される。この状態において、空気入りタイヤ1が回転方向Y1で回転すると、車両100は方向Y2に向かって走行する。この車両100の走行時に、空気入りタイヤ1の周辺において空気の流れがよどむことになる。そして、このよどみを避けるようにタイヤハウス101内の下方から上方に向かう空気の流れが生じることで、車両100が上方に持ち上げられる力であるリフトが発生する。一方で、よどみを避けるように、タイヤハウス101の外側で車両100から離れる空気の膨らみが生じることで、空気抵抗となる。
【0061】
このような現象に対し、本実施形態の空気入りタイヤ1によれば、車両100の走行時に、回転方向Y1に回転移動する凸部9が、その周辺の空気を乱流化させて上述した空気の流れのよどみを改善する。具体的に、空気入りタイヤ1の回転時の下部(回転軸Pより下側)では、車両100の底部を流れる空気流速を増加することで、タイヤハウス101内で下方から上方に向かう空気の流れが低減され、上方への空気の圧力が抑制される。この結果、リフトを抑制することができる。このリフトの抑制(リフト低減性能)は、ダウンフォースを増加させることになり、空気入りタイヤ1の接地性を向上させ、車両100の走行性能である操縦安定性能の向上に寄与する。一方、空気入りタイヤ1の回転時の上部(回転軸Pより上側)では、乱流境界層が発生し、空気入りタイヤ1における空気の流れが促進される。この結果、通過する空気の広がりが抑えられ、空気入りタイヤ1の空気抵抗を低減することができる。この空気抵抗の低減は、車両100の燃費の向上に寄与する。このような作用は、
図25に示すように、タイヤ周方向およびタイヤ径方向に対する凸部9の傾きが
図24とは逆に反転しても得ることが可能である。
【0062】
しかも、本実施形態の空気入りタイヤ1によれば、凸部9は、タイヤ周方向およびタイヤ径方向に交差する延在方向における中間部9Aがタイヤサイド面Saからの突出高さhの最大位置hHを含み、かつ中間部9Aの延在方向の両端側に設けられた各先端部9Bがタイヤサイド面Saからの突出高さhの最小位置hLを含んでいるため、先端部9Bにおいて凸部9の質量が少なくなる。この結果、凸部9の先端部9B付近においてタイヤサイド面Sa側との急激な質量変化が抑えられるので、タイヤ周方向の均一性が向上するため、ユニフォミティを向上することができる。
【0063】
しかも、本実施形態の空気入りタイヤ1によれば、凸部9は、突出高さhの最大位置hHを含む中間部9Aがタイヤ最大幅位置Hよりタイヤ径方向内側にのみ配置されるため、最もタイヤ幅方向に張り出して空気抵抗が大きくなるタイヤ最大幅位置Hでの空気抵抗が低減されるので、空気抵抗をより低減することができる。
【0064】
しかも、本実施形態の空気入りタイヤ1によれば、総幅SWと外径ODとの比が、SW/OD≦0.3の関係を満たしていることで、一般的な空気入りタイヤと比較して総幅が狭く外径が大きくなるため、走行時における転がり抵抗および空気抵抗を低減することができる。特に、大外径タイヤでは、タイヤ上部のサイド部(タイヤサイド部Sにおける車両装着時の上部位置)と空気との相対速度の低下により空気流れが乱流化されず空気抵抗が増加してしまう傾向にあるが、本実施形態の空気入りタイヤ1によれば、上記総幅SWと外径ODとの比の関係を満たすことに加えて上記凸部9を配置することで、タイヤ上部のサイド部の空気流れを乱流化でき、空気抵抗の低減効果を維持できる。
【0065】
従って、本実施形態の空気入りタイヤ1によれば、ユニフォミティを良好に保ちつつ、リフトを低減すると共に空気抵抗を低減することができる。
【0066】
また、本実施形態の空気入りタイヤ1では、凸部9は、タイヤ最大幅位置Hよりタイヤ径方向内側に中間部9Aおよび先端部9Bが配置されていることが好ましい。
【0067】
この空気入りタイヤ1によれば、先端部9Bがタイヤ最大幅位置Hを超えないため、最もタイヤ幅方向に張り出して空気抵抗が大きくなるタイヤ最大幅位置Hでの空気抵抗が低減されるので、空気抵抗を低減する効果を顕著に得ることができる。
【0068】
また、本実施形態の空気入りタイヤ1では、
図5に示すように、回転軸Pからタイヤ径方向に切断したタイヤ周方向に1degあたりの凸部9の質量のタイヤ周方向での変動量が0.1g/deg以下であることが好ましい。
【0069】
この空気入りタイヤ1によれば、凸部9を含むタイヤ周方向での質量の変動を規定することでタイヤ周方向の均一性が向上するため、ユニフォミティを向上する効果を顕著に得ることができる。
【0070】
また、本実施形態の空気入りタイヤ1では、凸部9は、中間部9Aの突出高さhが1mm以上10mm以下であることが好ましい。
【0071】
中間部9Aの突出高さhが1mm未満であると、車両100の底部を流れる空気流速を増加させたり、乱流境界層を発生させたりする作用が得難くなる。一方、中間部9Aの突出高さhが10mmを超えると、凸部9に衝突する空気の流れが増加することで空気抵抗が増加する傾向となる。このため、リフトを低減すると共に空気抵抗を低減する効果を顕著に得るうえで、中間部9Aの突出高さhを1mm以上10mm以下とすることが好ましい。
【0072】
また、本実施形態の空気入りタイヤ1では、凸部9は、正規リムに組み込んで正規内圧を充填した場合の無負荷状態の子午断面において、
図1に示すように、タイヤ最大幅位置Hにおけるタイヤ断面幅HWからタイヤ幅方向外側に5mm以下の範囲で突出して設けられていることが好ましい。言い換えると、
図26に示すように、タイヤ最大幅位置Hでのタイヤサイド面Saを基準としたタイヤ径方向に延在する基準線HLからタイヤ幅方向外側への凸部9の突出寸法Gが5mm以下であることが好ましい。
【0073】
タイヤ最大幅位置Hにおけるタイヤ断面幅HWからタイヤ幅方向外側に5mmの範囲を超えて凸部9が設けられると、凸部9に衝突する空気の流れが増加することから、凸部9が空気抵抗となり易い。従って、凸部9のタイヤ最大幅位置Hにおけるタイヤ断面幅HWからタイヤ幅方向外側への配置範囲を規定することで、凸部9に起因する空気抵抗の増加を抑えつつ、凸部9による空気の流れのよどみを改善する効果を顕著に得ることができる。この効果を顕著に得るため、タイヤ最大幅位置Hにおけるタイヤ断面幅HWからタイヤ幅方向外側へ突出しないことが好ましく、0mm以下であってもよい。
【0074】
また、本実施形態の空気入りタイヤ1では、
図27〜
図29に示すように、凸部9の表面に溝9Eを形成することが好ましい。
【0075】
この空気入りタイヤ1によれば、溝9Eが形成されていることにより、凸部9の剛性が低下するため、凸部9によりタイヤサイド部Sが剛構造となることによる乗り心地性の低下を抑えることができる。しかも、溝9Eが形成されていることにより、凸部9の質量が低下するため、凸部9によりタイヤサイド部Sの質量増加によるユニフォミティの低下を抑えることができる。
【0076】
なお、溝9Eは、
図27に示すように、凸部9の延在方向に交差するように長さLに対して所定間隔で複数設けられている。また、溝9Eは、凸部9の延在方向に対して交差する角度θは特に規定がないが、各溝9Eで同じくすることが、凸部9の延在方向での極度の質量変化を抑える上で好ましい。また、溝9Eは、
図29に示すように、凸部9の短手方向の中央を通過する中心線SLの接線GLに対して同じ角度θ(例えば、θ=90°)とすることが、凸部9の延在方向での極度の質量変化を抑える上で好ましい。また、溝9Eは、溝幅が2mm以下とされていることが、空力的な影響、即ち、車両100の底部を流れる空気流速を増加させたり、乱流境界層を発生させたりする作用に影響が少なく好ましい。また、溝9Eは、
図28に示すように、溝深さd1が、凸部9の突出高さh以下であることが、凸部9を途中で分断せずに車両100の底部を流れる空気流速を増加させたり、乱流境界層を発生させたりする作用を得るうえで好ましい。溝9Eの溝深さd1は、例えば、凸部9の突出高さhの90%以下であることが好ましい。なお、
図28における凸部9の短手方向の断面の三角形状は一例である。
【0077】
また、本実施形態の空気入りタイヤ1では、
図30および
図31に示すように、凸部9の表面に凹部9Fを形成することが好ましい。
【0078】
この空気入りタイヤ1によれば、凹部9Fが形成されていることにより、凸部9の剛性が低下するため、凸部9によりタイヤサイド部Sが剛構造となることによる乗り心地性の低下を抑えることができる。しかも、凹部9Fが形成されていることにより、凸部9の質量が低下するため、凸部9によりタイヤサイド部Sの質量増加によるユニフォミティの低下を抑えることができる。
【0079】
なお、凹部9Fは、
図30に示すように、凸部9の延在方向に沿って所定間隔で複数設けられている。また、凹部9Fは、凸部9の幅Wが延在方向で変化する場合、幅Wの変化に応じて大きさを変化することが、凸部9の延在方向での極度の質量変化を抑える上で好ましい。また、凹部9Fは、開口径が2mm以下とされていることが、空力的な影響、即ち、車両100の底部を流れる空気流速を増加させたり、乱流境界層を発生させたりする作用に影響が少なく好ましい。また、凹部9Fは、
図31に示すように、溝深さd2が、凸部9の突出高さh以下であることが、凸部9を途中で分断せずに車両100の底部を流れる空気流速を増加させたり、乱流境界層を発生させたりする作用を得るうえで好ましい。凹部9Fの溝深さd2は、例えば、凸部9の突出高さhの90%以下であることが好ましい。なお、
図31における凸部9の短手方向の断面の三角形状は一例である。また、凹部9Fを設ける位置は、凸部9の頂部に限らず側部であってもよい。また、凹部9Fの開口形状や深さ形状は、円形状に限らず、様々な形状であってもよい。ただし、円弧で開口縁や底部が形成されているほうが、凸部9へのクラックの発生する要素を除くことができる。
【0080】
また、本実施形態の空気入りタイヤ1では、
図32に示すように、凸部9の表面に溝9Eおよび凹部9Fを形成することが好ましい。
【0081】
この空気入りタイヤ1によれば、溝9Eおよび凹部9Fが形成されていることにより、凸部9の剛性が低下するため、凸部9によりタイヤサイド部Sが剛構造となることによる乗り心地性の低下を抑えることができる。しかも、溝9Eおよび凹部9Fが形成されていることにより、凸部9の質量が低下するため、凸部9によりタイヤサイド部Sの質量増加によるユニフォミティの低下を抑えることができる。
【0082】
なお、溝9Eおよび凹部9Fは、
図32において凸部9の延在方向に沿って交互に設けられているが、これに限らず、適宜混在して配置してもよい。
【0083】
また、本実施形態の空気入りタイヤ1では、各凸部9のタイヤ周方向における間隔が不均一であることが好ましい。
【0084】
この空気入りタイヤ1によれば、タイヤサイド部Sのタイヤサイド面Saに沿う空気流に対して各凸部9のタイヤ周方向の周期性を打ち消すことから、各凸部9から発生する音圧が周波数の違いにより互いに分散されたり打ち消されたりするため、騒音(音圧レベル)を低減することができる。
【0085】
なお、凸部9の間隔とは、空気入りタイヤ1の側面視において、凸部9の端9Dからタイヤ径方向に補助線(図示せず)を引き、各凸部9での補助線間の回転軸Pを中心とする角度として示される。そして、各凸部9の間隔を不均一にするには、凸部9の形状(突出高さhや、幅Wや、延在方向の長さL)やタイヤ周方向やタイヤ径方向に交差する傾きを同じくしてタイヤ周方向のピッチを変えること、形状(突出高さhや、幅Wや、延在方向の長さL)を変えること、タイヤ周方向やタイヤ径方向に交差する傾きを変えること、などにより実施することができる。
【0086】
また、本実施形態の空気入りタイヤ1では、車両装着時での車両内外の向きが指定されており、少なくとも車両外側となるタイヤサイド部Sに凸部9が形成されていることが好ましい。
【0087】
即ち、本実施形態の空気入りタイヤ1は、車両100(
図24および
図25参照)に装着した場合、タイヤ幅方向において、車両100の内側および外側に対する向きが指定されている。向きの指定は、図には明示しないが、例えば、サイドウォール部4に設けられた指標により示される。このため、車両100に装着した場合に車両100の内側に向く側が車両内側となり、車両100の外側に向く側が車両外側となる。なお、車両内側および車両外側の指定は、車両100に装着した場合に限らない。例えば、リム組みした場合に、タイヤ幅方向において、車両100の内側および外側に対するリム50(
図24および
図25参照)の向きが決まっている。このため、空気入りタイヤ1は、リム組みした場合、タイヤ幅方向において、車両内側および車両外側に対する向きが指定される。
【0088】
車両外側のタイヤサイド部Sは、車両100への装着時にタイヤハウス101から外側に現れるため、この車両外側のタイヤサイド部Sに凸部9を設けることで、空気の流れを車両外側に押し出すことができるので、リフトを低減すると共に空気抵抗を低減する効果を顕著に得ることができる。
【0089】
なお、上述した実施形態の空気入りタイヤ1において、凸部9の短手方向の幅Wは、0.5mm以上10.0mm以下とされていることが好ましい。凸部9の短手方向の幅Wが上記範囲未満であると、凸部9が空気の流れに接触する範囲が小さいことから、凸部9による空気の流れのよどみを改善する効果が得難くなる。一方、凸部9の短手方向の幅Wが上記範囲を超えると、凸部9が空気の流れに接触する範囲が大きいことから、凸部9が空気抵抗の増加の原因となったり、タイヤ重量の増加の原因になったりし得る。従って、凸部9の短手方向の幅Wを適正化することで、凸部9による空気の流れのよどみを改善する効果を顕著に得ることができる。
【0090】
また、凸部9は、タイヤ周方向でのピッチが、トレッド部2のラグ溝のタイヤ周方向でのピッチに対して等ピッチでも、異なるピッチでもよい。凸部9のタイヤ周方向でのピッチを、トレッド部2のラグ溝のタイヤ周方向でのピッチに対して異ならせると、凸部9から発生する音圧と、ラグ溝による音圧とが周波数の違いにより互いに分散や打ち消しされるため、ラグ溝により発生するパターンノイズを低減することができる。なお、凸部9のタイヤ周方向でのピッチを異ならせるラグ溝は、複数の主溝22によりタイヤ幅方向に複数区画形成されたリブ状の陸部23における全てのラグ溝を含む。ただし、ラグ溝により発生するパターンノイズを低減する効果を顕著に得るには、凸部9の最も近くに配置されるタイヤ幅方向最外側のラグ溝のピッチに対して凸部9のタイヤ周方向でのピッチを異ならせることが好ましい。
【実施例】
【0091】
本実施例では、条件が異なる複数種類の空気入りタイヤについて、リフト低減性能、空気抵抗低減性能、ユニフォミティ、凸部耐久性能、乗り心地性能、および音圧レベル低減性能に関する試験が行われた(
図33参照)。
【0092】
リフト低減性能および空気抵抗低減性能の試験は、モータアシスト付き乗用車のボディモデルに195/65R15のタイヤサイズのタイヤモデルを装着した車両モデルのシミュレーションにおいて、走行速度80km/h相当で走行した場合の風洞試験を行い、その空力抵抗係数により格子ボルツマン法による流体解析ソフトウェアを用いて空力特性(リフト低減性能および空気抵抗低減性能)を算出し、算出結果に基づいて、従来例を基準(100)とした指数評価が行われる。これらの指数評価は、数値が大きいほどリフト低減性能、および空気抵抗低減性能が優れていることを示している。
【0093】
ユニフォミティの試験は、195/65R15のタイヤサイズの試験タイヤを、正規リム(15×6J)にリム組みし、正規内圧を充填した。そして、上記試験タイヤにおいて、タイヤユニフォミティJASO C607「自動車タイヤのユニフォミティ試験法」に規定の方法に準じてラジアルフォースバリエーション(LFV)を測定する。そして、この測定結果に基づいて、従来例を基準(100)とした指数評価が行われる。この指数評価は、数値が大きいほど均一性がよくユニフォミティが優れていることを示している。
【0094】
凸部耐久性能の試験は、室内ドラム耐久試験により上記試験タイヤを時速240km/hで所定時間転動させ、凸部の状態を観察する。そして、凸部にクラックや破壊の発生がないことが要求され、凸部にクラックや破壊の発生がない場合を○、凸部にクラックや破壊の発生がある場合を×として評価される。
【0095】
乗り心地性能の試験は、上記試験タイヤを上記試験車両に装着し、段差10mmの凹凸を有する直進テストコースを50km/hで実車走行し、パネラー3人による乗り心地のフィーリングテストを実施する。そして、テスト結果3回の平均を、従来例を基準(100)とした指数で示した指数評価が行われる。この指数評価は、数値が大きいほど乗り心地性能が優れていることを示している。
【0096】
音圧レベル低減性能の試験は、上記試験タイヤを上記試験車両に装着し、走行速度80km/h相当で走行した場合の車外騒音の音圧レベル(音圧レベル低減性能)を計測し、計測結果に基づいて、従来例を基準(100)とした指数評価が行われる。この係数評価は、数値が大きいほど音圧レベル低減性能が優れていることを示している。
【0097】
図33において、従来例の空気入りタイヤは、総幅SWと外径ODとの比SW/ODが0.33であって、
図34に示す形態であり、タイヤサイド部Sに凸部10が設けられているが、この凸部10は、短手方向の断面形状が
図13に示す三角形状であって、タイヤ径方向に沿って延在して、突出高さおよび短手方向の幅が延在方向で均一に形成されてタイヤ最大幅位置Hに交差して設けられ、タイヤ周方向に等間隔で配置されている。
【0098】
また、
図33において、比較例1の空気入りタイヤは、総幅SWと外径ODとの比SW/ODが0.24であるが、従来例と同様の凸部が設けられている。比較例2の空気入りタイヤは、
図5に示す形態であり、凸部の短手方向の断面形状が
図13に示す三角形状であって、
図7に示す凸部を備えるが、総幅SWと外径ODとの比SW/ODが0.33である。
【0099】
一方、
図33において、実施例1〜実施例11の空気入りタイヤは、総幅SWと外径ODとの比SW/ODが0.24であって、
図5に示す形態であり、凸部の短手方向の断面形状が
図13に示す三角形状であって、
図7に示す凸部を備える。実施例12の空気入りタイヤは、
図8に示す形態であり、凸部の短手方向の断面形状が
図13に示す三角形状であって、
図7に示す凸部を備える。その他、各実施例は、適宜規定がなされている。
【0100】
そして、
図33の試験結果に示すように、各実施例の空気入りタイヤは、リフト低減性能、空気抵抗低減性能、ユニフォミティ、凸部耐久性能、乗り心地性能、および音圧レベル低減性能が改善していることが分かる。