(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0016】
本発明の実施の形態に係る光源点灯装置と照明器具について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。
【0017】
実施の形態1.
図1は、本発明の実施の形態1にかかる光源点灯装置100の回路構成図である。光源点灯装置100は、交流電源1から電力の供給を受けて光源9を点灯させるものである。光源点灯装置100に光源9を加えた構成を照明器具という。実施の形態1の光源9は特に限定されないが例えばLED(Light Emitting Diode)である。光源点灯装置100は、整流回路2、力率改善回路3、DC−DCコンバータ4、制御部5、DC−DCコンバータ制御部7および調光信号インターフェース8を備えている。整流回路2は交流電源を整流する。具体的には、交流電源1から入力した交流電圧を全波整流する。この全波整流電圧は、力率改善回路3の動作中は平滑されず、交流電源1の2倍の周波数を含むリプル電圧となる。
【0018】
整流回路2には力率改善回路3が接続されている。力率改善回路3は、フィルタコンデンサC1、インダクタL1、例えばMOSFETで構成されるスイッチング素子SW1、ダイオードD1および平滑コンデンサC2を備えている。力率改善回路3は、これらの回路素子によって構成された昇圧チョッパ回路である。すなわち、力率改善回路3は、DC−DCコンバータ4を介して光源9に直流電流を供給するために、スイッチング素子SW1とインダクタL1でエネルギの充放電を行い所望の直流電圧を発生させる。つまり、力率改善回路3は、スイッチング素子SW1とインダクタL1とを有し、整流回路2の出力が入力され、直流電圧を出力するものである。
【0019】
インダクタL1には検出巻線L2が磁気的に結合されている。つまり、インダクタL1に検出巻線L2が設けられている。具体的には、インダクタL1が巻きつく強磁性体に検出巻線L2を巻きつけることが好ましい。検出巻線L2はインダクタL1で発生する電圧を検出する。力率改善回路3は電源電圧検出部R1と出力電圧検出部R2を備えている。電源電圧検出部R1は直列接続された2つの抵抗素子で電源電圧を分圧する分圧回路である。出力電圧検出部R2は直列接続された2つの抵抗素子で力率改善回路3の出力電圧を分圧する分圧回路である。力率改善回路3の出力には、光源9に電流を供給するためのDC−DCコンバータ4が接続されている。
【0020】
力率改善回路3は制御部5の制御を受けて動作するものである。力率改善回路3は、整流回路2が全波整流した電圧を昇圧して直流平滑する。さらに力率改善回路3は、制御部5の制御により入力電流波形を正弦波状でかつ交流電源1の電圧と同位相となるように動作し、力率改善を行う。
【0021】
制御部5はスイッチング素子SW1を駆動させる。制御部5は、出力電圧検出部5a、駆動部5b、遅延時間設定部5c、電源電圧検出部5dおよび振動電圧検出部5eを備えている。制御部5は、力率改善回路3の出力電圧である平滑コンデンサC2の電圧が予め設定された電圧値となり、光源点灯装置100の入力電流波形が交流電源1の電圧とほぼ同位相かつ正弦波となるように、スイッチング素子SW1を駆動する。
【0022】
出力電圧検出部5aは、力率改善回路3の内部に設けられた分圧抵抗からなる出力電圧検出部R2に発生する信号と、力率改善回路3の出力電圧目標値に相当する目標信号E1とを比較し、両者の差に応じた信号を出力する。駆動部5bは出力電圧検出部5aの信号を受けてスイッチング素子SW1のオン時間を決定し、スイッチング素子SW1を駆動する。
【0023】
検出巻線L2には、スイッチング素子SW1がオフした後、インダクタL1とスイッチング素子SW1の電極間容量により発生する振動電圧に比例した電圧が発生する。制御部5には、検出巻線L2で検出した電圧が入力される。遅延時間設定部5cには、検出巻線L2で生じた電圧が振動電圧検出部5eで変換されて入力される。遅延時間設定部5cは、振動電圧検出部5eを介して入力される振動電圧が予め定められた回数だけ立下がるまでその振動回数をカウントする。この時、遅延時間設定部5cはスイッチング素子SW1のオフ状態を継続させる。遅延時間設定部5cは、振動電圧が予め定められた回数だけ立下がると、その時点から予め定められた遅延時間だけスイッチング素子SW1のオフをさらに継続させる指令を駆動部5bに出力する。その遅延時間が経過すると、遅延時間設定部5cは、駆動部5bを介してスイッチング素子SW1をオンする。
【0024】
調光コントローラ10は光源9の明るさをコントロールするために光源点灯装置100の外部に設けられている。調光コントローラ10からの調光信号は調光信号インターフェース8で読み取られる。そして、調光信号インターフェース8は、目標電流値に相当する信号をDC−DCコンバータ制御部7及び遅延時間設定部5cへ出力する。遅延時間設定部5cは、調光信号インターフェース8から出力される目標電流値信号に応じて、前述の振動電圧の立下がり回数と遅延時間を決定する。
【0025】
電源電圧検出部5dは、電源電圧検出部R1により分圧した全波整流電圧を検出し、電源電圧の位相を検知する。電源電圧検出部5dは予め定めた電源電圧位相、例えばゼロクロス付近となると、スイッチング素子SW1のオン時間を出力電圧の状態に応じて更新する。本実施形態ではスイッチング素子SW1のオン時間を更新する周期は交流電源電圧の半周期に1回とし、それ以外の期間では前回更新時のオン時間を維持する。
【0026】
DC−DCコンバータ4はDC−DCコンバータ制御部7により駆動される。DC−DCコンバータ4は、調光信号インターフェース8から出力される目標電流値信号を受けて、光源電流が目標電流値となるように定電流フィードバック制御される。DC−DCコンバータ4の詳細な構成は図示しないが、周知のあらゆるDC−DCコンバータを採用することができる。例えば、降圧チョッパ回路又はフライバックコンバータなどでDC−DCコンバータ4を構成することができる。
【0027】
次に、実施の形態1にかかる光源点灯装置100の動作を説明する。光源点灯装置100に交流電源1が印加されると、整流回路2は入力された交流電圧を全波整流し、整流された電圧がフィルタコンデンサC1の両端に印加される。フィルタコンデンサC1は、スイッチングリプルを除去する目的で設けられたものであり、ここでは全波整流波形の電源周波数成分を平滑するためのものではない。したがって力率改善回路3の動作中におけるフィルタコンデンサC1の両端電圧は、交流電源周波数の2倍周波数で正弦波状に脈動する全波整流電圧となる。
【0028】
定常動作状態における力率改善回路3の動作を説明する。駆動部5bによりスイッチング素子SW1がオンすると、全波整流電圧はインダクタL1に印加され、インダクタL1とスイッチング素子SW1の経路で電流が電源側より供給され、インダクタL1にエネルギが蓄えられる。このとき、インダクタL1の電流は増加していく。
【0029】
駆動部5bにより設定されたスイッチング素子SW1のオン時間が経過すると、スイッチング素子SW1はオフする。スイッチング素子SW1がオフするとインダクタL1に蓄えられたエネルギが放出され、インダクタL1、ダイオードD1、平滑コンデンサC2の順に電流が流れる。これにより、平滑コンデンサC2を充電する。このようにエネルギを伝達して、DC−DCコンバータ4は平滑コンデンサC2に充電された電圧を入力として光源9に電流を供給する。
【0030】
図2は、本発明の実施の形態1にかかる光源点灯装置100の定常状態における動作を示す波形図である。
図2の波形図を参照しつつ制御部5の動作を説明する。
【0031】
(期間t0〜t1)
この期間は、駆動部5bによりスイッチング素子SW1がオンした状態である。スイッチング素子SW1がオンしたときスイッチング素子SW1にはインダクタL1の電流が流れる。
【0032】
この期間中はインダクタL1の電流は増加していくため、スイッチング素子SW1に流れる電流も増加していく。このとき、インダクタL1には
図1の矢印の方向に電圧VL1が印加されるため検出巻線L2には矢印の方向に電圧VL2が発生する。2つの矢印はどちらも始点側よりも終点側で電位が高いことを意味する。そのため、検出巻線L2から振動電圧検出部5eに負電圧が入力される。振動電圧検出部5eは、検出巻線L2に発生する電圧を遅延時間設定部5cに入力するのに適した電圧等に変換するものである。例えば遅延時間設定部5cをマイクロコンピュータで構成する場合、振動電圧検出部5eは、負電圧又は過電圧が当該マイクロコンピュータに入力しないように、波形整形等をするための回路で構成される。
図2に示すように、振動電圧検出部5eは、負電圧がカットされた振動電圧信号Vsを出力することが好ましい。
【0033】
(時刻t1)
予め定められた時間が経過し時刻t1になると、駆動部5bはスイッチング素子SW1をオフし、スイッチング素子SW1の電流を遮断する。スイッチング素子SW1のオン時間は出力電圧検出部5aによって決定される。
【0034】
(期間t1〜t2)
時刻t1においてスイッチング素子SW1がオフすると、インダクタL1に蓄えられたエネルギはダイオードD1を介して平滑コンデンサC2に放出される。このとき、インダクタL1に発生する電圧は、スイッチング素子SW1がオンの時とは逆向きの電圧となる。すなわち、インダクタL1には、
図1の矢印で示される電圧VL1とは逆方向の電圧が発生する。これにより検出巻線L2に発生する電圧も
図1中の矢印とは逆方向の電圧となるので、振動電圧検出部5eには正電圧が入力される。スイッチング素子SW1をオフすると、平滑コンデンサC2に流れる電流は徐々に減少していき、エネルギ放出が終わるとインダクタL1の電流はゼロとなる。
【0035】
(時刻t2〜t3)
時刻t2はインダクタ電流IL1が0になる時刻である。インダクタ電流IL1がゼロになるとダイオードD1がオフとなり、インダクタL1とスイッチング素子SW1の電極間容量との間で共振動作が発生する。この共振動作によってインダクタL1に振動電圧が発生する。これに伴って検出巻線L2にも振動電圧が発生する。検出巻線L2に発生した電圧は振動電圧検出部5eを介して遅延時間設定部5cに入力される。
【0036】
遅延時間設定部5cは振動電圧検出部5eより出力される振動電圧の立下り回数をカウントする。遅延時間設定部5cがカウントするする振動電圧の立下がり回数は、少なくとも2回であれば特に限定されないが、ここでは2回カウントする場合について説明する。遅延時間設定部5cは、振動電圧の立下がり回数のカウント中、スイッチング素子SW1のオフ状態を維持する。
【0037】
(時刻t3〜t4)
時刻t3の時点で振動電圧信号Vsの立下り回数が予め定められた回数に達する。つまり、立下がり回数が2回となる。遅延時間設定部5cはその時点から予め定めた遅延時間だけさらにスイッチング素子SW1をオフ状態で維持する。本実施の形態においては、振動電圧の立下り回数を2回に設定し2回目の振動電圧の立下りを検出するとその時点から遅延時間設定部5cは遅延時間のカウントを開始する。
図2に示されているように、スイッチング素子SW1がオフしてから振動電圧の立下りが予め定められた回数に達するまでの期間を第1オフ期間とする。第1オフ期間の後に設ける遅延時間は第2オフ期間である。
【0038】
(時刻t4〜t5)
遅延時間設定部5cは、遅延時間が経過すると駆動部5bにスイッチング素子SW1をオンする指示信号を与える。そして、駆動部5bはスイッチング素子SW1をオンしスイッチング素子SW1を導通状態とする。こうして、次のスイッチングサイクルに移る。本実施の形態においては、スイッチング素子SW1のドレインソース間電圧Vdsが振動のボトムとなる位置でスイッチング素子SW1がオンするように遅延時間を予め設定している。これによりスイッチング損失およびノイズを低減することができる。
【0039】
ここで、力率改善回路3の出力電圧である平滑コンデンサC2の充電電圧の制御について説明する。目標信号E1よりも出力電圧検出部R2で発生する電圧の方が高ければ、出力電圧検出部5aは、スイッチング素子SW1のオン時間が短くなる信号を駆動部5bへ出力する。駆動部5bはこれを受けてスイッチング素子SW1のオン時間を減少させ、力率改善回路3の出力電圧を減少させる。
【0040】
他方、目標信号E1よりも出力電圧検出部R2で発生する電圧の方が低ければ、出力電圧検出部5aはスイッチング素子SW1のオン時間が長くなる信号を駆動部5bへ出力する。駆動部5bはこれを受けてスイッチング素子SW1のオン時間を増加させ、力率改善回路3の出力電圧を増加させる。駆動部5bは、出力電圧検出部5aからの信号を受けてスイッチング素子SW1のオン時間を更新する。この更新のタイミングについては、電源電圧検出部5dにて電源電圧位相がゼロクロス付近となるタイミングを検出し、駆動部5bはこの位相検出信号を電源電圧検出部5dより受けて、そのタイミングでスイッチング素子SW1のオン時間を更新することが好ましい。
【0041】
調光により光源9の電流が減少すると軽負荷となって力率改善回路3の出力電圧が上昇しやすくなるため、スイッチング素子SW1のオン時間が短くなる。スイッチング素子SW1のオン時間が短くなると、インダクタL1のエネルギ放電時間も短くなるため、スイッチング周波数が上昇する。スイッチング周波数の増大はスイッチング損失の増大などの弊害を引き起こす。そこで、本実施の形態では、スイッチング周波数の上昇を抑制するため、軽負荷時は、検出巻線L2の振動電圧の立下り回数が予め定められた回数に達し、その後遅延時間が経過するまで、スイッチング素子SW1をオフとする。よって、スイッチング周波数の上昇を抑制できる。
【0042】
次に力率改善動作について説明する。
図3は、本発明の実施の形態1にかかる光源点灯装置100の力率改善動作を示す波形図である。スイッチング素子SW1をオンすると、インダクタL1の電流IL1は、全波整流電圧の瞬時値Eに比例し、インダクタL1のインダクタンスに反比例する電流値となり、E/L1の傾きでオン時間に比例してほぼ直線的に上昇していく。
【0043】
前述のとおり、スイッチング素子SW1のオン時間は電源電圧位相のゼロクロス付近で更新するため、交流電源の半周期間のスイッチング素子SW1のオン時間t(ON)は固定値となる。つまり交流電源の半周期の期間中に行われるスイッチング素子SW1の複数のスイッチングは、同一のオン時間となる。したがって、全波整流された交流電源1の波形の半周期分動作させると、インダクタL1のインダクタンスは一定値であるため、各スイッチング周期におけるインダクタL1の電流のピーク値は電源電圧に比例する。そのため、
図3に示すように、ピーク値の包絡線が正弦波状の波形となる。そして、フィルタコンデンサC1によりインダクタ電流のスイッチングリプルを取り除き平均化することで、交流電源1から流れ込む入力電流を正弦波状に近づけるとともに交流電源電圧とほぼ同位相にすることができる。よって、力率改善及び高調波低減ができる。なお、必要に応じて整流回路2の交流入力側にフィルタ回路を追加してもよい。
【0044】
このように、スイッチング素子SW1のオン時間t(ON)を交流電源の半周期間で一定値とすれば力率改善及び高調波低減ができる。しかしながら,オン時間を交流電源の半周期で一定値とするのみでは、入力電流波形にひずみが発生し、力率改善しない場合があるのでそのような場合の原理を説明する。
【0045】
図2においては,時刻t2においてインダクタL1の電流IL1がゼロに到達し、そのままスイッチング素子SW1をオフ状態で維持すると電流IL1はゼロ状態を維持するものとして図示した。しかし、実際には上述した通り、インダクタL1とスイッチング素子SW1の電極間容量との間で共振現象が発生するため、インダクタL1とスイッチング素子SW1との間で微小な振動電流が流れる。
【0046】
この場合、スイッチング素子SW1のターンオン時にこの振動電流がインダクタL1の電流IL1に重畳することがある。
図4は、交流電源の電圧ゼロクロス付近でスイッチング素子SW1をターンオンしたときのドレインソース間電圧VdsとインダクタL1の電流IL1の波形を示す図である。
図5は、交流電源の電圧ピーク付近でスイッチング素子SW1をターンオンしたときのVdsとIL1を示す図である。
図4、5においてtdはスイッチング素子SW1のオフ期間を示す。
図4、5から、交流電源の電圧ゼロクロス付近でスイッチング素子SW1をターンオンできたときはインダクタL1の電流IL1に振動電流が重畳することを回避できるが、ゼロクロス付近以外の例えばピーク付近でスイッチング素子SW1をターンオンしてしまうと電流IL1に振動電流が重畳することが分かる。力率の低下を回避するためには、交流電源の半周期において、同一の振動電流となるタイミングでスイッチング素子SW1をターンオンさせるか、望ましくはインダクタL1の電流IL1に振動電流が重畳されないタイミングでスイッチング素子SW1をターンオンさせなければならない。
【0047】
ところで、スイッチング素子SW1の電極間容量はドレインソース間電圧に依存し、一般的なMOSFETではドレインソース間電圧が高いほど電極間容量が減少する。したがって交流電源の位相に応じてドレインソース間に印加する電圧が異なってくるため、振動電圧の振動周期も位相に応じて異なる。具体的には電源電圧ゼロクロス付近と比較して電源電圧ピーク付近の方が、振動周期が短くなる。
【0048】
このことから、スイッチング素子SW1のターンオン時に電流IL1に振動電流が重畳される問題を解消するためには、電源電圧の周期に合わせてオフ期間tdを変動させなければならない。仮に、
図4に示したインダクタL1の電流IL1に重畳する振動電流がゼロとなる交流電源のゼロクロス付近においてスイッチング素子SW1がオンするようにスイッチング素子SW1のオフ期間Tdを決定したとしても、そのTdを全期間で用いることはできない。つまり、電源電圧ピーク付近においては振動周期が短くなるので、
図5のオフ期間Tdと
図4のオフ期間Tdとを一致させると、振動電流のピーク付近でスイッチング素子SW1がオンしてしまうことがある。この場合インダクタL1の電流IL1に振動電流が重畳してしまう。
【0049】
上記の考察から、オフ期間Tdを固定値とすると、インダクタL1の電流IL1に振動電流が重畳されることを回避できない。そこで、
図2において、1回目の振動電圧立下りを検出して、そこから予め定められた遅延時間を経過してからスイッチング素子SW1をオンすることが考えられる。このような動作シーケンスを比較例と称する。比較例の場合、2回目の振動電圧の立下りを検出した時点から遅延時間を設ける本実施形態の場合と同等のスイッチング周波数とするためには、遅延時間をより長く設定する必要がある。しかしながら、遅延時間もスイッチング素子SW1のオン時間と同様に交流電源半周期で一定値の場合、遅延時間が長くなる分、上述のような振動周期の変動の影響を受けやすくなる。つまり、比較例では遅延時間が長くなるので、振動電流がインダクタL1の電流IL1に重畳されやすい。よって、比較例のように1回目の振動電圧立下りを検出して、そこから予め定められた遅延時間を経過してからスイッチング素子SW1をオンする場合、入力電流波形がひずみ、力率が低下する。
【0050】
ところが、本実施の形態においては、制御部5は、スイッチング素子SW1をオフしてから検出巻線L2の振動電圧が少なくとも2回立下がるまでの第1オフ期間の経過後、予め定められた遅延時間である第2オフ期間が経過するまでスイッチング素子SW2のオフ状態を継続する。そして、第2オフ期間の経過後にスイッチング素子SW1をオンする。つまり、軽負荷時の駆動周波数が上昇する条件において、スイッチング周波数の上昇を抑制するために必要なスイッチング素子SW1のオフ期間として、振動電圧の立下り回数をカウントしカウント値が2回以上の予め定められた回数に達するまでの時間と、遅延時間と、を合計した期間を設定する。これにより、遅延時間を短くでき、振動周期の変動の影響を受けにくくすることができる。言いかえれば、振動電圧の立下りを2回以上カウントすることで第1オフ期間を十分長く設けることができるので、振動周期の変動の影響を受けやすく電源半周期で一定とする遅延時間の割合を小さくすることができる。そのため、定量的に言えば、第1オフ期間は第2オフ期間より長くすることが好ましい。
【0051】
また、振動電圧の立下り回数をカウントし、予め定められた回数のカウントを終えた直後にスイッチング素子SW1をオンさせる場合、設定できるオフ期間が振動周期に依存してしまうため、設定自由度が小さく、任意の周波数に設定できない。よって、実施の形態1で説明したとおり、第1オフ期間に遅延時間である第2オフ期間を付加する必要がある。また、振動電圧は時間経過とともに減衰してしまうため、振動電圧の立下りカウントのみによるオフ期間の設定には限界値が生じてしまう。すなわち振動電圧が減衰してしまうと、次にスイッチング素子をオンするためのトリガ信号が得られなくなってしまう。これに対し、実施の形態1の方式では負荷に応じてスイッチング素子SW1のオフ期間を自在に設定することができる。
【0052】
次に、制御部5をマイクロコンピュータで構成した場合の演算負荷について考える。スイッチング素子SW1のスイッチング毎に電流IL1を監視し、ピーク値が正弦波状となるようにスイッチング素子SW1をオフするタイミングを決定する場合、多大な演算負荷が掛かってしまう。この場合、高速演算が可能なマイクロコンピュータを使用する必要があり高コスト化する。これに対し、実施の形態1の光源点灯装置では、制御部5は、直流電圧の定電圧フィードバック制御に伴うスイッチング素子のオン時間の変更タイミングを交流電源のゼロクロス付近とすることができる。したがって、交流電源の半周期毎にスイッチング素子SW1のオン時間を更新すればよく、それ以外の期間ではこれを一定値にすることができる。また、力率改善回路3の出力を一定とする期間においては、制御部5は、第2オフ期間を略固定値とすることができる。このように処理の負荷を軽減することで、演算処理速度の小さい安価なマイクロコンピュータで制御部5を構成することができる。
【0053】
次に、スイッチング素子のオン時間の更新について検討する。本実施形態では、制御部5は、スイッチング素子SW1のオン時間を少なくとも交流電源の半周期間において略固定値とする。つまり、力率改善のために交流電源の半周期毎にスイッチング素子SW1のオン時間を更新することとした。その趣旨は、少なくとも交流電源の半周期間にスイッチング素子SW1のオン時間が大きく変動しないようにするというものである。交流電源の半周期間にスイッチング素子SW1のオン時間が大きく変動しなければ、当該オン時間の更新方法を変更してもよい。例えば、出力電圧を所望の電圧に保つためのフィードバック制御の応答速度を、交流電源の電源半周期間で大きく変動しないように、十分低速に設定してもよい。つまり、スイッチング素子SW1のオン時間を交流電源の半周期間で変化させるが、その変化量を十分小さくする。より具体的に述べると、フィードバック制御のループゲインを交流電源1の1周期の1/2周期以上で1倍(0dB)以下となるように設定する。言い換えると、交流電源1の周波数の2倍以下の周波数で1倍(0dB)以下となるように設定する。例えば電源周波数が50Hzの場合、その半周期、つまり半波にあたる100Hz以下、すなわち周期10ms以上で定電圧フィードバック制御のループゲインを1倍(0dB)以下とすることにより定電圧フィードバック制御を電源周期の1/2より短い周期で応答しないように設定する。これにより電源周期の1/2周期以内においては、スイッチング素子SW1のオン時間t(ON)の変動が抑制され、同様の効果を得ることができる。この場合もスイッチング毎にインダクタL1の電流を監視してピーク電流を制御する必要がないので、演算処理速度の小さいマイクロコンピュータを用いることができる。
【0054】
第1オフ期間で検出する振動電圧の立下がり回数と、第2オフ期間である遅延時間は、負荷又は電源電圧に応じて可変なものとしてもよい。具体的には、通常の電流臨界モードで駆動した場合に、駆動周波数が上昇する条件になるほどスイッチング素子SW1のオフ期間が増加するようにすることができる。例えば、LED電流が減少して負荷が軽くなるほど、第1オフ期間で検出する振動電圧の立下がり回数と第2オフ期間である遅延時間の少なくとも一方を増加させる。あるいは、電源電圧が、交流100V入力ではなく、交流200V入力の場合には、第1オフ期間で検出する振動電圧の立下がり回数と第2オフ期間である遅延時間の少なくとも一方を増加させる。これらは、調光信号インターフェース8又は電源電圧検出部5dからの検出信号に基づいて周波数が上昇する条件を予めプロフラム等に設定しておけば容易に設定可能である。また、駆動周波数が十分低い動作条件の時は通常の電流臨界モード制御に切り替えても良い。
【0055】
図6は、制御部5がマイクロコンピュータで構成された場合に、制御部5の内部で行われる処理のフローチャートである。まず、ステップS1にて、制御部5がスイッチング素子SW1をオンする。ステップS1にてスイッチング素子SW1がオンすると、ステップS2にて振動電圧信号のカウント値がリセットされ、ステップS3にて遅延時間のカウント値がリセットされる。
【0056】
ステップS4では、スイッチング素子SW1のオン時間が規定値に達したか判定する。オン時間が規定値に達した場合、ステップS5にてスイッチング素子SW1をオフする。次いで、ステップS6にて、振動電圧信号の立下り回数のカウントを開始する。本実施の形態1では、2回以上の振動電圧の立下りを検出する。ステップS7では、振動電圧の立下り回数が規定回数に達したか判定する。立下り回数が規定回数に達した場合、ステップS8にて、遅延時間のカウントを開始する。ステップS9では、遅延時間のカウント値が規定時間に達したか判定する。遅延時間が規定の時間に達した場合、ステップS1に戻り、再びスイッチング素子SW1をオンする。
【0057】
以上のように本発明の実施の形態1では、軽負荷動作を伴う力率改善回路において、振動電圧の振動回数が予め定められた回数となり、その後予め定められた遅延時間が経過するまでの間、スイッチング素子SW1のオフ状態を維持する。これにより、高調波を抑制しながら駆動周波数の上昇を抑制できる。また、スイッチング素子SW1のオン時間を更新するタイミングを電源半周期毎に、例えばゼロクロス付近とし、それ以外の期間では固定値とした。よって、制御部5の処理負荷を大幅に削減できる。
【0058】
本実施の形態においてはスイッチング素子SW1のオン時間を交流電源の半周期内で同一の時間としたが、ある特定パターンのオン時間でスイッチング素子SW1を駆動しても良い。例えば、力率改善回路3はスイッチングリプルを取り除く目的でフィルタコンデンサC1を備えているが、フィルタコンデンサC1を設けると入力電流が電源電圧に対して僅かに進み位相となり、力率低下の原因となる。そこでこれを補正するために、例えばスイッチング素子SW1のオン時間を
図7に示すパターンで時間変化させても良い。交流電源の半周期に対して
図7に示すオン時間でスイッチング素子を駆動することで、進み位相を補償でき力率を改善することができる。
【0059】
このような、特定パターンでオン時間を推移させた場合においても、出力電圧のフィードバック制御に対するオン時間の更新は電源半周期毎、例えばゼロクロス付近とするので、制御部5の処理負荷を大幅に削減できる。オン時間を更新する場合は、例えば
図7に示すように特定パターンの傾向を保ったままオン時間の増減を行う。
【0060】
上記の変形例に加えて、本発明の実施の形態1に係る光源点灯装置100と照明器具はその特徴を失わない範囲で様々な変形が可能である。例えば、制御部5は、ハードウェアで実現してもよいし、マイクロコンピュータを用いたソフトウェアで実現してもよい。制御部5の少なくとも一部をマイクロコンピュータで構成してもよい。
図8は、ハードウェアで実現された制御部5を示すブロック図である。この場合、
図1の出力電圧検出部5a、電源電圧検出部5d及び振動電圧検出部5eは、
図8の受信装置20である。
図1の駆動部5bと遅延時間設定部5cの各機能は、
図8の処理回路22により実現される。処理回路22は専用のハードウェアである。処理回路22は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらを組み合わせたものが該当する。駆動部5bと遅延時間設定部5cの各機能それぞれを処理回路22で実現してもよいし、各部の機能をまとめて処理回路22で実現してもよい。
【0061】
図9は、ソフトウェアで実現された制御部5を示すブロック図である。この場合、
図1の出力電圧検出部5a、電源電圧検出部5d及び振動電圧検出部5eは、
図9の受信装置30である。処理回路がCPUの場合、
図1の駆動部5bと遅延時間設定部5cの各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア又はファームウェアはプログラムとして記述され、メモリ34に格納される。処理回路であるプロセッサ32はメモリ34に記憶されたプログラムを読み出して実行することにより各部の機能を実現する。すなわち、
図6のフローチャート及び実施の形態1で説明した動作が結果的に実行されることになるプログラムを格納するためのメモリ34がある。このプログラムは上記の手順又は方法をコンピュータに実行させるものであるとも言える。ここで、メモリとは例えばRAM、ROM、フラッシュメモリー、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVDが該当する。なお、駆動部5bと遅延時間設定部5cの各機能の一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現してもよい。
【0062】
光源9としてLEDを用いたが他の光源を用いてもよい。例えば、有機EL(Electro Luminescence)素子を用いてもよい。本実施形態で用いた略固定という表現は、厳密にある値を固定することを意味するのではなく、設計上固定するということである。したがって、実動作上の誤差または計測誤差などによるある値の変化分は、略固定という文言に包含される。
【0063】
スイッチング素子SW1はSiで形成してもよいし、ワイドバンドギャップ半導体で形成してもよい。スイッチング素子SW1をワイドバンドギャップ半導体で形成すると、スイッチング周波数を高くできる。例えば、Siを材料とするMOSFETではスイッチング周波数を300kHzまで高めることが限度であったとしても、ワイドバンドギャップであれば例えば500kHzまで高めることができる。スイッチング周波数の上限が高ければ、電流臨界モードを適用できる周波数の上限を高めて、マイコンの負荷を低減することができる。実施の形態1で言及した変形は以下の実施の形態に係る光源点灯装置と照明器具にも応用できる。なお、以下の実施の形態に係る光源点灯装置と照明器具は、実施の形態1との共通点が多いので、実施の形態1との相違点を中心に説明する。
【0064】
実施の形態2.
実施の形態2に係る光源点灯装置と照明器具は、広い負荷変動に対応させるため、調光時の制御部5の動作が実施の形態1の光源点灯装置と異なる。
【0065】
図10は、実施の形態2に係る光源電流とスイッチング素子SW1のオフ期間の対応を示す図である。実施の形態1で述べたとおり、スイッチング素子SW1のオフ期間は振動電圧の立下りを検出する第1オフ期間と、予め定められた遅延時間である第2オフ期間の和である。光源9の電流である光源電流が大きい状態から徐々に光源電流を減少させる場合、周波数が上昇することを抑制するため、第1オフ期間で検知する振動電圧の立下がり回数を徐々に増加させる。
図10には、光源電流の減少に伴い、第1オフ期間で検出する振動電圧の立下がり回数が、2回から5回に1回ずつ増加していくことが示されている。振動電圧の立下り回数が増えた分、スイッチング素子SW1のオフ期間が増加する。この時、遅延時間はほぼ一定値とすることができる。
【0066】
次に、光源電流をさらに減少させた場合について説明する。光源電流が予め定められた値まで低下し、振動電圧の立下り回数が上限回数に達した場合、さらなる光源電流の低下には遅延時間の増加で対応する。このとき、振動電圧の立下がり回数が上限に達すると、次の振動電圧の立下りを検知しても、遅延時間の進行が優先され、振動電圧信号は無視される。すなわち、予め設定している立下り回数の上限に達したらそれ以上の立下り回数のカウントは不要となる。
【0067】
図11は、振動電圧の上限立下り回数を3回に設定し、立下り回数が上限に達した後は、遅延時間を設定した場合の動作波形である。時刻t1〜t2の期間にインダクタL1の電流IL1が減少しゼロに到達する。時刻t2〜t3の期間で検出巻線L2から振動電圧の立下り回数をカウントする。設定された光源電流値から、例えば制御部5を構成するマイクロコンピュータのプログラムによりテーブルを参照するなどして、立下り回数の上限と遅延時間を設定することができる。ここでは,3回の立下り回数と遅延時間が設定される。時刻t3時点で検出巻線L2の振動電圧の立下り回数が3回に到達する。時刻t3から遅延時間のカウントが開始され、時刻t4に設定された遅延時間に到達する。時刻t1から時刻t4までスイッチング素子SW1のオフ状態を維持する。
【0068】
遅延時間カウント中の時刻t3〜t4の期間中に、検出巻線L2による振動電圧の立下りを検知してもその立下り電圧は無視される。仮に、時刻t3〜t4の期間中に、振動電圧が減衰したとしても設定した遅延時間に到達するとスイッチング素子SW1はオンするので問題ない。逆に言えば、立下り回数の上限値は、振動電圧が検出可能な範囲内の最大値に設定されることが望ましい。時刻t4で設定した遅延時間に到達すると再度スイッチング素子SW1をターンオンし、次のスイッチングサイクルが開始される。このように時刻t2〜t4の期間は光源電流に応じて設定されるので、周波数の上昇を抑制できる。
【0069】
上述したように、実施の形態2では、制御部5は、負荷電力が小さくなるほど、第1オフ期間で検出する振動電圧の立下がり回数を増加させることでスイッチング素子SW1のオフ期間を長くする。第1オフ期間で検知する振動電圧の立下がり回数には上限を設ける。制御部5は、第1オフ期間で検出する振動電圧の立下がり回数を増加させた後に、さらに負荷電力が小さくなった場合、第2オフ期間を長くする。こうすることで、軽負荷状態でスイッチング素子SW1のオフ期間を長くしなければならない場合において、振動電圧が減衰して立下り電圧が検出できなくなってもスイッチング素子のオフ期間を十分確保することができる。つまり、軽負荷状態でもスイッチング周波数の上昇を抑制することができる。したがって、実施の形態2の光源点灯装置は、光源電流の可変幅が大きく、光源の明るさの調整範囲を広く設定でき、広い負荷変動に対応できるものである。
【0070】
実施の形態1で述べたように、遅延時間は、スイッチング素子SW1のドレインソース間電圧の振動のボトムとなる付近で次のオンタイミングが来るように設定することが望ましい。このとき、振動電圧の直近の立下り信号から遅延時間をカウントするので、遅延時間を最小にでき、交流電源の電圧位相により振動電圧の振動周期が変動することによる影響を小さくできる。すなわち、振動電流がインダクタL1の電流IL1に重畳して入力電流波形にひずみが発生することを最小限に抑制できる。
【0071】
本実施の形態においては、光源電流に応じてスイッチング素子SW1のオフ期間を設定した。しかし、軽負荷となれば周波数が上昇するので、例えば光源に印加される電圧が減少して軽負荷となる場合に、同様の制御を行っても良い。例えば、DC−DCコンバータ4に接続される光源9を印加電圧の低いものに付け替えた場合に、振動電圧の振動回数または遅延時間を増加させても良いし、光源9に印加される電圧と光源電流の積をとり、負荷電力を演算し、負荷電力に応じて振動電圧の振動回数または遅延時間を加減させても良い。また、交流電源電圧によっても駆動周波数は増減するため、交流電源電圧に応じて振動電圧の振動回数と遅延時間を加減させても良い。駆動周波数が十分低い動作条件の時は、通常の電流臨界モード制御に切り替えて力率改善回路3を動作させても良い。
【0072】
実施の形態2では、光源電流の減少にともないまずは第1オフ期間で検出する振動電圧の立下がり回数を増加させ、さらに光源電流が減少した場合に遅延時間を増加させた。しかし、光源電流が小さい場合に第1オフ期間を長くすると振動電圧を検出できなくなるおそれがある。その場合、第1オフ期間で検出する振動電圧の立下がり回数を例えば2回に固定して増加させず、遅延時間を長くすることが好ましい。すなわち、制御部5は、負荷電力が小さくなるほど、第1オフ期間で検出する振動電圧の立下がり回数を固定しつつ第2オフ期間を長くする。これにより、振動電圧が小さい場合に振動電圧の立下がりを検知できなくなる問題を解消しつつ、スイッチング素子SW1のオフ期間を長くできる。しかも、振動電圧が小さい場合に遅延時間を長くしてもインダクタL1の電流に重畳される電流は小さいのでほとんど弊害はない。
【0073】
実施の形態3.
図12は、実施の形態3に係る照明器具200の断面図である。照明器具200は、照明器具本体40、コネクタ41、光源基板42、及び光源点灯装置43を備えている。照明器具本体40は、光源点灯装置43などを取り付けるための筺体である。コネクタ41は、商用電源などの交流電源から電力の供給を受けるための接続部である。光源基板42は、LED又は有機ELなどの光源を実装した基板である。
【0074】
光源点灯装置43の回路構成は上述した光源点灯装置のいずれかと同じ回路構成である。したがって、実施の形態3の照明器具200は、上述の光源点灯装置と、その光源点灯装置が点灯させるLEDまたは有機ELを備える。光源点灯装置43は、コネクタ41と配線44を介して交流電源からの電力供給を受ける。光源点灯装置43は、入力した電力を変換し、変換された電力を配線45を介して光源基板42に供給する。光源点灯装置43から供給された電力により、光源基板42に実装された光源が点灯する。
【0075】
これにより、実施の形態1または2にかかる光源点灯装置の利点を備える照明器具200が提供される。この照明器具200によれば、実施の形態1または2で述べた光源点灯装置のいずれか1つを備えることで、スイッチング周波数の上昇に伴うスイッチング損失増加と光源ちらつきを抑制できる。