(58)【調査した分野】(Int.Cl.,DB名)
前記それぞれの厚さは、前記積層複屈折副層の前記局所光軸によって画定される前記それぞれの格子周期未満であり、前記それぞれの厚さの合計を含む合計した厚さは、前記それぞれの格子周期より大きい、請求項2に記載の光学素子。
前記光の前記波長は波長λを含み、前記それぞれの格子周期は該光学素子の周期Λを画定し、前記合計した厚さは厚さdを含み、前記積層複屈折副層の平均屈折率は、Q=2πλd/Λ2nである場合、Qが前記波長λに対して1より大きいような屈折率nを含む、請求項3に記載の光学素子。
前記反射素子は、前記積層複屈折副層から前記0次ビーム及び/又は前記1次ビームを受け取ることに応じて、複数の異なる偏光を有する光を出力するように構成されている、請求項12に記載の光学素子。
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明の実施形態は、大きい回折角で高い回折効率が可能な光学素子を提供する。
【課題を解決するための手段】
【0008】
本発明の幾つかの実施形態によれば、光を回折する光学素子又は装置は、動作の波長に対してブラッグ条件(Q>1)が得られるような、格子周期、厚さ及び平均屈折率を有する、少なくとも1つの液晶偏光格子を含む。例えば、動作波長範囲が約400nm〜約1700nmの場合、装置は、合計した厚さが約100nm〜約10000nmであり、格子周期が約300nm〜約5000nmである複数の積層液晶副層を含む。特定の実施形態では、動作波長範囲が約1530nm〜約1565nmであり格子周期が約1000nmである場合、装置は、それぞれの厚さが約100nm〜約300nmであり、合計した厚さが約6000nmである、複数の積層液晶副層を含むことができる。
【0009】
幾つかの実施形態では、偏光格子は、基板の上に設けられた複数の積層重合ネマティック液晶副層を含むことができる。基板は、透明又は反射性とすることができる。
【0010】
幾つかの実施形態では、液晶副層の各々は、格子周期未満の厚さを有することができる。
【0011】
幾つかの実施形態では、液晶副層は局所光軸を有することができ、それは、副層の間の境界面において位置合わせされる液晶分子配向によって画定することができる。
【0012】
幾つかの実施形態では、液晶副層は、そのそれぞれの厚さにわたって回転するそれぞれの局所光軸を有するキラル層を備えることができる。液晶副層のキラリティは、そこに入射する光の入射角及び/又は偏光とともに、そこから出力される光の回折角度に影響を与えることができる。
【0013】
本発明の更なる実施形態によれば、光学素子は、ブラッグ条件に従って、内部を通過する光の伝播の方向を変更するように、かつ光の偏光を変更するように構成された、複数の積層複屈折副層を含む。積層複屈折副層は、それぞれ、それぞれの副層格子周期を画定するように積層複屈折副層の隣接するものの間のそれぞれの境界面に沿って変化する局所光軸を含む。
【0014】
幾つかの実施形態では、積層複屈折副層は、光の波長未満であり得るそれぞれの厚さを有する。
【0015】
幾つかの実施形態では、積層複屈折副層は、それぞれの格子周期未満及び/又はそれによって画定される光学素子の格子周期Λ未満である、それぞれの厚さを有することができ、それぞれの厚さの合計を含む合計した厚さは、それぞれの格子周期より大きく及び/又は光学素子の格子周期Λより大きくすることができる。
【0016】
幾つかの実施形態では、光の波長は波長λを含み、それぞれの格子周期は光学素子の周期Λを画定し、合計した厚さは厚さdを含み、積層複屈折副層の平均屈折率は、Q=2πλd/Λ
2nである場合、Qが波長λに対して1より大きいような屈折率nを含む。
【0017】
幾つかの実施形態では、積層複屈折副層は、約0.4未満の複屈折を有する材料を備えることができる。
【0018】
幾つかの実施形態では、積層複屈折副層は、局所光軸を画定する液晶分子配向を有する液晶副層をそれぞれ含むことができる。
【0019】
幾つかの実施形態では、積層複屈折副層のうちの1つ又は複数の局所光軸は、積層複屈折副層のそれぞれの厚さにわたって回転してそれぞれのねじれ角を画定することができる。
【0020】
幾つかの実施形態では、それぞれのねじれ角及び/又はそれぞれの厚さのうちの幾つかは、積層複屈折副層の間で異なることができる。
【0021】
幾つかの実施形態では、複数の積層複屈折副層は、光を、光の入射偏光とは異なる、実質的に同じ偏光を有する0次ビーム及び1次ビームに回折するように構成することができる。
【0022】
幾つかの実施形態では、複数の積層複屈折副層は、ブラッグ角におよそ等しい入射角の光を受け取ることに応答して、光を、約94%以上の回折効率で1次ビームに回折するように構成することができる。
【0023】
幾つかの実施形態では、0次ビーム及び1次ビームの異なる伝播の角度の差は、ブラッグ角におよそ等しい入射角で光を受け取ることに応じて、約45度を超えるか、約60度を超えるか、又は最大約90度とすることができる。
【0024】
幾つかの実施形態では、0次ビーム及び1次ビームの実質的に同じ偏光は、同じ掌性の略円偏光とすることができる。
【0025】
幾つかの実施形態では、積層複屈折副層から出力される0次ビーム及び/又は1次ビームを受け取り、0次ビーム及び/又は1次ビームを積層複屈折副層に戻すように反射するように、反射素子を配置又は位置決めすることができる。
【0026】
幾つかの実施形態では、反射素子は、積層複屈折副層から0次ビーム及び/又は1次ビームを受け取ることに応じて、複数の異なる偏光を有する光を出力するように構成することができる。
【0027】
幾つかの実施形態では、積層複屈折副層のそれぞれの格子周期は、光の波長未満とすることができる。
【0028】
幾つかの実施形態では、複数の積層複屈折副層に、透明基板を光学的に結合することができる。複数の積層複屈折副層は、透明基板内の全反射(TIR)に対する臨界角より大きい角度で、光を1次ビームに回折するように構成することができる。
【0029】
幾つかの実施形態では、複数の積層複屈折副層は、それぞれの第1の格子周期を有する第1の複屈折副層とすることができ、ブラッグ条件に従って、内部を通過する第1の波長の光の伝播の方向を変更するように構成することができる。複数の積層された第2の複屈折副層が、第1の複屈折副層の上にある場合があり、それぞれ、ブラッグ条件に従って、内部を通過する第2の波長の光の伝播の方向を変更するように構成することができる。第2の複屈折副層は、それぞれの第2の格子周期を画定するように、それらの間のそれぞれの境界面に沿って変化するそれぞれの局所光軸を有することができる。第1の複屈折副層及び第2の複屈折副層は、第1の波長及び第2の波長の光をそれぞれ、それぞれの1次ビームに回折するように構成することができる。
【0030】
幾つかの実施形態では、それぞれの1次ビームは、実質的に同じ伝播方向を有することができる。
【0031】
幾つかの実施形態では、第2の格子周期、第2の複屈折副層の合計した厚さ、及び/又は第2の複屈折副層の平均屈折率は、第1の複屈折副層のものとは異なることができる。
【0032】
幾つかの実施形態では、積層複屈折副層は、それぞれ、異なる局所格子周期を有する横に並んだ第1の領域及び第2の領域を備えることができる。
【0033】
幾つかの実施形態では、それぞれの格子周期は、約1000ナノメートル以下とすることができ、積層複屈折副層は、約100nm〜約300nmのそれぞれの厚さを有する。
【0034】
幾つかの実施形態では、光の波長は、約400ナノメートル(nm)〜約1700nmとすることができる。
【0035】
幾つかの実施形態では、積層複屈折副層は、それぞれの格子周期の半分以下であるそれぞれの厚さを有することができる。
【0036】
本発明のまた更なる実施形態によれば、回折光学素子は少なくとも1つの液晶層を含み、少なくとも1つの液晶層は、厚さd(すなわち、厚さdを有する単一段に形成された液晶層、又は集合的な厚さdを有する複数の副層から形成された液晶層)、平均屈折率nを有し、Q=2πλd/Λ
2nである場合、変数Qが光の動作波長λに対して1より大きいような、回折光学素子の格子周期Λを画定するように、液晶層の表面に沿った方向に変化する液晶分子配向を備える。
【0037】
幾つかの実施形態では、回折光学素子の格子周期Λは、光の動作波長λ未満とすることができる。
【0038】
幾つかの実施形態では、格子周期Λは、少なくとも1つの液晶層内で変化することができる。例えば、少なくとも1つの液晶層は異なるセクション又は部分を含むことができ、それらは各々、そのセクション又は部分内に異なる局所格子周期を有する。より全体的には、少なくとも1つの液晶層の一部分は、パラメータの1つの組によってブラッグ偏光格子を画定することができ、少なくとも1つの液晶層の別の部分は、異なるブラッグ偏光格子パラメータを有することができ、又は更には別のタイプの素子(例えば、非ブラッグ偏光格子)に対応するパラメータを有することができる。
【0039】
幾つかの実施形態では、少なくとも1つの液晶層は、複数の積層重合ネマティック液晶副層を備え、積層重合ネマティック液晶副層のそれぞれの厚さは、光の動作波長λ未満とすることができる。
【0040】
幾つかの実施形態では、積層重合ネマティック液晶副層のそれぞれの厚さは、回折光学素子の格子周期Λ未満とすることができる。積層重合ネマティック液晶副層のそれぞれの厚さは、回折光学素子の格子周期Λ及び光の動作波長λより大きい厚さdをまとめて画定することができる。
【0041】
幾つかの実施形態では、積層重合ネマティック液晶副層のうちの1つ又は複数の液晶分子配向は、それぞれのねじれ角φを画定するようにそのそれぞれの厚さにわたって回転し、それぞれのねじれ角φ及び/又はそれぞれの厚さは、積層重合ネマティック液晶副層の間で異なることができる。
【0042】
このように本発明の幾つかの実施形態は、内部を通過する光の偏光及び方向を変更するようにそれぞれ構成されている複数の積層複屈折副層を含み、副層は、それぞれの格子周期を画定するように副層の間のそれぞれの境界面に沿った方向に変化するそれぞれの局所光軸を有し、積層複屈折副層のそれぞれの格子周期、それぞれの厚さ及び平均屈折率は、光の波長に対するブラッグ条件を定義する。
【0043】
幾つかの実施形態による他の装置及び/又は方法は、添付の図面及び詳細な説明を検討することで当業者には明らかとなるであろう。全てのそのような追加の実施形態も、上記実施形態のありとあらゆる組合せに加えて、この説明内に含まれるとともに本発明の範囲内にあり、添付の特許請求の範囲によって保護されることが意図されている。
【発明を実施するための形態】
【0045】
本発明は、本発明の実施形態が示されている添付図面を参照して以下でより十分に説明される。ただし、本発明は、多くの異なる形態で具現化することができ、本明細書において明らかにされる実施形態に限定されるものと解釈されるべきではない。それとは逆に、これらの実施形態は、この開示が十分かつ完全なものとなるとともに本発明の範囲を当業者に十分伝達するように提供される。図面において、層及び領域のサイズ及び相対的なサイズは、明確にするために誇張されている場合がある。同様の参照符号は、全体を通じて同様の要素を参照する。
【0046】
本明細書では第1の、第2の、第3の等の用語を使用して様々な要素、構成要素、領域、層及び/又は部分について記載する場合があるが、これらの要素、構成要素、領域、層及び/又は部分は、これらの用語によって限定されるべきではないことが理解されよう。これらの用語は、単に、1つの要素、構成要素、領域、層又は部分を別の領域、層又は部分から識別することにのみ使用される。したがって、後述する第1の要素、構成要素、領域、層又は部分を、本発明の教示から逸脱することなく第2の要素、構成要素、領域、層又は部分と呼ぶことができる。
【0047】
「真下(beneath)」、「下方(below)」、「下部(lower)」、「下(under)」、「上方(above)」、「上部(upper)」等の空間的に相対的な用語が、図に示すような或る要素又は特徴部の別の要素(複数の場合もある)又は特徴部(複数の場合もある)に対する関係を説明する記述を容易にするために、本明細書において用いられる場合がある。これらの空間的に相対的な用語は、図に示す方向に加えて使用中又は動作中のデバイスの種々の方向を包括的に含むように意図されていることが理解されるであろう。例えば、図におけるデバイスが反転した場合、他の要素又は特徴部の「下方」又は「真下」又は「下」として説明された要素は、その後、それらの他の要素又は特徴部の「上方」の方向にある。したがって、用語「下方」及び「下」は、上方及び下方の双方の方向を包括的に含むことができる。デバイスは、(90度又は他の方向に回転されて)それ以外の方向にある場合があり、本明細書において用いられる空間的に相対的な記述語がそれに応じて解釈される。加えて、或る層が2つの層の「間」にあるというとき、その或る層は、それらの2つの層の間の唯一層である可能性もあるし、1つ又は複数の介在する層も存在する場合もあることも理解されるであろう。
【0048】
本明細書において用いられる用語は、特定の実施形態を説明することだけを目的とし、本発明の限定を意図するものではない。本明細書において用いられる場合、文脈によりその他の場合が明らかに示される場合を除き、単数形「1つの(a、an)」及び「その(the)」は複数形を包含することが意図される。本明細書において用いられる場合、用語「備える、含む(comprises)」及び/又は「備えている、含んでいる(comprising)」が、述べられている特徴、完全体(integers)、ステップ、動作、要素、及び/又は構成要素の存在を特定するが、1つ又は複数の他の特徴、完全体、ステップ、動作、要素、構成要素、及び/又はそれらの群の存在又は追加を除外しないことが更に理解されよう。本明細書において用いられる場合、用語「及び/又は(and/or)」は、関連付けられて列挙された項目のうちの1つ又は複数のありとあらゆる組合せを含む。
【0049】
或る要素又は層が、別の要素若しくは層「の上にある」、別の要素若しくは層「に接続されている」、別の要素若しくは層「に結合されている」、又は別の要素若しくは層「に隣接している」というとき、その或る要素又は層は、その別の要素若しくは層の直接上にある、その別の要素若しくは層に直接接続されている、その別の要素若しくは層に直接結合されている、又はその別の要素若しくは層に直接隣接していることもあるし、介在する要素又は層が存在する場合もあることが理解されるであろう。これとは対照的に、或る要素が、別の要素若しくは層「の直接上にある」、別の要素若しくは層「に直接接続されている」、別の要素若しくは層「に直接結合されている」、又は別の要素若しくは層「に直に隣接している」というとき、介在する要素又は層は存在しない。
【0050】
本発明の実施形態は、本明細書において、本発明の理想的な実施形態(及び中間構造)の概略説明図である断面説明図を参照して説明される。したがって、例えば、製造技法及び/又は公差の結果としての説明図の形状からの変化が予想される。そのため、本発明の実施形態は、本明細書において示す領域の特定の形状に限定されるものと解釈されるべきではなく、例えば、製造の結果得られる形状の変化を含むことになる。したがって、図に示す領域は、その本質が概略的であり、それらの形状は、デバイスの領域の実際の形状を示すように意図されておらず、本発明の範囲を限定するように意図されていない。
【0051】
他に規定のない限り、本明細書において用いられる全ての用語(技術用語及び科学用語を含む)は、本発明が属する技術分野の当業者により一般に理解される意味と同じ意味を有する。一般に用いられる辞書において定義される用語等の用語が、関連する技術分野及び/又は本開示での意味と一致する意味を有するものとして解釈されるべきであり、本明細書において、理想化された、又は過度に形式張った意味で明確に定義される場合を除き、そのような意味で解釈されることにはならないことが更に理解されよう。
【0052】
ラマン−ナス領域における幾つかの従来のPGは、λに略等しい格子周期Λ(すなわち、Λ〜λ)を有する可能性があり、そこでは、厚さは、半波リタデーション状態におよそ対応する可能性がある。垂直入射に対する回折角θは、以下のように定義することができる。
【数2】
式中、Λがλに近づくと(Λ〜λ)、θはより大きくなり、最終的に90度になる。Λ<λである場合、θは虚数になり、光は回折格子内を導波することができる。しかしながら、大きい回折角度での(すなわち、Λがλに略等しいときの)高回折効率は、不可能であるか又は実現できない可能性がある。例えば、幾つかの数値シミュレーションに従って、大きい回折角度での高回折効率は、複屈折性が更に高い材料を用いることによって達成することができるが、Λがλに略等しい場合、必要な複屈折性は実現できないほど高い可能性がある(すなわち、Δn>0.4)。他の数値シミュレーションはこれらの発見をサポートするように見え、そのうちの幾つかは、液晶が使用される場合、実現できないほど高い複屈折性Δnが必要であるために製造が困難である可能性がある、ということを認めることができる。同様に、
【数3】
の液晶ベースの偏光格子は、実験的に具現化することができないことを認めることができ、それは、Δn〜0.59である理想的なシミュレーションされた場合においてさえも、予測される最高回折効率は約30%である可能性があるためである。
【0053】
ブラッグ領域における偏光格子(PG)の従来の使用は幾分か限られており、それは、場合によっては、PGの周期が小さいほど製造が困難である可能性があり、及び/又はより複雑な理論的分析が必要である可能性があるためである。しかしながら、この領域は重要である可能性があり、それは、幾つかの用途では、光学系の開口角を増大させるために大きい回折角が好ましい場合があるためである。こうした用途としては、電気通信、ディスプレイ、撮像センサ及び非機械式レーザビームステアリングを挙げることができる。
【0054】
本発明の幾つかの実施形態は、ブラッグ領域におけるPGの従来の使用が、通常、格子周期Λが入射光の波長λ(本明細書では動作波長とも呼ぶ)より大きい場合、すなわち、Λ>λである場合(例えば、λがΛに略等しい場合)に焦点を置くという理解から、生じることができる。ブラッグPGの初期の例では、実験的研究は、アゾベンゼン部分を含むバルク光誘起分子再配向に基づいて、光活性(photoactive)ポリマーを採用して、Λ=2μm、d=100μm及びλ=633nmで、90%以上の回折効率を達成した。しかしながら、この種の材料の限界は、厚い膜の場合にヘイズ(すなわち散乱)及び吸収が現れることである可能性があり、膜が厚いほど、Λの小さいブラッグPGが必要となる可能性がある。例えば、従来の場合の同じQに、ただしΛ=λ=633nmで達するために、式(1)は、同じ材料での厚さが、(2/0.633)
2=10倍を超える、又はd=1mmである必要があり、それは、ヘイズ及び吸収によって膜が使用不可能になる可能性がある厚さである。
【0055】
幾つかの数値シミュレーション及び理論的分析は、ブラッグ領域において100%程度に高い回折効率があり得る可能性があることを示す場合があるが、これは、通常、厚さが半波リタデーション厚さよりはるかに大きい場合、かつ光が斜めに入射する場合に、観察することができる。しかしながら、上記シミュレーション及び分析は、優れた回折効率及び低損失のPGの製造方法に関する指示をほとんど又は全く提供しない。したがって、従来のPGは、大きい回折角に対して液晶(LC)を使用しない可能性があり、それは一部には、それらが実現不可能なほど又は不可能であるほど厚く、及び/又は不可能なほどに高い複屈折性Δn(液晶材料の異常屈折率n
eと常屈折率n
oとの差を示す)を有する材料を必要とする可能性があるためである。さらに、従来のブラッグPGは、バルクLC材料を使用する可能性を具現化することができない。
【0056】
本発明の実施形態は、最大約90度の大きい回折角θ(すなわち、λがΛに略等しい)及び高い効率の両方を有するPGを提供することにより、上記問題及び/又は他の問題に対処することができる。動作波長に対してブラッグ条件(Q>1)が得られるように選択された格子周期Λ、厚さd及び/又は平均屈折率nを有するLC材料で形成されたブラッグPGは、これを可能にすることができ、ラマン−ナスPGと同様に材料複屈折性によって制限されない可能性がある。本発明の実施形態によって対処される他の問題としては、大きくても小さくても任意の回折角での従来のブラッグPGに関連する吸収(等)損失及び/又は製造の困難さが挙げられる。本発明の幾つかの実施形態によるブラッグ液晶偏光格子(LCPG)は、透明であり、従来のLC材料及びプロセスを採用することができるため、より容易に製造することができる。
【0057】
より具体的には、本発明の実施形態は、個々にコーティングされかつ重合された、バルクLC材料及び複数の副層(内部を通過する光の動作波長未満のそれぞれの厚さを有することができる)を採用して、ブラッグ領域に対して必要な大きい厚さを達成し、それにより、従来技術における従来の方法及び材料の限界を回避して、高回折効率(例えば、およそ又は最大100%)を表す低損失かつ高品質のブラッグPGを物理的に具現化することができる。
【0058】
図1は、本発明の幾つかの実施形態によるブラッグLCPG100を示す。ブラッグLCPG100は、基板110、光配向層115及び複数の積層複屈折副層(バルクネマティックLC層105a、105b、...105nとして示す)を含み、複数の積層複屈折副層は、それらの間の境界面に沿った方向に変化するそれぞれの局所光軸を有し、各々、個別にコーティングして重合することができ、それらの関連パラメータは、Q>1であるように配置され又は選択される。
図1の例では、層105a、105b、...105nの各々における液晶分子配向は、層105a、105b、...105nの間のそれぞれの境界面に沿って変化するが、層105a、105b、...105nのそれぞれの厚さにわたって均一である、局所光軸を画定する。基板110は、剛性があり若しくは可撓性があり、及び/又は透明であり若しくは反射性であるものとすることができる。光配向層115は、線形光重合性ポリマー(linearly photopolymerizeable polymer)(LPP)とすることができ、配向方向がΦ(x)=πx/Λに従うようにパターニングされている。
【0059】
バルクネマティックLC層105a、105b、...105nは、重合反応性LCモノマー層として述べることができ、便宜上かつ一貫性のために、本明細書では、LCポリマー(LCP)副層と呼ぶものとする。各薄いLCP副層105a、105b、...105nは、それ自体の厚さ(d
1、d
2、...、d
N)を有し(それらは、式(1)の全体的な又は総ブラッグPG厚さd(=d
1+d
2+...+d
N)をまとめて画定する)、上及び下の副層との境界面において位置合わせされた局所光軸を有する。2つ以上の副層105a、105b、...105nが各々同じ厚さを有することができるが、本発明の実施形態はそのように限定されず、厚さの異なる副層105a、105b、...105nを含むことができることに留意されたい。同様に、各LCP副層105a、105b、...105nは、それぞれの副層又は表面格子周期Λ
sを有し、それは、素子100に対する全体的な光学格子周期Λ
o(より全体的には、本明細書では光学素子格子周期Λと呼ぶ)を画定することができる。
図1の実施形態では、光学素子格子周期Λを、副層格子周期Λ
sと等しい(すなわちΛ
o=Λ
s)ものとして示すが、他の実施形態では、光学素子格子周期Λは、副層格子周期Λ
s以下(すなわち、Λ
o≦Λ
s)とすることができる。さらに、各副層厚さd
1、d
2、...、d
Nは、動作波長λ及び/又は光学素子格子周期Λ未満(例えば、光学素子格子周期の約半分以下、すなわちd
#≦Λ/2)であって、高品質LC配向を容易にすることができる(開示内容が引用することにより本明細書の一部をなすものとする、Escuti他の米国特許第8,064,035号を参照されたい)一方で、幾つかの実施形態では、合計した又は総ブラッグPG厚さdは、光学素子格子周期Λ及び/又は動作波長λを超えることができることに留意されたい。より全体的には、他のパラメータは一定でありながら、光学素子格子周期Λが増大すると、ブラッグ効果に必要な厚さdは増大する可能性がある。
【0060】
これに関して、LCP層は、従来の液晶ポリマーとは別個であることが留意されるべきである。本発明の幾つかの実施形態で採用するLCP薄膜は、低分子量反応性LC分子を含み、それらは、それらがコーティングされるか又は他の方法で形成される表面の特徴によって配向され、その後、剛直な高分子網目に重合される。特に、ブラッグPGの周期的パターンは、直接LCP層にではなく、光配向層の表面に記録することができる。逆に、多くの従来の液晶ポリマーは、液晶成分を含む高分子量ポリマーである可能性があり、ブラッグPGの周期的パターンは、通常、例えば光誘起分子再配向を介して、材料内に直接記録される。
【0061】
図2は、光学素子200を示し、透明基板210(
図1の基板110とは異なる可能性がある)の上に形成されるか又は取り付けられたときに
図1のブラッグLCPG100がいかに動作するかを例示する。寄生反射及び漏れを除き、角度θ
iで入射する光波290は、光290の入射角θ
iが、θ
Bがブラッグ角とみなされる場合にブラッグ角関係θ
i=θ
B=sin
−1(λ/(2Λ))を満足するとき、角度θ
m=0及びθ
m=1にそれぞれ沿って、ブラッグLCPG100によって、0次(m=0)及び1次(m=1)に対応する2つのみ(又は実質的に2つ)の回折次光299、299’に分割される。
図2の符号によれば、従来の回折方程式に従って、sinθ
m=1=sinθ
i−λ/Λ=−λ/(2Λ)である。言い換えれば、θ
m=1=−θ
Bは、入射角θ
i及び1次出力ビーム299’の回折角θ
m=1がブラッグ角θ
Bと同一であるが、1次出力ビーム299’の回折角θ
m=1は(素子200に対して垂直な方向に対して)方向が反対であることを意味する。0次出力ビーム299の回折角θ
m=0は、素子200に対して垂直な方向に対して入射角θ
iに等しい。さらに、格子パラメータ(すなわち、Λ、d及びΔn)は、入射光波パラメータ(すなわち、θ
i及びλ)が与えられると、回折効率が向上するか又は最適であるように選択することができる。幾つかの実施形態では(例えば、ブラッグLCPG100が完全に回折している場合)、出力光波又はビーム299、299’は、実質的に同じ円偏光を有することができ、それらの相対的な効率は、部分的に入射偏光によって決まる可能性がある。特に、入射光波290が円偏光を有し、いわゆるブラッグ角に沿って入力される場合、対向する円偏光により、1次出力ビーム299’への最大100%の回折効率が理論的には可能である。他の実施形態では(例えば、ブラッグLCPG100が、50%効率等、部分的に回折している場合)、1次出力ビーム299’は円偏光される可能性があり、0次出力ビーム299は、楕円形の非円偏光を有する可能性がある。したがって、本明細書に記載するようなブラッグLCPGは、入射光の偏光及び伝播方向の両方を変更する。
【0062】
図2の実施形態の代表的な例として、一方の側に反射防止コーティングが施されている透明ガラス基板の上に、波長λ=1550nmに対するブラッグLCPGが製造された。光学素子に対する格子ピッチは、Λ=1μm又は1000線/mmであるように、すなわち、格子ピッチ又は周期Λが動作波長λ未満であるように選択された。LPP材料LIA−COO1(DIC Corporation Japan)が使用され、それは、直交円偏光により干渉する2つのコヒーレントUVレーザビーム(355nm)のPGホログラフィックリソグラフィ法を用いて露出された。LCPに対して、RMS03−001C(Merck Chemicals Ltd.、1550nmでΔn〜0.1及びn〜1.57)が使用された。このLCPのおよそ30個の薄層(それぞれの厚さは約216nmであり、それは、光学素子格子周期Λ及び動作波長λ未満である)が、例えば、「Multi-twist retarders: Broadband retardation control using self-aligning reactive liquid crystal layers」(Komanduri他、Optics Express 21, 404-420(2013))において報告されているものと同様の技法を用いて、LPP層の上にスピンコーティングされた。回折効率を増大させるか又は最大化するために、総厚さd〜6.5μm(30個のLCP副層の厚さの合計を表す)が選択された。本明細書に記載するブラッグLCPGの幾つかの実施形態は、最大約20μmの総厚さdを有することができる。薄膜を保護し、空気−ガラス反射損失を低減させるか又は最小限にするために、LCPの上に第2の透明ガラス基板が接着された。この例に対して、Q〜40であり、十分にブラッグ領域に入る。
【0063】
図3Aは、上述した例においてブラッグLCPGを特徴付けるために使用される測定設定309を示す。1550nmレーザ310からの直線偏光が、4分の1波長板(QWP)320に通されて円偏光390を提供するように偏光状態が調整され、円偏光390は、入射角θ
iでブラッグLCPG300に提供された。角度θ
iは、サンプルブラッグLCPG300を回転させることによって変更された。光検出器330、330’を用いることにより、0次399及び1次399’に回折された光の量が測定された。
【0064】
図3Bは、さまざまな入射角で上述した透過型サンプルブラッグLCPG300に対して測定されたデータを示す。
図3Bに示すように、入力光390が円偏光された場合、0次透過率が最小値に達した。この構成では、入射角θ
iが変更されると、0次における絶対最小値が51度で測定され、それは、sin
−1(λ/(2Λ))=sin
−1(1.55/2)〜51度として計算されたブラッグ角に非常に近い。
図3Bに見られるように、この角度(51度)で0次において1%未満の入射光が観測され、入射光390の約94%が1次に回折された。約4%の損失が、主に、垂直入射に対して選択されたか又は最適化された反射防止コーティングを含んでいた空気−ガラス界面の残留反射に対する要因である可能性がある。この影響を正規化することにより、この測定において約99%の回折効率(=0.94/(0.94+0.01))が達成された。これはLCPGによるブラッグ回折の確認であるのみでなく、これらの結果は、従来のブラッグ格子(すなわち、非PGタイプ)並びに異なる方法及び材料に従って形成された従来技術によるブラッグPGから観察されたものを満たすか又は超過する。さらに、両次数399、399’の回折効率は、偏光感受型とすることができる。入射光390の偏光状態が、直交円偏光の間で(QWP320を回転させることにより)変更されると、パワーの実質的に全てが1次399’から0次399にシフトした。両次数399、399’に対して、偏光コントラスト比(これらの次数における最大対最小パワーとして定義される)が、約130:1であるように測定された。0次399及び1次399’両方の偏光状態が測定され、円形でありかつ同じ掌性であることが確認されたことにも留意されたい。
【0065】
図4に、本発明の更なる実施形態によるブラッグLCPG構成を含む光学素子400を示し、それは、
図2の実施形態200の反射型バージョンである。金属ミラー又は半導体等の反射性基板410の上に、
図1と同様のブラッグLCPG層100’が形成されるか又は取り付けられ、そこでは、総厚さdは、
図2のLCPG層100の厚さのおよそ半分である。入射光波490は
図2と同様に挙動するが、反射性基板410による反射のために、全ての角度の出力光又はビーム499、499’が素子400の同じ側にある、ということが異なる。すなわち、0次(m=0)出力光ビーム499及び1次(m=1)出力光ビーム499’に対応する回折角θ
m=0及びθ
m=1は、それぞれ、
図2に示すものに等しいが反対である。この実施形態における光波は、LCPG層100’を2回通過しなければならないため、LCPG100’の総厚さdは、従来の場合の厚さのおよそ半分で選択されるべきである。
【0066】
図4の実施形態400の代表的な例として、一方の側に反射防止コーティングが施された透明ガラス基板の上に、波長λ=1550nmに対するブラッグLCPGが製造された。全てのパラメータ、材料及び製造方法は、上記の代表的な例のものと同様であるか又は同じであったが、総厚さd=3μmであることが異なり、それは、およそ15個のLCP副層をコーティングすることによって達成された。そして、薄膜がアルミニウムミラーに積層された。
図5Aは、ブラッグLCPGサンプル500を評価するための測定設定509を示し、
図5Bは、異なる入射角で測定された0次反射率及び1次反射率を示す。特に、1550nmレーザ510からの直線偏光が4分の1波長板(QWP)520に通されて円偏光590を提供するように偏光状態が調整され、円偏光590は、入射角θ
iでブラッグLCPG500に提供された。角度θ
iは、サンプルブラッグLCPG500を回転させることによって変更された。光検出器530、530’を用いることにより、0次599及び1次599’に回折された光の量が測定された。
図2の実施形態に関する上記の例とは対照的に、
図5Bに示すデータは、入射角が変更される際に強力な振動を示す。それにもかかわらず、51度の同じブラッグ角で、0次における全体的な最小値(約13%)が観察され、そこで、1次への最大反射率(約83%)が発生した。これは、86%の回折効率(=0.83/(0.83+0.13))に対応する。これは可能なほど高くない(この場合、LCP厚さはわずかに薄すぎた可能性があるため)が、それにもかかわらず、それは、LCPGからのブラッグ回折の実証である。
【0067】
図6に、本発明のまた更なる実施形態によるブラッグLCPG600を示し、それは、
図1の実施形態100と同様であるが、LCP材料及び結果としての構造が異なる。この場合、LCPとして重合性キラルネマティックLC混合物が採用され、それにより、z方向にらせん状のねじれがもたらされる。したがって、各薄いLCP副層605a、605b、...605nはそれ自体の厚さ(d
1、d
2、...、d
N)とともに、素子600全体に対してφの総ねじれになるそれ自体のキラルねじれ(φ
1、φ
2、...φ
N)を有する。言い換えれば、副層605a、605b、...605nのうちの1つ又は複数の液晶分子配向は、局所光軸を画定し、副層605a、605b、...605nの間のそれぞれの境界面に沿って変化するだけでなく、副層605a、605b、...605nのそれぞれの厚さd
1、d
2、...、d
Nにわたっても変化してそれぞれのねじれ角φ
1、φ
2、...φ
Nを画定する。これはまた、幾つかの従来の傾斜ブラッグ格子の周期的構造の角度傾斜に類似する「傾斜」ブラッグLCPGも達成する。副層605a、605b、...605nは、各々、同じ厚さ及びねじれを有する可能性があるが、本発明の実施形態はそのように限定されず、異なる厚さ及び/又はねじれを有する副層605a、605b、...605nを含むことができることに留意されたい。さらに、高品質LC配向を促進するように、各副層厚さは、動作波長λ及び/又は格子周期Λ未満(すなわち、d
#≦Λ/2)である可能性があることに留意されたい(Escuti他の米国特許第8,064,035号を参照されたい)。より詳細には、各LCP副層605a、605b、...605nは、それぞれの副層又は表面格子周期Λ
sを有し、それは、素子600に対する全体的な光学格子周期Λ
o(光学素子格子周期Λとも呼ぶ)を画定する。光学素子格子周期Λは、
図6の実施形態に示す傾斜ブラッグLCPGでは副層格子周期Λ
s未満(すなわち、Λ
o<Λ
s)であるが、他の実施形態では、副層格子周期Λ
sと等しい(すなわち、Λ
o=Λ
s)場合がある。
【0068】
図7及び
図8に、
図6の実施形態の代表的な例を示し、そこでは、
図6の傾斜ブラッグLCPG600は、1次を異なる角度θ
m=1に回折する(
図2及び
図3を参照されたい)。この傾斜は、キラルネマティックLCP材料自体の自発的ならせん状ねじれ作用を介して達成され、入射ブラッグ角及び/又は1次回折角に対して追加の制御を提供し、角度を、本来等価な非傾斜(すなわち、非キラル)バージョンと比較して大きいか又は小さいように変更することができる。例えば、開示内容が引用することにより本明細書の一部をなすものとする、「LOW-TWIST CHIRAL LIQUID CRYSTAL POLARIZATION GRATINGS AND RELATED FABRICATION METHODS」と題するEscuti他の米国特許出願第12/596,189号(現時点では米国特許第8,339,566号)に記載されているように、ねじれ角を正確に制御するために、非キラルネマティックLCにキラル分子を追加することができる。開示内容が引用することにより本明細書の一部をなすものとする、「MULTI-TWIST RETARDERS FOR BROADBAND POLARIZATION TRANSFORMATION AND RELATED FABRICATION METHODS」と題するEscuti他の米国特許出願第13/646,166号に記載されているように、副層が異なるキラルねじれを有する場合、帯域幅及び角度応答を含む、ブラッグLCPG挙動の追加の態様を制御することができることに留意されたい。
【0069】
特に、
図7の光学素子700は、透明基板710の上に形成されるか又は取り付けられた場合の
図6のブラッグLCPG600の動作を示す。
図7に示すように、角度θ
iで入射する光波790は、ブラッグLCPG600によって、角度θ
m=0及びθ
m=1に沿ってそれぞれ、0次(m=0)及び1次(m=1)に対応する2つのみ(又は実質的に2つ)の回折次数799、799’に分割される。
【0070】
図8の光学素子800は、金属ミラー又は半導体等の透明基板810の上に形成されるか又は取り付けられた場合の
図6と同様のブラッグLCPG600’の動作を示す。この実施形態における光波は、LCPG層600’を2回通過しなければならないため、LCPG層600’の総厚さdは、
図7のLCPG層600の厚さのおよそ半分である。入射光波890は、
図7の場合と同様に挙動するが、反射性基板810による反射のために、全ての角度の出力光又はビーム899、899’が素子800の同じ側にある、ということが異なる。
【0071】
図9に、本発明の更なる実施形態によるブラッグLCPG構成を含む光学素子900を示し、そこでは、
図6の傾斜ブラッグLCPG600が、透明基板910に光学的に結合され、基板910内の1次光出力ビーム999’の1次回折角θ
m=1は、臨界角より大きく、全反射(TIR)をもたらす。これは、時に導波路結合と呼ばれ、それは、入力光波990が、TIRをサポートする導波路のモードに向けられているためである。限定されないが、基板910の上にブラッグLCPG600を直接形成すること、又は異なる基板の上にブラッグLCPG600を形成し、その後、それをTIRが発生する最終的な基板910に積層することを含む、光学結合を達成するさまざまな方法がある。この同じ構造で逆の挙動が発生し、すなわち、入射光波又はビームが適切な角度でかつ適切な波長で基板910内部をすでに導波している場合、傾斜ブラッグLCPG600はそれを基板から出るように回折することができるに留意されたい。これは、時に外部結合(out-coupling)と呼ばれる。ブラッグLCPGによる導波路内部結合(in-coupling)及び外部結合は、限定されないが、プレーナ光波回路、光ファイバカプラ、分散フィードバックレーザ、光センサ、ニア・ツー・アイ(near-to-eye)ディスプレイ及びヘッドアップ(heads-up)ディスプレイ、バックライト(等)用のターニングフィルム及び太陽光集光器を含む、多くの用途で有用である。0次出力ビーム999の回折角θ
m=0は、素子900に対して垂直な方向に対して入射角θ
iに等しい。
【0072】
図9の実施形態の代表的な例として、一方の側に反射防止コーティングが施された透明ガラス基板の上に、波長λ=1550nmに対する傾斜ブラッグLCPGが製造された。全てのパラメータ、材料及び製造方法は、
図2の実施形態に関連する代表的な例のものと同様であるか又は同一であるが、キラルネマティックLCP材料を使用することが異なる。このキラルネマティックLCは、LCPベースの材料RMS03−001C内に少量(2重量%)キラルドーパントCB15(Merck Chemicals Ltd.)を添加することによって準備された。これにより、同様の厚さd(約6μm)でねじれφ=400度〜500度がもたらされたと推定される。光学素子に対する全体的な格子ピッチは、Λ=1μm又は1000線/mmとして同じままであることに留意されたい。これらのパラメータは、入力光が表面に対して略垂直な方向から入射する場合に、ガラス基板(屈折率が約1.5)内の1次回折のTIRを達成するように選択された。
【0073】
図10Aは、
図9の例の透過型傾斜ブラッグLCPGを特徴付けるために使用される測定設定1009を示す。特に、1550nmレーザ1010からの直線偏光が、4分の1波長板(QWP)1020に通されて円偏光1090を提供するように偏光状態が調整され、円偏光1090は、サンプルブラッグLCPG1000を回転させることによって変更された入射角θ
iでブラッグLCPG1000に提供された。光検出器1030、1030’を用いることにより、0次1099及び1次1099’で回折された光の量が測定された。
図10Bは、入射光1090が円偏光され、入射角θ
iが変更された場合の結果を示す。入射角が小さい場合、0次パワーは低く、最小値はθ
i=5度で約7%であった。略又は実質的に全ての残りの光が、導波路(すなわち基板)内に結合され、複数回TIRを受けた。サンプルにおける非均一性により、導波路内に幾分かの散乱損失があった。それにもかかわらず、基板から検出器に、この光の大部分(約64%)が最終的に漏れ出た。傾斜ブラッグLCPGとの相互作用の後に発生するこの影響を正規化することにより、少なくとも約90%の回折効率(=0.64/(0.64+0.07))が達成された。キラル濃度及び/又はLCP厚さを調整することにより、及び/又は最適な入射角を調整することにより、効率を更に向上させることができる。
【0074】
図11に、本発明の更なる実施形態によるブラッグLCPG構成を含む光学素子1100を示し、それは、
図9の実施形態900の変形である。この場合、傾斜ブラッグLCPG600’は、反射型(
図8を参照)であり、入射光1190の反対側に配置される。
図9におけるように、1次回折方向はまた、TIRが発生する方向に沿う。特に、
図11に示すように、ブラッグLCPG600’は、金属ミラー又は半導体等の反射性基板1110bの上に形成されるか又は取り付けられ、反射性基板1110bに対して反対側の透明基板1110aに光学的に結合される。この実施形態における光波は、LCPG層600’を2回通過しなければならないため、LCPG層600’の総厚さdは、
図9のLCPG層600の厚さのおよそ半分である。入射光1190は、透明基板1110aを通って傾斜ブラッグLCPG600’まで透過し、0次ビーム及び1次ビームに回折され、それらは、反射性基板1110bによって反射され、傾斜ブラッグLCPG600’を通って戻るように透過し(それによって、ビームの偏光が反転する)、透明基板1110aに対して0次光出力ビーム1199及び1次光出力ビーム1199’を提供する。基板1110a内の1次光出力ビーム1199’の回折角θ
m=1は、臨界角より大きく、全反射(TIR)をもたらす。0次光出力ビーム1199の回折角θ
m=0は、入射角θ
iに等しいが、素子1100に対して垂直な方向に対して反対である。
【0075】
図12に、本発明の他の実施形態によるブラッグLCPG構成を含む光学素子1200を示し、そこでは、2つ以上のブラッグLCPG1201、1202が基板1210の上に積層形態で配置され、任意選択的に、それらの間に接着剤1205、基板及び/又は他の平面素子がある。例えば、
図1の実施形態100及び/又は
図6の実施形態600に従って、各ブラッグLCPG1201、1202を形成することができ、それらは、互いに異なる少なくとも1つのパラメータ(例えば、光学素子格子周期Λ、厚さd及び/又はねじれφ)を有するように構成することができる。例として、2つの異なる波長λ
1及びλ
2を含む入射光1290を、高いか又は最適な効率で実質的に同じ1次方向(出力ビーム1299’によって示す)に回折するように、2つのブラッグLCPG1201及び1202を構成することができ、それには、各ブラッグLCPG1201、1202が異なる光学素子格子周期Λ
λ1及びΛ
λ2を有する必要がある可能性がある。さらに、追加のブラッグLCPGにより、こうした積層体は、実質的に全ての光が、ブラッグLCPGの偏光特性を用いて偏光変換システム(PCS)におけるのと実質的に同じ偏光によって垂直方向に沿って方向が変えられるように設計することができる。積層ブラッグLCPGは、限定されないが、ニア・ツー・アイディスプレイ及びヘッドアップディスプレイ、バックライト(等)用のターニングフィルム、プロジェクタ、太陽光集光器、光ファイバカプラ、分散フィードバックレーザ、ビームステアリング及び光学データ記憶デバイスを含む、多くの用途の範囲内で優先的に採用することができる。
【0076】
図13に、本発明の幾つかの実施形態による偏光ビームスプリッタ(PBS)1300を示し、そこでは、
図6の実施形態によるブラッグLCPG600が、偏光ビームスプリッタ(PBS)として作用するように構成されている。ブラッグLCPG600は、或る入射角θ
i(例えば、略45度)で入射光1390を受け入れ、出力光1399、1399’を、好ましくは互いから約45度を超える、互いから約60度を超える、又は互いから最大約90度の方向に沿って、2つの出力回折次数(透過光波1399及び回折光波1399’とも呼ぶ0次出力光1399及び1次出力光1399’)に回折するように構成され、各回折次数1399、1399’は、入力偏光状態にかかわらず、同じ掌性で略円偏光される可能性がある。入力偏光状態及び出力偏光状態の双方を制御するために、任意選択的に、ブラッグLCPG600の両側にリターダを追加することができるが、これは必須ではない。
図13は、単一パス構成1300を示し、そこでは、入力光1390は、ブラッグLCPG600の一方の側からのみ入る。分光法、ディスプレイ、ホログラフィ及び偏光分析を含む幾つかの用途において、PBS素子1300は有用である可能性がある。
【0077】
図14におけるPBS構成1400は、
図13の実施形態に類似するが、反射面1410、物体又はデバイスとともにブラッグLCPG PBS600を更に含む。反射面は、
図13の透過光出力経路1399又は回折光出力経路1399’のいずれかにおいて構成するか又は配置することができる。
図14の例では、0次光ビーム1499は透過し、反射面1410は、1次/回折光ビーム経路1499’に配置される。反射面1410は、種々の偏光をもたらす特徴及び/又は特性を有することができ、少なくとも部分的に、こうした混合偏光状態を有する光1480の方向を、2回目のパスのためにブラッグLCPG600に向かって戻るように変える。反射面1410は、限定されないが、パターニングされた複屈折構造、空間的高さの相違及び/又は複数の材料を含む、多くの形態で実施することができる。ブラッグLCPG600に向かって反射される光1480は、
図14に示すように、その偏光に従って分析され、そこでは、光の一部1489’は回折され、光の一部1489は透過する。こうした実施形態は、計測学、偏光分析、リモートセンシング及びイメージングを含む様々な用途において有用である可能性がある。
【0078】
図15は、
図14の実施形態と同様のPBS構成1500を示すが、そこでは、反射面1510は、例えば投影ディスプレイシステムの一部としての、LCマイクロディスプレイ等のLCディスプレイシステムである。しかしながら、LCマイクロディスプレイを含む構成とのブラッグLCPG PBSの組合せは、適応制御光学及びホログラフィを含む他の多くの用途に対して有用な一般的なサブアセンブリであり、投影ディスプレイ用途に制限されない。
図15において、1回目のパスにおける透過した0次光波1599は、ビームストップによって遮断され、LCPG600に戻るように送られる寄生反射を低減させるか又は防止し、投影画像における高いコントラストを確実にする。回折された1次光波1599’は、反射型LCディスプレイ1510の上に向けられ、それによって反射される。
図14の実施形態と同様に、反射面1510は、種々の偏光をもたらす特徴及び/又は特性を有することができ、幾つかの実施形態では、少なくとも部分的に、こうした混合偏光状態を有する光1580の方向をブラッグLCPG600に向かって戻るように変える。LCディスプレイ1510からの反射された光ビーム1580は、偏光感受型ブラッグLCPG600によって0次/透過光ビーム1589及び1次/排除光ビーム1589’に選択的に分離される画像情報を含み、そこでは、透過光波1589は、投影レンズに、例えば、拡大又は画面への投影のために向けられる。回折光波1589’は遮断されるか又は再循環する。この構成1500は、さまざまなLC投影ディスプレイシステムで使用することができ、したがって、こうした用途に対して実際的である可能性がある。
【0079】
上記記載において、「標準PGホログラフィックリソグラフィ法」とは、
図16A及び
図16Bに示す構成を指すものとする。
図16A及び
図16Bは、例えば、開示内容が引用することにより本明細書の一部をなすものとする、Escuti他の米国特許第8,358,400号に記載されているような光配向材料及びLC材料を用いて、結果として得られるLCPGがブラッグ条件(Q>1)を満足させるよう、十分な光学素子格子周期を画定するように、LPP内でPG配向条件をパターン化する、2つのあり得る手法1600a及び1600bを示す。LPPにより、空間的に変化する偏光パターンが、配向方向として記録される。PGに対して、配向パターンは、全体を通して、ただし位置に線形に依存する(すなわち、Φ(x)=πx/Λ)配向角で、主に直線偏光される可能性がある。光源は、高コヒーレントな平行光源1610(例えばレーザ)とすることができ、又は、偏光子1612を透過する、部分的にコヒーレントな及び/又は部分的に平行の光源1610b(例えば、高圧ランプ又は発光ダイオード(LED))とすることができる。光源1610a、1610bは、紫外線(UV)波長を放出することができるが、これは必須ではない。
図16Aの第1の手法1600aは、ホログラフィックリソグラフィと呼ばれ、それは、光源1610aの出力がビームスプリッタ1603、ミラー1607及び波長板1608を通過した後、2つの結果としてのビーム(反対の円偏光を有するものとして示す)が、記録面1615において干渉するためであり、この手法1600aは、本明細書に記載する例のうちの幾つかにおいて使用された。
図16Bの第2の手法1600bは、プロキシミティリソグラフィ又はホログラフィック複製と呼ばれ、それは、例えば、Escuti他の米国特許第8,358,400号に記載されているように、マスクパターン1616がレプリカPG1617の上にコピーされるためである。本明細書に記載するブラッグLCPGのパターニング及び製造に対していずれも使用することができる。
【0080】
本明細書に記載する実施形態は、所与のブラッグLCPGにおける光学素子格子周期が全体を通して一定である構成に主に焦点を置いている。しかしながら、同じブラッグLCPGの異なる領域が、異なる局所格子周期を有して、A(x,y)を有効に提供することができ、それにより、2次元1>(x,y)である可能性がある光軸角がもたらされることが理解されよう。本明細書に記載する実施形態の任意のこうした変更が、本発明の範囲内に含まれることが更に理解されよう。
【0081】
したがって、本発明の実施形態は、ブラッグ液晶偏光格子(LCPG)と呼ぶ新たな種類の光学素子を提供し、それは、大きい回折角も含むブラッグ領域においてPGにおける高効率回折を達成するという従来の問題を克服する構造、方法及び使用に取り組む。幾つかの実施形態は、ブラッグLCPGを用いて導波路に対する内部結合/導波路からの外部結合のための膜を含む。本発明の実施形態は、従来の素子より単純な方法で、より低損失で、ブラッグPGにおける偏光選択性により、高回折効率及び限られた回折次数を達成することができ、より広い設計パラメータ空間をサポートすることができる。本発明の実施形態は、限定されないが、偏光分析及び偏光解析法、生体イメージング、光磁気データ記憶装置、偏光多重化/多重分離、偏光ベースの光変調器、偏光スイッチ及びビームスプリッタを含む、種々の用途で使用することができる。
【0082】
本発明の実施形態によって製造された幾つかのブラッグLCPG素子は、例えば、開示内容が引用することにより本明細書の一部をなすものとする、「LOW-TWIST CHIRAL LIQUID CRYSTAL POLARIZATION GRATINGS AND RELATED FABRICATION METHODS」と題する、Escuti他の米国特許出願第12/596,189号、及び「MULTI-TWIST RETARDERS FOR BROADBAND POLARIZATION TRANSFORMATION AND RELATED FABRICATION METHODS」と題する、Escuti他の同第13/646,166号に記載されているようなアクロマティックPG及びMTRの技法を用いて、広帯域スペクトルを有することができる。
【0083】
本発明の実施形態は、本明細書では、液晶(LC)材料に関して説明されている。液晶は、分子の秩序だった配列が存在する液体を含むことができる。通常、長形状(ロッド状)又はフラット形状(ディスク状)のいずれかを有する液晶(LC)分子は、異方性とすることができる。異方性分子の配列の結果、バルクLCは、多くの場合、その機械的特性、電気的特性、磁気的特性、及び/又は光学的特性における異方性等のその物理特性における異方性を示す。液晶は、本明細書において用いられるとき、ネマティック相、キラルネマティック相、スメクティック相、強誘電相、及び/又は別の相を有することができる。ロッド状又はディスク状の性質の結果、LC分子の方向の分布は、液晶ディスプレイ(LCD)等の光学的用途において重要な役割を果たすことができる。これらの用途では、LC配向は、配向表面によって規定することができる。配向表面は、LCが制御可能な方法で表面に対して配向するように取り扱うことができる。本明細書に記載する偏光格子を生成するために、配向層として多数の光重合性ポリマーを使用することができる。光重合性であることに加えて、これらの材料は、LCに対して不活性である可能性があり、LCデバイスの動作温度の範囲(例えば、約−50℃〜約100℃)にわたって安定した配向を提供するべきであり、本明細書に記載する製造方法と適合性があるべきである。本発明の幾つかの実施形態で使用する更なる構造及び/又は方法については、Escuti他の国際公開第2006/092758号において考察されており、その開示内容は全体として引用することにより本明細書の一部をなすものとする。
【0084】
「透過性」又は「透明」の基板又は素子は、本明細書において用いられるとき、入射光の少なくとも一部がそれらの基板又は素子を通過することを可能にすることができることが当業者によって理解されるであろう。換言すれば、本明細書において説明する透過性素子又は透明素子は、完全に透明である必要はなく、等方性吸収特性又はダイクロイック吸収特性を有する場合があり、及び/又は入射光の一部を別の方法で吸収する場合がある。対照的に、本明細書に記載するような「反射性」基板は、入射光の少なくとも一部を反射することができる。透明基板又はスペーサは、幾つかの実施形態では、ガラス基板とすることができる。
【0085】
また、「重合性液晶」は、重合することができる比較的低分子量の液晶材料を指す場合があり、本明細書において「反応性メソゲン」として説明される場合もある。これとは対照的に、「非反応性液晶」は、重合化することができない比較的低分子量の液晶材料を指す場合がある。
【0086】
本明細書で用いる「0次」光は、入射光の方向に実質的に平行な方向に、すなわち、実質的に同様の入射角で伝播するものであり、本明細書では、「軸上」光と呼ぶことができる。対照的に、「1次」光等の「非0次光」は、入射光に対して平行ではない方向に伝播するものであり、本明細書では「軸外」光と呼ぶ。本明細書に記載するような「部分的に平行な」光は、互いに実質的に平行に伝播する光線又はビームを述べるものとするが、幾分かの発散を有する(例えば、光源からの距離によってビーム径が異なる)ことができる。
【0087】
幾つかの実施形態では、光源は楕円偏光された光又は部分的に偏光された光(例えば、或るレーザダイオード及びLED光源からの光等)を提供できることが更に理解されるであろう。
【0088】
周囲媒体(例えば空気)とインタフェースする全ての表面に、反射防止コーティングを施すことができることもまた理解されよう。本明細書に記載した光学素子は、場合によっては、間に空隙なしに合わせて積層することができ、他の場合では、間に空隙があって配置することができることも理解されよう。
【0089】
本明細書において説明するように、「リターダ」及び「波長板」という用語は区別なく用いることができ、次の追加の用語、すなわち、一軸性、二軸性、又は不均質のいずれの「リタデーションプレート」、「補償膜」、及び「複屈折プレート」も、別段の指定がない限り同等とみなされることが理解されるであろう。本明細書において説明するようなリターダは、広帯域(すなわち、アクロマティック)とすることもできるし、狭帯域(すなわち、クロマティック)とすることもできる。
【0090】
本発明の実施形態は、本明細書において説明した特定の材料に限定されるものではなく、本明細書において説明したように機能するありとあらゆる材料層を用いて実施することができることも理解されるであろう。
【0091】
本明細書において、上記の説明及び図面に関連して多くの異なる実施形態が開示されてきた。これらの実施形態の全ての組合せ及び部分的組合せをそのまま説明し示すことは、過度に繰返しが多くわかりにくいものとなることが理解されよう。したがって、図面を含む本明細書は、本明細書において説明される本発明の実施形態並びにそれらを作成し用いる方式及びプロセスの全ての組合せ及び部分的組合せの完全な明細書を構成すると解釈されるものとし、任意のそのような組合せ又は部分的組合せに対する特許請求を支持するものとする。
【0092】
図面及び明細書に、本開示の実施形態が開示され、特定の用語が使用されているが、それらの用語は、一般的かつ説明的な意味でのみ用いられ、限定の目的では用いられていない。
なお、出願当初の特許請求の範囲の記載は以下の通りである。
請求項1:
ブラッグ条件に従って、内部を通過する光の伝播の方向を変更するように構成されている、複数の積層複屈折副層を備え、
前記積層複屈折副層は、それぞれ、それぞれの格子周期を画定するように該積層複屈折副層の隣接するものの間のそれぞれの境界面に沿って変化する局所光軸を備える、光学素子。
請求項2:
前記積層複屈折副層は、前記光の波長未満のそれぞれの厚さを有する、請求項1に記載の光学素子。
請求項3:
前記それぞれの厚さは、前記積層複屈折副層の前記局所光軸によって画定される前記それぞれの格子周期未満であり、前記それぞれの厚さの合計を含む合計した厚さは、前記それぞれの格子周期より大きい、請求項2に記載の光学素子。
請求項4:
前記光の前記波長は波長λを含み、前記それぞれの格子周期は該光学素子の周期Λを画定し、前記合計した厚さは厚さdを含み、前記積層複屈折副層の平均屈折率は、Q=2πλd/Λ2nである場合、Qが前記波長λに対して1より大きいような屈折率nを含む、請求項3に記載の光学素子。
請求項5:
前記積層複屈折副層は、約0.4未満の複屈折を有する材料を備える、請求項4に記載の光学素子。
請求項6:
前記積層複屈折副層は、前記局所光軸を画定する液晶分子配向を有する液晶副層をそれぞれ含む、請求項5に記載の光学素子。
請求項7:
前記積層複屈折副層のうちの1つ又は複数の前記局所光軸は、該積層複屈折副層の前記それぞれの厚さにわたって回転してそれぞれのねじれ角を画定する、請求項4に記載の光学素子。
請求項8:
前記それぞれのねじれ角及び/又はそれぞれの厚さのうちの幾つかは、前記積層複屈折副層の間で異なる、請求項7に記載の光学素子。
請求項9:
前記複数の積層複屈折副層は、前記光を、該光の入射偏光とは異なる、実質的に同じ偏光を有する0次ビーム及び1次ビームに回折するように構成されている、請求項1に記載の光学素子。
請求項10:
前記複数の積層複屈折副層は、ブラッグ角におよそ等しい入射角の前記光を受け取ることに応答して、前記光を、約94%以上の回折効率で1次ビームに回折するように構成されている、請求項1に記載の光学素子。
請求項11:
0次ビーム及び前記1次ビームの伝播の角度の差は、前記ブラッグ角におよそ等しい前記入射角で前記光を受け取ることに応答して、約45度より大きい、請求項10に記載の光学素子。
請求項12:
前記0次ビーム及び前記1次ビームの前記実質的に同じ偏光は、同じ掌性の少なくとも略円偏光を含む、請求項9に記載の光学素子。
請求項13:
前記積層複屈折副層から出力される0次ビーム及び/又は1次ビームを受け取り、該0次ビーム及び/又は該1次ビームを該積層複屈折副層に戻るように反射するように配置された反射素子、
を更に備える、請求項2に記載の光学素子。
請求項14:
前記反射素子は、前記積層複屈折副層から前記0次ビーム及び/又は前記1次ビームを受け取ることに応じて、複数の異なる偏光を有する光を出力するように構成されている、請求項13に記載の光学素子。
請求項15:
前記積層複屈折副層の前記それぞれの格子周期は、前記光の波長未満である、請求項1に記載の光学素子。
請求項16:
前記複数の積層複屈折副層に光学的に結合された透明基板を更に備え、
前記複数の積層複屈折副層は、前記透明基板内の全反射(TIR)に対する臨界角より大きい角度で、前記光を1次ビームに回折するように構成されている、請求項15に記載の光学素子。
請求項17:
前記複数の積層複屈折副層は、それぞれの第1の格子周期を有する第1の複屈折副層を含み、かつ、前記ブラッグ条件に従って、内部を通過する第1の波長の前記光の伝播の方向を変更するように構成されており、前記光学素子は、
前記第1の複屈折副層の上にあり、前記ブラッグ条件に従って、内部を通過する第2の波長の前記光の伝播の方向を変更するようにそれぞれ構成された、複数の積層された第2の複屈折副層を更に備え、
前記第2の複屈折副層は、それぞれの第2の格子周期を画定するように、それらの間のそれぞれの境界面に沿って変化するそれぞれの局所光軸を有し、
前記第1の複屈折副層及び前記第2の複屈折副層は、前記第1の波長及び前記第2の波長の前記光をそれぞれ、それぞれの1次ビームに回折するように構成されている、請求項1に記載の光学素子。
請求項18:
前記それぞれの1次ビームは、実質的に同じ伝播方向を有する、請求項17に記載の光学素子。
請求項19:
前記第2の格子周期、前記第2の複屈折副層の合計した厚さ、及び/又は前記第2の複屈折副層の平均屈折率は、前記第1の複屈折副層のものとは異なる、請求項17に記載の光学素子。
請求項20:
前記光の前記波長は、約400ナノメートル(nm)〜約1700nmである、請求項2に記載の光学素子。
請求項21:
前記それぞれの格子周期は、約1000ナノメートル(nm)以下であり、前記それぞれの厚さは、約100nm〜約300nmである、請求項20に記載の光学素子。
請求項22:
回折光学素子であって、
厚さd、平均屈折率nを有する少なくとも1つの液晶層であって、Q=2πλd/Λ2nである場合、変数Qが光の動作波長λに対して1より大きいような、該回折光学素子の格子周期Λを画定するように、該液晶層の表面に沿った方向に変化する液晶分子配向を備える、液晶層、
を備える、回折光学素子。
請求項23:
前記少なくとも1つの液晶層は、複数の積層重合ネマティック液晶副層を備え、該積層重合液晶副層のそれぞれの厚さは、前記光の前記動作波長λ未満である、請求項22に記載の回折光学素子。
請求項24:
前記積層重合液晶副層の前記それぞれの厚さは、該回折光学素子の前記格子周期Λ未満であり、前記積層重合ネマティック液晶副層の前記それぞれの厚さは、該回折光学素子の前記格子周期Λ及び前記光の前記動作波長λより大きい厚さdをまとめて画定する、請求項23に記載の回折光学素子。
請求項25:
前記積層重合ネマティック液晶副層のうちの1つ又は複数の前記液晶分子配向は、それぞれのねじれ角φを画定するようにその前記それぞれの厚さにわたって回転し、該それぞれのねじれ角φ及び/又は該それぞれの厚さは、前記積層重合ネマティック液晶副層の間で異なる、請求項23に記載の回折光学素子。
請求項26:
前記回折光学素子の前記格子周期Λは、前記光の前記動作波長λ未満である、請求項22に記載の回折光学素子。