(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0020】
以下、添付図面を参照しながら、本発明の好適な実施形態について、簡単のために型締装置1を例にして本発明の射出成形機を説明する。
[第1実施形態]
本実施形態の型締装置1は、昇圧工程において、高い効率の運転条件でサーボモータ及び油圧ポンプを運転する際に、予め当該油圧ポンプに対して実験によりあるいは数値解析などのシミュレーションによる得られたポンプ効率データを用いることによって、高効率な運転の条件を精度よく設定することができる。以下、型締装置1の構成、型締装置1における昇圧工程の手順を順に説明する。
【0021】
[型締装置1の構成]
図1及び
図2に示すように、本実施形態の型締装置1は、所望の形状の成形品を得るための一対の固定金型14及び可動金型15と、固定金型14と可動金型15との間に形成されるキャビティに射出材料である溶融樹脂を射出する射出シリンダ19と、型締めのための駆動力を発生させる型締シリンダ18と、型締シリンダ18に作動油を供給する油圧供給部30と、各種構成を制御する成形機制御部50と、を備える。
【0022】
型締装置1は、
図1に示すように、ベースフレーム11の一端側の上面には、固定金型14を保持する固定ダイプレート12が固設されている。
ベースフレーム11の他端側の上面には、固定ダイプレート12に対向して、可動金型15を保持する移動ダイプレート13が進退移動可能に配設される。ベースフレーム11の上には、ガイドレール26が敷設されており、このガイドレール26にガイドされたリニアベアリング27が、スライド台28を介して移動ダイプレート13を支持している。なお、リニアベアリング27の代わりに摺動板を使用して、スライド台28を介して移動ダイプレート13を支持してもよい。
固定ダイプレート12にはストロークが小さくかつ断面積の大きな4基の油圧による型締シリンダ18が、その四隅に設けられている。なお、型締シリンダ18は、移動ダイプレート13に設けることもできる。型締シリンダ18の中を摺動するラム16はその一側面にそれぞれタイバー17の一端が接続され、このタイバー17は対向する移動ダイプレート13が型閉のため近づくと、移動ダイプレート13に開けられた4個の挿通孔を貫通する。
型締シリンダ18には、後述する作動油配管40が接続されており、この作動油配管40は、型締シリンダ18の型締側室181、型開側室182へ油を供給する。
【0023】
移動ダイプレート13の移動方向に平行に設置され、固定ダイプレート12に保持された軸受箱20とベースフレーム11に保持された軸受箱21とによって回転可能に、かつ軸方向を拘束して支えられ、サーボモータ22により動力伝達ギア23、24を介して駆動されるボールねじ軸25により移動ダイプレート13の移動手段が構成される。ボールねじ軸25は、図示しない制御装置によりサーボモータ22を介して、回転数、回転速度が制御される。
各タイバー17の他端は、それぞれ等ピッチの複数のリング状の平行溝(又は螺旋状のねじ溝)が形成されている。移動ダイプレート13の背面には、各タイバー17のリング状の平行溝と噛合するハーフナット29が設けられている。
【0024】
以上の型締装置1は、固定金型14と可動金型15とが開いた状態から、
図1に示すように、固定金型14と可動金型15が閉じた状態となるまで、サーボモータ22で駆動されるボールねじ軸25の回転によって移動ダイプレート13が移動する。移動ダイプレート13は固定金型14と可動金型15の互いの対向面が当接すると停止するようになっている。
【0025】
この移動ダイプレート13の停止位置でハーフナット29が作動してハーフナット29の内側のリング状の平行溝がタイバー17の先端部のリング状の平行溝と係合してタイバー17とハーフナット29とが結合する。その後、型締シリンダ18の型締側室181を昇圧して型締めする。このようにして型締めを行った後に、射出シリンダ19から固定金型14と可動金型15とで形成されるキャビティ内に溶融樹脂を射出して成形品を成形する。
【0026】
油圧供給部30は、
図2に示すように、作動油を供給する油圧源31と、油圧源31に連なる作動油配管40と、作動油配管40に設けられた圧力検出器41と、を備える。
成形機制御部50は、油圧供給部30における油圧源31に対して稼働・停止及び稼働時における流量、圧力を決定する制御部を兼ねている。
【0027】
油圧源31は、サーボモータ32と、サーボモータ32の回転数を可変制御可能なサーボ制御回路33と、サーボモータ32の回転駆動により駆動して作動油を吐出する油圧ポンプ34と、油圧ポンプ34から吐出される作動油が流通する吐出配管39と、油圧ポンプ34の動作を制御する斜板角制御部37とを有する。吐出配管39は、作動油配管40に接続されている。
【0028】
サーボモータ32は、回転角度を検出するエンコーダを有しており、検出された回転角度をサーボ制御回路33に出力する。サーボ制御回路33は、成形機制御部50から入力される回転数Nの指令値に対応するパルス信号を生成しサーボモータ32に出力してサーボモータ32を回転数Nで回転駆動させる。サーボ制御回路33には、サーボモータ32のエンコーダで検出された回転角度が継続して入力されており、サーボ制御回路33は、当該回転角度に基づいてフィードバック補正しながら回転数Nが得られるようにサーボモータ32を制御する。
【0029】
ここで、サーボモータ32は、サーボ機構において位置、速度等を制御する用途に使用可能なモータであるかぎり、モータの種類は任意であり、ACサーボモータ、DCサーボモータ、ステッピングモータなどを適用できる。また構造についても、例えば、ステータ構造は分布巻き型でも集中巻き型でもどちらでもよいし、ロータ構造は表面磁石貼付型(SPM)モータでも、内部磁石埋込型(IPM)モータのどちらでもよい。
【0030】
本実施形態における油圧ポンプ34は、可変容量型のポンプであり、サーボモータ32によって中心軸回りに一定の回転数で回転可能であるとともに中心軸に対する傾斜角度を変更可能な斜板35と、斜板35の回転に応じてストロークして作動油を吐出させる図示を省略するピストンと、斜板35の角度を検出する角度検出器45とを有する。
斜板角制御部37は、成形機制御部50から入力される斜板角度θ指令に基づいて、角度調整部36を作動させて斜板35の角度を調整し、また、角度検出器45の検出結果に基づいて斜板35の傾斜角度をフィードバック制御する。
角度調整部36は、図示を省略するが、例えば斜板35を付勢するバネと、バネの付勢に抗して斜板35の傾斜角度を変更する油圧式の角度調整用アクチュエータと、油圧アクチュエータへの油の供給制御をする電磁方向切換弁と、から構成することができる。
【0031】
図3に示すように、油圧供給部30における油圧制御部を兼ねる成形機制御部50は、制御設定値を入力する入力部51と、サーボモータ32及び油圧ポンプ34の制御値を生成する制御値生成部53と、制御値生成部53からサーボモータ32及び油圧ポンプ34に対する制御値を取得して制御指令を生成するとともに生成された制御指令を出力する指令出力部55と、制御値を生成するのに必要な各種データが記憶されている記憶部57と、を備える。
【0032】
記憶部57には、油圧ポンプ34に関するポンプ効率データが記憶されている。
ポンプ効率データは、可動金型15と固定金型14の型締動作を行う際に、設定される型締圧力を得るために、タイバー17を所定の速度と所定の油圧を負荷して動作させるのに必要な油圧ポンプ34の斜板角度θと回転数Nの複数の組み合せの中から、最高効率Emが得られる斜板角度θ及び回転数Nの組み合せを決定するのに用いられる。
ポンプ効率データは、油圧ポンプ34の運転条件と油圧ポンプ34の運転効率とが対応付けられたものであり、油圧ポンプ34について予め取得されており、例えば
図4〜
図6に示すように、各斜板角度θx、θy、θzにいて運転条件と運転効率が対応付けられている。
図4は斜板角度θxにおける運転条件と運転効率の相関図、
図5は斜板角度θyにおける運転条件と運転効率の相関図、
図6は斜板角度θzにおける運転条件と運転効率の相関図をそれぞれ示している。各図中下側の第一横軸が油圧ポンプ34から吐出される作動油の吐出流量Qを、図中左側の第一縦軸が油圧ポンプ34の吐出される油の吐出油圧ρで示される二次元座標上に、油圧ポンプ34の効率が等高線で示されたマップ状のデータである。なお、二次元座標の第二横軸は油圧ポンプ34の回転数Nを、第二縦軸が油圧ポンプ34の入力トルクTを示している。
【0033】
ポンプ効率データは、油圧ポンプ34の斜板角度ごとに取得されており、本実施形態では、
図4〜
図6に示すように、異なる三つの斜板角度θx、θy及びθzを示しているが、これはあくまで一例であり、斜板角度を四つ以上にすることもできる。
また、本実施形態では、ポンプ効率データとして視覚的に理解が容易なマップ状データを例にしたが、本発明においては、同様の機能をなし得る限りデータ形式は任意であり、テーブル形式のデータあるいは関数式からなるデータであってもよい。
【0034】
図4〜
図6に示すポンプ効率データにおいて、吐出流量Qと吐出油圧ρが特定されると、油圧ポンプ34の効率Eを特定することができる。この効率Eの特定を斜板角度θx、θy及びθzのそれぞれのポンプ効率データについて求め、その中から最高効率Emが得られる斜板角度θx、θy及びθzのいずれかと、その斜板角度θにおける回転数Nを特定する。そうすると、油圧ポンプ34は特定された斜板角度θで運転され、サーボモータ32は特定された回転数Nで運転されることになる。なお、効率Eが高いほど、油圧ポンプ34を運転する際の消費エネルギが少ないことを意味する。
【0035】
また、記憶部57には、設定された型締力Fと当該型締力Fを発生させるのに必要な油圧ポンプ34の吐出油圧ρとが対応付けられた型締力−吐出油圧換算データと、設定された所定の速度と当該速度でタイバー17を動作させるのに必要な油圧ポンプ34の吐出流量Qとが対応付けられた速度−吐出流量換算データが記憶されている。当該換算データは、例えばマップ状データ、テーブル形式のデータなど、任意である。
【0036】
[昇圧工程の手順]
ポンプ効率データを用いて最高効率Emが得られる斜板角度θ及び回転数Nの組み合せを決定する手順を、さらに
図7〜
図9を参照して説明する。この手順は、可動金型15と固定金型14を型締めするいわゆる昇圧工程に関するものであり、油圧ポンプ34からの吐出油圧ρを検出しながら行われる。そして、吐出油圧ρにしきい値(ρ1)を設け、設定油圧ρ1に達する前後で油圧ポンプ34の運転条件を替える。なお、設定油圧ρ1に達する前は吐出流量Qを多くして型締シリンダ18の動作を速くし、設定油圧ρ1に達した後は吐出流量Qを少なくして型締シリンダ18により型締めする圧力を大きくすることを想定している。
【0037】
はじめに、成形機制御部50の入力部51に制御設定値として動作設定条件としての型締力Fが入力されると(
図7 S101)、制御値生成部53は型締力Fを取得するとともに、記憶部57に記憶されている型締力−吐出油圧換算データを参照して、型締力Fを発生させるのに必要な油圧ポンプ34の吐出油圧ρを求める。同時に速度−吐出流量換算データを参照して所定の速度でタイバー17を動作させるのに必要な吐出流量Qを求める(
図7 S103)。ここで求められる吐出油圧ρと吐出流量Q(設定運転条件)は、後に求められるものと区別するために、設定油圧ρ1、設定流量Q1と表記する。このとき、設定油圧ρ1は成形条件として設定された型締力Fから演算により求め、設定流量Q1は成形条件によらない予め定められた一定の固定値とする。したがって、この設定油圧ρ1は本発明における吐出油圧ρc,ρ1cに該当し、設定流量Q1は本発明における吐出流量Qns,Q1sに該当する。なお、この設定油圧ρ1が前述したしきい値であり、型締力Fより低い値が採用される。
【0038】
制御値生成部53は、設定油圧ρ1、設定流量Q1(第一設定油圧、第一設定流量、第一運転条件)を求めたならば、記憶部57に記憶されているポンプ効率データを参照して、油圧ポンプ34の運転効率が最も高くなる運転条件を選定する(
図7 S105)。この選定は、記憶部57に記憶されているポンプ効率データにおいて、設定油圧ρ1、設定流量Q1に対応する効率Eを、斜板角度θx、θy及びθzのそれぞれのポンプ効率データについて求め、その中から最高効率Emが得られる斜板角度θx、θy及びθzのいずれかと、その斜板角度θにおける回転数Nを特定することにより行われる。ここで選定される斜板角度θ及び回転数Nは、後に求められるものと区別するために、設定角度θ1、設定回転数N1と表記する。
【0039】
例えば、斜板角度θx、θy及びθzのそれぞれにおける運転条件と運転効率の相関を示す
図8(a),(b),(c)において、設定油圧ρ1及び設定回転数N1における油圧ポンプ34の運転効率は、斜板角度θx、θy及びθzがそれぞれ、88%、89%及び87%であるから、最高効率Em1は89%であり、この最高効率Em1が得られる回転数N及び斜板角度θの組合せは、設定回転数N1及び斜板角度θyである。この斜板角度θyが設定角度θ1とされる。
【0040】
こうして最高効率Em1が得られる設定回転数N1及び設定角度θ1が得られたならば、指令出力部55は制御値生成部53から当該制御値を取得するとともに、設定回転数N1及び設定角度θ1のそれぞれについて運転指令値を生成する。指令出力部55は、設定回転数N1に対応する指令値CN1を油圧供給部30のサーボ制御回路33に出力し、また、設定角度θ1に対応する指令値Cθ1を油圧供給部30の斜板角制御部37に出力する。
サーボ制御回路33は、取得した指令値CN1に基づいてサーボモータ32の回転数Nを制御し、斜板角制御部37は、取得した指令値Cθ1に基づいて角度調整部36を動作させることで、油圧ポンプ34の斜板35を設定角度θ1にする。
【0041】
以上のように、サーボモータ32及び油圧ポンプ34は、最高効率Em1が得られる条件で運転され(
図7 S107)、固定金型14と可動金型15の型締圧力が上昇する(
図7 S109)。
金型が昇圧している過程で、油圧供給部30の圧力検出器41は作動油配管40の内部を流れる作動油の吐出油圧ρを検出しており、その検出した値を検出吐出油圧ρdとする。検出吐出油圧ρdは、圧力検出器41から成形機制御部50の制御値生成部53に送られ、検出吐出油圧ρdを取得した制御値生成部53は検出吐出油圧ρdが設定油圧ρ1に達するか否かの比較を継続的に行う(
図7 S111)。制御値生成部53は、検出吐出油圧ρdが設定油圧ρ1に達していなければ、指令出力部55への指示を行わないので、サーボモータ32及び油圧ポンプ34は、従前の条件で運転を続ける(
図7 S111 No)。
【0042】
一方、制御値生成部53は、検出吐出油圧ρdが設定油圧ρ1に達すると、設定角度θ1及び設定回転数N1を切替える処理を行う。つまり、制御値生成部53は、検出吐出油圧ρdが設定油圧ρ1に達すると、記憶部57に記憶されている型締力−吐出油圧換算データを参照して、設定油圧ρ2を求める。同時に速度−吐出流量換算データを参照して所定の速度でタイバー17を動作させるのに必要な設定流量Q2を新たに特定する(
図7 S115)。この設定油圧ρ2は、設定された型締力Fに等しく、また、設定流量Q2は設定流量Q1よりも少ない。このとき、設定油圧ρ2は動作設定条件として設定された型締力Fから演算により求め、設定流量Q2は成形条件によらず予め定められた一定の固定値とする。したがって、この設定油圧ρ2は本発明における吐出油圧ρc,ρ2cに該当し、設定流量Q2は本発明における吐出流量Qns,Q2sに該当する。
【0043】
制御値生成部53は、設定油圧ρ2及び設定流量Q2(第二設定油圧、第二設定流量、第二運転条件)を求めたならば、記憶部57に記憶されているポンプ効率データを参照して、油圧ポンプ34の運転効率が最も高くなる運転条件を選定する(
図7 S117)。この選定は、前述した設定角度θ1及び設定回転数N1を選定する手順と同様に行われる。選定される斜板角度θ及び回転数Nは、設定角度θ2、設定回転数N2と表記する。
例えば、斜板角度θx、θy及びθzのそれぞれにおける運転条件と運転効率の相関を示す
図9(a),(b),(c)において、設定油圧ρ2及び設定回転数N2における油圧ポンプ34の運転効率は、斜板角度θx、θy及びθzがそれぞれ、80%、70%及び70%であるから、最高効率Em2は80%であり、この最高効率Em2が得られる回転数N及び斜板角度θの組合せは、設定回転数N2及び斜板角度θxである。この斜板角度θxが設定角度θ2とされる。
【0044】
最高効率Em2が得られる設定回転数N2及び設定角度θ2(θx)が特定されたならば、指令出力部55は上述したのと同様にして、設定回転数N2に対応する指令値CN2を油圧供給部30のサーボ制御回路33に出力し、また、設定角度θ2に対応する指令値Cθ2を油圧供給部30の斜板角制御部37に出力する。サーボ制御回路33は、取得した指令値CN2に基づいてサーボモータ32の回転数Nを制御し、斜板角制御部37は、取得した指令値Cθ2に基づいて角度調整部36を動作させることで、油圧ポンプ34の斜板35を設定角度θ2にする(
図7 S117)。
【0045】
以上のように、サーボモータ32及び油圧ポンプ34は、最高効率Em2が得られる条件で運転され(
図7 S117)、固定金型14と可動金型15の型締圧力が上昇する(
図7 S119)。
制御値生成部53は継続して検出吐出油圧ρdを取得するとともに、検出吐出油圧ρdが設定油圧ρ2に達するか否かの比較を継続的に行う(
図7 S121)。検出吐出油圧ρdが設定油圧ρ2に達していなければ、サーボモータ32及び油圧ポンプ34は、従前の条件で運転を続ける(
図7 S121 No)。
【0046】
一方、制御値生成部53は、検出吐出油圧ρdが設定油圧ρ2に達すると、昇圧工程を完了すべきか否かの判定を行う(
図7 S121 Yes)。つまり、制御値生成部53は、検出吐出油圧ρdが設定油圧ρ2に対してオーバーシュートしているか否かを判定する(
図7 S123)。例えば、許容範囲Δρを設定しておき、検出吐出油圧ρdが設定油圧ρ2+許容範囲Δρを超えればオーバーシュートと判定し(
図7 S123 Yes)、検出吐出油圧ρdが(設定油圧ρ2+許容範囲Δρ)以下であれば、オーバーシュートに到っていないと判定する(
図7 S123 No)。
【0047】
制御値生成部53は、検出吐出油圧ρdがオーバーシュートと判定すると、油圧を低下させるために指令出力部55に対してサーボモータ32の設定回転数N2を所定の回転数Ns(ただし、Ns<N2)とするように指令を送り、指令出力部55はこれを受けた指令値CNsを油圧供給部30のサーボ制御回路33に送る。サーボモータ32はこの指令値CNsに基づいて運転される。なお、油圧を低下させるために、サーボモータ32の設定回転数N2を回転数Nsに低下させる代わりに、サーボモータ32を一旦停止あるいは逆回転させてもよいし、図示しない所定のバルブを開いて吐出配管39内の油圧を低下させてもよい。以後も、継続して検出吐出油圧ρdが設定油圧ρ2に対してオーバーシュートしているか否かを判定する(
図7 S125)
【0048】
一方、制御値生成部53は、オーバーシュートに到っていないと判定すると、指令出力部55に対してサーボモータ32の動作を停止するように指令を送り、指令出力部55はこの指令を受けて、サーボ制御回路33にサーボモータ32の停止を指令する。これにより、サーボモータ32の運転が停止され、昇圧工程が終了する(
図7 S127)。以後は、射出シリンダ19から固定金型14と可動金型15で形成されるキャビティに溶融樹脂を射出し、射出完了後にキャビティ内の樹脂圧力を保持する射出・保圧工程が実行される。
【0049】
以上説明した型締装置1によれば、以下の効果を奏する。
型締装置1は、設定された型締力Fに応じた最高効率(Em1,Em2)で運転できる吐出油圧ρ(ρ1,ρ2)及び斜板角度θ(θ1,θ2)の条件でサーボモータ32及び油圧ポンプ34を運転できるので、油圧ポンプ34を常に高効率で駆動できる。
しかも、型締装置1は、この高効率な運転の条件を、予め当該油圧ポンプ34について作成されているポンプ効率データに基づいて設定するので、高効率な運転の条件を精度よく設定することができる。
【0050】
また、型締装置1は、吐出油圧ρを設定油圧ρ1と設定油圧ρ2の二段階に設定し、吐出油圧ρが設定油圧ρ1に達するか否かで、サーボモータ32及び油圧ポンプ34の運転条件を切換える。したがって、昇圧工程において、油圧ポンプ34に高速動作が要求される第一運転条件の期間と、その後の高圧動作が要求される第二運転条件の期間と、のそれぞれにおいて最高効率Em1,Em2が得られる設定回転数N1,N2、設定角度θ1,θ2で、サーボモータ32及び油圧ポンプ34を運転できる。これにより、油圧ポンプ34の運転状態のそれぞれに応じた最高効率の条件の組合せで油圧ポンプ34を運転するので、消費エネルギを最小にできる。
【0051】
本実施形態において、射出成形機における型締装置1の型締工程を例にして本発明を説明したが、図示しない射出装置の射出充填工程の終盤から保圧工程の油圧制御に本発明を適用することもできる。具体的には、設定油圧ρ2を成形設定条件である保圧工程の吐出圧力とし、設定油圧ρ1を設定油圧ρ2よりも低圧の任意の圧力値とすることもできる。この場合、吐出油圧ρが設定油圧ρ2に到達した時点で、射出充填工程から保圧工程に切り換える工程の切換制御を行う。
【0052】
[第2実施形態]
次に、本発明による第2実施形態を説明する。
第2実施形態は、第1実施形態の油圧ポンプ34の運転効率に加えて、サーボモータ32の運転効率をも加味して、油圧ポンプ34の運転条件を設定する。以下、
図10を参照して、第2実施形態に係る型締装置2を説明する。なお、型締装置2の構成は型締装置1とほぼ一致しており、相違するのは、記憶部57にサーボモータ32の効率に関するデータが加わることと、この加わったデータに基づく制御値生成部53及び指令出力部55における処理であるから、型締装置2の構成についての説明は省略する。
【0053】
さて、型締装置2は、成形機制御部50の記憶部57にサーボモータ32に関するモータ効率データが記憶されている。モータ効率データは、
図10(a)に示されるモータ単体としての効率データと、
図10(b)に示されるアンプに関する効率データと、
図10(c)に示される総合効率データと、を含む。サーボモータ32は、モータ本体と、モータ本体への電力の供給を司るサーボアンプと、を含むため、モータ効率データも、モータ本体に関するモータデータと、サーボアンプに関するアンプデータと、を含む。モータデータとアンプデータの両者を加味したのが総合効率データである。いずれのデータも、サーボモータ32の回転数Nとサーボモータ32の出力トルクTが特定されると、効率Eを特定することができるマップ状のデータである。第2実施形態では、総合効率データを用いる。
【0054】
第2実施形態は、さらに、成形機制御部50の記憶部57に、ポンプ効率データに総合効率データを積算して得られる効率データ(以下、これをポンプユニット効率データという)を記憶している。
例えば、
図10(c)の総合効率データにおいて、回転数Nが1000rpmで、かつ出力トルクTが200Nmの場合の効率は86〜88%である。例えば、
図4に示されるポンプ効率データにおいて、回転数N(第2横軸)が1000rpmで、かつ、入力トルクT(第2縦軸)が200Nmのポンプ効率は88%である。この場合のポンプユニット効率は、総合効率データにおける効率である86〜88%とポンプ効率データにおける効率である88%との積(75.7〜77.4%)で定まる。この積算を、総合効率データにおける回転数N及び出力トルクTの全域と斜板角度θxにおける回転数N及び入力トルクTの全域と、について行うことで、斜板角度θxにおけるポンプユニット効率データを求める。斜板角度θy及び斜板角度θzにおけるポンプ効率データについても同様にして、ポンプユニット効率データを求めておき、これらを記憶部57に記憶しておく。このポンプユニット効率データは、ポンプ効率データにサーボモータ32の効率を加味した、補正効率データと捉えることもできる。この積算の流れが
図11に示されている。
【0055】
さて、ポンプユニット効率データを用いて最高効率Emが得られる斜板角度θ及び回転数Nの組み合せを決定する手順を説明する。この手順は、第1実施形態にて説明した
図7と同じであるが、最高効率Em1を選定する手順(
図7 S105)、及び、最高効率Em2を選定する手順(
図7 S117)において、参照するデータが、ポンプユニット効率データである点が相違する。その後は、ポンプユニット効率データを参照して選定された設定回転数N1、設定回転数N2、設定角度θ1及び設定角度θ2を用いて、サーボモータ32及び油圧ポンプ34の運転が制御される。
【0056】
第2実施形態によれば、油圧ポンプ34の効率だけでなく、油圧ポンプ34を駆動するサーボモータ32の効率を加味するため、サーボモータ32と油圧ポンプ34からなるポンプユニット全体を考慮した最高効率で運転し、消費エネルギを最小にできる。
【0057】
[第3実施形態]
次に、本発明による第3実施形態を説明する。
第3実施形態による型締装置3は、最高効率Emが得られる斜板角度θ及び回転数Nの組み合せを決定するのに、検出された吐出油圧ρdと設定流量(第三設定流量)Q3を用いる。これは、第1実施形態及び第2実施形態が、設定油圧ρ1と設定流量Q1、つまり、予め定められた値だけを用いていたのに対して、吐出油圧については、検出吐出油圧ρdを用いる点で相違する。
なお、以上の通りであり、型締装置3は第1実施形態にかかる型締装置1と基本的な構成は同じであるが、最高効率Emが得られる斜板角度θ及び回転数Nの組み合せを決定する手順が相違する。以下、
図12及び
図13を参照して説明する。
【0058】
はじめに、成形機制御部50の入力部51に制御設定値として型締力Fが入力されると(
図12 S201)、制御値生成部53は型締力Fを取得するとともに、記憶部57に記憶されている、予め定められている成形条件によらない所定の速度値にてタイバー17を駆動する油圧ポンプ34の吐出流量Qを特定する(
図12 S203)。ここで特定される吐出流量Qは、後に求められるものと区別するために、設定流量Q3と表記する。
【0059】
制御値生成部53が設定流量Q3を特定したならば、指令出力部55は制御値生成部53から当該制御値を取得するとともに、設定流量Q3に対応する油圧ポンプ34の設定角度θα及び設定回転数Nαについて運転指令値を生成する。指令出力部55は、設定回転数Nαに対応する指令値CNαを油圧供給部30のサーボ制御回路33に出力し、また、設定角度θαに対応する指令値Cθαを油圧供給部30の斜板角制御部37に出力する。サーボ制御回路33は、取得した指令値CNαに基づいてサーボモータ32の回転数Nを制御し、斜板角制御部37は、指令値Cθαに基づいて角度調整部36を動作させることで、油圧ポンプ34の斜板35の斜板角度θを制御して、サーボモータ32及び油圧ポンプ34が第三運転条件により駆動される(
図12 S205)。
【0060】
このとき、油圧供給部30の圧力検出器41は、吐出配管39の内部を流れる作動油の吐出油圧ρ(検出吐出油圧ρd)を検出しており、制御値生成部53は、この検出吐出油圧ρdを設定流量Q3を吐出するのに必要な吐出油圧ρとして取得する。この検出吐出油圧ρdと設定流量Q3を、記憶部57に記憶されているポンプ効率データと照合して、油圧ポンプ34の運転効率が最も高い最高効率Em3が得られる運転条件(設定回転数N3及び設定角度θ3)を選定する(
図12 S207)。この選定の手順は、第1実施形態と同様であるため、ここでの説明を省略する。
【0061】
ここで、検出吐出油圧ρdと設定流量Q3を照合するデータとして、ポンプ効率データではなく、第2実施形態のポンプユニット効率データを用いることもできる。
【0062】
最高効率Em3が得られる設定回転数N3及び設定角度θ3が得られたならば、第1実施形態と同様にして、指令出力部55は、指令値CN3をサーボ制御回路33に出力し、また、指令値Cθ3を斜板角制御部37に出力する。以下、第1実施形態と同様にして、サーボモータ32及び油圧ポンプ34は、最高効率Em3が得られる条件で運転され(
図12 S209)、固定金型14と可動金型15の型締圧力が上昇する(
図12 S211)。
制御値生成部53は、金型が昇圧している過程で、検出吐出油圧ρdが設定油圧(第三設定油圧)ρ3に達するか否かの比較を継続的に行う(
図12 S213)。そして、検出吐出油圧ρdが設定油圧ρ3に達していなければ、再び、制御値生成部53は、この検出吐出油圧ρdと設定流量Q3を、記憶部57に記憶されているポンプ効率データと照合して、油圧ポンプ34の運転効率が最も高い最高効率Em31が得られる運転条件(設定回転数N31及び設定角度θ31)を選定する。最高効率Em31が得られる設定回転数N31及び設定角度θ31が得られたならば、指令出力部55は、指令値CN31をサーボ制御回路33に出力し、また、指令値Cθ31を斜板角制御部37に出力する。以下、同様にして、サーボモータ32及び油圧ポンプ34は、最高効率Em31が得られる条件で運転され、固定金型14と可動金型15の型締圧力が上昇する。
以上のとおり、検出された吐出油圧ρdと設定流量(第三設定流量)Q3を用いて、最高効率Emが得られる斜板角度θ及び回転数Nの組み合せを決定しての運転を検出吐出油圧ρdが設定油圧ρ3に達するまで繰り返す(
図12 S213 No)。
【0063】
一方、制御値生成部53は、検出吐出油圧ρdが設定油圧ρ3に達すると、設定回転数N3及び設定角度θ3を切替える処理を行う。つまり、制御値生成部53は、検出吐出油圧ρdが設定油圧ρ3に達すると、記憶部57に記憶されている、予め定められている成形条件によらない所定の速度値にてタイバー17を駆動する設定流量(第四設定流量)Q4を新たに特定し、サーボモータ32及び油圧ポンプ34は、設定流量Q4に対応する設定回転数Nβ及び設定斜板角度θβの第四運転条件で運転される(
図12 S213 Yes,
図13 S215,S217)。なお、設定流量Q4と設定流量Q3は、設定流量Q4<設定流量Q3の関係を有している。
【0064】
制御値生成部53は、運転条件が切換えられた後に、継続して検出していた検出吐出油圧ρdと設定流量Q4を、記憶部57に記憶されているポンプ効率データと照合して、油圧ポンプ34の運転効率が最も高い最高効率Em4が得られる運転条件を選定する(
図13 S219)。この選定の手順は、第1実施形態と同様であるため、ここでの説明を省略する。
【0065】
最高効率Em4が得られる設定回転数N4及び設定角度θ4が得られたならば、第1実施形態と同様にして、指令出力部55は、指令値CN4をサーボ制御回路33に出力し、また、指令値Cθ4を斜板角制御部37に出力する。以下、第1実施形態と同様にして、サーボモータ32及び油圧ポンプ34は、最高効率Em4が得られる条件で運転される(
図13 S221)。
以後の昇圧工程が完了するまでの手順(
図13 S223〜S231)は、第1実施形態と同様であるため、以下の説明は省略する。
【0066】
以上の第3実施形態は、第1実施形態で示した第1の効果及び第2の効果を奏するのに加え、実際に油圧ポンプ34が駆動しているときの検出吐出油圧ρdを用いて最高効率Em3,Em4が得られる条件を選定しているので、より現実に即して最高効率で運転し、消費エネルギを最小にできる。
【0067】
[第4実施形態]
次に、本発明による第4実施形態を説明する。
第4実施形態による型締装置4は、最高効率Emが得られる斜板角度θ及び回転数Nの組み合せを決定するのに、第五設定油圧ρ5と第五設定流量Q5と第六設定油圧ρ6と第六設定流量Q6を用いる。第1実施形態及び第2実施形態は、設定油圧ρ1、ρ2はρ1<ρ2の大小関係にあるとともに、成形条件として設定された型締力Fから演算により求め、設定流量Q1,Q2はQ1>Q2の大小関係にあるとともに、成形条件によらず一定の固定値としている。これに対して、第4実施形態は、設定油圧ρ1、ρ2及び設定流量Q1、Q2が互いに独立した任意の値である点で第一実施形態と相違する。また、第4実施形態は、設定油圧ρ1、ρ2及び設定流量Q1、Q2が成形条件として設定されたタイバー17の動作速度から演算により求められる点でも第一実施形態と相違する。なお、この設定流量Q1、Q2は、本発明における吐出流量Qnc,Q1c,Q2cに該当する。また、型締装置4の構成は型締装置1とほぼ一致しているから、型締装置4の構成についての説明は省略する。ただし、型締装置4は、
図1に示すように、移動ダイプレート13の位置検出器58を備えている。
【0068】
[圧力制御、流量制御の手順]
ポンプ効率データを用いて最高効率Emが得られる斜板角度θ及び回転数Nの組み合せを決定する手順を、さらに
図14を参照して説明する。この手順は、可動金型15と固定金型14が所定距離だけ離間した位置から、移動ダイプレート13を所定の速度及び所定の型締力をそれぞれ複数段階に制御して型締めするいわゆる射出圧縮工程に関するものであり、油圧ポンプ34からの吐出油圧ρ、吐出流量Q、及び、移動ダイプレート13または可動金型15の位置を検出しながら行われる。なお、本実施形態では移動ダイプレート13について、所定の速度及び所定の型締力をそれぞれ切り換える複数段階の段数を簡単のため2段を例にして説明する。
【0069】
はじめに、成形機制御部50の入力部51に制御設定値として、第一型締力F1、第一型締速度V1、第二型締力F2、第二型締速度V2、型締力を切り換える設定切換位置Ls及び型締完了位置Lcが入力される(
図14 S301)。設定切換位置Lsは本発明の運転切替位置に対応し、型締完了位置Lcは本発明の動作完了位置に対応する。そうすると、制御値生成部53は、第一型締力F1、第二型締力F2を取得するとともに、記憶部57に記憶されている型締力−吐出油圧換算データを参照して、第一型締速度V1でタイバー17を動作させて第一型締力F1を発生させるのに必要な油圧ポンプ34の第一設定油圧ρ1pを求める。同時に速度−吐出流量換算データを参照して第一型締速度V1でタイバー17を動作させるのに必要な第一設定流量Q1pを求める(
図14 S303)。したがって、第一設定油圧ρ1p及び第一設定流量Q1pは、それぞれ本発明における第1設定油圧ρ1c及び第一設定流量Q1cに該当する。
【0070】
次いで、制御値生成部53は、第一設定油圧ρ1p、第一設定流量Q1pを求めたならば、記憶部57に記憶されているポンプ効率データを参照して、油圧ポンプ34の運転効率が最も高くなる運転条件を選定する(
図14 S305)。この選定は、第1実施形態及び第2実施形態と同様に行われ、最高効率Em1が得られる設定回転数N1、設定角度θ1が選定され、サーボモータ32及び油圧ポンプ34がこの設定条件に基づいて運転される(
図14 S307)。これにより、移動ダイプレート13を固定ダイプレート12に向けて移動させる(
図14 S309)。
【0071】
移動ダイプレート13が固定ダイプレート12に向けて移動している過程で、移動ダイプレート13の位置検出器58は移動ダイプレート13の位置を検出しており、その検出した値を検出位置L1とする。検出位置L1は、位置検出器58から成形機制御部50の制御値生成部53に送られ、検出位置L1を取得した制御値生成部53は検出位置L1が設定切換位置Lsに達するか否かの比較を継続的に行う(
図14 S311)。制御値生成部53は、検出位置L1が設定切換位置Lsに達していなければ、指令出力部55への切換指示を行わないので、サーボモータ32及び油圧ポンプ34は、従前の条件で運転を続ける(
図14 S311 No)。なお、位置検出器58は、ボールねじ軸25の位置エンコーダを利用してもよい。
【0072】
一方、制御値生成部53は、検出位置L1が設定切換位置Lsに達すると(
図14 S311 Yes)、設定角度θ1及び設定回転数N1を切替える処理を行う。つまり、制御値生成部53は、検出位置L1が設定切換位置Lsに達すると、記憶部57に記憶されている型締力−吐出油圧換算データを参照して、設定油圧ρ2pを求める。同時に速度−吐出流量換算データを参照して第二型締速度V2でタイバー17を動作させるのに必要な設定流量Q2pを新たに特定する(
図14 S313)。したがって、設定油圧ρ2p及び設定流量Q2pは、それぞれ本発明における第二設定油圧ρ2c及び第二設定流量Q2cに該当する。
【0073】
制御値生成部53は、設定油圧ρ2p及び設定流量Q2pを求めたならば、記憶部57に記憶されているポンプ効率データを参照して、油圧ポンプ34の運転効率が最も高くなる運転条件を選定する(
図14 S315)。この選定は、前述した設定角度θ1及び設定回転数N1を選定する手順と同様に行われる。選定される斜板角度θ及び回転数Nを、設定角度θ2、設定回転数N2と表記する。
【0074】
最高効率Em2が得られる設定回転数N2、設定角度θ2が選定されると、サーボモータ32及び油圧ポンプ34がその条件で運転される(
図14 S317)。これにより、移動ダイプレート13は設定切換位置Lsで一旦停止後、あるいは一旦停止することなく、タイバー17を移動させることで移動ダイプレート13を固定ダイプレート12に向けて継続して移動させる(
図14 S319)。
【0075】
制御値生成部53は継続して検出位置L1を取得するとともに、検出位置L1が型締完了位置Lcに達するか否かの比較を継続的に行う(
図14 S321)。検出位置L1が型締完了位置Lcに達していなければ、サーボモータ32及び油圧ポンプ34は、従前の条件で運転を続ける(
図14 S321 No)。
【0076】
一方、制御値生成部53は、検出位置L1が型締完了位置Lcに達すると、指令出力部55に対してサーボモータ32の動作を停止するように指令を送り、指令出力部55はこの指令を受けて、サーボ制御回路33にサーボモータ32の停止を指令する。これにより、サーボモータ32の運転が停止され、圧縮工程が終了する(
図14 S323)。
以後は、所定の時間、型締状態を維持するとともに金型内の樹脂を冷却固化させた後、可動金型15及び移動ダイプレート13を型開きして、成形品を取り出す。
【0077】
以上説明した第4実施形態では、移動ダイプレート13について、所定の速度及び所定の型締力のそれぞれの複数段階による切換を、移動ダイプレート13の位置により行ったが、移動ダイプレート13の移動開始から、あるいは複数段階の切換位置からスタートするタイマーのタイムアップにより行ってもよい。
また、本実施形態では、型締装置1の射出圧縮工程における移動ダイプレート13の任意の移動速度及び移動圧力の切換に本発明を適用した例を示したが、型締装置の射出圧縮工程に代えて、射出装置の射出充填工程における任意の移動速度及び移動圧力の切換制御に適用してもよい。
また、本実施形態の射出圧縮工程の後に、第1実施形態または第2実施形態の昇圧工程を行ってもよい。
【0078】
以上の第4実施形態は、第1実施形態で示した第1の効果及び第2の効果を奏するのに加え、設定された成形条件から演算された設定油圧ρ1、ρ2及び吐出流量Q1、Q2の相互の大小関係によらず、油圧ポンプ34及びサーボモータ32を最高効率で運転し、消費エネルギを最小にできる。
【0079】
以上、本発明の好ましい実施形態を説明したが、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
例えば、第1実施形態〜第3実施形態は、昇圧工程を開始してから設定運転条件をポンプ効率データと照合する。しかし、本発明は、予め設定運転条件とポンプ効率データとを照合して、最高効率が得られる油圧ポンプの斜板角度θ、及び、電動モータの回転数Nを特定しておき、これをデータとして保持しておくこともできる。この場合には、昇圧工程を開始してから設定運転条件と当該データとを照合して最高効率が得られる油圧ポンプの斜板角度θ、及び、電動モータの回転数Nを特定する。
また、第1実勢形態〜第4実施形態は、設定流量Q、設定油圧ρを2段階で示したが、3段階、4段階…n段階の2段階以上の複数段の切換によって行ってもよい。
【0080】
また、第1実勢形態〜第4実施形態において、記憶部57に記憶している油圧ポンプ34の斜板角度θ及び斜板角度θのそれぞれのポンプ効率データを用いた例を示した。しかし、本発明は、記憶部57に記憶していない斜板角度におけるポンプ効率データを、記憶部57に記憶している斜板角度θ及び斜板角度θのそれぞれのポンプ効率データに基づき補間演算により求めることができる。そして、補間演算により求めたポンプ効率データと、所定の作動油圧力、及び、所定の作動油流量を照合して、最高効率が得られる油圧ポンプの斜板角度θ、及び、電動モータの回転数Nを選定して、油圧ポンプ34及びサーボモータ32を運転してもよい。この場合、油圧ポンプ34またはサーボモータ32に対して実験によりあるいは数値解析などのシミュレーションによる得られたポンプ効率データの数が少なく広範囲の条件でのポンプ運転に於いて不十分な場合であっても、適正なポンプ効率データを補間作成して、油圧ポンプ34またはサーボモータ32を最高効率で運転することができる。