(58)【調査した分野】(Int.Cl.,DB名)
サーバーコンピュータシステムにおける信号受信命令を用いて、産業機器に取り付けられた1つ以上のセンサーから、観測データ値を示す1つ以上の信号データのセットを受信するステップと、
特徴識別命令を用いて、前記1つ以上の信号データのセットを、1つ以上の特徴ベクトルに集約するステップであって、前記1つ以上の特徴ベクトルが、特定の時間範囲にわたる信号データのセットを示す、ステップと、
クラスタリング命令を用いて、前記1つ以上の特徴ベクトルに対し、1つ以上のクラスターを決定するステップであって、前記1つ以上のクラスターが、前記1つ以上の特徴ベクトルからの特徴ベクトルのサブセットを、該サブセットの属性に基づいて含む、ステップと、
ベクトル分類命令を用いて、前記産業機器に発生した特定の識別された状況を示す、分類ラベルのセットのうちの1つの分類ラベルが、各々に付与された複数のサンプル特徴ベクトル、及び、前記1つ以上の特徴ベクトルに加えて、少なくとも1つのサンプル特徴ベクトルを含む、1つ以上のサンプルエピソードを受信するステップと、
前記ベクトル分類命令を用いて、前記1つ以上のサンプルエピソードに基づいて、前記1つ以上のクラスターの各々に対し、前記分類ラベルのセットのうちの1つの分類ラベルを決定するステップと、
前記ベクトル分類命令を用いて、前記産業機器に発生した状況を示す、識別された信号状況を定義する信号データモデルを生成し、保存するステップであって、前記識別された信号状況が、特定の特徴ベクトル、特定のクラスター、及び特定の分類ラベル間のマッピングを定義する、ステップと、
を備えたことを特徴とする方法。
前記1つ以上の信号のセットを処理して、前記1つ以上の信号データのセットにおける、パターン認識を曖昧にする信号値として識別された、特徴的な信号値を除去するステップを更に備えたことを特徴とする、請求項1記載の方法。
前記1つ以上の信号データのセットを1つ以上の特徴ベクトルに集約するステップが、前記1つ以上の信号データのセットを、前記1つ以上の特徴ベクトルの単一の系列に変換するステップであって、前記1つ以上の特徴ベクトルの前記単一の系列が、前記1つ以上の信号データのセットの時系列パターンを示す、ステップを含むことを特徴とする、請求項1記載の方法。
前記1つ以上のクラスターに対し、分類ラベルを決定するステップが、前記1つ以上のサンプルエピソードの分類ラベルに基づいて分類ラベルを決定することができない場合、前記1つ以上のクラスターの特定のクラスターに対し、分類不能分類ラベルを指定するステップを更に含むことを特徴とする、請求項1記載の方法。
前記1つ以上のサンプルエピソードに基づいて、前記1つ以上のクラスターに対し、分類ラベルを決定するステップが、前記1つ以上のサンプルエピソード及び前記1つ以上のクラスターのロジスティック回帰分析を用いることを特徴とする、請求項1記載の方法。
前記1つ以上のサンプルエピソードに基づいて、前記1つ以上のクラスターに対し、分類ラベルを決定するステップが、前記1つ以上のサンプルエピソード及び前記1つ以上のクラスターのランダムフォレスト分析に基づくことを特徴とする、請求項1記載の方法。
サーバーコンピュータシステムにおける信号データモデルメンテナンス命令を用いて、産業機器に発生した状況をマッピングする信号データモデルを、前記産業機器からの受信信号データに基づいて、メンテナンスするステップであって、前記信号データモデルが、既存の特徴ベクトル、既存のクラスター、及び分類ラベル間のマッピングデータを含み、
前記既存の特徴ベクトルが、前記産業機器に取り付けられた1つ以上のセンサーからの観測データ値を示す受信信号データの集合であり、
前記既存のクラスターが、前記既存の特徴ベクトルの少なくとも1つの定義された属性に基づいて、既存の特徴ベクトルのセットを含み、
前記分類ラベルが、特定の時点に、前記産業機器に発生した特定の状況を定義する、
ステップと、
信号受信命令を用いて、前記産業機器に取り付けられた前記1つ以上のセンサーから、1つ以上の新しい信号データのセットを受信するステップと、
特徴識別命令を用いて、前記1つ以上の新しい信号データのセットを、1つ以上の特徴ベクトルに集約するステップであって、前記1つ以上の特徴ベクトルが、特定の時間範囲にわたる信号データのセットを示す、ステップと、
ベクトル分類命令を用いて、前記信号データモデルから、1つの分類ラベル及び1つの既存のクラスターを、前記1つ以上の特徴ベクトルの各々に割り当てるステップと、
状況報告命令を用いて、前記1つ以上の特徴ベクトル及び該1つ以上の特徴ベクトルに割り当てた、前記1つ以上の分類ラベルをユーザーに送信するステップと、
を備えたことを特徴とする方法。
前記信号データモデルメンテナンス命令を用いて、前記1つ以上の特徴ベクトルを、既存のクラスター、及び前記1つ以上の特徴ベクトルに割り当てられた分類ラベルにマッピングするマッピングデータで、前記信号データモデルをアップデートするステップを更に備えたことを特徴とする、請求項8記載の方法。
クラスタリング命令を用いて、前記1つ以上の特徴ベクトルのサブセットに対し、該サブセットに前記1つ以上の分類ラベルを割り当てることができない場合、分類不能分類ラベルを割り当てるステップを更に備えたことを特徴とする、請求項8記載の方法。
前記1つ以上のプロセッサによって実行され、該1つ以上のプロセッサに、前記1つ以上の信号データのセットを受信させ、前記1つ以上の信号のセットを処理して、前記1つ以上の信号データのセットのパターン認識を曖昧にする信号値として識別された、特徴的な信号値を除去させるように構成され、メモリに格納された命令を更に備えたことを特徴とする、請求項13記載のデータ処理システム。
前記1つ以上のプロセッサによって実行され、該1つ以上のプロセッサに、前記1つ以上の信号データのセットを前記1つ以上の特徴ベクトルの単一の系列に変換させることによって、前記1つ以上の信号データのセットを1つ以上の特徴ベクトルに集約させるように構成され、メモリに格納された命令であって、前記1つ以上の特徴ベクトルの前記単一の系列が、前記1つ以上の信号データのセットの時系列パターンを示す、命令を更に備えたことを特徴とする、請求項13記載のデータ処理システム。
前記1つ以上のプロセッサによって実行され、該1つ以上のプロセッサに、前記1つ以上のクラスターに対し、分類ラベルを決定させ、前記1つ以上のサンプルエピソードの分類ラベルに基づいて、分類ラベルを決定することができない場合、前記1つ以上のクラスターの特定のクラスターに対し、分類不能分類ラベルを指定させるように構成され、メモリに格納された命令を更に備えたことを特徴とする、請求項13記載のデータ処理システム。
前記1つ以上のプロセッサによって実行され、該1つ以上のプロセッサに、前記1つ以上のサンプルエピソードに基づいて、前記1つ以上のクラスターに対し、分類ラベルを決定させるように構成され、メモリに格納された命令であって、前記1つ以上のサンプルエピソード及び前記1つ以上のクラスターのロジスティック回帰分析に基づく命令を更に備えたことを特徴とする、請求項13記載のデータ処理システム。
前記1つ以上のプロセッサによって実行され、該1つ以上のプロセッサに、前記1つ以上のサンプルエピソードに基づいて、前記1つ以上のクラスターに対し、分類ラベルを決定させるように構成され、メモリに格納された命令であって、前記1つ以上のサンプルエピソード及び前記1つ以上のクラスターのランダムフォレスト分析に基づく命令を更に備えたことを特徴とする、請求項13記載のデータ処理システム。
前記1つ以上のプロセッサによって実行され、該1つ以上のプロセッサに、前記1つ以上の特徴ベクトルを、既存のクラスター、及び前記1つ以上の特徴ベクトルに割り当てられた分類ラベルにマッピングするマッピングデータで、前記信号データモデルをアップデートさせるように構成され、メモリに格納された命令を更に備えたことを特徴とする、請求項20記載のデータ処理システム。
前記1つ以上のプロセッサによって実行され、該1つ以上のプロセッサに、前記1つ以上の特徴ベクトルのサブセットに対し、該サブセットに前記1つ以上の分類ラベルを割り当てることができない場合、分類不能分類ラベルを割り当させるように構成され、メモリに格納された命令を更に備えたことを特徴とする、請求項20記載のデータ処理システム。
【発明を実施するための形態】
【0007】
本発明が完全に理解されるように、以下の記述において、説明を目的として、多くの具体的な詳細が記載されている。しかし、本発明は、これ等の具体的な詳細がなくても実施することができることは明らかであろう。他方、本発明が必要以上に不明瞭になることを避けるため、周知の構造及び装置はブロック図の形態で示してある。
1.0 一般概要
2.0 構造概要
3.0 機能概要
3.1 信号データモデルの構築
3.1.1 信号受信命令
3.1.2 特徴識別命令
3.1.3 クラスタリング命令
3.1.4 ベクトル分類命令
3.1.5 履歴マッピング情報の利用
3.2 信号データモデルを用いたデータストリームの評価
3.2.1 状況判定命令
3.2.2 状況報告命令
3.2.3 報告された状況に基づく機器の修正
4.0 ハードウェア概要
【0008】
1.0 一般概要
コンピュータシステム及びコンピュータで実行される方法の提供であって、センサーから受信した信号データに基づいて、産業機器に発生した特定の状況を判定するように構成されている。1つの実施の形態において、産業機器に取り付けられた、1つ又は複数のセンサーからの観測データ値を示す信号データを受信する、サーバーコンピュータシステムを用いて、産業機器に発生した特定の状況を判定することができる。サーバーコンピュータシステムにおける信号受信命令が、1つ以上の信号データのセットを受信する。サーバーコンピュータシステムにおける特徴識別命令が、1つ以上の信号データのセットを特徴ベクトルに集約する。特徴ベクトルは、特定の時間範囲にわたる一連の信号データを示す。サーバーコンピュータシステムにおけるクラスタリング命令が、1つ以上の特徴ベクトルに対し、1つ以上のクラスターを決定する。1つ以上のクラスターは、1つ以上の特徴ベクトルからの特徴ベクトルのサブセットで構成され、特徴ベクトルのサブセットの属性に基づいている。サーバーコンピュータシステムにおけるベクトル分類命令が、ユーザー又は他の外部ソースから、1つ以上のサンプルエピソードを受信する。1つ以上のサンプルエピソードは、特定の分類ラベルが割り当てられたサンプル特徴ベクトルを含んでいる。分類ラベルは、産業機器に発生した特定の識別された状態を示している。次に、ベクトル分類命令は、受信した1つ以上のサンプルエピソードに基づいて、1つ以上のクラスターの分類ラベルを決定する。ベクトル分類命令は、産業機器に発生した状況を示す識別された信号状況を定義する、信号データモデルを生成し、保存する。識別された信号状況は、特定の特徴ベクトル、特定のクラスター、及び特定の分類ラベル間のマッピングを定義する。
【0009】
1つの実施の形態において、生成した信号データモデルを用いて、サーバーコンピュータシステムが受信した、新しい信号データのセットを評価することができる。信号データモデルメンテナンス命令が、既存の特徴ベクトル、既存のクラスター、及び分類ラベル間のマッピングデータを含む、以前に生成された信号データモデルをメンテナンスする。信号受信命令が、産業機器に取り付けられた1つ以上のセンサーから、1つ以上の新しい信号データのセットを受信する。特徴識別命令が、1つ以上の新しい信号データのセットを1つ以上の特徴ベクトルに集約する。次に、ベクトル分類命令が、以前に生成された信号データモデルを用いて、1つ以上の既存の分類ラベル及び1つ以上の既存のクラスターを1つ以上の特徴ベクトルに割り当てる。状況報告命令が、1つ以上の特徴ベクトル及び1つ以上の特徴ベクトルに割り当てられた、1つ以上の分類ラベルをユーザーに送信する。
【0010】
次に、1つ以上の特徴ベクトル及び1つ以上の分類ラベルを用いて、産業機器の既存状況の状態をアップデートすることによって、産業機器の状況状態認識を改善し、産業機器の運転状況の状態の安全性、信頼性、及び品質を向上させることができる。産業機器の非効率性や危険な動作を低減するために、1つ以上の特徴ベクトル及び1つ以上の分類ラベルを用いて、産業機器の特定の望ましくない状況を認識することもできる。
【0011】
2.0構造概要
図1は、産業機械等の複合システムから、信号データのデータストリームを受信し、データストリームに基づいて、複合システムに発生した物理的状況を識別し、ラベル付けする機械学習技術を実行する、信号データ処理システムを実施するための構成を示すブロック図である。1つの実施の形態において、信号データ処理システム120は、外部システム110から、データストリームを受信するように構成されたシステムである。外部システム110は、産業機械の運転及び監視を行う任意のシステムであってよい。外部システム110の別の実施の形態は、人体の活動及びリアルタイムの状況を監視するようにプログラムされた、コンピュータシステムを含むことができる。外部システム110の更に別の実施の形態は、様々なソフトウェアプログラムの動作及び状態を監視するようにプログラムされた、コンピュータシステムを含んでいる。
【0012】
図1は、複合システム112、信号データリポジトリ114、及び監視用ディスプレイ116を有する、外部システム110の構成例を示す図である。1つの実施の形態において、複合システム112は、複合工場装置、商用車、航空機、又は多数のセンサーを用いて機械の状態を監視する任意の複合機械を含む、複合産業機械であってよい。1つの実施の形態において、複合システム112は、ワイヤレス対応ウェアラブル技術装置等のアクティビティトラッカーとして機能するように設計された、複数の種類のセンサーを含む複合センサーパッケージであってもよい。
【0013】
1つの実施の形態において、複合システム112に取り付けられた、複数のセンサーからの信号データのデータストリームを送信するために、複合システム112を信号データリポジトリ114に通信可能に接続することができる。信号データのデータストリームは、複数のセンサーによって収集された複数のデータ観測値であってよい。複合システム112上の複数のセンサーの目的は、複合システム112の様々な箇所で発生した観測値を記録することである。例えば、複合システム112が、発電所において、風からエネルギーを生成する複数の風車で構成されている場合には、複数のセンサーは、個々の風車の回転速度を測定するセンサー、各々の風車によって生成された電荷を測定するセンサー、及び発電所内の発電機によって生成された現在の蓄電レベルを測定するセンサーを含むことができる。別の例において、複合システム112はワイヤレスアクティビティトラッカーであってよい。この場合、着用者に発生した変化及び動きに基づく位置変化を検出するように、複数のセンサーを構成することができる。例えば、センサーのセットは、全地球測位センサー(GPS)、3軸加速度計、3軸ジャイロスコープ、デジタルコンパス、光心拍数モニタ、及び高度計を含むが、これに限定されるものではない。更に別の例において、複合システム112は、商用アプリケーション等の特定のアプリケーションであってよい。特定のアプリケーションは、特定のコンピュータアプリケーションのログ出力等の出力を生成する、1つ以上のコンピュータクラスを含むことができる。ログ出力を生成するクラスは、特定のコンピュータアプリケーション内で呼び出された、複数のクラス及びオブジェクトの現在の状態を報告する内蔵機構と見なすことができる。
【0014】
1つの実施の形態において、信号データリポジトリ114は、サーバーコンピュータが実行する、1つ以上の内蔵プログラムを用いて、複合システム112の複数のセンサーによって生成された信号データを収集し、信号データのタイプに基づいて、信号データを保存し、収集された信号データの時系列を作成するように構成又はプログラムされた、サーバーコンピュータであってよい。信号データリポジトリ114は、リアルタイムデータ又は保存信号データのいずれかを監視用ディスプレイ112に送り、監視目的のために、ユーザーに対して、信号データ値を提示することもできる。信号データリポジトリ114は、信号データを集約して、ある期間にわたる信号値の変化を示す、集約統計を生成することもできる。信号データリポジトリ114の機能の実施の形態は、前述の機能に限定されるものではない。信号データリポジトリ114は、市販の任意の監視プログラムを用いて実施することができ、市販の製品の任意の監視機能を利用することができる。
【0015】
1つの実施の形態において、監視用ディスプレイ116は、信号データリポジトリ114から受信した信号データを表示するようにプログラムされた、コンピュータに実装された機械である。1つの実施の形態において、監視用ディスプレイ116は、信号データ処理システム120から、直接データ入力を受信することができる。
【0016】
1つの実施の形態において、信号データ処理システム120は、信号データリポジトリ112から、信号データのデータストリームを受信し、受信信号データに関連する物理的状況を識別するように構成されている。信号データ処理システム120は、ユーザーが入力号データに関連する状況をより良く識別できるように、データを信号データレポジトリ112に送り返す、又はデータを監視用ディスプレイ116に直接送信することによって、識別した物理的状況を外部システム110に送信するように更に構成されている。
【0017】
1つの実施の形態において、信号データ処理システム120は、特徴識別命令121、クラスタリング命令122、ベクトル分類命令123、信号受信命令124、信号データモデルメンテナンス命令125、及び状況報告命令126を含み、これに限定されない、特別に構成されたロジックを含んでいる。前述の要素の各々の構造及び機能については、本明細書の別のセクションにおいて更に説明する。各々の要素は、RAM等の信号データ処理システム120の主記憶装置、例えばRAM等の一連の1つ以上のページにロードされた、実行可能命令を含み、命令が実行されると、信号データ処理システム120に、これ等のモジュールに関連する、本明細書に記載の機能及び動作を実行させる。例えば、特徴識別命令121は、実行すると、本明細書に記載の特徴識別機能が実行される、RAMの一連のページにロートされた実行可能命令を含むことができる。命令は、CPUの命令セット内の機械実行可能コードであってよく、JAVA(登録商標)、C、C++、OBJECTIVE−C、又は他の人間が読み取ることができる、プログラミング言語又は環境で書かれた、ソースコードに基づいてコンパイルされたものでよく、単独又はJAVASCRIPT(登録商標)のスクリプト、他のスクリプト言語、及び他のプログラミングソーステキストと組み合わせて使用することができる。「ページ」という用語は、主記憶装置内の任意の領域を広く意味することを意図するもので、システムにおいて使用される具体的な用語は、メモリのアーキテクチャ及びプロセッサのアーキテクチャに応じて異なる。別の実施の形態において、特徴識別命令121、クラスタリング命令122、ベクトル分類命令123、信号受信命令124、信号データモデルメンテナンス命令125、及び状況報告命令126の各々は、信号データ処理システム120又は別個のリポジトリシステムの不揮発性RAM、又はディスク記憶装置等の大容量記憶装置に、デジタル形式で保存された1つ以上のソースコードのファイル又はプロジェクトであってもよく、コンパイル又は解釈されると、実行可能命令が生成され、実行可能命令が実行されると、信号データ処理システム120に、これ等のモジュールに関連する本明細書に記載の機能及び作用を実行させる。換言すれば、図面は、プログラマー又はソフトウェア開発者が、後に信号データ処理システム120によって実行される、実行可能なバイトコード又は同等物にコンパイル又は解釈されるソースコードを、体系化又は構成する方法を示すことができる。
【0018】
信号受信命令124は、複合システム112に取り付けられた複数のセンサーから、観測データ値を示す複数の信号データのセットを受信する命令を与える。特徴識別命令121は、複数の信号データのセットを1つ以上の特徴ベクトルに集約する命令を与える。特徴ベクトルは、特定の時間範囲にわたる、1つ以上のセンサーからの信号データのセットを示す。クラスタリング命令122は、各々が特徴ベクトルから同様に識別された属性によって決定される、特徴ベクトルの1つ以上のクラスターを生成する命令を与える。ベクトル分類命令123は、以前に観測されたセンサーデータに基づいて、特徴ベクトルに割り当てることができる1つ以上の分類ラベルを記述する、フィードバック入力を受信する命令を与える。フィードバックは、サンプルエピソードと見なすことができる。サンプルエピソードは、サンプル特徴ベクトルの形態を成す信号データ、及びサンプル特徴ベクトルに割り当てられた分類ラベルを含んでいる。分類ラベルは、複合機械112に発生した、特定の識別された状況を記述することができる。ベクトル分類命令123は、生成した特徴ベクトルのクラスターに対し、分類ラベルを決定する更なる命令を与える。生成した特徴ベクトルのクラスターの分類ラベルを決定した後、ベクトル分類命令123は、関連するクラスター、特徴ベクトル、及び分類ラベルに基づいて、識別された信号状況を定義する信号データモデルを生成し、記憶媒体に保存する命令を与える。ベクトル分類命令123は、識別した信号状況を用い、関連するクラスター、特徴ベクトル、及び分類ラベルに基づいて、以前に生成された信号データモデルをアップデートする更なる命令を与える。信号データモデルメンテナンス命令125は、デジタル記憶媒体上の1つ以上の信号データモデルをメンテナンスする命令を与える。状況報告命令126は、1つ以上の特徴ベクトルに関連付けられた、識別された分類ラベルを外部システム110に送信する命令を与える。
【0019】
3.0 機能概要
3.1 信号データモデル
図2は、信号データリポジトリ114からの信号データ、並びに分類ラベル及び分類ラベルに関連付けられた特徴ベクトルを定義するサンプルエピソードに基づいて、信号データモデルを生成するためのプロセスを示すフロー図である。1つの実施の形態において、信号データ処理システム120の要素を、本セクションに記載の機能を実行するようにプログラムすることによって、
図2を実施することができ、これは記述されている機能をコンピュータに実装するためのアルゴリズムの開示を意味することができる。明確な例を説明するために、
図1の特定の要素に関連して記述がなされている。しかし、他の多くの文脈において、
図2の別の実施の形態を実施することができ、本明細書において、
図1のユニットに対する言及は単なる例に過ぎず、
図2のより広い範囲を限定することを意図するものではない。
【0020】
3.1.1 信号受信命令
ステップ205において、信号データリポジトリ114からの信号データが、信号データ処理システム120によって受信される。信号データは、複合システム112の複数のセンサーからの様々な測定値を示すデジタル信号ストリームであると定義することができる。実施の形態において、所与の時点における、複数のセンサーからの複数の測定値を構成するデジタルデータのセットの形態で受信することができる。例えば、複合システム112がアクティビティトラッキング装置である場合、アクティビティトラッキング装置の信号データのセットは、所与の時点におけるx軸、y軸、z軸の加速度、速度、高度、及び向きを測定する一連のデータ値を含むことができる。
【0021】
1つの実施の形態において、信号受信命令124は、信号データレポジトリ114から信号データを受信する命令を与える。信号受信命令124は、信号データが生成されているとき、換言すれば、リアルタイムで信号データを受信する命令を与えることができる。このシナリオでは、信号受信命令124は、特徴を識別するための十分に長い時間をカバーする、十分な量の信号データが得られるまで、受信信号データをバッファする命令を与えることができる。例えば、信号データが短期間しかカバーしない場合、信号値に十分なデータ値の変化が含まれておらず、意味のあるパターンを明らかにすることができないため、信号データの特徴を発見できない可能性がある。
【0022】
別の実施の形態において、信号受信命令124は、信号データのデータ値の十分な変化、及び有意なパターンを発見するための十分な長さの過去の時間範囲をカバーする、信号データを受信する命令を与えることができる。例えば、信号データ処理システム120は、信号データリポジトリ114から、前の24時間の信号データ値を示す信号データのセットを受信することができる。このシナリオにおいて、信号データのセットは、信号データのバッファリングが必要とされないような十分な時間範囲をカバーする。信号受信命令124は、受信した信号データの最小時間範囲に基づいて、設定化可能なバッファリングのための命令を与えることができる。バッファリング要件は、信号データのタイプ、及び信号データのセット内におけるデータ値の変化の継続時間に基づくことができる。
【0023】
1つの実施の形態において、信号受信命令124は、信号データの潜在的なパターンを認識するのを曖昧にする、ノイズ又は他の影響をもたらす可能性がある信号をフィルター除去するために、信号データのセットを前処理する命令を与えることができる。信号受信命令124は、受信信号データに関連しない、望ましくない信号値を変換し、フルター除去する命令を与えることができる。例えば、外部システム110が、外部機械110の様々な場所から発せられる音波を検出するように構成された、オーディオセンサを備えた産業機械である場合、信号受信命令124は、外部システム110の状態に影響を及ぼさない、バックグラウンドノイズであることが知られている、特定の特徴的な音波をフィルター除去する命令を含むことができる。加えて、信号受信命令124は、受信音波信号を定義した時間ウィンドウを示す、固定長のベクトルに変換する命令を含むことができる。例えば、受信音波信号を、100ミリ秒の時間ウィンドウの変換固定長のベクトルを含む10MHzの信号に変換することができる。
【0024】
3.1.2 特徴識別命令
ステップ210において、信号データ処理システム120は、信号データのセットを1つ以上の特徴ベクトルに集約する。1つの実施の形態において、特徴識別命令121は、複数の信号データのセットからパターンを識別する命令を与える。パターンは異なる信号を横断した変化、及び特定の期間にわたる変化に基づいている。例えば、特定の時刻tにおける、複合システム112の特定の装置の状況は、時刻tに先立つ期間にわたる、1つ以上のセンサーからの異なる信号値のセットに依存する可能性がある。状況は、時刻(t−x)から時刻tに至る一連の信号データによって示すことができ、ここで、xは、(t−x)が時刻tの前に生じる期間となる特定の継続時間である。
【0025】
1つの実施の形態において、特徴識別命令121は、有意なパターンを識別するために、複数の信号データのセットを評価するための最適時間ウィンドウサイズを決定する命令を与えることができる。特徴識別命令121は、一定期間にわたる信号データの特徴を検出するために、ステップサイズ法によってスライディングウィンドウを実現する命令を与えることができる。ステップサイズ法によるスライディングウィンドウには、時間幅ウィンドウに基づいて、統計的に関心があるパターンを発見するために、信号データを分析するための時間幅ウィンドウのサイズ、及び時間幅ウィンドウを進めるためのステップのサイズを決定することが伴う。1つの実施の形態において、特徴識別命令121は、統計的に関心がある信号データをもたらす、時間幅ウィンドウ及びステップサイズを見出すために、自己相関を用いて、信号データのセットを評価する命令を与えることができる。この文脈において、自己相関とは、時間幅ウィンドウサイズ及びステップサイズの定義に用いることができる、繰り返しパターンを発見するために、信号データのセットを評価することを意味する。
【0026】
1つの実施の形態において、特徴識別命令121は、時間幅ウィンドウ内の信号データ点のセットを低減して、次元を削減した特徴ベクトルを生成する命令を与えることができる。生成された特徴ベクトルは、時間幅ウィンドウにわたる信号データのセットの集約されたセットを示す。加えて、依存関係を排除するために、特徴ベクトルの次元を更に削減することができる。1つの実施の形態において、特徴識別命令121は、主成分分析を行って、特徴ベクトルのセットの次元を、各時間段階の信号のフルセットに対応する、単一の特徴ベクトルに削減する命令を与える。
【0027】
別の実施の形態において、特徴識別命令121は、リカレントニューラルネットワークを用いて、信号データのセットを集約して、特徴ベクトルを生成する命令を与える。例えば、長短期記憶は、長短期記憶ブロックを含む、リカレントニューラルネットワークアーキテクチャである。長短期記憶ブロックは、任意の期間、値を記憶することができる「スマート」ネットワークユニットであると説明することができる。長短期記憶ブロックは、いつ入力を記憶するのに十分有意であるか、いつその値の記憶を継続するか又は忘れるべきか、及びいつ値を出力すべきかを判定するゲートを含んでいる。この文脈において、長短期記憶ネットワークは、信号データのセットを、全体として信号データの時系列パターンを捕捉する、単一の特徴ベクトル系列に変換することができる。
【0028】
1つの実施の形態において、特徴識別命令121は、信号データのセットとそれに対応する特徴ベクトルとの間のマッピングを生成する命令を与える。1つの実施の形態において、信号受信命令123によって受信された信号データのセットと同じ、複数のセンサー及び複合システム112からの履歴信号データに基づいて、以前に生成された信号データモデルが既に存在している場合には、以前に生成された信号データモデルを使用して、新たに識別された特徴ベクトルに対する分類ラベルを決定することができる。このシナリオにおいて、信号データ処理システム120は、直接ステップ225に進んで、新たに識別された特徴ベクトルに対し、分類ラベルを決定することができる。
【0029】
1つの実施の形態において、以前に生成された信号データモデルを用いて、新たに識別した特徴ベクトル及び以前に生成された信号データモデルに基づく、新しい信号データモデルを生成することができる。あるいは、新たに識別した特徴ベクトルを用いて、以前に生成された信号データモデルを自動的に補強することができる。以前に生成された信号データモデルの自動補強には、分類ラベルの決定に用いるパラメータの微調整が含まれる。例えば、以前に生成された信号データモデルの自動補強は、分類パラメータを更新するステップとして含めることができ、パラメータの更新は、分類パラメータに対する非常に小さい変更もあれば、より大きい変更もあり得る。以前に生成された信号データモデルを用いた新しい信号データモデルの生成、又は以前に生成された信号データモデルの補強については、本明細書の「履歴マッピング情報の利用」のセクションにおいて詳細に説明する。
【0030】
3.1.3 クラスタリング命令
図2に戻り、ステップ215において、信号データ処理システム120は、ステップ210で生成した特徴ベクトルを関連付ける1つ以上のクラスターを決定し、生成する。1つの実施の形態において、クラスタリング命令122は、特徴ベクトルから判断して、最適数のクラスターを生成する命令を与える。生成すべきクラスターの数は、特徴ベクトルの分析、及びベクトル特徴空間における数学的に有意な領域の識別に基づいて決定される。1つの実施の形態において、数学的に有意な領域の識別は、各々のベクトルに関連する時系列に依存しない。
【0031】
1つの実施の形態において、ベクトルのセットに対する最適のクラスター数を特定し、各々のベクトルをクラスターに関連付ける、適応k平均アルゴリズムを用いて、特徴ベクトルがグループ化され、クラスターが生成される。特徴ベクトルが数学的に有意な領域を含んでいない場合には、その特徴ベクトルを異常値として指定することができ、生成したどのクラスターにも関連付けない。1つの実施の形態において、特徴ベクトルとそれに関連するクラスターとの間のマッピング情報を生成することができる。
【0032】
3.1.4 ベクトル分類命令
ステップ220において、信号データ処理システム120は、ユーザー入力又はユーザーフィードバックの形態で、ユーザーからサンプルエピソードを受信することができる。サンプルエピソードは、ユーザーが定義した信号データ、又は以前の信号データモデルの履歴信号データのいずれかに基づく、分類ラベルと特徴ベクトルとのマッピングとして定義することができる。1つの実施の形態において、ベクトル分類命令123は、サンプルエピソードを受信する命令を与える。受信したサンプルエピソードは、特徴ベクトルの分類に特に有用であり得る。受信したサンプルエピソードに基づいて分類することができない特徴ベクトルのクラスターに対しては、ユーザーからの直接のフィードバック、又は信号データ処理システム120による、以後のクラスタリング及び分類によって修正又は定義することができる、任意のラベルを割り当てることができる。
【0033】
ステップ225において、信号データ処理システム120は、どのクラスターをどの分類ラベルにマッピングするかを決定するサンプルエピソードを用いて、生成したクラスターに分類ラベルを割り当てる。1つの実施の形態において、ベクトル分類命令123は、サンプルエピソードからの既存の分類ラベルと特徴ベクトルとのマッピングに基づいて、生成したクラスターの1つ以上を分類する命令を与える。サンプルエピソードは、検証された状況が発生した期間を含むことができる。その状況は、次に、特定の分類ラベルで定義することができる。
【0034】
例えば、受信信号データは、特定の種類の活動を追跡する目的で、人間の対象に配置された複数のセンサーに対応することができる。この例において、サンプルエピソードは、座っている、歩いている、サイクリングしている、漕いでいる、跳躍している等、検証された活動の既知の期間を指すことができる。サンプルエピソードは、検証された活動の特定の時間範囲を含むこともできる。例えば、時刻t=20〜時刻t=40が、検証された跳躍動作に関連付けることができる。特徴ベクトルの特定のクラスターが同じ時点、t=(20−40)を指している場合には、クラスター及び特徴ベクトルに対し、跳躍という検証された活動の分類ラベルを割り当てることができる。
【0035】
生成したクラスターは、提供されたサンプルエピソードに完全にはマッピングされないセンサーデータを有する特徴ベクトルを含むことができる。1つの実施の形態において、信号データ処理システム120は、多変量回帰法を実行して、生成した残りのクラスター及び特徴ベクトルを分類することができる。例えば、信号データ処理システム120は、ロジスティック回帰法を実行して、特徴ベクトルをロジスティック回帰法によって推測される状況にマッピングすることができる。別の実施の形態において、信号データ処理システム120は、推測される状況を生成する、ランダムフォレスト等の学習法を用いて、推測される状況を生成することができる。ランダムフォレストは、訓練期間中に複数の決定木を構築することによって動作する、回帰分析のためのアンサンブル学習法であって、その後、個々の木の平均回帰であるクラスを出力するものである。
【0036】
ステップ230において、信号データ処理システム120は、信号データモデルを生成し、デジタル記憶装置に保存する。1つの実施の形態において、ベクトル分類命令は、信号データモデルを生成し、保存する命令を与える。生成された信号データモデルは、特定の特徴ベクトルの特定の状況の識別に用いられる特徴ベクトル、関連するクラスター、及び割り当てられた分類ベクトル間のマッピング情報を含んでいる。例えば、信号データモデルは、「跳躍している」という分類ラベルが割り当てられた、「クラスターA」に関連付けられたベクトルのセットのマッピング情報を含むことができる。この分類ラベルは、特徴ベクトルのセットが、クラスターAの一部であり、人間の対象が跳躍しているときを記述した状況を示していることを意味する。
【0037】
1つの実施の形態において、マッピング情報は、関連する分類ラベルを含んでいなくてもよい。例えば、特定の分類ラベルが割り当てられていない「クラスターB」に属する特徴ベクトルのセットには、「割当不能1」又は「割当不能2」等の一意の識別子を有する割当不能ラベルを付与することができる。これ等の割当不能ラベルは、ステップ225において、多変量回帰法を用いて見出された推測状況に基づくことができる。これ等の特徴ベクトルのセットに対するマッピングは、「特徴ベクトルX」、「クラスターB」、及び「割当不能1」として示すことができる。
【0038】
次に、生成した信号データモデルを用いて、信号データ処理システム120は、別のセッションにおいて受信した、新しい信号データに分類を割り当てることができる。
【0039】
3.1.5 履歴マッピング情報の利用
前述のように、既存の信号データモデルの履歴信号データを用いて、新しい特徴ベクトルのセットを少なくとも部分的に分類することができる。
図4は、以前に生成された信号データモデルにおける、分類ラベルにマッピングされた特徴ベクトルを用いて、新しい特徴ベクトルのセットを分類する例を示す図である。1つの実施の形態において、ブロック405は、信号データモデルを構築する現在の反復において、以前に生成された信号データモデルに、利用可能な履歴分類ラベルが存在しているか否かが判定されることを示している。履歴分類ラベルが存在している場合には、信号データ処理システム120は、判定菱形410に進んで、利用可能な最低限の数の分類ラベルが存在しているか否かを判定する。しかし、利用可能な履歴分類ラベルが存在しない場合には、信号データ処理システム120は、クラスタリングを待つ分類不能の特徴ベクトルを示すブロック415に進む。
【0040】
判定菱形410に戻り、利用可能な履歴分類ラベルが存在している場合には、信号データ処理システム120は、利用可能な最低限の数の必須分類ラベルが存在しているか否かを判定する。特徴ベクトルを分類するための十分な分類ラベルが存在していない場合には、信号データ処理システム120は、分類ラベルを用いて特徴ベクトルを分類する代わりに、クラスタリングを待つ分類不能の特徴ベクトルを示すブロック415に進む。不十分な数の分類ラベルを用いて特徴ベクトルを分類しようとすれば、分類ラベルが多様性を欠くため、分類されない特徴ベクトルの数、又は誤分類される特徴ベクトルの数が多くなり過ぎる結果を招く。しかし、判定菱形410において、十分な数の分類ラベルが存在している場合には、信号データ処理システム120は、ブロック420に進んで、特徴ベクトルを分類することになる。1つの実施の形態において、信号データ処理システム120は、設定最小分類ラベル数を用いて、プロック420に進むべきか否かを判定することができる。設定最小分類ラベル数は、特徴ベクトルのプールサイズ、センサー数、及び異なるタイプの受信信号データに基づくことができる。
【0041】
ブロック420において、信号データ処理システム120は、ベクトル分類命令を実行して特徴ベクトルを分類する。1つの実施の形態において、特徴ベクトルが分類ラベルに分類されるとき、特徴ベクトルと分類ラベルとの間のマッピングが生成される。1つの実施の形態において、特徴ベクトルの属性及び/又は分類ラベルに基づくことができる、クラスター情報によって、マッピングを更に補強することができる。クラスタリング命令122を用いて、クラスタリング情報(このステップでは現在図示されていない)を実行することができる。ブロック425における1つの実施の形態において、信号データ処理システム120は、ブロック420からのマッピング情報に基づいて、信号データモデルを生成する。
【0042】
別の実施の形態において、信号データ処理システム120は、ブロック420からのマッピング情報を用いて、分類ラベルを供給した現在の信号データモデルを自動的に補強する。マッピング情報は、新たに識別された特徴ベクトル、そのクラスタリング情報、及び既存の分類ラベルに関連する特定の情報を含むことができる。既存の分類ラベルをマッピング情報で自動補強する利点は、現在の信号データモデルが、分類の決定から継続的に学習することができ、それによって、特徴ベクトルの各々のマッピングに基づいて、分類の決定が自己調整されることである。1つの実施の形態において、自動補強は、新しい特徴ベクトル及びそのマッピング情報と、現在の信号データモデルに保存されている既存のマッピング情報との間の相違に基づいて、分類パラメータに対する僅かな変更、及び大幅な変更を含むことができる。
【0043】
1つの実施の形態において、特徴ベクトルをうまく履歴分類ラベルに割り当てることができない場合には、残りの特徴ベクトルは異常値を示すことができ、ブロック415に送り、他の分類不能の特徴ベクトルと共にクラスタリングすることができる。この文脈において、異常値とは、いずれの分類ラベルにもマッピングされない特徴ベクトルを意味する。
【0044】
ブロック415は、履歴分類ラベル数の不足、又は履歴分類ラベルに一致しないことのいずれかによって、分類することができない特徴ベクトルの集まりを示している。ブロック430において、信号データ処理システム120は、有意なデータを示さない、特徴ベクトルの異常値の可能性があるものをフィルター除去する。特徴ベクトルは、偽の状況を引き起こす、既知の特徴的な信号値又は頻度に基づく、偽の状況を示す信号データに基づくことができる。例えば、コンベヤベルトのセンサーが、1日のうちの特定の時間に、高レベルの熱を報告する場合があるが、測定されたこれ等の高レベルの熱は、既知の環境条件に関連している可能性があり、無視すべきものである。1つの実施の形態において、既知の無視できる状況として認識された異常値は、特徴ベクトルのセットからフィルター除去される。ブロック430において、フィルター除去されなかった残余の特徴ベクトルは、次に判定菱形435に送られる。
【0045】
1つの実施の形態において、判定菱形435は、クラスタリングのための十分な数の特徴ベクトルが存在しているか否かを判定する。特徴ベクトルの数が不十分であれば、信号データ処理システム120は、クラスタリングを試みない(ブロック450が、クラスタリングなしを示している)。特徴ベクトルの数が不十分なときのクラスタリングは、不必要に歪曲されたクラスターのセット、及び分類プロセス中のエラーにつながる可能性がある。従って、信号データ処理システム120は、最小設定特徴ベクトル数が満足されているか否かを判定する。1つの実施の形態において、クラスタリングのための最小特徴ベクトル数は、データの種類及び特徴ベクトルのデータ点の数に基づくことができる。
【0046】
最小設定特徴ベクトル数が満足された場合には、信号データ処理システム120は、ステップ440に進んで、クラスタリングを行う。ステップ440において、信号データ処理システム120は、クラスタリング命令を実行し、特徴ベクトルのセットの分析及びベクトルの特徴空間における数学的に有意な領域の識別に基づいて、残りの特徴ベクトルをクラスタリングする。得られたクラスターの数及び関連する特徴ベクトルは、ブロック445に示される。1つの実施の形態において、ブロック445は、特徴ベクトルとクラスとのターマッピングを生成する、信号データ処理システム120を示している。
【0047】
図2のステップ220、225、及び230に戻り、信号データ処理システム120は、次に、残りの特徴ベクトル及びそのクラスターに分類ラベルを割り当てるために用いる、定義された分類ラベル、及びサンプル特徴ベクトルを含むサンプルエピソードを受信する。1つの実施の形態において、ステップ230において、信号データ処理システムは、特定の特徴ベクトルの特定の状況を識別するために用いる特徴ベクトル、関連するクラスター、及び付与された分類ラベル間のマッピング情報を生成し、マッピング情報を信号データモデルに保存することができる。1つの実施の形態において、信号データ処理システム120は、マッピング情報及びステップ420において、特徴ベクトルの分類割り当てに用いた履歴分類ラベルに基づいて、新しい信号データモデルを生成する。別の実施の形態において、信号データ処理システム120は、ブロック445においてマッピングした、新たに分類した特徴ベクトル及びクラスターを用いて、ブロック420に分類ラベルを供給した、以前に生成された信号データモデルを補強する。
【0048】
3.2 信号データモデルを用いたデータストリームの評価
図2のステップ230に戻り、生成した信号データモデルを用いて、新しい信号データを評価し、新しい信号データから生成された特徴ベクトルに、既知の分類ラベルを割り当てることができる。加えて、新しい信号データを用いて、生成した信号データモデルを補強して、分類ラベル、並びに関連する特徴ベクトル及びクラスターを更に精緻なものにすることができる。
図3は、既存の信号データモデルを用いて、受信信号データを評価及び分類する例示的な実施の形態を示す図である。
【0049】
ステップ300において、信号データ処理システム120は、1つ以上の既存の信号データモデルをメンテナンスする。1つの実施の形態において、信号データモデルメンテナンス命令125は、1つ以上の既存の信号データモデルをメンテナンスする命令を与える。信号データモデルは、履歴信号データを用いて生成された、電子的に保存されたモデルを意味することができる。
【0050】
新しい信号データのセットを受信するステップ、及び新しい信号データのセットを特徴ベクトルのセットに集約するステップは、
図2の受信するステップ205及び集約するステップ210と実質的に同じである。従って
図3は、信号データのセットを受信するステップをステップ205、及び信号データのセットを特徴ベクトルに集約するステップをステップ210として示している。
【0051】
3.2.1 状況判定命令
ステップ315において、信号データ処理システム120は、特徴ベクトルのセットに、既存の信号データモデルからの定義された状況を割り当てる。1つの実施の形態において、ベクトル分類命令123は、既存の信号データモデルからの既知の分類マッピングを用いて、特徴ベクトルのセットに状況を割り当てる命令を与える。1つの実施の形態において、ユーザーが選択した特定の既存の信号データモデルを用いて、分類を行うように、信号データ処理システム120を構成することができる。別の実施の形態において、受信信号データのタイプ及び信号データを発した複合システム112、並びに特定の既存の信号データモデルの生成日のいずれかに基づいて、及び/又は特定の既存の信号データモデルに保存されている分類ラベルの数に基づいて、既存の信号データモデルを自動的に選択するように、信号データ処理システム120を構成することができる。ステップ315の1つの実施の形態において、既存の信号データモデルに保存されている分類ラベルでは、分類できない可能性がある特徴ベクトルを更に分類するために、ユーザーからサンプルエピソードを受信するように信号データ処理システム120を構成することができる。
【0052】
図5は、既存の信号データモデルを用いて、信号データのデータストリームを評価する更に詳細な例を示す図である。1つの実施の形態において、ステップ315は、判定菱形505及びブロック505を含んでいる。判定菱形505において、信号データ処理システムは、既存の信号データモデルが、特徴ベクトルのセットに適用されるか否かを判定する。例えば、信号データ処理システム120が、3つの既存の信号データモデルをメンテナンスしているが、既存の信号データモデルのどれもが、現在の特徴ベクトルの信号データのタイプに適用されない場合には、判定菱形505において、信号データ処理システム120は、分類不能の特徴ベクトルを収集するようにプログラムされたブロック515に特徴ベクトルを送る。しかし、判定菱形505において、信号データ処理システム120が、特徴ベクトルの分類に用いることができる信号データモデルをメンテナンスしている場合には、信号データ処理システム120は、ブロック510に進んで、特徴ベクトルに分類ラベルを関連付ける。
【0053】
ブロック510において、信号データ処理システム120は、既存の信号データモデルを用いて、特徴ベクトルに分類ラベルを関連付けてマッピングする。1つの実施の形態において、信号データ処理システム120は、ユーザーからサンプルエピソードを受信して、追加の分類ラベル情報を取得することができる。1つの実施の形態において、既存の信号データモデルの分類ラベルにマッピングされない、特徴ベクトルが残っている場合には、残留特徴ベクトルは異常値として示され、ブロック515に送ることができる。1つの実施の形態において、信号データ処理システム120は、ユーザーに報告される予測出力が収集されるブロック530に、分類した特徴ベクトル及びそれに関連する分類ラベルを送る。
【0054】
図3に戻り、ステップ320は、既存の信号データモデルを用いて分類できなかった特徴ベクトルに基づく、クラスターを生成するステップを示している。
図5のブロック515、520、及び525は、ステップ320のクラスタリングステップの実施の形態を示している。ブロック515において、分類不能の特徴ベクトルを受信する。1つの実施の形態において、分類不能の特徴ベクトルのセットは、ブロック510からの異常値、又はメンテナンスしている既存の信号データモデル(判定菱形505)のどれにも一致しなかった特徴ベクトルに由来し得る。
【0055】
ブロック520において、信号データ処理システム120は、有意なデータを全く示さない特徴ベクトルの可能性がある、異常値をフィルター除去する。偽の状況を引き起こす既知の特徴的な信号値又は頻度に基づく、偽の状況を示す特徴ベクトルは、クラスタリングする必要がない異常値としてフィルター除去することができる。1つの実施の形態において、フィルター除去した特徴ベクトルは、ブロック530に送って、ユーザーに報告することができる。指定された異常値をすべてユーザーに報告することによって、ユーザーは、以後のフィードバックを用いて、信号データモデルを更に構成するか、又は異常値を特別な異常値ラベルで分類するためのサンプルエピソードを生成することができる。
【0056】
ブロック525において、信号データ処理システム120は、クラスタリング命令122を実行し、特徴ベクトルの分析、及びベクトル特徴空間における数学的に有意な領域の識別に基づいて、残りの特徴ベクトルをクラスタリングする。その結果得られた、クラスター数及び関連する特徴ベクトルは、次に、ブロック530に送られ、ユーザーに報告される。
【0057】
3.2.2 状況報告命令
図3に戻り、ステップ325において、データ処理システム120は、状況報告命令126からの命令を実行して、新たに受信した信号データにおいて識別された状況を報告する。1つの実施の形態において、報告される状況には、関連する分類ラベルを有する特徴ベクトル、識別されているが、既知の分類ラベルと一致しない特徴ベクトルのクラスター、及び関連する分類ラベルを有さず、識別されたクラスターに属さない異常値を示し得る特徴ベクトルを含むが、これに限定されるものではない。
図5のブロック530は、コンピュータのユーザー、他のコンピュータ、マシーン、又は装置に報告することができる予測出力を示している。予測出力は、グラフィック表示として構成することができる。様々な実施の形態において、状況報告及び予測出力は、コンピュータによって印刷される報告書、コンピュータがコンピュータ表示装置を駆動して表示させるグラフィック表示、インジケータ表示、テキストメッセージ、アプリケーションアラート、及び他のメッセージ又は通知によって与えることができる。
【0058】
1つの実施の形態において、状況報告命令126は、グラフィカルユーザインタフェースに、ラベル付き状況及びラベルなし状況として、予測出力を報告する命令を与える。ラベル付き状況は、分類ラベルにマッピングされた特徴ベクトルを意味し、ラベルなし状況は、分類ラベルにマッピングされなかった特徴ベクトルのクラスターを意味することができる。1つの実施の形態において、グラフィカルインタフェースは、最初の受信信号データで始まり、最後の受信信号データで終了する時間範囲をカバーする、時間グラフとして示すことができる。
【0059】
図6は、ユーザーに送信され、分析及び以後のフィードバックが行われる、例示的な時間グラフを示す図である。1つの実施の形態において、グラフ600は、分類ラベル610で特徴ベクトルを分類することができる、既存の信号データモデルを示すことができ、分類ラベルは「スリッドフラット」、「剥離」、及び「正常」の分類ラベルを含んでいる。分類不能ラベル605は、「ラベルなし1」及び「ラベルなし2」を意味し、関連する分類ラベルを有さない2つの異なるクラスターを意味することができる。別の実施の形態において、分類ラベル610は、サンプルエピソードの一部として、信号データ処理システム120に与えられた、分類ラベルを意味することができる。
【0060】
グラフ620は、特徴ベクトルに一致する分類ラベルが存在しない予測出力の例を示している。1つの実施の形態において、グラフ620は、信号データ処理システム120が、現在の特徴ベクトルの信号データに一致する、既存の信号データモデルをメンテナンスしていなかったシナリオを意味することができる。このシナリオにおいて、すべての特徴ベクトルが、クラスターを生成するために、
図3のステップ320に送られる。1つの実施の形態において、新たに生成されたクラスターには、次に、ラベルなし1〜5等、任意のラベルが付与される。1つの実施の形態において、ユーザーは、次に、識別されたクラスターに適切な分類ラベルを割り当てるために、サンプルエピソードの形態で必要なフィードバックを与えるか、又はクラスターのラベル付けを指示することができる。
【0061】
グラグ630は、ユーザーによって与えられたフィードバックを含む、予測出力の例を示している。分類ラベル635は、3つの識別された分類ラベル、及び特定の時間に発生した関連する特徴ベクトルを示している。フィードバック640は、本例では、サンプルエピソードとしてユーザーによって与えられた「検証」と呼ぶ、検証された状況を示している。グラフ630は、ユーザーが、提供された検証状況が、特徴ベクトルに付与された分類ラベルと正確に一致していることを確認することができる例を示している。
【0062】
3.2.3 報告された状況に基づく機器の修正
生成され報告された報告状況に基づいて、監視対象の1つ以上のマシーン上で、又はマシーンを使用して、対応行動を取ることができる。1つの実施の形態において、状況報告命令126によって生成された報告状況は、外部システム110の状況状態定義を定義及び/又は補強する目的で、外部システム110に送信される状態定義指示を含むことができる。状況状態定義は、外部システム110、又は外部システム110の一部の定義された状況タイプを含んでいる。次に、これ等の状況状態を用いて、外部システム110の運転状況を評価することができる。次に、安全、信頼性、効率、及び生産品質を向上させるために、状態定義指示を用いて、既存の状況状態を修正することができる。
【0063】
例えば、外部システム110が産業機械である場合には、報告状況は、スリッドフラット、剥離、正常、危機的、及びエラー等の状況が識別されたときの再定義を含む、外部システム110における、特定の既存の状況の再定義に用いることができる定義指示を含んでいる。
【0064】
外部システム110が、ワイヤレスアクティビティトラッカーである場合には、外部システム110は、報告状況を用いて、ユーザーから特定の活動を認識したとき、修正を行うことができる。例えば、報告状況が、特定のランニング運動を示す特徴ベクトルの分類を示す一方、これまで特定の動きがランニングとして識別されていなかった場合には、外部システム110は、新たに報告された状況を用いて、システムのランニング状況の認識をアップデートすることができる。
【0065】
4.0 ハードウェア概要
1つの実施の形態によれば、本明細書に記載の技術は、1つ以上の専用コンピューティング装置で実行することができる。専用コンピューティング装置は、技術を実行するハードワイヤード、あるいは、これらの技術を実行するために永続的にプログラムされた、1つ以上の特定用途向け集積回路(ASIC)若しくはフィールドプログラマブルゲートアレイ(FPGA)、又はファームウェア、メモリ、他の記憶装置、あるいはこれ等を組み合わせたものの内部のプログラム命令に従って、技術を実行するようにプログラムされた、1つ以上の汎用ハードウェアプロセッサ等のデジタル電子装置を含むことができる。かかる専用コンピューティング装置は、カスタムハードワイヤードロジック、ASIC、又はFPGAとカスタムプログラミングとを組み合わせて技術を実現することもできる。専用コンピューティング装置は、デスクトップコンピュータシステム、ポータブルコンピュータシステム、携帯端末、ネットワーキング装置、又は技術を実行するためのハードワイヤード及び/又はプログラムロジックを組み込んだ他の任意の装置であってよい。
【0066】
例えば、
図7は、本発明の1つの実施の形態を実装することができる、コンピュータシステム700を示すブロック図である。コンピュータシステム700は、バス702又は情報を伝達するための他の通信機構、及びバス702に接続され、情報を処理するハードウェアプロセッサ704を備えている。ハードウェアプロセッサ704は、例えば、汎用マイクロプロセッサであってよい。
【0067】
コンピュータシステム700は、バス702に接続され、情報及びプロセッサ702によって実行される命令を記憶するランダムアクセスメモリ(RAM)又は他の動的記憶装置等の主記憶装置706も備えている。主記憶装置706は、プロセッサ704によって実行される命令の実行中に、一時変数又は他の中間情報を記憶するために使用することもできる。かかる命令が、プロセッサ704がアクセスできる非一時的記憶装置に記憶されたとき、それらの命令によって、コンピュータシステム700が、命令によって指定された機能を実行するようにカスタマイズされた専用マシーンになる。
【0068】
コンピュータシステム700は、バス702接続され、プロセッサ704の静的情報及び命令を記憶する読み取り専用メモリ(ROM)708を更に備えている。磁気ディスク、光ディスク、又はソリッドステートドライブ等の記憶装置710を備え、バス702に接続され情報及び命令を記憶する。
【0069】
コンピュータシステム700は、バス702を介して、コンピュータユーザーに対し、情報を表示するための陰極線管(CRT)等のディスプレイ712に接続することができる。英数字及び他のキーを含む入力装置714が、バス702に接続され、情報及びコマンド選択がプロセッサ704に伝達される。別のタイプのユーザー入力装置は、方向情報及びコマンド選択をプロセッサ704に伝達し、ディスプレイ712上のカーソル移動を制御するためのマウス、トラックボール、又はカーソル方向キー等のカーソル制御装置716である。この入力装置は、一般に、装置によって平面内の位置を指定することを可能にする、第1の軸(例えば、x)及び第2の軸(例えば、y)の2つの自由度を有している。
【0070】
コンピュータシステム700は、コンピュータシステムと組み合わせて、コンピュータシステム700を専用マシーンにする、又はプログラムするカスタマイズされたハードワイヤードロジック、1つ以上のASIC若しくはFPGA、ファームウェア、及び/又はプログラムロジックを用いて、本明細書に記載の技術を実行することができる。1つの実施の形態によれば、主記憶装置706に含まれている1つ以上の命令の1つ以上のシーケンスを実行するプロセッサ704に応答して、本明細書に記載の技術がコンピュータシステム700によって実行される。かかる命令は、記憶装置710等の別の記憶媒体から、主記憶装置706に読み込むことができる。主記憶装置706に含まれている命令シーケンスを実行すると、プロセッサ704に、本明細書に記載のプロセスステップを実行させる。別の実施の形態において、ソフトウェア命令の代わりに、又はそれと組み合わせて、ハードワイヤード回路を用いることができる。
【0071】
本明細書において、「記憶媒体」とは、データ及び/又はマシーンを特定の方法で動作させる命令を記憶する任意の非一時的媒体を意味する。かかる記憶媒体は、不揮発性媒体及び/又は揮発性媒体を含むことができる。不揮発性媒体には、例えば、光ディスク、磁気ディスク、記憶装置710等のソリッドステートドライブ等が含まれる。揮発性媒体には主記憶装置706等の動的メモリが含まれる。記憶媒体の一般的な形態には、例えば、フロッピー(登録商標)ディスク、フレキシブルディスク、ハードディスク、ソリッドステートドライブ、磁気テープ、他の任意の磁気データ記憶媒体、CD−ROM、他の任意の光データ記憶媒体、孔パターンを有する任意の物理的媒体、RAM、PROM、EPROM,FLASH−EPROM、NVRAM、他の任意のメモリチップ若しくはカートリッジ等が含まれる。
【0072】
記憶媒体は、伝送媒体とは異なるが、伝送媒体と共に使用することができる。伝送媒体は、記憶媒体間における情報の転送に関与している。例えば、伝送媒体には、バス702を構成する線を含む、同軸ケーブル、銅線、及び光ファイバーが含まれる。伝送媒体は、電波及び赤外線データ通信において生成される、音響波又は光波等の形態を取ることもできる。
【0073】
様々な形態の媒体が、1つ以上の命令の1つ以上のシーケンスをプロセッサ704に送って実行することに関与し得る。例えば、命令は、最初にリモートコンピュータの磁気ディスク又はソリッドステートドライブに担持させることができる。リモートコンピュータが、命令を動的メモリにロードし、モデムを用いた電話回線を介して、命令を送信することができる。コンピュータシステム700のローカル側のモデムが、電話回線上のデータを受信し、赤外線送信機を用いて、データを赤外線信号に変換することができる。赤外線検出器が、赤外線信号に担持されたデータを受信することができ、適切な回路がデータをバス702に乗せることができる。バス702がデータを主記憶装置706に運び、そこからプロセッサ704が命令を読み出して実行する。主記憶装置706が受信した命令は、必要に応じ、プロセッサ704によって実行される前又は後のいずれかにおいて、記憶装置710に記憶することができる。
【0074】
コンピュータシステム700は、バス702に接続された通信インタフェース718も備えている。通信インタフェース718は、ローカルネットワーク722に接続されたネットワークリンク720に対して、双方向データ通信接続を提供する。例えば、通信インタフェース718は、総合デジタル通信網(ISDN)カード、ケーブルモデム、衛星モデム、又は対応する電話回線に対し、データ通信接続を提供するモデムであってよい。別の例として、通信インタフェースは、ローカルエリアネットワーク(LAN)カードであって、互換性のあるLANに対し、データ通信接続を提供するものであってよい。無線リンクも導入することができる。かかる導入において、通信インタフェース718は、様々なタイプの情報を示すデジタルデータストリームを担持する電気信号、電磁信号、又は光信号を送受信する。
【0075】
ネットワークリング720は、通常、1つ以上のネットワークを介して、別のデータ装置にデータ通信を提供する。例えば、ネットワークリンク720は、ローカルネットワーク722を介して、ホストコンピュータ724、又はインターネットサービスプロバイダー(ISP)726が運用するデータ装置に接続を提供することができる。ISP726は、次に、現在一般に「インターネット」728と呼ばれている、ワールドワイドパケットデータ通信ネットワークを介して、データ通信サービスを提供する。ローカルネットワーク722及びインターネット728は、共にデジタルデータストリームを担持する電気、電磁、又は光信号を用いる。様々なネットワークを介した信号、並びにコンピュータシステム700に送受信される、ネットワークリンク720上及び通信インタフェース718を介した信号が、伝送媒体の例示的な形態である。
【0076】
コンピュータシステム700は、ネットワーク、ネットワークリンク720、及び通信インタフェースを介して、メッセージを送信し、プログラムコードを含むデータを受信することができる。インターネットの例において、サーバー730が、インターネット728、ISP726、ローカルネットワーク722及び通信インタフェース718を介して、アプリケーションプログラムの要求されたコードを送信することができる。
【0077】
受信コードは、受信次第、プロセッサ704によって実行することができ、及び/又は記憶装置710若しくは他の不揮発性記憶装置に記憶して、後で実行することができる。
【0078】
前述の明細書において、実施毎に異なることができる多くの特定の詳細に言及して、本発明の実施の形態について説明してきた。従って、明細書及び図面は、限定するものではなく、例示的なものであると見なされたい。本発明の範囲の唯一の排他的判断基準、及び本出願人が本発明の範囲であると意図するのは、本出願に由来する一連のクレームのかかるクレームが由来する具体的な形態の記述及び均等範囲である。