(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0009】
以下、本発明の実施形態に係る内燃機関の排気後処理システム20(以下、「排気後処理システム20」と略称する)について図面を参照しつつ説明する。
図1は、本実施形態に係る排気後処理システム20が適用された内燃機関システム1の全体構成を模式的に示す構成図である。この内燃機関システム1は、内燃機関2、排気通路4、制御装置10、及び排気後処理システム20を備えている。
【0010】
本実施形態では、内燃機関2の一例として、ディーゼル機関を用いている。なお、
図1において内燃機関2の気筒3の個数は一例として4個であるが、気筒3の個数はこれに限定されるものではない。排気通路4は内燃機関2の気筒3から排出された排気が通過する通路であり、その上流側端部が分岐して各気筒3の排気ポートに接続している。
【0011】
制御装置10は、内燃機関2の燃料噴射量や燃料噴射時期等を制御するとともに、後述する排気後処理システム20の動作も制御する。この制御装置10は、各種の制御処理を実行する制御部としての機能を有するCPU11や、CPU11の動作に必要な各種情報やプログラム等を記憶する記憶部12等を有するマイクロコンピュータを備えている。なお、記憶部12としては、ROM、RAM等の記憶装置が用いられる。
【0012】
排気後処理システム20は、排気通路4に配置された排気浄化装置30と、この排気浄化装置30よりも下流側の排気通路4に配置された尿素SCR(Selective Catalytic Reduction)装置40を備えている。さらに排気後処理システム20は、温度センサ50、副排気通路60、蓄熱装置70、及び流路切替弁80a,80bを備えている。なお、本実施形態に係る排気後処理システム20は、排気後処理システム20を制御する制御装置10も、その構成要素の一部に含んでいる。
【0013】
排気浄化装置30は、酸化触媒31と、この酸化触媒31よりも下流側に配置されたフィルタ32を備えている。酸化触媒31は、排気に含まれる一酸化炭素(CO)や炭化水素(HC)といった有害物質を、酸化触媒31の触媒作用によって、水(H
2O)や二酸化炭素(CO
2)といった無害な物質に変化させることで、排気中の有害物質を浄化する触媒である。このような機能を有するものであれば、酸化触媒31の具体的な構成は特に限定されるものではないが、本実施形態に係る酸化触媒31は、一例として、排気が通過可能な担体に白金(Pt)、パラジウム(Pd)等の貴金属触媒が担持された構成を有している。
【0014】
フィルタ32は、排気に含まれる煤等のPMを捕集可能なフィルタであればよく、その具体的な構成は特に限定されるものではない。本実施形態においては、フィルタ32の一例として、ウォールスルータイプのディーゼルパティキュレートフィルタを用いている。
【0015】
尿素SCR装置40は、排気中に尿素水を供給するとともに、この排気中に供給された尿素水から生成されるアンモニア(NH
3)を還元剤として用いて、排気中のNOxを選択的に還元除去する装置である。このような機能を有するものであれば、尿素SCR装置40の具体的な構成は特に限定されるものではないが、本実施形態においては、一例として、尿素水供給部41、尿素SCR触媒42、及びアンモニアスリップ触媒43を備えている。
【0016】
尿素水供給部41は、尿素SCR触媒42よりも上流側、且つフィルタ32よりも下流側の排気通路4に配置されている。より具体的には、本実施形態に係る尿素水供給部41は、尿素SCR触媒42よりも上流側、且つ排気通路4における副排気通路60の接続箇所(後述する第2箇所6)よりも下流側の部分に配置されている。この尿素水供給部41の具体例として、本実施形態では、制御装置10の指示を受けて排気中に尿素水を噴射する尿素水噴射弁を用いている。制御装置10は、尿素水供給指示を受信した場合(例えば尿素水供給開始スイッチがユーザによってONに操作された場合等)において、尿素水供給部41としての尿素水噴射弁に尿素水を噴射させる。
【0017】
尿素SCR触媒42は、排気中のNOxを除去する触媒(すなわち「NOx除去用触媒」)であり、具体的には、尿素の加水分解によって生じるアンモニアを用いて排気中のNOxを選択的に還元することでNOxを除去する触媒である。尿素SCR触媒42の具体的な種類は、特に限定されるものではなく、例えば、バナジウム(V)、モリブデン(Mo)等の卑金属酸化物や、ゼオライト等を用いることができる。アンモニアスリップ触媒43は、尿素SCR触媒42よりも下流側に配置されており、尿素SCR触媒42を通過したアンモニアを酸化させる酸化触媒である。
【0018】
尿素水供給部41から尿素水が排気中に供給された場合、尿素水中の尿素は加水分解され、その結果、アンモニアが生成される。このアンモニアは、尿素SCR触媒42の触媒作用の下で、NOxを還元させる。この結果、窒素(N
2)及び水(H
2O)が生成される。このようにして、尿素SCR装置40は、排気中のNOxの低減を図っている。また本実施形態によれば、アンモニアスリップ触媒43を備えているので、アンモニアが内燃機関システム1の外部に排出されることが効果的に抑制されている。
【0019】
温度センサ50は、第1箇所5(排気通路4における副排気通路60の分岐箇所;
図2(a)参照)よりも上流側の排気の温度(以下「上流側排気温度」と称する)を検出して、検出結果を制御装置10に伝える。このような機能を有するものであれば、温度センサ50の排気通路4における具体的な配置箇所は特に限定されるものではないが、本実施形態に係る温度センサ50は、一例として、排気通路4のフィルタ32よりも下流側且つ第1箇所5よりも上流側の部分に配置されて、この部分の排気の温度を検出している。
【0020】
続いて、副排気通路60、蓄熱装置70、及び流路切替弁80a,80bの詳細について説明する。
図2(a)は内燃機関システム1における副排気通路60及び尿素SCR装置40の周辺構造を拡大した模式的拡大図である。
図2(b)は
図2(a)の蓄熱装置70の周辺構造(A部分)を拡大した模式的拡大図である。
【0021】
図2(a)に示すように、副排気通路60は、排気通路4の尿素SCR触媒42よりも上流側の第1箇所5から分岐して、排気通路4における尿素SCR触媒42よりも上流側且つ第1箇所5よりも下流側の第2箇所6に接続されている。
【0022】
蓄熱装置70は、この副排気通路60内に配置されている。
図2(b)に示すように、蓄熱装置70は、蓄熱材71、及び圧力付与部材72を備えている。圧力付与部材72は、制御装置10によって制御されることで、蓄熱材71に圧力を付与する部材である。この圧力付与部材72の一例として、本実施形態においては、蓄熱材71の外周側面を全体的に覆うように配置された圧電材を用いている。具体的には、この圧電材は、円柱形状の蓄熱材71の外周側面(これは副排気通路60の内周面に対向する面である)と、この蓄熱材71の外側に存在する副排気通路60の内周面との間に配置されている。そして、圧電材は、制御装置10と電気的に接続されており、制御装置10から電気供給を受けた場合に圧力を発生する。これにより、圧電材は、蓄熱材71に対して圧力を付与する。
【0023】
なお、圧電材の具体的な材質は、特に限定されるものではないが、本実施形態では一例として、チタンジルコン酸鉛(Lead Zirconate Titanate;PZT)を用いている。
【0024】
また、圧電材の配置態様は、蓄熱材71に圧力を付与できる態様であればよく、
図2(b)に示す配置態様に限定されるものではない。例えば
図2(b)に示す圧電材は蓄熱材71に直接接触するようにして蓄熱材71を覆っているが、圧電材は他の部材を介して蓄熱材71を覆う構成(すなわち、蓄熱材71を間接的に覆う構成)とすることもできる。
【0025】
蓄熱材71は、圧力付与部材72から圧力が付与されていないときは周囲の熱を蓄熱し、この蓄熱した熱を圧力付与部材72から圧力を受けた場合に放熱する部材である。このような蓄熱材71の材質の一例として、本実施形態においては、セラミック系の蓄熱材(すなわち蓄熱セラミック)を用い、このような蓄熱材の具体例として五酸化三チタン(Ti
3O
5)を用いている。
【0026】
この五酸化三チタンは、熱の保持性能が良好である(すなわち、熱を長時間保持することができる)。この点において、五酸化三チタンは、蓄熱材71の材質として特に好ましい。
【0027】
なお、本実施形態に係る蓄熱材71は、副排気通路60の内部に配置されているため、副排気通路60の排気が蓄熱材71を通過できる構造になっている。この一例として、本実施形態に係る蓄熱材71は、排気が通過可能な孔を複数個有する構造になっている。これにより、排気の流動が蓄熱材71によって阻害されることが抑制されている。
【0028】
図2(a)を再び参照して、流路切替弁80aは、排気通路4における第1箇所5と第2箇所6との間の部分に配置されている。流路切替弁80bは、副排気通路60における蓄熱装置70よりも上流側の部分に配置されている。本実施形態においては、流路切替弁80a及び流路切替弁80bの一例として、制御装置10の指示を受けて開閉する開閉弁を用いている。
【0029】
図2(a)に示すように、制御装置10が流路切替弁80aを閉弁状態に制御し且つ流路切替弁80bを開弁状態に制御した場合、第1箇所5よりも上流側の排気は、副排気通路60の蓄熱材71を経由してから尿素SCR触媒42に流入する。一方、例えば
図1に示すように、制御装置10が流路切替弁80aを開弁状態に制御し、流路切替弁80bを閉弁状態に制御した場合、第1箇所5よりも上流側の排気は、副排気通路60の蓄熱材71を経由せずに、尿素SCR触媒42に流入する。
【0030】
すなわち、本実施形態に係る流路切替弁80a,80bは、第1箇所5よりも上流側の排気が副排気通路60の蓄熱材71を経由してから触媒(尿素SCR触媒42)に流入す
る状態(「蓄熱材経由状態」と称する)と、第1箇所5よりも上流側の排気が蓄熱材71を経由せずに触媒(尿素SCR触媒42)に流入する状態(「蓄熱材非経由状態」と称する)とを切り替える流路切替弁としての機能を有する部材に相当する。
【0031】
続いて、尿素SCR触媒42のNOx浄化率と尿素SCR触媒42の温度との関係を説明し、次いで制御装置10の制御処理の詳細について説明する。
【0032】
図3は、尿素SCR触媒42のNOx浄化率と尿素SCR触媒42の温度との関係を模式的に示す図である。尿素SCR触媒42の温度が温度T
a以上、温度T
b以下の温度範囲(「中温」と称する)の場合における尿素SCR触媒42のNOx浄化率は、尿素SCR触媒42の温度が温度T
a未満の温度範囲(「低温」と称する)や、尿素SCR触媒42の温度が温度T
bより高い温度範囲(「高温」と称する)に比較して、大きくなっている。
【0033】
すなわち、NOx除去用触媒である尿素SCR触媒42のNOx浄化率は、低温や高温の場合は相対的に低く、中温の場合に相対的に良好になる。そこで、制御装置10は、尿素SCR触媒42の温度が低温や高温になることを抑制して、NOxの浄化率の低下を抑制するために、以下に説明する制御処理を実行する。
【0034】
具体的には、制御装置10は、上流側排気温度(すなわち、第1箇所5よりも上流側の排気の温度)が高温の場合及び低温の場合には蓄熱材経由状態が得られ、上流側排気温度が中温の場合には蓄熱材非経由状態が得られるように流路切替弁80a,80bを制御するとともに、上流側排気温度が高温の場合及び低温の場合には蓄熱材71に圧力が付与されず、上流側排気温度が低温の場合に蓄熱材71に圧力が付与されるように圧力付与部材72を制御する。この制御処理について、フローチャートを用いて詳細に説明すると、次のようになる。
【0035】
図4は、制御装置10による流路切替弁80a,80b及び圧力付与部材72の制御処理を示すフローチャートの一例である。制御装置10は、内燃機関2の始動開始と同時に
図4のフローチャートを繰り返し実行する。また、
図4の各ステップは、制御装置10の具体的にはCPU11が実行する。
【0036】
まず、ステップS10において、制御装置10は、上流側排気温度が高温であるか否かを判定する。具体的には制御装置10は、温度センサ50の検出結果を取得することで、上流側排気温度を取得し、この取得された上流側排気温度が予め記憶部12に記憶されている温度T
bより高いか否かを判定することで、上流側排気温度が高温であるか否かを判定している。
【0037】
ここで、温度T
bとしては、この温度よりも高い温度の排気が尿素SCR触媒42に流入した場合に、尿素SCR触媒42のNOx浄化率が低下してしまうと考えられる値を用いることができる。この温度T
bは、予め、実験、シミュレーション等を行って適切な値を求めておき、記憶部12に記憶させておく。なお、本実施形態のようにNOx除去用触媒として尿素SCR触媒42を用いる場合、温度T
bの一例として380℃〜430℃の範囲から選択された値を用いることができる。
【0038】
ステップS10でYESと判定された場合、制御装置10はステップS20を実行する。ステップS20において制御装置10は、流路切替弁80aを閉弁状態に制御し、流路切替弁80bを開弁状態に制御することで、排気の流動状態を蓄熱材経由状態にする。この結果、第1箇所5よりも上流側の排気は、蓄熱材71を経由してから尿素SCR触媒42に流入する。なお、ステップS20において、圧力付与部材72から蓄熱材71への圧
力付与は行われない。
【0039】
ステップS20の実行によって、排気の熱を蓄熱材71に吸収させて、温度が低下した排気を尿素SCR触媒42に流入させることができる。これにより、尿素SCR触媒42の温度が高温になることを抑制できるので、尿素SCR触媒42の温度が高温になることに起因するNOx浄化率の低下を抑制することができる。ステップS20の実行後に、制御装置10はリターンを実行し、フローチャートをスタートから実行する。
【0040】
一方、ステップS10でNOと判定された場合、制御装置10はステップS30を実行する。このステップS30において制御装置10は、上流側排気温度が中温であるか否かを判定する。具体的には制御装置10は、温度センサ50の検出結果に基づいて取得された上流側排気温度が予め記憶部12に記憶されている温度T
a以上、温度T
b以下(すなわち温度T
a〜温度T
b)であるか否かを判定することで、上流側排気温度が中温であるか否かを判定する。
【0041】
ここで、温度T
aとしては、この温度よりも低い温度の排気が尿素SCR触媒42に流入した場合に、尿素SCR触媒42のNOx浄化率が低下してしまうと考えられる値を用いることができる。この温度T
aは、予め、実験、シミュレーション等を行って適切な値を求めておき、記憶部12に記憶させておく。なお、本実施形態のようにNOx除去用触媒として尿素SCR触媒42を用いる場合、温度T
aの一例として200℃〜250℃の範囲から選択された値を用いることができる。
【0042】
ステップS30でYESと判定された場合、制御装置10はステップS40を実行する。ステップS40において制御装置10は、流路切替弁80aを開弁状態に制御し、流路切替弁80bを閉弁状態に制御することで、排気の流動状態を蓄熱材非経由状態にする。この結果、第1箇所5よりも上流側の排気は、蓄熱材71を経由せずに尿素SCR触媒42に流入する。なお、ステップS40において、圧力付与部材72から蓄熱材71への圧力付与は行われない。
【0043】
ステップS40の実行によって、尿素SCR触媒42に中温の排気が流入することで、尿素SCR触媒42を中温にすることができる。これにより、尿素SCR触媒42のNOx浄化率を良好にすることができる。ステップS40の実行後に、制御装置10はリターンを実行し、フローチャートをスタートから再度実行する。
【0044】
ステップS30でNOと判定された場合、制御装置10はステップS50を実行する。ステップS50において制御装置10は、上流側排気温度が低温であるか否かを判定する。具体的には制御装置10は、温度センサ50の検出結果に基づいて取得された上流側排気温度が予め記憶部12に記憶されている温度Ta未満であるか否かを判定することで、上流側排気温度が低温であるか否かを判定する。
【0045】
ステップS50でNOと判定された場合、制御装置10はリターンを実行し、フローチャートをスタートから再度実行する。一方、ステップS50でYESと判定された場合、制御装置10はステップS60を実行する。ステップS60において制御装置10は、流路切替弁80aを閉弁状態に制御し、流路切替弁80bを開弁状態に制御することで、排気の流動状態を蓄熱材経由状態にする。この結果、第1箇所5よりも上流側の排気は蓄熱材71を経由してから尿素SCR触媒42に流入する。また、ステップS60において制御装置10は、圧力付与部材72としての圧電材に電気を流す。これにより、圧電材は蓄熱材71に対して圧力を付与する。
【0046】
ステップS60の実行によって、蓄熱材71を放熱させて、この蓄熱材71の放熱によ
って排気の温度を上昇させ、この温度が上昇した排気を尿素SCR触媒42に流入させることができる。これにより、尿素SCR触媒42の温度が低温になることを抑制できるので、尿素SCR触媒42の温度が低温になることに起因するNOx浄化率の低下を抑制することができる。ステップS60の実行後に、制御装置10はリターンを実行し、フローチャートをスタートから再度実行する。
【0047】
以上説明したように、本実施形態によれば、外部から圧力を受けた場合に放熱する蓄熱材71を用いてNOx除去用触媒(尿素SCR触媒42)の温度が低温や高温になることを抑制して、NOx浄化率の低下を抑制することができる。これにより、NOx除去用触媒のNOx浄化率を良好にすることができる。
【0048】
また本実施形態によれば、蓄熱材71として五酸化三チタンを用いており、前述したように、この蓄熱材71は熱の保持性能が良好である。これにより、蓄熱材71は、放熱を開始するまでの間により多くの熱量を蓄熱することができ、この結果、放熱する際には、より多くの熱量を放熱することができる。したがって、本実施形態によれば、例えばステップS20において蓄熱材71が蓄熱する際に、蓄熱材71によって排気の温度を効果的に低下させることができる。また、例えばステップS60において蓄熱材71が放熱する際には、蓄熱材71によって排気の温度を効果的に上昇させることができる。これにより、尿素SCR触媒42の温度が高温や低温になることを効果的に抑制することができる。
【0049】
以上本発明の好ましい実施形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。