(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6742421
(24)【登録日】2020年7月30日
(45)【発行日】2020年8月19日
(54)【発明の名称】内視鏡的医療画像のセグメンテーションのためのシステムおよび方法
(51)【国際特許分類】
A61B 6/03 20060101AFI20200806BHJP
A61B 6/00 20060101ALI20200806BHJP
A61B 5/055 20060101ALI20200806BHJP
【FI】
A61B6/03 360J
A61B6/03 360T
A61B6/00 350D
A61B6/00 360Z
A61B5/055 390
A61B5/055 380
【請求項の数】15
【全頁数】27
(21)【出願番号】特願2018-538580(P2018-538580)
(86)(22)【出願日】2017年1月18日
(65)【公表番号】特表2019-506208(P2019-506208A)
(43)【公表日】2019年3月7日
(86)【国際出願番号】US2017013962
(87)【国際公開番号】WO2017127439
(87)【国際公開日】20170727
【審査請求日】2020年1月16日
(31)【優先権主張番号】62/281,652
(32)【優先日】2016年1月21日
(33)【優先権主張国】US
(31)【優先権主張番号】15/385,732
(32)【優先日】2016年12月20日
(33)【優先権主張国】US
【早期審査対象出願】
(73)【特許権者】
【識別番号】517150065
【氏名又は名称】エレクタ、インク.
【氏名又は名称原語表記】ELEKTA,INC.
(74)【代理人】
【識別番号】100087479
【弁理士】
【氏名又は名称】北野 好人
(72)【発明者】
【氏名】ヒバード リンドン スタンレー
(72)【発明者】
【氏名】ハン シャオ
【審査官】
亀澤 智博
(56)【参考文献】
【文献】
特開2012−030072(JP,A)
【文献】
米国特許出願公開第2015/0238148(US,A1)
【文献】
米国特許出願公開第2013/0336553(US,A1)
【文献】
特表2013−506478(JP,A)
【文献】
国際公開第2007/029467(WO,A1)
【文献】
米国特許第06549646(US,B1)
【文献】
特開2002−330951(JP,A)
【文献】
特開2015−036123(JP,A)
【文献】
特表2010−504578(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 6/00 − 6/14
A61B 5/055
G06T 1/00
G16H 30/00 −30/40
(57)【特許請求の範囲】
【請求項1】
医用画像をセグメント化するためのシステムであって、
前記システムは、
画像取得装置により取得された複数の医用画像を記憶するデータベースであって、オブジェクトの1つまたはそれ以上の第1の医用画像と、前記オブジェクトの第2の医用画像とを含み、前記1つまたはそれ以上の第1の医用画像のそれぞれが第1の構造ラベルマップに関連付けられているデータベースと、
前記1つまたはそれ以上の第1の医用画像のそれぞれと前記第1の構造ラベルマップとを前記第2の医用画像に登録し、第2の構造ラベルマップを生成するステップと、
前記登録された第2の医用画像と前記対応する第2の構造ラベルマップとを使用して、二次の分類器モデルを訓練するステップと、
前記二次の分類器モデルを一次の分類器モデルとマージし、更新された一次の分類器モデルを生成するステップと、
前記更新された一次の分類器モデルを使用して、前記第2の医用画像に関連する更新された第2の構造ラベルマップを決定するステップと
を実行するように構成されたプロセッサと
を含むことを特徴とするシステム。
【請求項2】
請求項1記載のシステムにおいて、
前記1つまたはそれ以上の第1の医用画像は、前記オブジェクトの前日の画像の組を含み、前記前日の画像は前記第2の医用画像の取得時刻より前に取得された画像である
ことを特徴とするシステム。
【請求項3】
請求項1記載のシステムにおいて、
前記第2の医用画像は、患者の放射線治療セッションの日に撮られた前記オブジェクトの画像である
ことを特徴とするシステム。
【請求項4】
請求項1記載のシステムにおいて、
前記第1の構造ラベルマップは、前記1つまたはそれ以上の第1の医用画像のそれぞれについて識別されたエキスパート構造ラベルを含むものである、
または、
前記プロセッサは、患者の母集団から訓練された画像で訓練された前記一次の分類器モデルを使用して、前記第1の医用画像のそれぞれに対する前記第1の構造ラベルマップを決定するステップを更に実行するように構成されている
ことを特徴とするシステム。
【請求項5】
請求項1記載のシステムにおいて、
前記1つまたはそれ以上の第1の医用画像のそれぞれと前記第1の構造ラベルマップとは、アトラスベースのセグメンテーション方法を使用して前記第2の医用画像に登録されたものである
ことを特徴とするシステム。
【請求項6】
請求項1記載のシステムにおいて、
前記一次の分類器モデルは、ランダムフォレストモデルまたは畳み込みニューラルネットワークモデルである
ことを特徴とするシステム。
【請求項7】
請求項1記載のシステムにおいて、
前記プロセッサは、前記第2の医用画像から少なくとも1つの特徴を抽出するステップ
を更に実行するように構成されており、
前記更新された第2の構造ラベルマップは、前記少なくとも1つの特徴に前記更新された一次の分類器モデルを適用することにより決定される
ことを特徴とするシステム。
【請求項8】
請求項7記載のシステムにおいて、
前記第2の医用画像から抽出された前記少なくとも1つの特徴は、畳み込みニューラルネットワークの1つまたはそれ以上の畳み込み層により生み出された1つまたはそれ以上の特徴マップから抽出されたものである
ことを特徴とするシステム。
【請求項9】
請求項1記載のシステムにおいて、
前記1つまたはそれ以上の第1の医用画像および前記第2の医用画像は、患者の一連の放射線治療セッション中に取得されたものである、
または、
前記プロセッサは、放射線治療の提供の前に前記更新された第2の構造ラベルマップを決定するステップを実行するように構成されている
ことを特徴とするシステム。
【請求項10】
医用画像をセグメント化するためのコンピュータ実装方法であって、
前記方法は、少なくとも1つのプロセッサによって実行され、
オブジェクトの1つまたはそれ以上の第1の医用画像と前記オブジェクトの第2の医用画像とを、画像取得装置によって取得された複数の医用画像を記憶するように構成されたデータベースから受信するステップであって、前記1つまたはそれ以上の第1の医用画像のそれぞれが第1の構造ラベルマップに関連付けられているステップと、
前記1つまたはそれ以上の第1の医用画像のそれぞれと前記第1の構造ラベルマップとを前記第2の医用画像に登録し、第2の構造ラベルマップを生成するステップと、
前記登録された第2の医用画像と前記対応する第2の構造ラベルマップとを使用して、二次の分類器モデルを訓練するステップと、
前記二次の分類器モデルを一次の分類器モデルとマージし、更新された一次の分類器モデルを生成するステップと、
前記更新された一次の分類器モデルを使用して、前記第2の医用画像に関連する更新された第2の構造ラベルマップを決定するステップと
を含む
ことを特徴とする方法。
【請求項11】
請求項10記載の方法において、
前記1つまたはそれ以上の第1の医用画像は、前記オブジェクトの前日の画像の組を含み、前記前日の画像は前記第2の医用画像の取得時刻より前に取得された画像である、
または、
前記第2の医用画像は、患者の放射線治療セッションの日に撮られた前記オブジェクトの画像である
ことを特徴とするシステム。
【請求項12】
請求項10記載の方法において、
前記方法は、患者の母集団から訓練された画像で訓練された前記一次の分類器モデルを使用して、前記第1の医用画像のそれぞれに対する前記第1の構造ラベルマップを決定するステップを更に含む
ことを特徴とする方法。
【請求項13】
請求項10記載の方法において、
前記1つまたはそれ以上の第1の医用画像のそれぞれと前記第1の構造ラベルマップとは、アトラスベースのセグメンテーション方法を使用して前記第2の医用画像に登録されている
ことを特徴とする方法。
【請求項14】
請求項10記載の方法において、
前記方法は、前記第2の医用画像から少なくとも1つの特徴を抽出するステップを更に含み、
前記更新された第2の構造ラベルマップは、前記少なくとも1つの特徴に前記更新された一次の分類器モデルを適用することにより決定される
ことを特徴とする方法。
【請求項15】
プロセッサにより実行されたときに、前記プロセッサに、医用画像をセグメント化するための方法を実行させる命令を含む非一時的コンピュータ読取可能記憶媒体であって、
前記方法は、
オブジェクトの1つまたはそれ以上の第1の医用画像と、前記オブジェクトの第2の医用画像とを、画像取得装置によって取得された複数の医用画像を記憶するように構成されたデータベースから受信するステップであって、前記1つまたはそれ以上の第1の医用画像のそれぞれは、第1の構造ラベルマップに関連付けられているステップと、
前記1つまたはそれ以上の第1の医用画像のそれぞれと前記第1の構造ラベルマップとを前記第2の医用画像に登録し、第2の構造ラベルマップを生成するステップと、
前記登録された第2の医用画像と前記対応する第2の構造ラベルマップとを使用して、二次の分類器モデルを訓練するステップと、
前記二次の分類器モデルを一次の分類器モデルとマージし、更新された一次の分類器モデルを生成するステップと、
前記更新された一次の分類器モデルを使用して、前記第2の医用画像に関連する更新された第2の構造ラベルマップを決定するステップと
を含む
ことを特徴とする非一時的コンピュータ読取可能記憶媒体。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願との相互参照)
[001]
本出願は、2016年1月25日に提出された米国仮出願第62/281,652号の優先権の利益を主張し、その全内容は参照により本明細書に組み込まれる。
【0002】
(技術分野)
[002]
本開示は、一般に、画像セグメンテーションに関する。より詳しくは、本開示は、患者の次の画像のセグメンテーションを助けるために、患者の以前の画像情報を使用する、正確な医用画像セグメンテーションのためのシステムおよび方法に関する。
【背景技術】
【0003】
[003]
画像セグメンテーション技術は、医用画像をセグメント化し、画像内の解剖学的構造間の輪郭を決定するために広く使用されている。例えば、放射線療法では、輪郭形成時間を短縮し、様々な病院にわたって輪郭の精度と一貫性を改善するために、臓器の自動セグメンテーションが通常行われる。しかしながら、画像の自動セグメンテーションは、ノイズ、限られた画像コントラストおよび/または低画質のために、いまだ非常に困難な作業である。例えば、癌患者を治療するために使用され得るいくつかのコンピュータ断層撮影(CT)画像またはコーンビームコンピュータ断層撮影(CBCT)画像などの、より低い画質を有する医用画像は、ほとんどの軟部組織構造に対してより低いコントラストおよび小さなテクスチャを有することが知られている。したがって、主として画像のコントラストに基づく従来の画像セグメンテーション方法は、背景と、関心のある解剖学的構造(例えば臓器または腫瘍)との間、または医用画像内の異なる解剖学的構造の間の正確な輪郭を見つけることができないことが多い。
【0004】
[004]
医用画像セグメンテーションの主な2つの方法には、アトラスベースの自動セグメンテーションと統計学習セグメンテーションとがある。アトラスベースの自動セグメンテーション(ABAS)は、解剖学的標識画像を非標識画像に登録し、標識が画像(例えば、前立腺、膀胱、直腸など)の解剖学的構造を識別するラベルを転送する。統計学的学習セグメンテーションは、画像内の解剖学的構造のボクセル特性に従って画像ボクセルを分類し、ボクセル特性は、例えば、強度、テクスチャ特徴などを含む。
【0005】
[005]
図1は、典型的な前立腺癌患者からの例示的な3次元(3D)CT画像を示す。
図1(A)は、患者の膀胱、前立腺および直腸を含む3Dビューの患者の骨盤領域を示す。
図1(B)、(C)および(D)は、この骨盤領域の3DCT画像からの軸方向、矢状および冠状の図である。
図1(B)、(C)および(D)に示すように、患者の前立腺境界の大部分は見えない。すなわち、前立腺を他の解剖学的構造から容易に区別することができず、または前立腺の輪郭を決定することができない。これと比較して、
図1(E)、(F)および(G)は、同じ3DCT画像上で予測される前立腺輪郭を示す。
図1に示すように、画像に提示されるコントラストおよびテクスチャのみに基づく従来の画像セグメンテーション方法は、この例示的な3DCT画像をセグメント化するために使用された場合に失敗する可能性が高い。
【0006】
[006]
近年、機械学習技術の発展により、低画質画像の画像セグメンテーションが改善されている。例えば、教師付き学習アルゴリズムは、医用画像の各ピクセルまたはボクセルが表す解剖学的構造を予測するようにコンピュータを「訓練」することができる。そのような予測は、通常、ピクセルまたはボクセルの特徴を入力として使用する。したがって、セグメンテーションのパフォーマンスは、使用可能な特徴のタイプに大きく依存する。今日まで、ほとんどの学習ベースの画像セグメンテーション方法は、主に画像強度および画像テクスチャなどの局所画像特徴に基づいている。結果として、これらのセグメンテーション方法は、
図1に示す3DCT画像のような低品質画像に対して依然として最適ではない。
【0007】
[007]
CT画像からの解剖学的構造の正確なセグメンテーションは、依然として困難な問題である。同じ患者のセグメント化された連続画像は、適応計画のレビュー/再計画および線量蓄積において特別な有用性を有する。連続画像は、集団のものとは異なる確率分布を必ずサンプリングし、したがって、新しい連続画像のセグメンテーションを支援する情報を提供すべきである。
【0008】
[008]
改善されたセグメンテーション精度を得るために、アトラスと統計的方法を組み合わせる方法もある。例えば、1つの方法は、そのオンライン学習と、位置適応型画像コンテキストへの患者固有の分類を基づいている。位置適応分類器は、静的画像出現特徴および画像コンテキスト特徴に関しても訓練される。このような方法は、放射線治療が進行するにつれて患者の前立腺セグメンテーションを精緻化する目的を持って連続した前立腺画像に用いられてきた。しかしながら、データは、ボクセルパッチ対の空間分布を特徴そのものとして用い、さらにランダムフォレスト(RF)法を用いて、3次元データオブジェクトとして扱う必要がある。
【0009】
[009]
代替的に、別の方法は、頸部−子宮の連続CT画像のアトラスベースのセグメンテーションの研究において、膀胱容積メトリックとランドマーク位置とを従来の変形可能な位置合わせと組み合わせることを提案する。しかしながら、この方法は、高価であり、ランドマークの使用は人間の介入を必要とするので、エラーを起こしやすい。
【0010】
[010]
さらに、別の方法は、脳組織セグメンテーション(半監督学習モードで)のためのランダムフォレストを使用し、決定フォレストが解剖学的標識された手術前画像および同じ患者の非標識術後画像について訓練されるものである。しかし、このアプローチは登録ステップがないので、したがってアトラスベースの登録で有用な情報を活用することができない。
【0011】
[011]
さらに、ランダムフォレストのセグメンテーションと画像の登録が組み合わされて画像セグメンテーションを実行する。これにより、患者間のセグメンテーションが可能になり、「アトラスフォレスト」のメカニズムを通じて、複数の患者の画像が共通の座標フレームに登録され、フォレストモデルに対して1つの画像が登録される。しかしながら、この方法は、得られるモデルを提供するために、訓練データの異なる構成を必要とする。
【0012】
[012]
さらに、変形可能レジストレーションとランダムフォレストとを組み合わせた方法を用いて、歯のコーンビームCT画像から顔面および歯の骨をセグメンテーションする。患者画像は、セグメンテーションの初期予測または推定のためにアトラスに登録される。これには、シーケンスの各段階で訓練される特徴の一部としてコンテキスト特徴を使用する一連のランダムフォレスト分類器が続く。しかし、この方法には、同じ患者の以前の画像に基づいてランダムフォレストモデルを形成するために、変形可能な位置合わせおよびランダムフォレスト分類器を使用する必要がある。
【0013】
[013]
開示された方法およびシステムは、放射線治療または関連分野における医用画像のセグメンテーション性能を改善するために、アトラスベースのセグメンテーションおよび統計学的学習を組み合わせ、患者内画像および構造情報と母集団を組み合わせ、患者セグメンテーションモデルの便利な更新を可能にすることによって、上述したひとつ又はそれ以上の問題を解決するように設計されている。
【発明の概要】
【0014】
[014]
本開示の特定の実施形態は、医用画像をセグメント化するためのシステムに関する。システムは、画像取得装置によって取得された複数の医用画像を格納するように構成されたデータベースを含むことができる。複数の医用画像は、オブジェクトの少なくとも1つの第1の医用画像と、オブジェクトの第2の医用画像とを含み、各第1の医用画像は、第1の構造ラベルマップに関連付けられる。システムは、少なくとも1つの第1の医用画像を第2の医用画像に登録し、登録された第1の医用画像および対応する第1の構造ラベルマップを使用して分類器モデルを決定し、前記分類器モデルを使用して前記第2の医用画像に関連付けられる、第2の構造ラベルマップを決定するプロセッサをさらに含むことができる。
【0015】
[015]
本開示の特定の実施形態は、医用画像をセグメント化するためのコンピュータ実装方法に関する。この方法は、少なくとも1つのプロセッサによって実行される動作を含むことができる。この動作は、画像取得装置によって取得された複数の医用画像を格納するように構成されたデータベースから、第1の構造ラベルマップに関連する、対象の少なくとも1つの第1の医用画像および対象の第2の医用画像を受信することを含むことができる。この動作は、少なくとも1つの第1の医用画像を第2の医用画像に登録すること、登録された第1の医用画像および対応する第1の構造ラベルマップを使用して分類器モデルを決定すること、分類器モデルを使用して第2の医用画像に関連する第2の構造ラベルマップを決定することを含むことができる。
【0016】
[016]
本開示のいくつかの実施形態は、少なくとも1つのプロセッサによって実行可能なときに、少なくとも1つのプロセッサに医用画像をセグメント化する方法を実行させる命令を含む、非一時的なコンピュータ可読媒体に関する。この方法は、画像取得装置によって取得された複数の医用画像を格納するように構成されたデータベースから、第1の構造ラベルマップに関連する、対象の少なくとも1つの第1の医用画像および対象の第2の医用画像を受信することを含むことができる。この方法は、少なくとも1つの第1の医用画像を第2の医用画像に登録すること、登録された第1の医用画像および対応する第1の構造ラベルマップを使用して分類器モデルを決定すること、分類器モデルを使用して第2の医用画像に関連する第2の構造ラベルマップを決定することを含むことができる。
【0017】
[017]
本開示のさらなる特徴および利点は、以下の説明に部分的に記載され、部分的には説明から明らかになり、または本開示の実施によって習得することができる。本開示の特徴および利点は、添付の特許請求の範囲における要素および組み合わせによって実現され、達成される。
【0018】
[018]
前述の一般的な説明および以下の詳細な説明は例示的で説明的なものに過ぎず、特許請求の範囲に記載された本発明を限定するものではないことを理解されたい。
【図面の簡単な説明】
【0019】
[019]
添付の図面は、本明細書の一部を構成し、いくつかの実施形態を説明と共に示し、開示された原理を説明する役割を果たす。
【0020】
[020]
【
図1】
図1は、典型的な前立腺癌患者からの例示的な三次元CT画像を示す図である。
【0021】
[021]
【
図2A】
図2Aは、本開示のいくつかの実施形態による例示的な放射線治療システム100を示すブロック図である。
【0022】
[022]
【
図2B】
図2Bは、本開示のいくつかの実施形態による例示的な画像誘導放射線治療装置を示す図である。
【0023】
[023]
【
図3】
図3は、本開示のいくつかの実施形態による例示的な画像セグメンテーションシステムを示す図である。
【0024】
[024]
【
図4】
図4は、本開示のいくつかの実施形態による例示的な医用画像処理装置を示す図である。
【0025】
[025]
【
図5】
図5は、本開示のいくつかの実施形態による例示的な画像セグメンテーションプロセスを示すフローチャートである。
【0026】
[026]
【
図6】
図6は、本開示のいくつかの実施形態による、例示的な訓練方法を示すフローチャートである。
【0027】
[027]
開示された原理の実施例および特徴が本明細書に記載されているが、開示された実施形態の精神および範囲から逸脱することなく、修正、適応および他の実施が可能である。また、「備える(comprising)」、「有する(having)」、「含む(containing)」、および「含む(including)」という言葉および他の同様の形態は、意味が等価であるように意図され、これらのいずれか1つに続く項目単語は、項目または項目の網羅的なリストを意味するものではなく、また、リストされた項目または項目のみに限定されることを意味するものではない。単数形「a」、「an」および「the」は、文脈上他に明確に指示されていない限り、複数の参照を含むことが意図される。
【0028】
[028]
本開示によるシステムおよび方法は、同じ対象の以前の画像に基づいて導出されたマッピングされたアトラスを使用して訓練された学習アルゴリズムを使用して、対象の医用画像をセグメント化することに関する。具体的には、本開示の実施形態は、前日の画像およびその構造について学習された患者固有のRFモデルを組み込んだ、連続CT画像のアトラスベースの自動セグメンテーション(ABAS)およびランダムフォレスト(RF)セグメンテーションの様々な組合せを提供する。
【0029】
[029]
本明細書で使用する「学習アルゴリズム」は、既存の情報または知識に基づいてモデルまたはパターンを学習することができる任意のアルゴリズムを指す。学習されたモデルまたはパターンは、新しい情報または知識の入力を使用して出力を予測または推定するために使用することができる。例えば、学習アルゴリズムは、機械学習アルゴリズムまたは任意の他の適切な学習アルゴリズムであってもよい。いくつかの実施形態では、SVM(Support Vector Machine)、Adaboost/Logitboost、ランダムフォレスト、およびニューラルネットワーク(例えば、畳み込みニューラルネットワーク)などの監視学習アルゴリズムを使用することができる。いくつかの他の実施形態では、半教師付き学習アルゴリズムを使用することもできる。
【0030】
[030]
教師付き学習は、学習データのセットを与えられた予測モデルを推定する機械学習の枝である。訓練データの各個々のサンプルは、データベクトル(一連の測定値など)および所望の出力値を含むペアである。監視学習アルゴリズムは、訓練データを分析し、予測関数を生成する。予測関数は、異なるグループを識別するラベルのリストなど、出力が離散的である場合に、分類器または分類器モデルと呼ばれます。いったん訓練によって得られた予測関数は、有効な入力に対する正しい出力値を予測することができる。
【0031】
[031]
開示された実施形態によれば、画像セグメンテーションは、医療画像の各画像点を解剖学的構造の1つに分類する学習ベースの分類関数として定式化することができる。本明細書で使用される「画像点」は、基礎をなすオブジェクト内の物理的な点に対応するデジタル画像内の画像要素を指す。例えば、画像点は、2D画像内のピクセルまたは3D画像内のボクセルである。
【0032】
[032]
開示された実施形態によれば、画像セグメンテーションは、画像点ではなく画像ブロックを分類することもできる。本明細書で使用される場合、「画像ブロック」は、一緒に分類されるべき画像点のグループである。例えば、画像ブロックは、2D画像内のスーパーピクセル、または3D画像内のスーパーボクセルであってもよい。画像ブロック内の画像点が同じ解剖学的構造に属することが分かっている場合、画像ブロックに基づいて分類する方がより効率的かつ正確である可能性がある。したがって、用語「画像点」が本開示を通して使用されるときはいつでも、それは、上記で定義されるような基本「画像点」および「画像ブロック」の両方をカバーすることを意図する。
【0033】
[033]
開示されたシステムおよび方法は、画像の推定構造ラベルマップを提供する。ラベルマップは、対応する画像点を特定の関心構造内にあるものとして識別する構造ラベルのマップを参照する。あるいは、この開示によれば、ラベルマップは、構造に属する画像点の確率をそれぞれ表す構造ラベルを含む確率マップであってもよい。例えば、複数の構造を含む画像を分割する場合、画像点の構造ラベルは、考慮中の構造のそれぞれに画像点がどの程度含まれる可能性があるかを示す確率値のセットを提供することができる。
【0034】
[034]
開示された実施形態によれば、分類器は訓練画像のセットを使用して訓練される。本明細書で使用される「訓練画像」は、画像点が既に分類されラベル付けされている画像である。例えば、訓練画像はアトラスであってもよい。本明細書において一貫して使用されるように、「アトラス」は、画像点および画像点がどの構造に属しているかを示す対応する構造描写(注釈)を含む。アトラス内の画像(アトラス画像とも呼ばれる)は、より早い時間に撮影された対象患者の以前の画像とすることができる。構造の描写は、例えば、構造ラベルマップ、構造体表面、または構造輪郭として表すことができる。以下の説明では、構造図の例としてラベルマップを使用し、構造体サーフェスや等高線のシナリオにも同様に適用される。
【0035】
[035]
開示された実施形態によれば、訓練プロセスは、アトラス画像から抽出された特徴および対応する構造描写を使用して分類器を訓練する。以下でより詳細に説明するプロセスを使用して適切に訓練されると、そのようなアルゴリズムを使用して新しい画像を分割することができる。
【0036】
[036]
開示された実施形態によれば、訓練プロセスで使用されるアトラスは、セグメント化される新しい画像と同じ対象の先行する画像から導き出されてもよい。このような訓練画像とセグメント化される新しい画像との間の類似性は、セグメント化の精度および効率を改善することができる。いくつかの実施形態では、分類器を訓練するために使用されるアトラスは、事前に訓練された分類器を使用して以前の画像をセグメント化することによって得ることができる。いくつかの実施形態では、使用されるアトラスは、現在の画像に登録されてもよい。
【0037】
[037]
開示された実施形態によれば、放射線療法の過程で得られた患者内画像が使用される。患者内画像は、典型的には、所定の治療に対する患者の応答をチェックするために画像間の1日以上で取得される。患者の先行する画像情報を用いて同じ患者の解剖学的構造の連続画像の解剖学的構造を描写することは、後続画像のセグメント化を助ける。適応治療計画の評価/再計画と線量蓄積のためには、正確な連続画像セグメンテーションが前提条件である。
【0038】
[038]
開示された実施形態によれば、連続CT画像のアトラスベースの自動セグメンテーション(ABAS)および統計学的学習(SL:Statistical Learning)セグメンテーションの組み合わせは、適応計画中および用量蓄積の決定中に同じ患者のセグメント化された連続画像を改善し得る。この組み合わせはまた、予測精度を高め、したがって画像セグメンテーションの品質を改善することができる。さらに、統計モデルを形成するために後日の画像に変形可能に登録された先行日の画像および構造の使用は、未登録画像に基づくモデルよりも正確なセグメント化を提供することができる。
【0039】
[039]
アトラスベースのセグメンテーションは、そのボクセル(アトラス)に付けられた解剖学的ラベルがターゲット画像に登録された後、対応するターゲットボクセルにアトラスラベルを割り当てる。統計的学習は、ラベルが特徴空間の領域に関連付けられている分類器プログラムを使用して、ターゲットボクセルラベルを割り当てる。特徴は、ボクセル強度、外観(局所的変動測定)、および画像の構造的特性を含む。ラベル−特徴の関連付けは、分類された画像について分類プログラムを訓練することによって学習される。
【0040】
[040]
一実施形態では、使用される統計的学習方法は、ランダムフォレスト(RF)方法である。ランダムフォレストとは、決定木のセットである。訓練データ(ボクセルパッチのボクセル平均強度、およびインデックスボクセルの周りにランダムに配置されたパッチのペアなど)のランダムサンプル、およびデータに埋め込まれた変数のランダムな選択から始めて、このメソッドは、サンプルをラベルカテゴリに分類し、データサンプルを分割し、次にスプリットデータを、最良の分割が見つかるノードの次のペアまで追跡する。一実施形態では、この方法は、最大ツリー深度で終了するまで、または最小サンプルサイズに達するまで再帰的に実行される。ターミナルツリーノード(例えば、リーフ)は、ラベル割り当てを提供する。このように訓練されたツリーは、新しい特徴データがツリーのノードを介して処理されるときに分類を実行する。複数のツリーは、分類器の識別力を高める。ランダムフォレスト分類器はオーバーフィッティング(過学習、過剰適合)に抵抗し、効率的なイメージセグメンテーションに使用できる。前日の画像およびその構造について学んだ患者固有のRFモデルを組み込んだセグメンテーション手法は、集団モデルを単独で使用する方法よりも正確なセグメンテーションを提供する。
【0041】
[041]
アトラスベースの自動セグメンテーション(ABAS)とランダムフォレスト(RF)セグメンテーションとの組み合わせは、本開示による例示的な組み合わせとして使用されるが、他の統計的学習アルゴリズムおよびアトラスベースの自動セグメンテーション(ABAS)との様々な組み合わせが考慮される。さらに、X線、CT、CBCT、螺旋CT、磁気共鳴イメージング(MRI)、超音波(US)、ポジトロン断層法(PET)単一フォトン放射断層撮影装置(SPECT)、および光学イメージングを含むが、これらに限定されない。さらに、開示された画像セグメンテーションシステムおよび方法は、2D画像および3D画像の両方をセグメント化するように適合させることができる。
【0042】
[042]
以下、添付図面を参照して例示的な実施形態を説明する。便宜上、同じ参照番号は、図面全体にわたって同じまたは同様の部分を指すために使用される。
【0043】
[043]
図2Aは、本開示のいくつかの実施形態による例示的な放射線治療システム100を示すブロック図である。放射線療法システム100は、IGRTシステムであってもよい。
図2Aに示すように、放射線治療システム100は、制御コンソール110と、データベース120と、放射線治療装置130と、画像取得装置140とを含むことができる。いくつかの実施形態では、
図2Aの破線のボックス150によって示されるように、放射線治療装置130および画像取得装置140は、単一の画像ガイド放射線治療装置150に統合されてもよい。いくつかの実施形態では、放射線治療装置130および画像取得装置140は、別々の装置であってもよい。いくつかの実施形態では、
図2Aの放射線治療装置130と画像取得装置140との間に点線で示すように、放射線治療装置130および画像取得装置140を互いに物理的にまたは通信可能に接続することができる。
【0044】
[044]
制御コンソール110は、放射線治療装置130および画像取得装置140を制御し、および/または治療計画、処置実行、画像取得、画像処理、動作追跡、動作管理、または他のタスクなどの機能または動作を実行するためのハードウェアおよびソフトウェア構成要素を含むことができる。放射線療法のプロセスに関与している。制御コンソール110のハードウェアコンポーネントは、1つ以上のコンピュータ(例えば、汎用コンピュータ、ワークステーション、サーバ、端末、ポータブル/モバイルデバイスなど);プロセッサデバイス(例えば、中央演算処理装置(CPU)、グラフィックス処理ユニット、マイクロプロセッサ、デジタルシグナルプロセッサ(DSP)、フィールドプログラマブルゲートアレイ(FPGA)、特殊目的または特別設計されたプロセッサなど);メモリ/記憶装置(例えば、読出専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、フラッシュメモリ、ハードドライブ、光ディスク、ソリッドステートドライブ(SSD)など);入力デバイス(例えば、キーボード、マウス、タッチスクリーン、マイク、ボタン、ノブ、トラックボール、レバー、ハンドル、ジョイスティックなど);出力デバイス(例えば、ディスプレイ、プリンタ、スピーカ、振動装置など)または他の適合したハードウェアを含むことができる。制御コンソール110のソフトウェアコンポーネントは、オペレーションシステムソフトウェア、アプリケーションソフトウェアなどを含むことができる。例えば、
図2Aに示すように、制御コンソール110は、制御コンソール110のメモリ/記憶装置に格納される治療計画/配信ソフトウェア115を含むことができる。ソフトウェア115は、以下に詳細に説明するプロセスを実行するためのコンピュータ可読および実行可能コードまたは命令を含むことができる。例えば、制御コンソール110のプロセッサ装置は、コードまたは命令にアクセスして実行するためにソフトウェア115を記憶するメモリ/記憶装置に通信可能に接続され得る。コードまたは命令の実行は、開示された実施形態と一致する1つまたは複数の機能を達成するために、プロセッサ装置に動作を実行させることができる。
【0045】
[045]
制御コンソール110は、データベース120に通信可能に接続され、データにアクセスすることができる。いくつかの実施形態では、データベース120は、制御コンソール110の近傍にある1つまたは複数のハードドライブ、光ディスク、および/またはサーバなどのローカルハードウェアデバイスを使用するように実装することができる。いくつかの実施形態では、データベース120は、制御コンソール110に関して遠隔に配置されたデータセンターまたはサーバに実装されてもよい。制御コンソール110は、有線または無線通信を介してデータベース120に格納されたデータにアクセスすることができる。
【0046】
[046]
データベース120は、患者データ122を含むことができる。患者データは、(1)患者の解剖学的領域、臓器、または関心領域のセグメンテーションデータ(例えば、MRI、CT、X線、PET、SPECTなど)に関連する画像データ;(2)機能的器官モデリングデータ(例えば、直列対並列器官、および適切な用量応答モデル);(3)放射線量データ(例えば、線量−体積ヒストグラム(DVH)情報を含むことができる);または(4)患者または治療経過に関する他の臨床情報のような情報を含むことができる。
【0047】
[047]
データベース120は、マシンデータ124を含むことができる。マシンデータ124は、放射線治療装置130、画像取得装置140、または放射線ビームサイズ、アーク配置、オン/オフ時間期間、放射線治療計画データ、マルチリーフコリメータ(MLC)構成、MRIパルスシーケンスなどのような放射線療法に関連する他の機械に関連する情報を含むことができる。
【0048】
[048]
画像取得装置140は、患者の医用画像を提供することができる。例えば、画像取得装置140は、MRI画像(例えば、2D(2次元)MRI、3D(3次元)MRI、2D(2次元)ングMRI、4D(4次元)容積MRI、4D(4次元)cineMRI);コンピュータ断層撮影(CT)画像;コーンビームCT画像;陽電子放射断層撮影(PET)画像;機能的MRI画像(例えば、fMRI、DCE−MRI、拡散MRI);X線画像;透視画像;超音波画像;放射線治療ポータル画像;シングルフォトエミッションコンピュータ断層撮影(SPECT)画像;等のひとつまたはそれ以上を提供することができる。したがって、画像取得装置140は、MRI画像化装置、CT画像化装置、PET画像化装置、超音波画像化装置、蛍光透視装置、SPECT画像化装置、または患者の医用画像を取得するための他の医療装置を含むことができる。
【0049】
[049]
放射線治療装置130は、Leksellガンマナイフ、線形加速器またはLINAC、または、制御可能な方法で患者の解剖学的関心領域に放射線を送達することができる他の適切な装置を含むことができる。
【0050】
[050]
図2Bは、開示された実施形態と一致する例示的な画像ガイド放射線治療システム200を示す。いくつかの実施形態によれば、開示された画像セグメンテーションシステムは、
図2Aを参照して説明したような放射線療法システムの一部であってもよい。図示されているように、システム200は、カウチ210、画像取得装置220、および放射線送達装置230を含むことができる。システム200は、放射線治療計画に従って患者に放射線治療を行う。
【0051】
[051]
カウチ210は、治療セッション中に患者(図示せず)を支持することができる。いくつかの実施態様では、カウチ210は、カウチ210上に置かれた患者をシステム200内および/または外に動かすことができるように、水平移動軸(「I」と表示されている)に沿って移動することができる。また、カウチ210は、並進軸を横切る中心垂直回転軸の周りを回転してもよい。このような移動または回転を可能にするために、カウチ210は、寝台が様々な方向に移動し、様々な軸に沿って回転することを可能にするモータ(図示せず)を有することができる。コントローラ(図示せず)は、治療計画に従って患者を適切に配置するために、これらの動きまたは回転を制御することができる。
【0052】
[052]
いくつかの実施形態では、画像取得装置220は、治療セッションの前、最中および/または後に患者の2D(2次元)または3D(3次元)MRI画像を取得するために使用されるMRI装置を含むことができる。画像取得装置220は、磁気共鳴撮像のための主磁場を生成するための磁石221を含むことができる。磁石221の動作によって生成される磁力線は、中心平行移動軸Iに実質的に平行であってもよい。磁石221は、並進軸Iに平行に延びる軸を有する1つ以上のコイルを含むことができる。いくつかの実施形態では、磁石221の1つ以上のコイルは、磁石221の中央窓223にコイルがないように離間されていてもよい。他の実施形態では、磁石221のコイルは、放射線治療装置230によって生成された波長の放射線に対して実質的に透明であるように、十分に薄いか、または密度が低減されてもよい。画像取得装置220は、また磁石221の外側の磁場を相殺または低減するために、磁石221の外側にほぼ等しい大きさおよび反対極性の磁場を生成することができる1つまたは複数の遮蔽コイルを含むことができる。以下に説明するように、放射線治療装置230の放射線源231は、磁界が打ち消される領域、少なくとも第1の順番に減少される領域に配置されてもよい。
【0053】
[053]
画像取得装置220は、また主磁場に重畳される勾配磁場を生成することができる2つの勾配コイル225,226を含むことができる。コイル225,226は、その位置を決定することができるように陽子の空間符号化を可能にする合成磁界に勾配を生成することができる。勾配コイル225,226は、磁石221と共通の中心軸の周りに配置され、その中心軸に沿って変位することができる。変位により、コイル225とコイル226との間にギャップすなわち窓が形成されることがある。磁石221がコイル間の中央ウィンドウ223を含む実施形態では、2つのウィンドウが互いに位置合わせされる。いくつかの実施形態では、画像取得装置220は、X線、CT、CBCT、螺旋CT、PET、SPECT、光学断層撮影、蛍光画像化、超音波イメージング、または放射線治療のポータルイメージングデバイスなどのMRI以外のイメージング装置であってもよい。
【0054】
[054]
放射線治療装置230は、X線源または線形加速器などの放射線源231と、マルチリーフコリメータ(MLC)233とを含むことができる。放射線治療装置230は、シャーシ235に取り付けられてもよい。カウチ210が治療領域に挿入されると、1つまたは複数のシャーシモータ(図示せず)が、カウチ210の周りでシャーシ235を回転させることができる。一実施形態では、カウチ210が治療領域に挿入されると、シャーシ235はカウチ210の周りで連続的に回転可能である。シャーシ235は、好ましくは、放射線源231に対向して配置され、放射線源231と検出器との間にシャーシ335の回転軸が配置された、取り付けられた放射線検出器(図示せず)を有してもよい。さらに、放射線治療装置230は、例えば、カウチ210、画像取得装置220、および放射線治療装置230のうちの1つまたは複数を制御するために使用される制御回路(図示せず)を含むことができる。放射線治療装置230の制御回路は、システム200内に一体化されていてもよいし、システム200から離れていてもよい。
【0055】
[055]
放射線療法の治療セッションの間に、患者はソファー210上に配置される。次いで、システム200は、磁気コイル221,225,226、およびシャーシ235によって画定された治療領域に寝台310を移動させる。次に、制御コンソール240は、放射線治療計画に従ってコイル225と226の間の窓を通して患者に放射線を送達するように、放射線源231、MLC233、およびシャーシモータを制御する。
【0056】
[056]
図3は、本開示のいくつかの実施形態による医用画像をセグメント化するための例示的な画像セグメンテーションシステム300を示す。画像セグメンテーションシステム300は、医用画像データベース301、分類器訓練ユニット302、構造分類ユニット303、およびネットワーク305を含むことができる。いくつかの実施形態では、画像セグメンテーションシステム300は、
図3に示されたコンポーネントをおおよそ含むことができる。例えば、解剖学的分類器が予め訓練されて提供される場合、画像分類システム300は、構造分類ユニット303、医用画像データベース301のみを含み、任意にネットワーク305を含むことができる。
【0057】
[057]
いくつかの実施形態では、画像セグメンテーションシステム300の様々なコンポーネントは、互いに遠隔に位置し、ネットワーク305を介して接続されてもよい。いくつかの代替の実施形態では、画像セグメンテーションシステム300の特定の構成要素は、同一のサイトまたは1つの装置の内部に配置されてもよい。例えば、医用画像データベース301は、分類器訓練ユニット302を備えた現場に配置されてもよく、または分類器訓練ユニット302の一部であってもよい。別の例として、分類器訓練ユニット302および構造分類ユニット303は、同じコンピュータまたは処理装置の内部にあってもよい。
【0058】
[058]
画像セグメンテーションシステム300は、医用画像データベース301に記憶された連続的な患者内CT画像をセグメント化するために使用されてもよい。本開示によれば、「連続画像」は、患者の一連の放射線治療セッション中に取得された画像であってもよい。連続放射線治療セッションは、患者の放射線治療計画に従って、設定された頻度(例えば、毎日、毎週など)または離散的な時点で実行されてもよい。シリアル画像は、現在の画像および以前の画像を含むことができる。いくつかの実施形態では、「現在の画像」は、患者の今日の医療画像、例えば、現在の日に発生した患者の治療セッション中に撮影された画像であってもよい。
図3に示すように、分類器学習ユニット302は、医用画像データベース301と通信して、同じ患者の1つ以上の「先行画像」を受信することができる。「先行画像」は、同じ患者の治療セッション中に撮影されたが、前日に発生した画像であってもよい。医用画像データベース301に格納された先行画像は、以前の放射線治療処理セッションの画像を含む医用画像データベースから取得することができる。
【0059】
[059]
いくつかの実施形態では、先行画像は予めセグメント化することができる。例えば、以前の画像は、画像セグメンテーションシステム300によって自動的に、またはユーザ313によって手動でセグメント化することができる。ユーザ313は、先行画像に関連するエキスパート構造ラベルマップを提供するエキスパート、例えば、医学的画像における解剖学的構造に精通した放射線科医または別の医師であってもよい。その場合、従来の画像およびそれらの対応する構造ラベルマップは、構造分類器を訓練するために分類器訓練ユニット302によって容易に使用できるアトラスになる。
【0060】
[060]
前の画像が予めセグメント化されていない場合、セグメント化のために構造分類ユニット303に送られてもよい。いくつかの実施形態では、構造分類ユニット303は、最新の訓練された分類器を使用して、以前の画像をセグメント化してもよいし、セグメント化のために以前に訓練された分類器を併合してもよい。構造分類ユニット303は、各先行画像について構造ラベルマップを提供することができる。次に、構造分類ユニット303は、訓練画像として分類器訓練ユニット302に、それらの対応する構造ラベルマップと共に先行画像からなるアトラスを提供することができる。
【0061】
[061]
分類器訓練ユニット302は、医用画像データベース301から受け取った訓練画像を使用して、学習アルゴリズムを使用して構造分類器を生成することができる。
図3に示すように、分類器訓練ユニット302は、アトラス登録モジュール321、特徴抽出モジュール322、および訓練モジュール323を含むことができる。分類器訓練ユニット302は、医療画像データベース301、ネットワーク305、および/またはユーザ312と通信するための入力および出力インターフェース(図示せず)をさらに含むことができる。いくつかの実施形態によれば、分類器訓練ユニット302は、解剖学的分類器訓練プロセスを実行するソフトウェアによって特別にプログラムされたハードウェア(例えば、
図4に開示されるようなもの)で実施されてもよい。
【0062】
[062]
アトラス登録モジュール321は、現在の画像に以前の画像を登録することができる。イメージ登録は、異なるデータセットを1つの座標系に変換するプロセスです。典型的な画像レジストレーションアルゴリズムは、強度ベースまたは特徴ベース、またはその2つの組み合わせである。特に、特徴ベースの方法は、点、線、および輪郭などの画像特徴間の対応関係を見つける。いくつかの実施形態では、登録プロセスは、アトラス画像の画像点を現在の画像の画像点にマッピングすることを含むことができる。いくつかの代替の実施形態では、登録プロセスは、アトラス画像および現在の画像の両方を基準画像にマッピングすることを含むことができる。これらの実施形態では、基準画像は、例えば、平均アトラス画像または共通テンプレート画像とすることができる。したがって、アトラス画像は、現在の画像に「間接的に」マッピングされる。線形レジストレーション、オブジェクト駆動「ポリスムース」非線形レジストレーション、または形状に制約のある高密度変形可能レジストレーションのいずれかの1つまたは組み合わせなど、様々な画像レジストレーション方法を使用することができる。画像登録を実行することにより、各アトラスについてアトラス画像から基準画像への画像変換が計算される。
【0063】
[063]
アトラス登録モジュール321は、アトラスの対応する画像変換を使用して、各アトラスの描写(例えば、構造ラベル)を基準画像の空間にさらにマップすることができる。マッピングされた構造ラベルは、対応するアトラスからの現在のイメージの独立した分類データ、すなわち独立したセグメンテーション結果を表す。
【0064】
[064]
マップされたアトラス画像および対応するマップされた構造ラベルは、「登録されたアトラス」とも呼ばれる、マップされたアトラスを構成する。いくつかの実施形態では、分類器訓練ユニット302は、マッピングされたアトラスを使用して、現在の画像をセグメント化するための構造分類器を訓練することができる。あるいは、分類器訓練ユニット302は、訓練のためのエキスパート構造ラベルマップと共に、マッピングされたアトラス画像を使用してもよい。
【0065】
[065]
特徴抽出モジュール322は、選択された各画像点について、画像強度、画像テクスチャ、画像パッチ、および輝度プロファイルの曲率などの1つまたは複数の特徴を決定および導出することができる。この特徴抽出プロセスは、訓練画像内のすべての画像点が選択されて処理されるまで、訓練画像内の選択された画像点のセットに対して繰り返され得る。
【0066】
[066]
訓練モジュール323は、分類器を訓練するために、選択された画像点を訓練データとして使用することができる。いくつかの実施形態では、訓練は、教師付き機械学習アルゴリズムなどの学習アルゴリズムに基づいてもよい。例えば、SVM(SupportVectorMachine)、Adaboost/Logitboost、ランダムフォレスト、ニューラルネットワークなどの学習アルゴリズムを使用することができる。分類器は、訓練画像内の特定の画像点の特徴がモデルに入力されると、画像点の所定の構造ラベルに一致する解剖学的構造の予測を出力するように訓練される。多数の訓練画像から多数の画像点を用いて訓練された後、分類器は、任意の新しい画像における分類されていない画像点の解剖学的構造を予測するのに十分な能力を有するようになる。
【0067】
[067]
構造分類ユニット303は、分類器訓練ユニット302から訓練された構造分類器を受け取ることができる。
図3に示すように、構造分類ユニット303は、特徴抽出モジュール331および分類モジュール332を含むことができる。構造分類ユニット303は、医用画像データベース301、ネットワーク305およびユーザ313と通信するための入力および出力インターフェース(図示せず)をさらに含むことができる。いくつかの実施形態によれば、構造分類ユニット303は、解剖学的分類器訓練プロセスを実行するソフトウェアによって特別にプログラムされたハードウェア(例えば、
図4に開示されるようなもの)で実施されてもよい。
【0068】
[068]
構造分類ユニット303は、医用画像データベース301と通信して、1つまたは複数の現在の画像を受け取ることができる。現在の画像は、従来の画像と同じオブジェクトであってもよい。特徴抽出モジュール331は、特徴抽出モジュール322と同様のハードウェアおよびソフトウェア構造を有することができる。特徴抽出モジュール331は、医用画像データベース301から受信した現在の各画像上の1つ以上の特徴を識別することができる。特徴抽出モジュール331によって抽出された特徴は、特徴抽出モジュール322によって訓練段階中に使用されたものと同じであってもよいし、類似していてもよい。決定された特徴は、分類モジュール332に提供されてもよい。
【0069】
[069]
分類モジュール332は、分類器訓練ユニット302から受け取った訓練された構造分類器と、特徴抽出モジュール331から受け取った特徴とを使用して、それぞれの画像点の構造ラベルを予測することができる。選択された全ての画像点が分類されると、分類モジュール332は、セグメント化された画像を出力することができる。いくつかの実施形態では、セグメント化された画像は、ユーザ313に表示されてもよく、および/またはさらなる治療用途のために治療計画/配信ソフトウェア115に提供されてもよい。いくつかの実施形態では、セグメント化された画像は、医用画像データベース301に自動的に格納され、事前画像になることができる。
【0070】
[070]
ネットワーク305は、画像分割システム300内の上記の構成要素のいずれかの間の接続を提供することができる。例えば、ネットワーク305は、ローカルエリアネットワーク(LAN)、無線ネットワーク、クラウドコンピューティング環境(例えば、サービスとしてのソフトウェア、サービスとしてのプラットフォーム、サービスとしてのインフラストラクチャ)、クライアント−サーバ、ワイドエリアネットワーク(WAN)などを含む。
【0071】
[071]
図4は、本開示のいくつかの実施形態による例示的な医療画像処理装置400を示す。医用画像処理装置400は、分類器訓練ユニット302、構造分類ユニット303、またはそれらの組み合わせの実施形態であってもよい。別の実施形態では、処理装置400は、
図2A、
図2Bに示される制御コンソール110または放射線治療装置230に一体化することができる。いくつかの実施形態では、医用画像処理装置400は、専用コンピュータまたは汎用コンピュータであってもよい。例えば、医用画像処理装置400は、病院が画像取得および画像処理タスクを処理するために構築されたカスタムコンピュータであってもよい。
【0072】
[072]
図4に示すように、医用画像処理装置400は、プロセッサ421、メモリ422、データベース425、データ記憶装置426、入力/出力インターフェース427、ネットワークインターフェース428、およびディスプレイ429を含むことができる。処理装置400の構成要素は、バス(BUS)を介して接続されてもよい。
【0073】
[073]
プロセッサ421は、マイクロプロセッサ、中央処理装置(CPU)、グラフィック処理装置(GPU)などのような1つまたは複数の汎用処理装置であってもよい。より詳細には、プロセッサ421は、CISC(Complex Instruction Set Computing)マイクロプロセッサ、RISC(Reduced Instruction Set Computing)マイクロプロセッサ、VLIW(Very Long Instruction Word)マイクロプロセッサ、他の命令セットを実装するプロセッサであってもよい。プロセッサ421は、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、デジタル信号プロセッサ(DSP)、システムオンチップ(SoC)などの1つ以上の専用処理装置であってもよい。プロセッサ421は、メモリ422に通信可能に結合され、そこに格納されたコンピュータ実行可能命令を実行するように構成されてもよい。
【0074】
[074]
メモリ422は、例えば、読み出し専用メモリ(ROM)、フラッシュメモリ、ランダムアクセスメモリ(RAM)、およびスタティックメモリを含むことができる。いくつかの実施形態では、メモリ422は、1つまたは複数の画像処理プログラム423などのコンピュータ実行可能命令、ならびに医療画像データ424などのコンピュータプログラムを実行する間に使用または生成されるデータを格納することができる。プロセッサ421は、画像処理プログラム423を実行して、解剖学的分類器訓練ユニット302および/または構造分類ユニット303の機能を実装することができる。プロセッサ421は、メモリ422から医用画像データ424を送信/受信することもできる。例えば、プロセッサ421は、メモリ422に記憶されている先行する画像データまたは現在の画像データを受け取ることができる。プロセッサ421は、画像特徴および構造ラベルなどの中間データを生成し、それらをメモリ422に送ることもできる。
【0075】
[075]
医用画像処理装置400は、任意選択で、医用画像データベース301を含むかまたはそれと通信することができるデータベース425を含むことができる。データベース425は、中央または分散方式で配置された複数のデバイスを含むことができる。プロセッサ421は、データベース425と通信して、画像をメモリ422に読み出したり、メモリ422から医用画像データ424にセグメント化された画像を記憶したりすることができる。
【0076】
[076]
データ記憶装置426は、プロセッサ421によって実行される画像処理タスクに関連するデータを記憶するために利用可能な追加の記憶装置であってもよい。いくつかの実施形態では、データ記憶装置426は、機械可読記憶媒体を含むことができる。一実施形態では、機械可読記憶媒体は単一の媒体であってもよいが、「機械可読記憶媒体」という用語は、1つまたは複数のコンピュータ実行可能命令またはデータのセットを格納する単一の媒体または複数の媒体(例えば、集中型または分散型のデータベース、および/または関連するキャッシュおよびサーバ)を含むものとされるべきである。「機械可読記憶媒体」という用語は、機械による実行のための一連の命令を記憶または符号化することが可能であり、機械に現在の方法のうちの1つ以上を実行させる任意の媒体を含むものとされるべきである。したがって、「機械可読記憶媒体」という用語は、固体メモリ、光学媒体および磁気媒体を含むが、これに限定されない。
【0077】
[077]
入力/出力427は、医用画像処理装置400によってデータが受信および/または送信されるように構成することができる。入力/出力427は、処理装置400がユーザまたは他の機械および装置と通信することを可能にする1つまたは複数のデジタルおよび/またはアナログ通信装置を含むことができる。例えば、入力/出力427は、ユーザ312またはユーザ313が入力を提供するためのキーボードおよびマウスを含むことができる。
【0078】
[078]
ネットワークインターフェース428は、ネットワークアダプタ、ケーブルコネクタ、シリアルコネクタ、USBコネクタ、パラレルコネクタ、ファイバ、USB3.0、サンダーボルトなどの高速データ伝送アダプタ、そのような無線ネットワークアダプタ無線LANアダプタ、通信(3G、4G/LTE等)アダプタ、などを含むことができる。医療画像処理装置400は、ネットワークインターフェース428を介してネットワーク305に接続されてもよい。ディスプレイ429は、医用画像を表示するのに適した任意の表示装置であってもよい。例えば、ディスプレイ429は、LCD、CRT、またはLEDディスプレイであってもよい。
【0079】
[079]
いくつかの実施形態では、セグメント化された電流画像は、ディスプレイ428上のユーザに表示されてもよい。いくつかの実施形態では、セグメント化された現在の画像は、将来の医療用途のために治療計画/配信ソフトウェア115に提供され、および/または将来の画像セグメント化タスクのために医療画像データベース301に格納される。
【0080】
[080]
正確にセグメント化された画像、または解剖学的構造の明確に定義された輪郭は、セグメンテーション結果に依存する様々なアプリケーションにとって有益な場合がある。例えば、構造分類結果はまた、解剖学的構造のボリュームサイズの正確な推定を生成するのに役立ち得る。膀胱などの特定の解剖学的構造については、治療のための変形場および線量の最適化を計算する際には、容量の大きさが重要である。膀胱の例では、容積の大きさは、異なる治療セッションで大きく変化し得る。したがって、そのサイズの正確な推定は、膀胱周囲の相対的な位置または変形に関する重要な事前知識を提供し、ひいては変形場の計算を助け、またはその場で線量分布を最適化するのに役立つ。
【0081】
[081]
図5は、結合されたアトラスベースのセグメンテーションおよび統計的学習セグメンテーションを使用する例示的な画像セグメンテーション方法500を示すフローチャートである。いくつかの実施形態では、方法500は、分類器訓練ユニット302および構造分類ユニット303などの画像セグメンテーションシステム300のコンポーネントによって実行されてもよい。方法500は、空間的に隣接しかつ高度に相関する膀胱、前立腺、および直腸のような関心のある構造または関心のある構造のグループを同時にセグメント化するために適用することができると考えられる。RF(ランダムフォレスト)法のような様々な機械学習方法は、同時に複数の構造のセグメント化を処理することができる。マルチ構造分類器モデルは、複数の構造が空間的に隣接し、したがって高度に相関している場合に有益であり得る。
【0082】
[082]
図5に示すように、ステップ501において、医用画像処理装置400は、医用画像データベース301のようなデータベースから当初の日の医用画像I
1を受信する。いくつかの実施形態では、医用画像I
1は、1日目の患者の前日の医用画像を表す。
【0083】
[083]
ステップ502において、医用画像処理装置400は、1日目の画像I
1から少なくとも1つの特徴を識別する。少なくとも1つの特徴は、例えば、構造分類ユニット303の特徴抽出モジュール332によって識別されてもよい。特徴は、構造分類器を訓練するために使用されるのと同じタイプの特徴とすることができる。これについては、
図6に関連して以下でより詳細に説明する。畳み込みニューラルネットワークモデルのような機械学習モデルを使用することを含む、様々な方法を用いて属性を計算する。
【0084】
[084]
ステップ503において、1日目の画像I
1は母集団訓練された分類器モデルM
1によってセグメント化される。例えば、1日目の画像は、患者集団からの訓練画像で訓練されたランダムフォレストモデルM
1によってセグメント化することができる。1日目の画像I
1は、母集団訓練されたM
1によってセグメント化されて、例えば前立腺、膀胱、直腸および/または他の臓器を表す構造ラベルマップS
1を生成することができる。
【0085】
[085]
ステップ504において、医用画像処理装置400は、医用画像データベース301のようなデータベースからj日目の引き続く日の医用画像I
jを受け取る。医用画像I
jは、同じ患者の2日目または引き続くj日目の医用画像(ただし、j=2,....)を表す。いくつかの実施形態では、初日の画像I
1と引き続くj日目の医用画像I
jは、同じ患者の連続的な放射線治療セッション中に取得される。例えば、医用画像は、画像ガイド放射線治療システム200によって送達される連続的な治療療法セッション中に、画像取得装置220によって取得されてもよい。
【0086】
[086]
ステップ505において、前日の画像I
j-1(ただし、j=2,....)と、ステップ603からの対応する構造ラベルマップS
j-1とは、アトラスとして使用され、現在の日の画像I
jに登録されて、登録された画像I
j(j-1)と、対応するアトラスベースのセグメンテーション構造ラベルマップS
j(j-1)とを得る。例えば、I
1、S
1はアトラスとして使用され、I
1を2日目の画像I
2に変形可能に登録して、登録された画像I
2(1)と2日目の構造ラベルマップS
2(1)とを得る。上付き文字はアトラス日数を指し、後のステップ508で記載される全モデル分類S
jから予備的セグメンテーション結果S
j(j-1)を区別するのに役立つ。
【0087】
[087]
ステップ506において、分類器モデルM
tempは、画像I
j(j-1)と、前のステップ505で記載されたように得られる構造マップS
j(j-1)上で訓練される。いくつかの実施形態では、モデルは、
図6に記載されて例示的な訓練方法に従って訓練されてもよい。例えば、新たなランダムフォレストモデルM
tempは、集合I
j(j-1)、S
j(j-1)上で訓練されてもよい。
【0088】
[088]
ステップ507において、訓練された新しい分類器モデルM
tempは、前の日の分類器モデルM
j-1とマージされ、新しい分類器モデルM
jを得る。モデルをマージするには、さまざまな方法を使用することができる。例えば、モデルパラメータは、モデル
MtempおよびモデルM
jのモデルパラメータに基づいて決定されてもよい。
【0089】
[089]
ステップ508において、結合モデルは、現在の日の画像I
jをセグメントし、構造ラベルマップS
jを生成するのに用いられる。この構造ラベルマップS
jは、モデルM
jから導出され、一方、構造ラベルマップS
j(j-1)は、引き続く日のデータI
j-1、S
j-1を用いたアトラスベースのセグメンテーションによって得られる。ステップ508の一部として、ステップ502と同様に、特徴抽出をj番目の前の日の画像に対して行うことができる。
【0090】
[090]
ステップ509において、本方法は、その患者の前の日のすべての画像が分類器モデルを訓練するために使用されたかどうかを判定する。その患者の前の日の画像がより多く存在する場合、医用画像処理装置400は、ステップ504からステップ509を繰り返して、モデルM
j(jはj番目の治療日を表す)を訓練し、その後のすべての前日画像が処理されるまで繰り返す。ステップ510において、現在の日の画像I
jのセグメンテーションが終了する。
【0091】
[091]
任意のj番目の治療日のモデルM
jは、登録された前の日の画像とその対応する構造ラベルマップI
j(j-1)、S
j(j-1)の結合であるデータ上で分類器を訓練することによって得られ、次式で記述される。
【0093】
[092]
訓練は複数のステージで行われ、ステージ毎に1日前に行われ、その結果、統計的学習法が許すように、前の日のモデルと組み合わされたモデルM
tempとなる。
【0094】
[093]
他の実施形態では、訓練データンサンブルは、アトラスベースのセグメンテーションから導出された構造ラベルマップ以外の形態のラベルマップを含むことができる。例えば、構造ラベルマップは、エキスパートプログラムまたは人間の専門家によって修正されたアトラスベースのセグメンテーション構造とすることができる。
【0095】
[094]
他の実施形態では、母集団に基づくモデルM
1(ここでは、結果として得られるモデルM
jに含まれる)は、モデルM
2からM
jまで解離することができる。
【0096】
[095]
他の実施形態では、訓練データの構成は、各j番目の治療日の訓練データが治療の開始から蓄積され、順番にマージする連続する日の訓練モデルよりも累積された全ての訓練データからモデルが作成されるように変化し得る。これは、ランダムまたは決定ツリーとは異なり、日々のデータ訓練された増分に簡単に分解されないモデルを有するニューラルネットワークのような統計的学習方法に対応する。
【0097】
[096]
いくつかの実施形態では、方法500は、患者への放射線療法処置送達の前に実施されてもよく、決定された構造ラベルマップS
jは、治療計画/送達ソフトウェア115に提供されてもよい。このセグメンテーション結果は、放射線治療計画を調整するために使用され得る。この目的のために、セグメンテーション(方法500)は、次の放射線療法治療セッションの直前に、または次の放射線療法治療セッションの1日前に行うことができる。
【0098】
[097]
図6は、アトラスを使用して構造分類器モデルを訓練するための例示的な訓練方法600を示すフローチャートである。いくつかの実施形態では、方法600を使用して
図5のステップ506を実施することができる。いくつかの実施形態では、方法600は、分類器訓練ユニット302によって実行されてもよい。構造分類器モデルは、
図5の分類器モデルM
jのようなランダムフォレストモデルとすることができる。
【0099】
[098]
図6に示されるように、ステップ601において、分類器訓練ユニット302は、訓練画像および訓練画像の画像点が属する構造を示す対応する構造ラベルマップを含むアトラスを受け取る。いくつかの実施形態では、アトラスは、アトラスI
j(j-1)、S
j(j-1)のような登録アトラスであってもよい。
【0100】
[099]
ステップ602において、特徴抽出モジュール322は、各訓練アトラスのマッピングされたアトラス画像から複数の訓練サンプルを選択する。各訓練サンプルは、単一の画像点または画像点のグループに対応することができる(そのような画像点のグループは、スーパー画像点とも呼ばれる)。本開示によれば、マップされたアトラス画像からの訓練サンプルは、マップされたアトラス画像上の画像点のすべてまたは一部を含むことができる。画像点の一部のみが訓練に使用される場合、サンプル選択が実行されて、どの画像点が使用されるかを決定することができる。例えば、訓練サンプルは、マップされたアトラス画像全体にわたって完全にランダムに選択されるか、または関心のある構造の境界まである距離内の領域から選択され得る。別の例として、標本選択は、より多くのサンプルがあいまいな領域、すなわち、異なるマップされたアトラスからの構造ラベルが完全に一致しない領域、または不一致があるレベル(例えば、10個のマッピングされたアトラスのうち3個以上が、他のマッピングされたアトラスとは異なる決定を有するようなレベル)よりも大きい領域から選択され得るように、登録結果によりガイドされ得る。
【0101】
[100]
ステップ603において、特徴抽出モジュール322は、画像点のための少なくとも1つの画像特徴を決定する。様々なタイプの特徴、例えば、画像強度値、画像位置、画像勾配および勾配の大きさ、画像のヘッセ行列(Hessian matrix)の固有値、エネルギー、エントロピー、コントラスト、均質性などの画像テクスチャ測定値、および局所的共出現行列、様々なサイズの局所画像パッチの相関のような画像テクスチャの測定値のような特徴を抽出することができる。あるいは、属性または特徴は、機械学習モデルを使用して自動的かつ適応的に計算されてもよい。例えば、畳み込みニューラルネットワークモデルは、サンプル画像から関連する特徴を抽出するように訓練されてもよく、事前に訓練されたモデルは、訓練サンプルに適用されて、属性を生成することができる。畳み込みニューラルネットワークは、典型的には、様々なサイズの特徴マップを生成するいくつかの畳み込みレイヤーを他のレイヤーの中に含む。特徴マップは、入力画像(または入力画像の選択された部分)を特徴付ける一般的な特徴を含むので、分類結果をさらに改善するために構造分類器の特徴として使用することができる。種々の畳み込みレイヤー(例えば、トップレイヤー、ミドルレイヤー、ローレイヤー)またはこれらのレイヤーから選択からの特徴を用いることができる。いくつかの実施形態では、訓練アトラスが、機械学習アルゴリズムによって使用されるアトラス画像点の属性を既に含む場合、属性の計算を省略することができる。
【0102】
[101]
ステップ604において、訓練モジュール323は、画像点の識別された画像特徴に基づいて解剖学的分類モデルを生成するための学習アルゴリズムを適用する。機械学習アルゴリズムは、訓練データのセットを与えられた予測モデルを推定しようとする教師付き学習アルゴリズムとすることができる。例えば、構造分類器を訓練するための機械学習アルゴリズムは、複数のクラス、すなわち1つの分類器を自然に扱うことができるランダムフォレスト(RF)機械学習アルゴリズムとすることができる。RF分類器の出力は、入力データがどのクラスに属するか、すなわち、対応する画像点がどの構造に属するかの確率推定であり得る。ステップ605において、分類器訓練ユニット302は、すべての訓練サンプルが処理済みであるかどうかをチェックする。そうである場合(ステップ605でYESである場合)、方法600はステップ606に進み、分類器訓練ユニット302は、例えば、方法500のステップ507からステップ508によって使用されるように、訓練された分類器モデルを出力する。そうでない場合(ステップ605でNOである場合)、方法600は次の訓練サンプルを処理するためにステップ601に戻る。
【0103】
[102]
方法500および600の代替の実施形態が考えられる。
【0104】
[103]
一実施形態では、登録された前日の画像は、訓練目的のために現在の日の画像に置き換えられてもよい。したがって、訓練は次式のように記述することができる。
【0106】
[104]
別の実施形態では、例示的な画像セグメンテーションプロセスは、画像登録を利用することなく、前日の画像およびエキスパート構造または輪郭Cを使用して後日の画像をセグメント化する。エキスパートの描画または編集された輪郭Cは、アトラスセグメンテーション輪郭Sとは区別される(例えば、ABAS構造は専門家によって編集されている)。治療日nにおけるデータI
j、C
jの集合からのモデルM
nの例示的な訓練プロセスは次のように記述される。
【0108】
[105]
別の実施形態では、例示的な画像セグメンテーションプロセスは、
図5に開示される方法500を利用するが、前日のABAS構造Sをその日の専門構造Cに置き換える。プロセスが患者の前日の画像の最後の前日に達すると、この方法は前日のABAS構造を使用する。モデルRFnの例示的な訓練プロセスは次のように記述される。
【0110】
[106]
RF法以外の学習アルゴリズムも、上述した方法と同様の方法でABASセグメンテーションと組み合わせて使用することができる。例えば、分類器モデルは、畳み込みニューラルネットワークモデルであってもよい。畳み込みニューラルネットワークは、入力画像を出力構造ラベルマップに変換する別個のレイヤーのスタックを含むことができる。これらのレイヤーは、符号化ステージと復号化ステージの2つのステージを形成することができる。レイヤーは、入力サイズ、出力サイズ、レイヤーの入力と出力の関係が異なる場合がある。各レイヤーは、レイヤーのスタック内の1つ以上の上流レイヤーおよび下流レイヤーに接続することができる。したがって、畳み込みニューラルネットワークの性能は、レイヤーの数に依存することがあり、畳み込みニューラルネットワークの複雑さは、レイヤーの数が増加するにつれて増加する可能性がある。畳み込みニューラルネットワークは、非線形特徴変換の2つ以上の段階を有する場合には「深い」と見なすことができ、これは通常、ネットワーク内のレイヤーの数が特定の数を超えることを意味する。例えば、いくつかの畳み込みニューラルネットワークは、約10−30レイヤー、または場合によっては数百レイヤー以上を含み得る。畳み込みニューラルネットワークモデルの例には、AlexNet、VGGNet、GoogLeNet、ResNetなどが含まれる。これらの畳み込みニューラルネットワークモデルは、完全畳み込みニューラルネットワークモデルの符号化段階で使用することができる。
【0111】
[107]
本開示は、上述の実施形態に限定されず、訓練データの組み合わせの他の実施形態が可能である。たとえば、母集団の強調を解除したり、すべて一緒に削除したりするために、モデルに重みを付けることができる。個々の日の画像および構造は、後でマージすることができる単一画像RFモデルで訓練することができる。画像/構造について登録されたものの組と登録されていないものとの組の他の組み合わせも可能である。さらに、上述の外観特徴に加えて、コンテキスト特徴を使用することができる。
【0112】
[108]
様々な動作または機能が、本明細書で説明され、ソフトウェアコードまたは命令として実装または定義されてもよい。そのようなコンテンツは、直接実行可能形式(「オブジェクト」または「実行可能」形式)、ソースコード、または差分コード(「デルタ」または「パッチ」コード)であってもよい。本明細書に記載の実施形態のソフトウェア実装は、コードまたは命令が格納された製品を介して、または通信インターフェースを介してデータを送信する通信インターフェースを操作する方法を介して提供されてもよい。機械またはコンピュータ可読記憶媒体は、機械に説明された機能または動作を実行させることができ、機械によってアクセス可能な形式で情報を記憶する任意のメカニズム(例えば、コンピューティングデバイス、電子システムなど)、例えば、記録可能な/記録不可能な媒体(例えば、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、磁気ディスク記憶媒体、光記憶媒体、フラッシュメモリデバイスなど)のようなものを含むが、これらに限定されない。通信インターフェースは、ハードワイヤード、ワイヤレス、光学などのいずれかとインターフェースする任意のメカニズムや、メモリバスインターフェース、プロセッサバスインターフェース、インターネット接続、ディスクコントローラ、等のような、他のデバイスに通信するメデイアを含む。通信インターフェースは、ソフトウェアインターフェースを記述するデータ信号を提供するために、通信インターフェースを準備するための構成パラメータおよび/または送信信号を提供することによって構成することができる。通信インターフェースは、通信インターフェースに送信される1つまたは複数のコマンドまたは信号を介してアクセスすることができる。
【0113】
[109]
本開示は、本明細書の動作を実行するためのシステムにも関する。このシステムは、必要な目的のために特別に構成することができ、またはコンピュータに格納されたコンピュータプログラムによって選択的に起動または再構成された汎用コンピュータを含むことができる。このようなコンピュータプログラムは、限定はしないが、フロッピーディスク、光ディスク、CDROM、および光磁気ディスク、読み出し専用メモリ(ROM)、ランダムアクセルメモリ(RAM)、EPROM、EEPROM、磁気または光カード、またはコンピュータシステムバスにそれぞれ結合された電子命令を格納するのに適した任意のタイプの媒体に格納することができる。
【0114】
[110]
本明細書に例示され説明された本開示の実施形態における動作の実行または実行の順序は、特に明記しない限り、本質的ではない。すなわち、動作は、他に特定されない限り、任意の順序で実行されてもよく、本開示の実施形態は、本明細書に開示された動作よりも多い、または少ない動作を含み得る。例えば、別の操作の前、同時または後に特定の操作を実行または実行することは、本開示の態様の範囲内にあると考えられる。
【0115】
[111]
本開示の実施形態は、コンピュータ実行可能命令で実装することができる。コンピュータ実行可能命令は、1つまたは複数のコンピュータ実行可能コンポーネントまたはモジュールに編成することができる。本開示の態様は、そのような構成要素またはモジュールの任意の数および構成で実施することができる。例えば、本開示の態様は、特定のコンピュータ実行可能命令、または図に示され、本明細書で説明される特定のコンポーネントまたはモジュールに限定されない。本開示の他の実施形態は、異なるコンピュータ実行可能命令または本明細書に図示および記載されている機能よりも多いまたは少ない機能を有するコンポーネントを含むことができる。
【0116】
[112]
本開示の態様またはその実施形態の要素を導入する場合、冠詞「a」、「an」、「the」および「said」は、1つまたは複数の要素が存在することを意味することが意図される。「備える(comprising)」、「含む(containing)」、および「有する(having)」という用語は、包括的であり、列挙された要素以外の追加の要素が存在し得ることを意味することが意図される。
【0117】
[113]
本開示の態様を詳細に記載してきたが、添付の特許請求の範囲に規定された本開示の態様の範囲から逸脱することなく、改変および変更が可能であることは明らかであろう。本開示の態様の範囲から逸脱することなく、上記の構成、製品、および方法において様々な変更を行うことができるので、上記の説明に含まれ、添付の図面に示されるすべての事項は、例示として解釈されるべきであり、限定的な意味ではない。