(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0014】
以下、本発明を実施するための形態(以下、「本実施形態」ともいう。)について詳細に説明する。以下の実施形態は、本発明を説明するための例示であり、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
【0015】
(繊維強化複合体)
本実施形態の繊維強化複合体は、発泡樹脂を含む芯材の表面の少なくとも一部に、繊維及び樹脂を含む表皮材が配置された複合体である。
【0016】
本実施形態の繊維強化複合体における発泡樹脂は、ポリアミド系樹脂を含み、X線回折プロファイルにおいて最も狭いピーク幅を有するピークに基づいて算出したとき、結晶子サイズDが10nm以上であり、結晶化度Xが10〜50%である。
【0017】
本実施形態の繊維強化複合体では、芯材の表面のうち表皮材を配置する部分は、芯材の形状に応じて適宜定められてよく、例えば、シート状の場合(後述の実施例参照)には、片面又は両面の全部又は一部としてよく、塊状の場合には、静置状態で特定方向から見える面の全部又は一部としてもよく、線状の場合には、一端から延在方向に所定長さについての表面の全部又は一部としてよい。
【0018】
−芯材−
本実施形態の繊維強化複合体における芯材は、発泡樹脂を含むものである。芯材には、目的や用途に応じて、発泡樹脂以外の部材が含まれていてもよい。発泡樹脂の特性が得られやすい観点から、芯材は発泡樹脂のみからなることが好ましい。
【0019】
−−発泡樹脂−−
上記発泡樹脂は、ポリアミド系樹脂を含み、更に、任意選択的に、その他の成分、微量のガス等を含んでいてもよい。
上記発泡樹脂は、ポリアミド系樹脂を含むポリアミド系樹脂発泡体であることが好ましい。
【0020】
−−−ポリアミド系樹脂−−−
ポリアミド系樹脂としては、例えば、ポリアミド、ポリアミド共重合体、これらの混合物が挙げられる。
【0021】
ポリアミドとしては、例えば、ジアミンとジカルボン酸との重縮合により得られる、ナイロン66、ナイロン610、ナイロン612、ナイロン46、ナイロン1212等;ラクタムの開環重合により得られる、ナイロン6、ナイロン12等;等が挙げられる。ポリアミド共重合体としては、例えば、ナイロン6/66、ナイロン66/6、ナイロン66/610、ナイロン66/612、ナイロン66/6T(Tは、テレフタル酸成分を表す)、ナイロン66/6I(Iは、イソフタル酸成分を表す)、ナイロン6T/6I等が挙げられる。中でも、脂肪族ポリアミドが好ましく、ナイロン6、ナイロン66、ナイロン6/66、ナイロン66/6等がより好ましい。これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0022】
これらの混合物としては、例えば、ナイロン66とナイロン6との混合物、ナイロン66とナイロン612との混合物、ナイロン66とナイロン610との混合物、ナイロン66とナイロン6Iとの混合物、ナイロン66とナイロン6Tとの混合物、ナイロン6とナイロン6I/6Tとの混合物等が挙げられる。中でも、発泡樹脂の結晶化度を高めて、耐熱性及び複合体の表面美粧性を十分にする観点から、混合物の場合のポリアミド系樹脂は、脂肪族ポリアミドを50質量%超含むものであることが好ましく、60質量%以上含むものであることがより好ましい。
【0023】
また、ポリアミド系樹脂の融点は、芯材及び繊維強化複合体の耐熱性を十分にする観点から、150℃以上であることが好ましく、180℃以上であることが更に好ましく、また、発泡樹脂の成形プロセスにおいて予備発泡粒子同士の融着率を向上させる観点から、270℃以下であることが好ましく、250℃以下であることが更に好ましい。
【0024】
なお、本明細書において、ポリアミド系樹脂の融点は、JIS K7121に準じて、示差走査熱量測定(DSC)により測定した値を指す。測定で現れた吸熱を示すピークを樹脂の融解を示すピークとし、最も高温側に現れた吸熱を示すピークにおける温度を、融点とする。
測定装置としては、市販の示差走査熱量計を用いてよく、例えば、パーキンエルマー社製のDSC7等が挙げられる。
測定条件としては、通常の条件を用いてよく、例えば、窒素雰囲気下、温度条件:樹脂をその融点超の温度(例えば300℃で5分)で保持し、その後、20℃/分で50℃程度まで急冷し、次いで、融点超の温度(例えば300℃)まで20℃/分で昇温させるという条件等が挙げられる。
【0025】
ポリアミド系樹脂が末端に有する高反応性の官能基(アミノ基及びカルボキシル基)を、ポリアミド系樹脂の合成において末端封止剤を添加することによって、低反応性の官能基に変える(ポリアミド系樹脂の末端を封鎖する)ことができる。
この場合、末端封止剤を添加する時期としては、原料仕込み時、重合開始時、重合中後期、又は重合終了時が挙げられる。
末端封止剤としては、ポリアミド系樹脂のアミノ基又はカルボキシル基との間で反応し得る単官能性の化合物である限り、特に制限されることなく、例えば、モノカルボン酸、モノアミン、酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類等が挙げられる。これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0026】
ポリアミド系樹脂の形状としては、特に限定されることなく、例えば、ビーズ状、ペレット状、球体、不定形の粉砕物等が挙げられ、その大きさは、発泡後の予備発泡粒子の大きさを適度なものとし、予備発泡粒子の取り扱いやすさを高め、成形時の充填をより密にする観点から、0.2〜3mmであることが好ましい。
【0027】
−−−その他の成分−−−
上記発泡樹脂に含まれるポリアミド系樹脂以外のその他の成分としては、安定剤、衝撃改良材、難燃剤、滑剤、顔料、染料、耐候性改良剤、帯電防止剤、耐衝撃改質剤、結晶核剤、ガラスビーズ、無機充填材、架橋剤、タルク等の核剤や他の熱可塑性樹脂を、本発明の目的を損なわない範囲で添加してもよい。上記発泡樹脂におけるその他の成分の含有量は、ポリアミド系樹脂100質量部に対して、15質量部以下としてよく、6質量部以下であることが好ましい。3質量部以下であることがさらに好ましい。
【0028】
特に、安定剤としては、特に限定されることなく、例えば、ヒンダードフェノール系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤、ホスファイト化合物、チオエーテル系化合物等の有機系酸化防止剤や熱安定剤;ヒンダードアミン系、ベンゾフェノン系、イミダゾール系等の光安定剤や紫外線吸収剤;金属不活性化剤等が挙げられる。これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0029】
熱安定剤としては、120℃以上の高温環境下で長期熱老化を効果的に防止する観点から、銅化合物が好ましく、この銅化合物とハロゲン化アルカリ金属化合物との組み合わせも好ましい。ここで、ハロゲン化アルカリ金属化合物としては、塩化リチウム、臭化リチウム、ヨウ化リチウム、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、フッ化カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム等が挙げられる。これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0030】
他の熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、EVA(エチレン−酢酸ビニル共重合体)等のポリオレフィン系樹脂;ポリビニルアルコール;ポリ塩化ビニル;ポリ塩化ビニリデン;ポリフェニレンエーテル系樹脂;メタクリル系樹脂;ポリカーボネート系樹脂;ポリイミド系樹脂;ポリアセタール系樹脂;ポリエステル系樹脂;アクリル系樹脂;セルロース系樹脂;ポリ塩化ビニル系、ポリウレタン系、ポリエステル系、1,2−ポリブタジエン系、フッ素ゴム系等の熱可塑性エラストマー;ポリアセタール系、ポリエステル系、フッ素系の熱可塑性エンジニアリングプラスチック;等が挙げられる。また本発明の目的を損なわない範囲で、変性、架橋された樹脂を用いてもよい。
これらは、1種単独で用いても、2種以上を組み合わせて用いてもよい。
【0031】
なお、上記発泡樹脂に含まれるポリアミド系樹脂のアミノ基又はカルボキシル基と反応する置換基(以下、反応性の置換基ともいう。)を有する化合物や重合体等を用いて、ポリアミド系樹脂の分子内においてかかる置換基を介した架橋構造を形成させることによって、ポリアミド系樹脂の架橋度を高めてもよい。
反応性の置換基としては、例えば、グリシジル基、カルボキシル基、カルボン酸金属塩、エステル基、ヒドロキシル基、アミノ基、カルボジイミド基等の官能基等が挙げられ、特に、反応の速さの観点から、グリシジル基、カルボジイミド基が好ましい。
これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、化合物や重合体等は、1分子中に複数種の官能基を有していてもよい。
なお、反応性の置換基のポリアミド系樹脂への導入量は、架橋により樹脂にゲル化等が生じない程度とするのがよい。
【0032】
−−−ガス−−−
ガスとは、発泡樹脂の製造過程(後述)において含まれることとなるものである。
ガスとしては、特に限定されないが、空気、炭酸ガス、発泡剤として用いられる各種ガス、脂肪族炭化水素系ガス等が挙げられる。
脂肪族炭化水素系ガスとしては、具体的には、ブタン、ペンタン等が挙げられる。
【0033】
−−発泡樹脂の物性−−
以下に、本実施形態の繊維強化複合体における発泡樹脂の物性について記載する。
【0034】
上記発泡樹脂は、X線回折プロファイルにおいて最も狭いピーク幅を有するピークに基づいて算出したとき、結晶子サイズDが、10nm以上であり、結晶化度Xが、10〜50%である。
上記発泡樹脂のX線回折プロファイルは、X線散乱装置を用いた透過法により得ることができる。
【0035】
上記発泡樹脂は、X線回折プロファイルにおいて最も狭いピーク幅を有するピークに基づいて算出したときの結晶子サイズDが、得られる発泡樹脂や繊維強化複合体の耐熱性を向上する観点、及び高温成形時の熱収縮を抑制する観点から、10nm以上であり、11nm以上であることが好ましく、12nm以上であることが更に好ましく、また、得られる発泡樹脂の融着率の低下を抑制する観点から、50nm以下であることが好ましく、40nm以下であることが更に好ましい。
【0036】
また、上記発泡樹脂は、X線回折プロファイルに基づいて算出したときの結晶化度Xが、得られる発泡樹脂や繊維強化複合体の耐熱性や高温成形時の熱収縮を抑制する観点から、10%以上であり、20%以上であることが好ましく、25%以上であることが更に好ましく、また、得られる発泡樹脂の融着率の低下を抑制する観点から、50%以下であり、45%以下であることが好ましい。
【0037】
結晶子サイズD及び結晶化度Xは、下記の通り求められるものを指す。
ここで、X線回折により得られたX線回折プロファイルを、結晶由来の回折ピークと非晶由来の回折ピークとについてガウス関数を仮定してピーク分離する。
結晶子サイズDは、下記式(1)で表されるシェラーの式により決定される。
【数1】
式中、βは、結晶由来の回折ピークの半価全幅(rad)であり、bは、X線の広がりの半価半幅(rad)であり、λは、X線の波長(単位:nm)であり、θは、ピーク位置におけるブラッグ角(単位:°)である。
結晶化度Xは、下記式(2)で表される式により算出される。
【数2】
式中、Aci(i=1〜n)は、ピーク分離した際に得られるn個の結晶由来の回折ピークの面積であり、Aaは、ピーク分離した際に得られる非晶由来の回折ピークの面積である。
【0038】
なお、上記式(1)では光学系による補正がなされているが、光学系以外にも試料形状等(試料厚み等)によってもβは影響を受ける。適切な条件でX線回折を測定する、適切な補正を行う等によって、測定条件に依存しないDを算出する必要があるのは言うまでもない。
【0039】
上記発泡樹脂の密度は、発泡樹脂の強度を適度にして、気泡膜を破膜しにくくすることによって、発泡樹脂や繊維強化複合体の外観を向上させる観点から、20kg/m
3以上であることが好ましく、50kg/m
3以上であることが更に好ましく、また、繊維強化複合体の軽量性を高める観点から、800kg/m
3以下であることが好ましく、500kg/m
3以下であることが更に好ましい。
【0040】
上記発泡樹脂の独立気泡率Sは、発泡樹脂の強度を向上させると共に、連続気泡部分において生じ得る発泡樹脂中への水の取り込みを生じにくくして、発泡樹脂の密度を低下しにくくする観点から、80%以上であることが望ましく、85%以上であることが更に望ましい。
なお、独立気泡率S(%)は、下記式(3)で表される式により算出される。
S(%)={(Vx−W/ρ)/(Va−W/ρ)}×100
・・・(3)
式中、Vxは、発泡樹脂の真の体積(cm
3)であり、Vaは、発泡樹脂の見かけの体積(cm
3)であり、Wは、発泡樹脂の重量(g)であり、ρは、発泡樹脂の基材樹脂の密度(g/cm
3)である。
【0041】
上記発泡樹脂は、高温環境下での物性低下や熱収縮を抑制する観点から、150℃における寸法変化率が、1.5%以下であることが好ましく、1.0%以下であることが更に好ましい。
なお、寸法変化率は、JIS K6767の寸法安定性評価・B法に準拠して、測定した値を指す。
【0042】
上記発泡樹脂の融着率は、複合体に曲げ歪み等の応力が加わった際の剛性を高める観点、及び、発泡樹脂を切断した際に予備発泡粒子の成形体からの欠落を抑制する観点から、60%以上であることが好ましく、70%以上であることが更に好ましく、80%以上であることが最も好ましい。
なお、融着率の測定方法は、実施例に記載の通りである。
【0043】
−表皮材−
本実施形態の繊維強化複合体における表皮材は、繊維及び樹脂を含み、任意選択的に、添加剤等を含む。
【0044】
−−繊維−−
繊維としては、高強度、高弾性率の繊維が挙げられ、具体的には、炭素繊維、ガラス繊維、有機繊維(例えば、米国デュポン(株)社製の「ケブラー(登録商標)」に代表されるポリアラミド繊維)、アルミナ繊維、シリコンカーバイド繊維、ボロン繊維、炭化ケイ素繊維等が挙げられる。
中でも、高い剛性を保持したまま軽量性を確保するために、弾性率と密度の比である比弾性率が高いもの、具体的には、炭素繊維が好ましい。
これら繊維は、1種単独で用いてもよく、2種以上を併用してもよい。
【0045】
本実施形態における繊維の、JIS−K7127に準拠して測定される引張弾性率は、高い剛性を確保する観点から、200〜850GPaであることが好ましい。
【0046】
本実施形態における繊維の含有量は、表皮材100質量%に対して、40〜80質量%であることが好ましい。
【0047】
本実施形態における繊維の目付量は、剛性を高め、軽量化を図る観点から、発泡樹脂を含む芯材の表面において、50〜4000g/m
2が好ましく、より好ましくは100〜1000g/m
2である。
【0048】
−−樹脂−−
樹脂としては、熱硬化性樹脂や熱可塑性樹脂が挙げられ、エポキシ樹脂、フェノール樹脂、シアネート樹脂、ベンゾオキサジン樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ABS樹脂、ポリエチレンテレフタレート樹脂、ナイロン樹脂、マレイミド樹脂等が挙げられる。中でも、熱、光、電子線等の外部からのエネルギー付加により硬化する熱硬化性樹脂が好ましく、具体的には、エポキシ樹脂が好ましい。
これら樹脂は、1種単独で用いてもよく、2種以上を併用してもよい。
【0049】
樹脂のガラス転移温度は、芯材との接着性、変形や反りの観点から、80〜250℃であることが好ましく、より好ましくは、80〜180℃である。
なお、ガラス転移温度は、ASTM−D−3418に準拠して中点法により測定することができる。
【0050】
樹脂が熱硬化性樹脂である場合、その硬化温度は、芯材との接着性、変形や反りの観点から、80〜250℃であることが好ましく、より好ましくは、80〜150℃である。
【0051】
本実施形態における樹脂の含有量は、芯材との接着性、変形や反りの観点から、表皮材100質量%に対して、20〜60質量%であることが好ましく、より好ましくは、30〜50質量%である。
【0052】
(繊維強化複合体の製造方法)
以下、本実施形態の繊維強化複合体の製造方法について記載する。
【0053】
本実施形態の繊維強化複合体の製造方法の一例としては、芯材(例えば、ポリアミド系樹脂発泡体のみからなる芯材)と表皮材とを成形機内で加熱・加圧することによって同時成形する方法が挙げられる。
本実施形態では、芯材に含まれる発泡樹脂としてのポリアミド系樹脂発泡体は、発泡成形品、ビーズ粒子等を用いてよい。
【0054】
−発泡樹脂の製造方法−
発泡樹脂を製造する方法としては、例えば、押出発泡法、発泡射出成形法、型内発泡成形法(ビーズ発泡成形法ともいう。)等が挙げられる。
【0055】
押出発泡法は、押出機を用いて溶融状態の樹脂に有機又は無機発泡剤を圧入し、押出機出口で圧力を開放することによって、一定の断面形状を有する、板状、シート状、又は柱状の発泡体を得て、これを金型に入れて熱加工する、又は切り貼りにより目的形状に成形する方法である。
【0056】
発泡射出成形法は、発泡性を備える樹脂を射出成形し、金型内にて発泡させることによって、空孔を有する発泡成形品(発泡樹脂)を得る方法である。
【0057】
型内発泡成形法は、発泡性を備える樹脂粒子を型内に充填し、水蒸気等で加熱し、粒子を発泡させると同時に粒子同士を熱融着させることによって、発泡成形品(発泡樹脂)を得る方法である。この型内発泡成形法は、製品形状を自由に設定しやすく、高発泡倍率の発泡成形品を得やすい等の利点がある。
上記発泡樹脂は、発泡倍率の観点から型内発泡成形法で製造されることが好ましい。
【0058】
以下、上記発泡樹脂を製造する際に用いられる、予備発泡粒子の製造方法について記載する。例えば、ポリアミド系樹脂発泡体を製造する際には、ポリアミド系予備発泡粒子を用いることができる。
なお、本明細書において、予備発泡粒子とは、最終段階の発泡を行っていない発泡性の粒子(ビーズ等)を指す。
【0059】
上記予備発泡粒子は、前述のポリアミド系樹脂に発泡剤を含有(含浸)させて、発泡を生じさせることによって得ることができる。
ポリアミド系樹脂に発泡剤を含有(含浸)させる方法としては、特に限定されることなく、一般的に用いられている方法としてよい。
かかる方法としては、水等の懸濁系で水性媒体を用いて行う方法(懸濁含浸)や、重炭酸ナトリウム等の熱分解型発泡剤を用いる方法(発泡剤分解)、ガスを臨界圧力以上の雰囲気とし液相状態にして、基材樹脂に接触させる方法(液相含浸)、ガスを臨界圧力未満の雰囲気とし気相状態にして、基材樹脂に接触させる方法(気相含浸)等が挙げられる。発泡剤を含有させる方法としては、特に気相含浸が好ましい。
【0060】
気相含浸では、高温条件下で実施される懸濁含浸の場合と比較して、ガスの樹脂への溶解度がより高く、発泡剤の含有量を高くしやすい。そのため、気相含浸では、高発泡倍率を達成しやすく、予備発泡粒子内の気泡サイズが均一になりやすい。
【0061】
また、発泡剤分解法も、懸濁含浸と同様に高温条件下で実施される点で不都合がある。また、この方法では、加えた熱分解型発泡剤全てがガスになるわけではないため、ガス発生量が相対的に少なくなりやすい。そのため、気相含浸では、発泡剤含有量を高くしやすいという利点がある。
更に、気相含浸では、液相含浸の場合と比較して、耐圧装置や冷却装置等の設備がよりコンパクトになりやすく、設備費を低減しやすい。
【0062】
気相含浸の条件としては、特には限定されることなく、例えば、ガスの樹脂への溶解をより効率的に進める観点から、雰囲気圧力としては、0.5〜6.0MPaであることが好ましく、雰囲気温度としては、5〜30℃であることが好ましい。
【0063】
ここで、上記予備発泡粒子を製造する際に使用される発泡剤としては、特に限定されることなく、空気やガスとし得る化合物等が挙げられる。
ガスとし得る化合物の例としては、二酸化炭素、窒素、酸素、水素、アルゴン、ヘリウム、ネオン等の無機化合物;トリクロロフルオロメタン(R11)、ジクロロジフルオロメタン(R12)、クロロジフルオロメタン(R22)、テトラクロロジフルオロエタン(R112)ジクロロフルオロエタン(R141b)クロロジフルオロエタン(R142b)、ジフルオロエタン(R152a)、HFC−245fa、HFC−236ea、HFC−245ca、HFC−225ca等のフルオロカーボン;HFO−1234y、HFO−1234ze(E)等のハイドロフルオロオレフィン;プロパン、n−ブタン、i−ブタン、n−ペンタン、i−ペンタン、ネオペンタン等の飽和炭化水素;ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、イソプロピルエーテル、n−ブチルエーテル、ジイソプロピルエーテル、フラン、フルフラール、2−メチルフラン、テトラヒドロフラン、テトラヒドロピラン等のエーテル類;塩化メチル、塩化エチル等の塩素化炭化水素類;メタノール、エタノール等のアルコール類;等が挙げられる。
これらの空気やガスとし得る化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0064】
発泡剤としては、環境への影響が少なく、可燃性や支燃性がないものが好ましく、取り扱い時の安全性の観点から、可燃性及び支燃性のない無機化合物が更に好ましく、樹脂への溶解性、取り扱いの容易性の観点から、二酸化炭素ガス(炭酸ガス)が特に好ましい。
【0065】
発泡剤を含有(含浸)させたポリアミド系樹脂(発泡剤含浸ポリアミド系樹脂)に発泡を生じさせる方法としては、特に限定されないが、例えば、発泡剤含浸ポリアミド系樹脂を高圧雰囲気下から低圧雰囲気下に一気に持ち込むことによって、発泡剤含浸ポリアミド系樹脂中に溶解している発泡剤としてのガスを膨張させて、発泡を生じさせる方法や、圧力蒸気等を用いて加熱することによって、発泡剤含浸ポリアミド系樹脂中のガスを膨張させて、発泡を生じさせる方法等を用いることができ、特に、生成物である成形体内部の気泡の大きさ(セルサイズ)を均一にするという利点、及び発泡倍率を制御して低発泡倍率の成形体の作製を容易にするという利点が得られるため、後者の加熱・発泡を行う方法を用いることが好ましい。
【0066】
ここで、予備発泡粒子を所望の発泡倍率になるまで発泡させる際、一段階の発泡を行ってもよく、二次発泡、三次発泡等からなる多段階の発泡を行ってもよい。なお、多段階の発泡を行った場合、高発泡倍率の予備発泡粒子を調製しやすく、成形に用いられる予備発泡粒子は、単位体積当たりに使用される樹脂量を低減する観点から、三次発泡まで行った予備発泡粒子であることが好ましい。
特に、多段階の発泡の場合、各段階での発泡前に予備発泡粒子に対してガスによる加圧処理を行うことが好ましい。加圧処理に用いるガスとしては、ポリアミド系樹脂に対して不活性である限り、特には限定されないが、ガスの安全性が高く、ガスの地球温暖化係数の小さい、無機ガスやハイドロフルオロオレフィンが好ましい。無機ガスとしては、例えば、空気、炭酸ガス、窒素ガス、酸素ガス、アンモニアガス、水素ガス、アルゴンガス、ヘリウムガス、ネオンガス等が挙げられ、また、ハイドロフルオロオレフィンとしては、例えば、HFO−1234y、HFO−1234ze(E)等が挙げられ、特に、取り扱い容易性及び経済性の観点から、空気や炭酸ガスが好ましい。加圧処理の手法としては、特には限定されないが、予備発泡粒子を加圧タンク内に充填し、該タンク内にガスを供給する手法等が挙げられる。
【0067】
上記発泡樹脂は、上記予備発泡粒子(例えば、上記ポリアミド系樹脂を含むポリアミド系樹脂予備発泡粒子)を含むことが好ましく、例えば、前述の予備発泡粒子(例えば、ポリアミド系樹脂予備発泡粒子)を成形することによって得ることができる。
【0068】
予備発泡粒子を成形する方法としては、特に限定されないが、例えば、予備発泡粒子を成形用金型のキャビティ内に充填し、加熱することによって、発泡を生じさせると同時に予備発泡粒子同士を熱融着させた後、冷却により生成物を固化し、成形することができる。ここで、予備発泡粒子の充填方法は、特には限定されないが、例えば、金型を多少開けた状態で予備発泡粒子を充填するクラッキング法、金型を閉じたままの状態で加圧圧縮した予備発泡粒子を充填する圧縮法、金型に加圧圧縮した予備発泡粒子を充填した後に上記クラッキング法を行う圧縮クラッキング法等が挙げられる。
【0069】
予備発泡粒子の気泡に一定のガス圧力を付与して、粒子内部の気泡の大きさ(セルサイズ)を均一にする観点から、予備発泡粒子を成形用金型のキャビティ内に充填する前に、予備発泡粒子に対してガスによる加圧処理を行うことが好ましい。加圧処理に用いるガスとしては、特には限定されないが、難燃性、耐熱性、寸法安定性の観点から、無機ガス等が挙げられる。無機ガス及び加圧処理の方法については、多段階発泡の場合に予備発泡粒子に対して施されるガスによる加圧処理の場合と同様である。
【0070】
予備発泡粒子を成形する際に用いられる熱媒体は、汎用の熱媒体としてよく、発泡樹脂の酸化劣化を抑制する観点から、飽和水蒸気や過熱水蒸気であることが好ましく、発泡樹脂に対して均一な加熱を可能にする観点から、飽和水蒸気が更に好ましい。
【0071】
上記発泡樹脂の製造方法は、例えば、予備発泡粒子を金型のキャビティ内に充填する充填工程と、キャビティ内に予備発泡粒子の熱融着温度以下の水蒸気を5〜30秒間供給して、上記予備発泡粒子を予備的に加熱する予熱工程と、キャビティ内に予備発泡粒子の熱融着温度以上の水蒸気を20〜120秒間供給して、予備発泡粒子を発泡させ、且つ熱融着させることによって、発泡樹脂を得る融着工程と、を有する方法が好ましい。
【0072】
また、上記発泡樹脂は、予備発泡粒子を、予熱工程と融着工程において、二段階で加熱して得ることが好ましい。
この方法によれば、一段階目に、予備発泡粒子の熱融着温度以下の水蒸気で予備発泡粒子を予備的に加熱することによって、予備発泡粒子の集合体全体における温度分布をより均一にすることができる。そして、この一段階目の予備的な加熱により、二段階目に、熱融着温度以上の水蒸気で予備発泡粒子を加熱した際に、予備発泡粒子における発泡がより均一なものとなり、予備発泡粒子を発泡体に成形しやすくなる。
また、この方法によれば、得られる発泡樹脂において、樹脂の結晶子サイズがより大きくなり、また、結晶化度がより高くなり、ひいては、耐熱性に優れた芯材を得ることができる。
【0073】
予備発泡粒子を加熱する際の温度としては、前述の通り、予備発泡粒子の熱融着温度(Tf)近傍であることが望ましい。
なお、本明細書において、熱融着温度とは、予備発泡粒子を飽和水蒸気内において加熱し、予備発泡粒子同士が融着する温度を指す。熱融着温度の測定方法は下記に記載の通りである。
予備発泡粒子を、気泡内部の圧力が大気圧であり、炭化水素等の発泡剤を含んでいない状態にする。この予備発泡粒子10gを金属メッシュの容器に予備発泡粒子同士が接触するように入れ、次いで、所定温度の飽和蒸気で30秒間加熱した。そして、加熱後に予備発泡粒子同士が全体で80%以上融着していた温度のうちの最低の温度(℃)を、予備発泡粒子の熱融着温度とする。
【0074】
一段階目の加熱温度は、Tf(℃)より低い温度であることが望ましく、Tf−20℃以上であることが好ましく、Tf−15℃以上であることが更に好ましく、また、Tf−2℃以下であることが好ましく、Tf−5℃以下であることが更に好ましい。
一段階目の加熱時間は、2秒以上であることが望ましく、3秒以上であることが更に望ましく、20秒以下であることが望ましく、15秒以下であることが更に望ましい。
【0075】
二段階目の加熱温度は、Tf(℃)より高い温度であり、Tf+15℃以下であることが好ましく、Tf+10℃以下であることが更に好ましく、Tf+5℃以下であることが特に好ましい。
二段階目の加熱時間は、10秒以上であることが望ましく、15秒以上であることが更に望ましく、60秒以下であることが望ましく、45秒以下であることが更に望ましい。
【0076】
一段階目及び二段階目の加熱温度及び加熱時間を、上記範囲とすれば、予備発泡粒子同士を十分に熱融着させることができ、また、樹脂の結晶化がより促進された芯材を得ることができる。
【0077】
上記芯材としては、上述の方法で得られた上記発泡樹脂を芯材として使用してもよい。芯材に発泡樹脂以外の部材が含まれる場合、上記芯材の製造方法としては、例えば、上述の方法で得られた上記発泡樹脂に、発泡樹脂以外の部材を積層する等の方法が挙げられる。
【0078】
−表皮材の調製工程−
表皮材調製工程では、溶融状態の樹脂中に繊維を浸漬させたり、溶融状態の樹脂を繊維に吹き付けたりして、樹脂に繊維を含浸させて、表皮材を得る。表皮材は、クロスプリプレグとして調製してよい。なお、樹脂に繊維を含浸させた後に、光や熱により樹脂の硬化を進ませておいてもよい。
【0079】
特にシート状の表皮材における繊維の目付量は、50〜4000g/m
2が好ましく、より好ましくは100〜1000g/m
2であり、例えば200g/m
2としてよい。
繊維強化複合体の形状もシート状である場合には、本実施形態の繊維強化複合体について記載した通りとしてもよい。
【0080】
−成形工程−
成形工程では、芯材と表皮材とを、所望の配置状態で、成形機内に充填して、同時に成形を行ってよい。
なお、芯材は、成形工程においてさらに発泡されてもよい。
【0081】
この成形工程では、例えば、両面が表皮材で覆われたシート状の複合体を製造する場合には、2枚のシート状の表皮材の間にシート状の芯材が位置するように、これらを成形機内に充填してよく、表皮材で覆われた塊状の複合体を製造する場合には、塊状の芯材がシート状の表皮材で包まれるように、これらを成形機内に充填してよく、表皮材で覆われた線状の複合体を製造する場合には、線状の芯材がシート状の表皮材で包まれるように、これらを成形機内に充填してよい。
【0082】
成形工程では、初めに、圧力をかけずに、80〜150℃、好適には100〜120℃の温度で、0〜5分間、好適には1〜3分間保持して、その後、0〜3MPa、好適には0.1〜1MPaの圧力、80〜150℃、好適には100〜140℃の温度で、5〜30分間、好適には10〜20分間保持することが好ましい。
このように、加圧前に、圧力をかけずに高温条件下で保持することによって、表皮材に均一に熱を加えて、表面平滑性を得ることができる。
【0083】
以下、本実施形態の繊維強化複合体の物性について記載する。
本実施形態の繊維強化複合体の、JIS−K7221に準拠して測定される、100℃環境下での曲げ弾性率は、高温環境下において優れた剛性を得る観点から、1〜50GPaであることが好ましい。
【0084】
本実施形態の繊維強化複合体の、JIS−K7221に準拠して測定される、23℃環境下での曲げ弾性率は、優れた剛性を得る観点から、1〜100GPaであることが好ましく、より好ましくは10〜100GPaである。
【0085】
本実施形態の繊維強化複合体の、JIS−K7221に準拠して測定される、100℃環境下での曲げ強度は、高温環境下において優れた剛性を得る観点から、10〜300MPaであることが好ましく、より好ましくは35〜200MPaである。
【0086】
本実施形態の繊維強化複合体の、JIS−K7221に準拠して測定される、23℃環境下での曲げ強度は、優れた剛性を得る観点から、10〜400MPaであることが好ましく、より好ましくは70〜300MPaである。
【0087】
本実施形態の繊維強化複合体の見かけ密度は、50〜1000kg/m
3であることが好ましい。なお、繊維強化複合体の見かけ密度とは、繊維強化複合体の体積Vに対する、繊維強化複合体の質量Wの割合(W/V)をいう。
【0088】
本実施形態の繊維強化複合体の寸法は、目的や用途に応じて適宜定められてよい。表皮材の厚さとしては、概して、0.1〜2mmとしてよい。
【実施例】
【0089】
以下、本発明を実施例及び比較例に基づいて説明するが、本発明はこれらに限定されるものではない。
【0090】
ポリアミド系樹脂、予備発泡粒子、発泡樹脂の物性の測定方法(A)〜(F)を以下に示す。
【0091】
(A)結晶子サイズ、結晶化度
得られた発泡樹脂のX線回折(XRD)測定を、X線散乱装置(商品名:NanoViewer、リガク社製)を用いた透過法により、行った。測定条件は、第一スリット:0.4mmφ、第二スリット:0.2mmφ、X線波長:0.154nm、カメラ長:78.8mm、とした。検出器にはイメージングプレート(IP)を用いた。試料には試料厚みが0.2mm程度になるようにスライスした芯材を用いた。IPにより得られた二次元X線回折パターンを円環平均により一次元化した。また、空セル散乱補正も実施した。
こうして得られた一次元X線回折プロファイルを、ソフトウェア(商品名:Igor Pro Version6.3.2.3、Wavemetrics社製)を用いて、ピーク形状としてガウス関数を仮定して、結晶由来の回折ピークと非晶由来の回折ピークとにピーク分離を行った。
(A−1)結晶子サイズ
ピーク分離により得られたピークのうち、最も狭いピーク幅を有するピークの半価全幅β(rad)を計算し、該半価全幅βを用いて前述の式(1)に従って、芯材の結晶子サイズDを算出した。
(A−2)結晶化度
ピーク分離により得られた各ピークの面積を計算し、該面積を用いて前述の式(2)に従って、芯材の結晶化度Xを算出した。
【0092】
(B)密度
得られた発泡樹脂について、重量W(kg)を測定し、その後、水没法により、芯材の見かけの体積Va(m
3)を測定した。そして、その重量Wを見かけの体積Vaで除した値W/Va(kg/m
3)を、芯材の密度とした。
【0093】
(C)独立気泡率S
前述の(B)において見かけの体積Vaを測定した発泡樹脂について、その真の体積(Vx)を空気比較式比重計(ベックマン(株)社製)を用いて測定した。そして、前述の式(3)に従って、独立気泡率S(%)を算出した。
【0094】
(D)融着率
縦:300mm、横:300mm、厚み:20mmの板状の発泡樹脂の表面にカッターナイフを用いて縦に2等分するように5mmの深さの切り込み線を入れ、この線に沿って発泡樹脂を分割した。この分割面に現れた予備発泡粒子に関して、予備発泡粒子が粒子内で破断している(予備発泡粒子が分割面により破壊されている)ものの数(a)と、予備発泡粒子同士の界面に沿って破断している(予備発泡粒子同士の界面が分割面になっている)ものの数(b)とを測定し、下記式(4)に従って融着率(%)を算出した。
融着率(%)={a/(a+b)}×100
・・・(4)
【0095】
(E)融点
ポリアミド系樹脂の融点の測定を、JIS K7121に準じて、示差走査熱量計(商品名:DSC7、パーキンエルマー社製)を用いて、行った。試料8mgを精秤し、これを測定に用いた。測定条件は、窒素雰囲気下、温度条件:300℃で5分間保持、その後、降温速度:20℃/分で50℃まで降温、次いで、昇温速度:20℃/分で50℃から300℃まで昇温、とした。
そして、現れた吸熱を示すピークを樹脂の融解を示すピークとし、最も高温側に現れた吸熱を示すピークにおける温度(℃)を、ポリアミド系樹脂の融点とした。
【0096】
(F)熱融着温度
得られたポリアミド系樹脂予備発泡粒子を、気泡内部の圧力が大気圧であり、炭化水素等の発泡剤を含んでいない状態にした。この予備発泡粒子10gを金属メッシュの容器に予備発泡粒子同士が接触するように入れ、次いで、所定温度の飽和蒸気で30秒間加熱した。そして、加熱後に予備発泡粒子同士が全体で80%以上融着していた温度のうちの最低の温度(℃)を、予備発泡粒子の熱融着温度とした。
【0097】
後述する実施例及び比較例の繊維強化複合体の評価方法(1)〜(6)について、以下に説明する。
【0098】
(1)曲げ弾性率
JIS−K7221に準拠し、実施例及び比較例で得られた繊維強化複合体の曲げ弾性率(GPa)を求めた。具体的には、標準状態として、温度23℃、相対湿度50%に制御した室内に24時間静置して状態調整した繊維強化複合体を、AUTOGRAPH AG−5000D(島津製作所製)での測定に供し、JISに規定する計算式から、曲げ弾性率(23℃雰囲気下)(GPa)を算出した。また、標準状態として、温度23℃、相対湿度50%に制御した室内に24時間静置し、その後、恒温槽内にて100℃に1時間静置して状態調整した繊維強化複合体を、恒温槽内にて100℃に1時間静置して状態調整した複合体を、100℃恒温槽内にて、AUTOGRAPH AG−5000D(島津製作所製)での測定に供し、JISに規定する計算式から曲げ弾性率(100℃雰囲気下)(GPa)を算出した。
結果を表1に示す。
【0099】
(2)曲げ強度
JIS−K7221に準拠し、実施例及び比較例で得られた繊維強化複合体の曲げ強度(MPa)を求めた。具体的には、標準状態として、温度23℃、相対湿度50%に制御した室内に24時間静置して状態調整した繊維強化複合体を、AUTOGRAPH AG−5000D(島津製作所製)での測定に供し、JISに規定する計算式から、曲げ強度(23℃雰囲気下)(MPa)を算出した。また、標準状態として、温度23℃、相対湿度50%に制御した室内に24時間静置し、その後、恒温槽内にて100℃に1時間静置して状態調整した繊維強化複合体を、100℃恒温槽内にて、AUTOGRAPH AG−5000D(島津製作所製)での測定に供し、JISに規定する計算式から曲げ強度(100℃雰囲気下)(MPa)を算出した。
結果を表1に示す。
【0100】
(3)外観
(3−1)表面平滑性
実施例及び比較例で得られた繊維強化複合体を(1)曲げ弾性率の測定と同様にして、標準状態として、温度23℃、相対湿度50%に制御した室内に24時間静置し、その後、恒温槽内にて100℃に1時間静置して状態調整した繊維強化複合体の表面を目視にて観察し、表皮材と芯材との接着状態を以下のように評価した。
結果を表1に示す。
◎(優れる):表面平滑性、表皮材と芯材との接着性ともに良好。
○(良好):表面平滑性は、実用上問題ないが、表皮材と芯材との間に一部浮(ウキ)が観られた。
×(劣る):表皮材と芯材との間に浮(ウキ)が観られ、実用上問題がある。
【0101】
(3−2)表面美粧性
実施例及び比較例で得られた繊維強化複合体の表面を目視にて観察し、表層の状態を以下のように評価した。
結果を表1に示す。
○(良好):表皮材の樹脂が十分硬化し、繊維強化複合体の表面に、樹脂不足や凹凸がない。
×(劣る):表皮材の樹脂が芯材側へ入り込み、繊維強化複合体の表面に、樹脂不足により繊維の露出や凹凸形状ができている。
【0102】
(4)厚み
実施例及び比較例で得られた繊維強化複合体の厚み(mm)、及び表皮材の総厚み(mm)を、ノギスを用いて測定した。
結果を表1に示す。
【0103】
(5)見かけ密度
実施例及び比較例で得られた繊維強化複合体の重量W(kg)を測定した後、ノギスにてシート状の繊維強化複合体の3辺を測定し、その体積V(m
3)を計算した。そして、体積Vに対する重量Wの割合(W/V)(kg/m
3)を見かけ密度とした。
結果を表1に示す。
【0104】
(実施例1)
引張弾性率が250GPaの炭素繊維と硬化温度が80℃であるエポキシ樹脂とで構成される、繊維目付が200g/m
2、炭素繊維含有量が60質量%のクロスプリプレグを作製し、表皮材として2枚用意した。
次に、芯材としてのポリアミド系樹脂発泡体を下記の方法で用意した。
ポリアミド系樹脂としてのナイロン6(商品名:UBEナイロン 1022B、宇部興産(株)製)100質量部、核剤としてのタルク0.8質量部、ヒンダードフェノール系酸化防止剤(Irganox1098、BASF製)0.3質量部を、押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、ペレット形状の基材樹脂を作製した。
これに、特開2011−105879号公報の実施例に記載の方法に準じて、基材樹脂に発泡剤としての炭酸ガスを含有させた。そして、炭酸ガスを含めた基材樹脂を加熱することによって、発泡を生じさせて、密度:300kg/m
3の予備発泡粒子を得た。
得られた予備発泡粒子をオートクレーブ中に封入し、オートクレーブ内の圧力が0.5MPaとなるまで、圧縮空気を1時間かけて導入し、その後、圧力を0.5MPaに24時間保持することによって、予備発泡粒子に加圧処理を施した。
加圧処理した予備発泡粒子を、型内成形金型のキャビティ(キャビティ寸法は、縦:300mm、横:300mm、高さ:3mm)内に充填し、その後、型締めした。そして、この金型を型内発泡成形機に取り付けた。
その後、キャビティ内に135℃の飽和水蒸気を10秒間供給し(一段階目の加熱)、その後、キャビティ内に144℃の飽和水蒸気を30秒間供給して(二段階目の加熱)、予備発泡粒子を発泡させ、且つ熱融着させることによって、予備発泡粒子を成形した。
金型のキャビティ内に冷却水を供給することによって、得られた成形体を冷却し、その後、型開きを行い、芯材としてのポリアミド系樹脂発泡体を取り出した。
得られた発泡体を芯材として用い、芯材の上下両面に表皮材を1枚ずつ積層し、次いで、この積層体を、圧力をかけずに、100℃で3分間保持した後、面圧0.4MPaで加圧しながら、15分間保持することによって、表皮材と芯材とを同時成形して繊維強化複合体を得た。繊維強化複合体は、標準状態及び100℃の高温環境下のいずれにおいても、良好な曲げ弾性率を備え、良好な外観を有していた。
実施例1の詳細を表1に示す。
【0105】
(実施例2)
上下両面それぞれに、表皮材を2枚ずつ積層した以外は実施例1と同様にして製造及び評価を行った。
実施例2の繊維強化複合体は、実施例1以上に優れた曲げ弾性率を示した。
実施例2の詳細を表1に示す。
【0106】
(実施例3)
引張弾性率が250GPaの炭素繊維と硬化温度が140℃であるエポキシ樹脂とで構成される、繊維目付が200g/m
2、炭素繊維含有量が60質量%のクロスプリプレグを作製し、表皮材として2枚用意した以外は実施例1と同様にして製造及び評価を行った。
実施例3の詳細を表1に示す。
【0107】
(実施例4)
実施例1と同様に密度:300kg/m
3の予備発泡粒子を得た後、得られた予備発泡粒子をオートクレーブ中に封入し、オートクレーブ内の圧力が0.3MPaとなるまで、圧縮空気を1時間かけて導入し、その後、圧力を0.3MPaに24時間保持する、という加圧処理を実施し、その後に、230℃で加熱することによって、更に発泡を生じさせて、密度:150kg/m
3とした点以外は、実施例1と同様にして製造及び評価を行った。
実施例4の詳細を表1に示す。
【0108】
(実施例5)
実施例4と同様に、密度:150kg/m
3の予備発泡粒子を得た後、得られた予備発泡粒子をオートクレーブ中に封入し、オートクレーブ内の圧力が0.3MPaとなるまで、圧縮空気を1時間かけて導入し、その後、圧力を0.3MPaに24時間保持する、という加圧処理を実施し、その後に、230℃で加熱することによって、更に発泡を生じさせて、密度:60kg/m
3とした点以外は、実施例4と同様にして製造及び評価を行った。
実施例5の詳細を表1に示す。
【0109】
(実施例6)
芯材としてのポリアミド系樹脂発泡体を下記の方法で用意した以外は、実施例1と同様にして製造及び評価を行った。
ポリアミド系樹脂としてナイロン666(ナイロン66/6)(商品名:Novamid 2430A、(株)DSM製)100質量部、核剤としてのタルク0.8質量部、ヒンダードフェノール系酸化防止剤(Irganox1098、BASF製)0.3質量部を、押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、ペレット形状の基材樹脂を作製した。
これに、特開2011−105879号公報の実施例に記載の方法に準じて、基材樹脂に発泡剤としての炭酸ガスを含有させた。そして、炭酸ガスを含めた基材樹脂を加熱することによって、発泡を生じさせて、密度:300kg/m
3の予備発泡粒子を得た。
得られた予備発泡粒子をオートクレーブ中に封入し、オートクレーブ内の圧力が0.4MPaとなるまで、圧縮空気を1時間かけて導入し、その後、圧力を0.4MPaに24時間保持することによって、予備発泡粒子に加圧処理を施した。
加圧処理した予備発泡粒子を、型内成形金型のキャビティ(キャビティ寸法は、縦:300mm、横:300mm、高さ:3mm)内に充填し、その後、型締めした。そして、この金型を型内発泡成形機に取り付けた。
その後、キャビティ内に105℃の飽和水蒸気を10秒間供給し、その後、キャビティ内に116℃の飽和水蒸気を30秒間供給して、予備発泡粒子を発泡させ、且つ熱融着させることによって、予備発泡粒子を成形した。
金型のキャビティ内に冷却水を供給することによって、得られた成形体を冷却し、その後、型開きを行い、芯材としてのポリアミド系樹脂発泡体を取り出した。
実施例6の詳細を表1に示す。
【0110】
(実施例7)
ポリアミド系樹脂としてのナイロン6(商品名:UBEナイロン 1022B、宇部興産(株)製)50質量部、ナイロン6I/6T(商品名:Grivory G16、EMS製)50質量部を用いた以外は、実施例4と同様にして製造及び評価を行った。
実施例7の詳細を表1に示す。
【0111】
(比較例1)
予備発泡粒子の成形を一段階で行った点以外は、実施例1と同様にして製造及び評価を行った。
比較例1の詳細を表1に示す。
【0112】
(比較例2)
引張弾性率が250GPaの炭素繊維と硬化温度が140℃であるエポキシ樹脂とで構成される、繊維目付が200g/m
2、炭素繊維含有量が60質量%のクロスプリプレグを用いた点以外は、比較例1と同様にして製造及び評価を行った。
比較例2の詳細を表1に示す。
【0113】
(比較例3)
ポリアミド系樹脂としてナイロン6(商品名:UBEナイロン 1022B、宇部興産(株)製)30質量部、ナイロン6I/6T(商品名:Grivory G16、EMS製)70質量部を用いた以外は実施例7と同様にして製造及び評価を行った。
比較例3の詳細を表1に示す。
【0114】
【表1】