(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6747822
(24)【登録日】2020年8月11日
(45)【発行日】2020年8月26日
(54)【発明の名称】距離測定装置、距離測定方法および距離測定用プログラム
(51)【国際特許分類】
G01S 17/36 20060101AFI20200817BHJP
G01S 17/42 20060101ALI20200817BHJP
【FI】
G01S17/36
G01S17/42
【請求項の数】5
【全頁数】10
(21)【出願番号】特願2016-32015(P2016-32015)
(22)【出願日】2016年2月23日
(65)【公開番号】特開2017-150882(P2017-150882A)
(43)【公開日】2017年8月31日
【審査請求日】2019年2月18日
(73)【特許権者】
【識別番号】000220343
【氏名又は名称】株式会社トプコン
(74)【代理人】
【識別番号】100096884
【弁理士】
【氏名又は名称】末成 幹生
(72)【発明者】
【氏名】永井 勝之
(72)【発明者】
【氏名】前原 貴裕
(72)【発明者】
【氏名】阿部 淳
【審査官】
山崎 仁之
(56)【参考文献】
【文献】
国際公開第2010/100846(WO,A1)
【文献】
特開2006−084430(JP,A)
【文献】
特開2006−138702(JP,A)
【文献】
特開2009−284128(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 17/36
G01S 17/42
(57)【特許請求の範囲】
【請求項1】
測定対象物に複数の変調周波数で変調された測距光を照射する測距光照射部と、
前記測距光の前記測定対象物からの反射光を検出する検出部と、
前記検出された反射光の受光成分を前記複数の変調周波数の成分に分離する分離部と、
前記分離された前記複数の変調周波数の成分の中から、受光強度が閾値を超えたものを選択する選択部と、
前記選択された変調周波数の成分に基づいて前記測定対象物までの距離を算出する距離算出部と
を備え、
前記閾値を超えた複数の変調成分が選択された場合に、各変調成分において距離の算出を複数回行い、その結果、最もバラツキが小さい変調成分が選択されることを特徴とする距離測定装置。
【請求項2】
前記複数の変調周波数の成分は、基本波の周波数とその高調波の周波数を含むことを特徴とする請求項1に記載の距離測定装置。
【請求項3】
前記測定対象物までの距離と前記測距光の照射方向とに基づいて前記測定対象物の位置を算出する位置算出部を備えることを特徴とする請求項1または2に記載の距離測定装置。
【請求項4】
測定対象物に複数の変調周波数で変調された測距光を照射する測距光照射ステップと、
前記測距光の前記測定対象物からの反射光を検出する検出ステップと、
前記検出された反射光の受光成分を前記複数の変調周波数の成分に分離する分離ステップと、
前記分離された前記複数の変調周波数の成分の中から、受光強度が閾値を超えたものを選択する選択ステップと、
前記選択された変調周波数の成分に基づいて前記測定対象物までの距離を算出する距離算出ステップと
を備え、
前記閾値を超えた複数の変調成分が選択された場合に、各変調成分において距離の算出を複数回行い、その結果、最もバラツキが小さい変調成分が選択されることを特徴とする距離測定方法。
【請求項5】
コンピュータに読み取らせて実行させるプログラムであって、
コンピュータに
測定対象物に複数の変調周波数で変調された測距光を照射する測距光照射ステップと、
前記測距光の前記測定対象物からの反射光を検出する検出ステップと、
前記検出された反射光の受光成分を前記複数の変調周波数の成分に分離する分離ステップと、
前記分離された前記複数の変調周波数の成分の中から、受光強度が閾値を超えたものを選択する選択ステップと、
前記選択された変調周波数の成分に基づいて前記測定対象物までの距離を算出する距離算出ステップと
を実行させ、
前記閾値を超えた複数の変調成分が選択された場合に、各変調成分において距離の算出を複数回行い、その結果、最もバラツキが小さい変調成分が選択されることを特徴とする距離測定用プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レーザ光を用いた距離の測定技術に関する。
【背景技術】
【0002】
レーザ光を用いて距離の測定を行う技術が知られている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2003−90881号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
この技術では、測距光となるレーザ光を高周波で変調したものを対象物に照射し、その反射光を検出し、照射光と検出光の位相差から距離を算出する。この際、変調周波数が高い方がより小さい位相差を検出できるので、測定される距離の分解能が高くなる。
【0005】
ところで、道路や地面の測量を行う場合、距離が遠くなると、レーザ光が対象物に対して斜めに当たるので距離が異なる部分からの反射光が生じ、位相がずれた複数の反射光を検出することになる。この場合、位相のずれに起因する波の打消し作用が生じ、検出光の強度が低下する傾向が表れる。この傾向は、測距光の変調周波数が高い程、顕著になる。この結果、測定可能距離が短くなる。
【0006】
このような背景において、本発明は、対象に斜めに測距光が当たる場合に生じる測定可能距離の低下を抑える技術の提供を課題とする。
【課題を解決するための手段】
【0007】
請求項1に記載の発明は、測定対象物に複数の変調周波数で変調された測距光を照射する測距光照射部と、前記測距光の前記測定対象物からの反射光を検出する検出部と、前記検出された反射光の受光成分を前記複数の変調周波数の成分に分離する分離部と、前記分離された前記複数の変調周波数の成分の中から、受光強度が閾値を超えたものを選択する選択部と、前記選択された変調周波数の成分に基づいて前記測定対象物までの距離を算出する距離算出部とを備え
、前記閾値を超えた複数の変調成分が選択された場合に、各変調成分において距離の算出を複数回行い、その結果、最もバラツキが小さい変調成分が選択されることを特徴とする距離測定装置である。
【0008】
請求項2に記載の発明は、請求項1に記載の発明において、前記複数の変調周波数の成分は、基本波の周波数とその高調波の周波数を含むことを特徴とする。
【0010】
請求項
3に記載の発明は、請求項1
または2に記載の発明において、前記測定対象物までの距離と前記測距光の照射方向とに基づいて前記測定対象物の位置を算出する位置算出部を備えることを特徴とする。
【0011】
請求項
4に記載の発明は、測定対象物に複数の変調周波数で変調された測距光を照射する測距光照射ステップと、前記測距光の前記測定対象物からの反射光を検出する検出ステップと、前記検出された反射光の受光成分を前記複数の変調周波数の成分に分離する分離ステップと、前記分離された前記複数の変調周波数の成分の中から、受光強度が閾値を超えたものを選択する選択ステップと、前記選択された変調周波数の成分に基づいて前記測定対象物までの距離を算出する距離算出ステップとを備え、
前記閾値を超えた複数の変調成分が選択された場合に、各変調成分において距離の算出を複数回行い、その結果、最もバラツキが小さい変調成分が選択されることを特徴とする距離測定方法である。
【0012】
請求項
5に記載の発明は、コンピュータに読み取らせて実行させるプログラムであって、コンピュータに測定対象物に複数の変調周波数で変調された測距光を照射する測距光照射ステップと、前記測距光の前記測定対象物からの反射光を検出する検出ステップと、前記検出された反射光の受光成分を前記複数の変調周波数の成分に分離する分離ステップと、前記分離された前記複数の変調周波数の成分の中から、受光強度が閾値を超えたものを選択する選択ステップと、前記選択された変調周波数の成分に基づいて前記測定対象物までの距離を算出する距離算出ステップとを実行させ、
前記閾値を超えた複数の変調成分が選択された場合に、各変調成分において距離の算出を複数回行い、その結果、最もバラツキが小さい変調成分が選択されることを特徴とする距離測定用プログラムである。
【発明の効果】
【0013】
本発明によれば、対象に斜めに測距光が当たる場合に生じる測定可能距離の低下を抑える技術が得られる。
【図面の簡単な説明】
【0014】
【
図3】検出した測距光の位相の状態を示す波形図である。
【
図5】処理の手順の一例を示すフローチャートである。
【発明を実施するための形態】
【0015】
(ハードウェアの構成)
図1には、距離測定装置100が示されている。距離測定装置100は、発振部101、変調信号生成部102、照射部103、検出部104、変調周波数分離部105、受光強度検出部106、選択部107、距離算出部108、測定方向検出部109、測定対象位置算出部110を備えている。また、距離測定装置100は、その動作を制御するマイコン、各種データを記憶する記憶装置(半導体メモリ等)操作パネル、外部メモリや外部の機器(PCやタブレット等)との間で通信を行うインターフェース機能を備えている。また、以下の説明において、デジタル処理を行なう機能部での処理は、CPU、FPGA等の半導体集積回路を用いて行われる。この半導体集積回路は、各機能に対応させて用意してもよいし、一つの半導体集積回路で複数の機能を実現する構成でもよい。
【0016】
発振部101は、測距用レーザ光を生成するレーザ発振装置である。この部分は、公知の半導体レーザ発振装置を用いて構成されている。測距用レーザ光の波長は、例えば600〜1000nm程度のものが選択されるが、特に限定されない。発振部101は、後述する変調信号生成部102が生成した変調信号を用いて半導体レーザ発振器にAM変調を加え、生成するレーザ光に直接変調する。レーザ光の変調は、生成したレーザ光に対して、電気光学効果、音響光学効果、磁気光学効果、熱光学効果、非線型光学効果等を利用して変調を加える方式(外部変調方式)を採用することもできる。この場合、発振部101で生成されたレーザ光を外部変調器(例えば、強誘電対結晶を用いた変調器)で変調する。
【0017】
変調信号生成部102は、上述の変調を行うための変調信号を生成する電子回路である。ここでは75MHzの変調信号の生成を行う。変調信号生成部102からは、75MHzの高調波(1次、2次、3次、4次、5次、・・・)も出力される。変調信号の生成は、水晶発振器、セラミックス発振器、DDS(ダイレクトデジタルシンセサイザー)、PLL回路等を用いて構成される。
【0018】
照射部103は、発振部101から発振され、上記の変調信号で変調されたレーザ光を測距光として外部の対象物に照射する機構である。照射部103は、レーザ測距光を対象物に照射するための光学系、レーザ測距光を走査しつつ外部に照射するための機構、レーザ光の照射方向を検出するロータリーエンコーダ等の角度検出デバイスおよびその周辺回路を備えている。これらは、通常のレーザ測距装置やレーザスキャン装置の場合と同じである。
【0019】
検出部104は、対象物から反射した測距レーザ光を検出する。検出部104は、光学系、フォトダイオード等の測距光の検出デバイス、当該検出デバイスの出力を処理し、検出信号を出力する電子回路を備えている。
【0020】
変調周波数分離部105は、検出部104が検出した測距光に含まれる各変調成分を分離する電子回路である。この例において、変調周波数分離部105は、セラミックスフィルタや水晶フィルタ等を用いたフィルタ回路を備え、このフィルタ回路を用いて、各変調信成分への分離が行われる。分離された変調成分は、A/D変換回路でデジタル信号に変換され、受光強度検出部106に送られる。各変調成分への分離をデジタルフィルタによって行うことも可能である。
【0021】
照射部103から対象物に照射される測距光は、上述したように75MHzおよびその高調波の変調成分を含んでいる。当然、対象物で反射され検出部104で検出される反射光も同様な変調成分を含んでいる。変調周波数分離部105は、75MHzおよびその高調波に対応する変調成分を分離する。この処理により、検出光の中から、75MHzの変調成分、150MHzの変調成分、225MHzの変調成分、300MHzの変調成分、375MHzの変調成分、・・・が分離される。分離する高調波成分の次数は、例えば5次まで(この場合、375MHzまで)とする。勿論、より高次の成分を分離の対象とすることもできる。
【0022】
受光強度検出部106は、変調周波数分離部105で分離された各次数の変調成分それぞれの受光強度(S/N比)を検出する。この処理はソフトウェア処理により行われる。選択部107は、強度検出部106が検出した各次数の変調成分の受光強度に基づいて、特定の条件を満たす受光強度の変調成分を選択する。具体的には、予め設定した閾値を超える受光強度を有し、且つ、最も高次の変調成分を選択する。この処理もソフトウェア処理により行われる。この処理において、最も受光強度の高い変調成分を選択することも可能である。なお、上記の閾値は、距離の算出に支障がないレベルの受光強度として設定される。
【0023】
距離算出部108は、選択部107が選択した変調成分に基づいて測距対象点までの距離を算出する。距離の算出は、位相差測距方式によって行われる。以下簡単に原理を説明する。まず、AM変調されたレーザ光を対象物に照射し、その反射光を受光すると、照射光と反射光に位相のずれが生じる。この位相のずれは、レーザ光の飛翔時間(伝搬距離)に比例しており、レーザ光の飛翔時間は当該レーザ光の飛翔距離(伝搬距離)に比例するので、上記の位相のずれから対象物(反射位置)までの距離を算出することができる。この原理により、距離算出部108は、測距用レーザ光の反射位置までの距離を算出する。
【0024】
この例では、照射部103の光学系とは別に距離測定装置100内部に参照用の光路が設けられている。この参照用の光路は、極短く当然その光路長は固定値である。参照光は、発振部101で発光された測距光を分岐したもので、上記の参照用の光路に導かれる。参照用の光路を伝搬した参照光は、検出部104と同様な構成により検出される。この参照光の検出信号が参照信号となる。距離の算出においては、上記の参照信号と測距対象からの反射光の検出信号(測距信号)とが比較される。参照光と測距光の伝搬距離は異なるので、参照信号と検出信号(測距信号)の変調成分には位相差が生じる。この位相差は、測距対象までの距離に対応しているので、予め当該位相差と測距距離との関係を求めておけば、当該位相差から測距対象までの距離を算出できる。よって、参照信号と検出信号(測距信号)との位相差を位相差検出回路や位相差検出用ソフトウェアによって検出し、この検出された位相差を予め求めておいた距離情報と照合させることで、測距対象までの距離が得られる。この処理が距離算出部108において行われる。
【0025】
測定方向検出部109は、上記距離の算出の対象となった検出光の到来方向(対応する測距光の照射方向)を検出する。前述したように照射部103は、測距光の照射方向(検出光の到来方向)を検出する角度検出デバイスを備え、その検出信号を出力している。この検出信号に基づき測定方向検出部109は、距離測定装置100から見た測定対象位置の方向を検出する。
【0026】
測定対象位置算出部110は、距離算出部108が算出した距離測定装置100から測距対象点までの距離、および測定方向検出部109が検出した距離測定装置100から見た測距対象点の方向に基づき、距離測定装置100に対する測距対象位置の三次元位置を算出する。この処理は、視点から目標までの方向と距離が判れば、視点に対する目標の位置を特定できる原理に基づいて行われる。ここで、距離測定装置100の位置が地図上で特定されていれば、測距対象位置の地図上での位置(絶対位置)が算出できる。
【0027】
(処理の一例)
図5は、距離測定装置100で行われる処理の手順の一例を示すフローチャートである。
図5の処理を実行するためのプログラムは、距離測定装置100が備える記憶装置(例えば、半導体メモリ)に記憶され、距離測定装置100が備えるマイコンによって実行される。このプログラムは、外部の適当な記憶領域に記憶され、そこから提供される形態であってもよい。
【0028】
まず、75MHzおよびその高次の周波数に変調されたレーザ光が測距レーザ光として対象に照射される(ステップS101)。そしてその反射光が検出され(ステップS102)、更に検出光に基づく検出信号が各変調周波数成分に分離される(S103)。次に、分離された変調周波数成分毎に受光強度が検出される(ステップS104)。
【0029】
次に、分離された複数の変調周波数成分の中から、受光強度が閾値を超えるものを選択し、更にその中から最も高次の変調成分が選択される(ステップS105)。次に、ステップS105で選択された変調周波数成分を用いて測距光の反射点までの距離を算出し(ステップS106)、更にその方向の算出(ステップS107)を行う。そして、ステップS106およびS107の結果を用いて測距光の反射点の位置の算出を行う(ステップS108)。
【0030】
(作用)
以下、路面の測量を行う場合を説明する。75MHzおよびその5次までの高調波成分で変調された測距レーザ光を測量対象に照射する。この測距レーザ光の照射は、例えば、
図4のようにスキャンして行われる。
【0031】
路面の測量の場合、
図2示すように測距点(測距の対象となる点)が遠くなる程、路面に対してより斜めに測距光が入射する(つまり、角度θがより小さくなる)。この結果、照射点の輝点の形状は、より長軸の長い楕円となる。この楕円の長軸が長くなる程、測距光の反射位置に異なる距離が含まれる傾向が大となる。照射光が当たった部分の輝点が点であれば、この問題は生じないが、角度θが小さくなる程、すなわち測距の距離が大きくなる程、輝点が楕円になるので、上記の現象は顕著になる。
【0032】
図3(A)には、変調周波数が相対的に高い場合における反射光の位相の違いの状態が示され、
図3(B)には、変調周波数が相対的に低い場合における反射光の位相の違いの状態が示されている。上述した反射光における位相の違い(分散)が生じた場合、変調周波数が高いと、
図3(A)に示すように、位相の異なる反射光が同時に存在し、反射光同士の打消しが顕著になる。すなわち、変調周波数が高い場合において、反射位置の輝点形状が楕円になり、反射位置が測距方向に延びると、
図3(A)に概念的に示されているように、楕円の長軸方向の範囲に変調波の1波長が含まれる状態となる。この場合、測距光の反射光に位相のずれた複数の波が含まれていると、異なる波の山と谷が重ねる傾向が大となり、反射光同士の打消しが顕著になる。この結果、検出される反射光の受光強度が低くなる。これに対して、変調周波数が低いと、
図3(B)に示すように、反射位置の輝点が楕円となり、反射光の位相の違いが生じても、波の山と谷の間の距離が長いので、異なる波の山と谷が重なる傾向が減り、結果として異なる位相の波の打消しによる検出光の受光強度の低下が抑えられる。
【0033】
例えば、変調周波数が300MHzの場合、1波長が1mとなるので、楕円となった輝点の長軸の長さが数十cmあると、反射光において異なる位相の波が
図3(A)に示す状態で存在することになり、波の打消しの程度が大きくなる。例えば変調周波数が300MHzの場合、距離の差が25cmあると、往復で50cmの差が生じ、対応する2つの反射光の位相差は180°となり、山と谷が重なり完全な打消しが行われる。これに対して、変調周波数が75MHzの場合、1波長が4mとなるので、楕円となった輝点の長軸の長さが数十cmであっても、位相のずれもその程度であり、
図3(B)に示すように、反射光における波の打消しの程度は低い。以上の理由により、路面の計測において、測距距離が長い場合、高い変調周波数を用いると反射光の検出受光強度が低下する。これに対して、測距距離が長くても、変調周波数が低ければ反射光の検出受光強度の低下が抑えられる。
【0034】
本実施形態では、検出された反射光における複数の変調周波数の成分の受光強度を検出し、閾値より高い受光強度の成分を用いて距離の算出を行う。これにより、上述した理由による測距光の検出受光強度が足りない問題が回避される。つまり、より遠くの測距が可能となる。また同時に、受光強度の高い変調成分が複数あった場合に、その中の最も高い変調周波数のものを選択することで、その状態で最も距離分解能の高い計測が可能となる。
【0035】
(優位性)
本実施形態の距離測定装置100は、測定対象物に複数の変調周波数で変調された測距光を照射する照射部103と、測距光の測定対象物からの反射光を検出する検出部104と、検出された反射光の受光成分を複数の変調周波数の成分に分離する変調周波数分離部105と、分離された複数の変調周波数の成分の中から、受光強度が閾値を超えたものを選択する選択部107と、選択された変調周波数の成分に基づいて測定対象物までの距離を算出する距離算出部108とを備える。
【0036】
この構成によれば、検出した反射光を各変調成分に分け、変調成分毎に検出受光強度を出し、検出受光強度が閾値を超え、その中で変調周波数が最も高い成分を選択し、この選択された成分を用いて距離の算出を行う。このため、測距の距離が遠くても計測不能になることがなく、且つ、その条件下で最も高い分解能が有する距離の測定が行える。
【0037】
(その他)
複数の変調成分として、高調波を用いるのではなく(あるいはそれに加えて)、異なる発振周波数の変調信号を発振する発振器を用意し、異なる複数の変調周波数を得てもよい。また、測距の対象は、道路に限定されず、斜めから測距光を照射せざるを得ない建物の壁面等であってもよい。
【0038】
選択部107で閾値を超えた複数の変調成分が選択された場合に、ユーザのマニュアル操作によりその中の一つが選択できるようにしてもよい。また選択部107で閾値を超えた複数の変調成分が選択された場合に、変調周波数が最も高い変調成分を選択するのでなく、他の条件を用いて複数選択された変調成分の中から一つの変調成分を選ぶ態様も可能である。
【0039】
例えば、選択部107で閾値を超えた複数の変調成分が選択された場合に、各変調成分において距離の算出を複数回行い、その結果、最もバラツキが小さい変調成分を選択する処理が挙げられる。信号の受光強度が閾値を超えていても、それがS/Nぎりぎりであったり、何らかの理由により、信頼性を欠く状態であったりする場合がある。そのような場合、複数回の距離の算出を行い、その算出値の安定性を判定することで、より信頼性の高い計測値を得ることができる。