(58)【調査した分野】(Int.Cl.,DB名)
前記少なくとも1つのモードスペクトルが、TEモードスペクトルおよびTMモードスペクトルを含むことを特徴とする請求項1から3いずれか1項記載の測定システム。
前記検出器が、TEモードスペクトルを検出する第1の部分と、TMモードスペクトルを検出する第2の部分とを含むことを特徴とする請求項1から4いずれか1項記載の測定システム。
前記導波路の前記少なくとも1つの特性が、表面応力、応力プロファイル、圧縮応力、DOL、屈折率プロファイル、および複屈折、のうちの1以上を含むことを特徴とする請求項9記載の方法。
【発明を実施するための形態】
【0018】
ここで本開示の種々の実施形態を詳細に参照し、その例を添付の図面に示す。可能な限り、図面を通じて、同じまたは同様の部分の参照に、同じまたは同様の参照番号および符号を使用する。図面は必ずしも原寸に比例したものではなく、本開示の重要な態様を示すために図面が簡略化された場合、当業者はそれを認識するであろう。
【0019】
以下に明記される請求項は、この詳細な説明に組み込まれ、かつその一部を構成する。
【0020】
デカルト座標が参照のためにいくつかの図に示されているが、方向または向きに関して限定することを意図したものではない。
【0021】
略記RIUは、「屈折率単位(refractive index unit)」を表す。
【0022】
以下の議論は、IOXプロセスによって形成された導波路の、より低次モードおよびより高次モードを参照する。モードは、電場振幅の深さ分布におけるゼロ(ノード)の数によって順序付けされる。最低次モード(横磁界モードに対してTM
0、および横電界モードに対してTE
0と表示)は分布においてゼロがなく、最も高い有効屈折率を有する。第2のモード(TM
1またはTE
1)は、その電場振幅の深さ分布において1つのノードを有し、2番目に高い有効屈折率を有するなどとなる。導波路によって支持される2つの偏光状態の夫々に対する最高次の導波モードは、電場振幅の深さ分布において最も多くのゼロを含み、その偏光状態のモードの中で最も低い有効屈折率を有する。
【0023】
DOLが大きく強化イオン(Na
+の代わりにK
+とするイオン交換における、K
+など)を含む化学強化ガラスに関する多くの例において、最高次モードの有効屈折率は基板すなわちバルクガラスの屈折率よりも極わずかに高くなり得、また最低次(基本)モードの有効屈折率は、導波路内の任意の位置の材料屈折率の最大値(ガラス表面に存在することが多い)よりも極わずかに低くなり得る。
【0024】
従って本書では「より高次モード」および「より低次モード」という用語は、便宜上、一定数の最低次モードを集合的に「低次モード」と定義し、より高い残りのモードを「より高次モード」を構成すると定義し得るという点で、やや相対的である。結果として、モード間を区別するためあるいはモードを異なる群のものであると称するために使用される特定の相違点は、説明を簡単にするためのものであり、限定することを意図したものではない。
【0025】
図1Aは、本体21と(上部)表面22とを有する平面的なイオン交換基板20の形を成す、ガラス基板の例の上方斜視図である。この本体は、ベース(バルク)屈折率n
sおよび表面屈折率n
0を有する。
図1Bは、イオン交換基板20のx−y平面で取った拡大断面図であり、表面22に亘ってx方向へと本体21内に起こる、二重イオン交換(DIOX)プロセスの例を示している。
【0026】
図1Cは、(二重)イオン交換基板20を形成する二重イオン交換プロセスの結果を概略的に示している。イオン交換基板20は、第1のイオンI1および第2のイオンI2と交換される、基板イオンISを本体21内に含んでいる。第1のイオンI1および第2のイオンI2は、既知の技術を用いて順次または同時にガラス本体内に導入することができる。例えば第2のイオンI2は、第1のイオンI1を導入する前に強化のためにKNO
3浴により導入された、K
+イオンでもよく、第1のイオンI1は、表面22の近くに抗菌特性を付加するためにAgNO
3含有浴により導入された、Ag
+イオンでもよい。イオンI1およびI2を表す
図1Bの円は、単に概略的図示のために用いられたものであり、その相対的サイズは必ずしも、イオン交換に関与している実際のイオンのサイズ間の何らかの実際の関係を表したものではない。
【0027】
さらに、イオンI1は領域R1およびR2の両方にかなりの数で存在し得(
図2参照、以下で紹介および議論する)、タイプI2のイオンも同様になり得る。ワンステップのイオン交換プロセスでさえ、イオンI1およびI2の相対的濃度が著しく異なる2つの領域R1およびR2の形成を認めることができる。一例において、KNO
3およびAgNO
3の混合物を含有している浴内において、Na含有ガラスのイオン交換を用いると、かなりの濃度のAg
+およびK
+を含む領域R1と、同じくかなりの濃度のAg
+およびK
+を含む領域R2とを得ることができるが、K
+に対するAg
+の相対的濃度は、領域R2内よりも領域R1内で著しく大きくなり得る。
【0028】
図2は、例えば
図1Cに示されているようなイオン交換基板20での、屈折率プロファイルn(x)の例を表したものである。屈折率プロファイルn(x)は、より浅いイオン交換(イオンI1)に関連する、本体21内の深さD1の第1の領域R1を含む。屈折率プロファイルn(x)は、より深いイオン交換(イオンI2)に関連する、層深さ(DOL)を画成する深さD2の第2の領域R2をさらに含む。一例においてDOLは少なくとも50μmであり、さらに一例では150μmほどの大きさになり得る。別の例においてDOLは70μmから100μmの範囲である。
【0029】
より深い第2の領域R2は、実際には、より浅い領域の前に生成され得る。領域R1は基板表面22に隣接し、比較的急峻でありかつ浅く(例えば、D1は数μm)、一方領域R2はあまり急峻ではなく、基板内に前述の深さD2まで比較的深く延びる。一例において領域R1は、基板表面22で最大屈折率n
0を有し、かつ中間屈折率n
iに向かって急峻にテーパし、一方領域R2は、中間屈折率から基板(バルク)屈折率n
sに下がるまで、より緩やかにテーパする。急峻かつ浅い表面付近の屈折率変化は他のイオン交換プロセスがもたらし得ること、さらに二重イオン交換プロセスは実例としてここで論じたものであることをここで強調したい。
【0030】
一例において、本書で開示される方法は、特殊な結合プリズムを備えている以下で説明するようなプリズム結合システムを用いたイオン交換基板20の光学的測定を採用する。こういったシステムで従来の結合プリズムを採用したものは当技術において一般に既知であり、また以下に明記するような結合プリズムの改変を用いて本開示の方法を実行する際に使用するのに適したシステムの例は、上で特定した米国特許出願に記載されている。
プリズム結合システム
図3Aは、屈折率プロファイルn(x)を有するイオン交換基板20に対してTEモードスペクトルおよびTMモードスペクトルを測定する方法を実行するのに適した、プリズム結合システム(「システム」)10の例の概略図である。
図3Bは、
図3Aのプリズム結合システム10の光検出器系の拡大図である。一例においてイオン交換基板20は、ニューヨーク州コーニング所在のコーニング社製GORILLA(登録商標)ガラスなどの化学強化ガラスを構成する。
【0031】
システム10は、基板20を保持するように構成された基板ホルダ30を備えている。ただし、代わりの実施形態において基板ホルダ30は必須ではない。システム10は、入力面42と、随意的な平坦な上部表面43と、結合面44と、出力面46とを含む、結合プリズム40をさらに含んでいる。結合プリズム40の屈折率n
pは、n
p>n
0である。結合プリズムの結合面44と基板の上部表面22とを光学的に接触させることによって結合プリズム40を基板20と界面接合させ、それにより、随意的に界面接合用流体(図示なし)を含む、基板‐プリズム界面(「界面」)50を画成する。
【0032】
結合プリズム40は、出力面46と結合面44とによって形成される角度を示す、出力側プリズム角度(「プリズム角度」)αを有する。プリズム角度αの選択を、以下でより詳細に説明する。
【0033】
引き続き
図3Aを参照すると、システム10は光軸A1およびA2を含み、A1およびA2は、プリズム/空気界面での屈折を考慮して概して界面50で合流するように、結合プリズム40の入力面42および出力面46を夫々通過する。システム10は、以下で説明するが、軸A1に沿って順に、波長λの測定光62を放射する光源60と、代わりに軸A2上の検出経路内に含むこともできる、随意的な光学フィルタ66と、散乱光62Sを形成する随意的な光散乱要素70と、(測定)光62Fをある程度集中させることができる随意的な集束光学系80とを含んでいる。従ってシステム10の例において、光源60とプリズムの入力面42との間に光学素子は存在していない。
【0034】
システム10はさらに、結合プリズム40から軸A2に沿って順に、焦点面92および焦点距離fを有しかつ以下で説明するように反射光62Rを受ける、集光光学系90と、偏光子系100と、光検出器系130とを含んでいる。軸A1は、光源60と結合プリズムの結合面44との間の光路OP1の中心を画成する。軸A2は、結合面44と光検出器系130との間の光路OP2の中心を画成する。軸A1およびA2は、屈折により入力面42および出力面46で夫々曲げられ得ることに留意されたい。これらは、光路OP1および/またはOP2内にミラーを挿入することによって、サブ経路に分割することもできる。
【0035】
一例において光検出器系130は、検出器(カメラ)110およびフレームグラバ120を備えている。以下で論じる他の実施形態において、光検出器系130はCMOSまたはCCDカメラを含む。
図3Bは、偏光子系100と、光検出器系130の検出器110の拡大上方斜視図である。一例において偏光子系100は、TE偏光子部分100TEおよびTM偏光子部分100TMを含む。光検出器系130は感光性表面112を含んでいる。感光性表面112は、感光性表面が軸A2に概して垂直となる状態で、集光光学系90の焦点面92内に存在している。これは、結合プリズムの出力面46から出て行く反射光62Rの角度分布を、カメラ110のセンサ面で光の横方向空間分布へと変える働きをする。
図3Bの拡大差込図を参照すると、一例の実施形態において感光性表面112は画素112pを含み、すなわち検出器110はデジタルカメラなどのデジタル検出器である。
【0036】
感光性表面112をTE部分112TEおよびTM部分112TMに分割すると、反射光62RのTE偏光およびTM偏光に対する角度反射スペクトル(モードスペクトル)のデジタル画像の、同時記録が可能になる。この同時検出は、システムパラメータが時間と共に移り得ることを考えると、TEおよびTMの測定を異なる時期に行うことにより生じ得る測定ノイズの原因を排除する。
【0037】
システム10の別の実施形態において、偏光子系100は分割偏光子構成を含まずに代わりに単一の偏光子を備え、TMスペクトルまたはTEスペクトルを伝送する2つの状態の間で連続的に90°回転させて、連続的にTMおよびTEの結合スペクトルを得る。この実施形態では、偏光子系100を光源経路OP1または検出経路OP2のいずれに設置してもよい。
【0038】
図3Cは、光検出器系130によって取り込まれたTMモードスペクトルおよびTEモードスペクトル113の概略図である。TMモードスペクトルおよびTEモードスペクトル113は、夫々のスペクトルライン(モードライン)115TMおよび115TEから構成されている。TMモードスペクトルおよびTEモードスペクトルの夫々は、より低次モード(すなわち高有効屈折率モード)のL−TEおよびL−TMと、より高次モード(すなわち低有効屈折率モード)のH−TEおよびH−TMを含む。隣接するモードライン115間の間隔はΔxで示され、この間隔は与えられたモードスペクトル113の長さに沿って変化して、より低次モードからより高次モードへと次第に小さくなる。
【0039】
光源60の例としては、レーザ、発光ダイオード、高温の白熱電球および石英灯などの、より広帯域幅の光源が挙げられる。光源60によって生成される測定光62の動作波長λの例としては、近紫外線波長、可視波長、および赤外線波長を挙げることができる。光源60がコヒーレントである場合、移動または振動する拡散器とし得る前述の光散乱要素70を使用すると、結合スペクトルの正確な測定にとって問題となり得るスペックルを軽減する助けになり得る。
【0040】
システム10は、システムの動作を制御するように構成されたコントローラ150を含んでいる。コントローラ150は、取り込まれたTEモードスペクトルおよびTMモードスペクトルの画像を表す光検出器系130からの画像信号SIを、受信および処理するようにも構成されている。コントローラ150は、プロセッサ152およびメモリユニット(「メモリ」)154を含んでいる。コントローラ150は、光源制御信号SLを用いて光源60の起動および動作を制御することができ、さらに光検出器系130から(例えば、図示のようにフレームグラバ120から)の画像信号SIを受信および処理する。
【0041】
一例においてコントローラ150は、コンピュータを備え、かつ例えばフロッピーディスク、CD−ROM、DVD、光磁気ディスク(MOD)、フラッシュドライブ、またはネットワークまたはインターネットなど別のデジタルソースなどの、コンピュータ可読媒体から、命令および/またはデータを読み取るための読取装置、例えばフロッピーディスクドライブ、CD−ROMドライブ、DVDドライブ、MOD装置(図示なし)、またはイーサネット機器(図示なし)などのネットワーク接続機器を含む任意の他のデジタル機器、を含んでいる。コントローラ150は、本書で開示される表面の複屈折/応力の測定を実行するための信号処理命令など、ファームウェアおよび/またはソフトウェア(図示なし)に格納された命令を実行するように構成されている。いくつかの例において、「コントローラ」および「コンピュータ」という用語は交換可能である。
【0042】
コントローラ150は、基板20の例えば応力プロファイルS(x)、複屈折、または圧縮応力CSなどの特性の、あるいはTE成分およびTM成分を含み得る屈折率プロファイルn(x)の、測定に到達するべく、システム10の動作および画像信号SIの後処理(信号処理)など、本書で説明される機能を実行するようプログラム可能である。本書では「コンピュータ」という用語は、当技術においてコンピュータと称されるその集積回路のみに限定されるものではなく、コンピュータ、プロセッサ、マイクロコントローラ、マイクロコンピュータ、プログラマブルロジックコントローラ、特定用途向け集積回路、および他のプログラマブル回路を幅広く称し、これらの用語を本書では交換可能に使用する。
【0043】
ソフトウェアは、前述の信号処理を含め、本書で開示されるシステム10の動作の性能を実施する、または助けることができる。ソフトウェアはコントローラ150に、特にプロセッサ152およびメモリ154に、動作可能にインストールされ得る。ソフトウェアの機能は、実行可能コードを含むプログラミングを必要とし得、かつこの機能を使用して本書で開示される方法を実施することができる。こういったソフトウェアコードは、汎用コンピュータによって、あるいは以下で説明されるプロセッサユニットによって実行可能である。
【0044】
動作時には、コードおよび場合によっては関連するデータレコードが、汎用コンピュータプラットフォーム内、プロセッサ152内、および/またはメモリ154に格納される。しかしながら他の時点では、ソフトウェアを他の位置に格納してもよいし、および/または適切な汎用コンピュータシステム内に入れるために移送してもよい。従って本書で論じられる実施形態は、少なくとも1つの機械可読媒体により実行されるコードの1以上のモジュールの形を成した、1以上のソフトウェア製品を含むものである。コンピュータシステム150のプロセッサ152によって、あるいはプロセッサユニットによってこのコードを実行すると、プラットフォームはカタログおよび/またはソフトウェアダウンロード機能を、本質的に本書で図示および議論される実施形態において行われるやり方で実施することができる。
【0045】
コントローラ150および/またはプロセッサ152は夫々、コンピュータ可読媒体または機械可読媒体(例えば、メモリ154)を採用してもよく、これらは例えば基板20の表面複屈折/応力または応力プロファイルS(x)の量の判定を含む実行命令をプロセッサに提供するのに関与する、任意の媒体を称する。メモリ154はコンピュータ可読媒体を構成する。このような媒体は、限定するものではないが、不揮発性媒体、揮発性媒体、および伝送媒体など、多く形を取り得る。不揮発性媒体としては、上で論じたサーバプラットフォームの1つとして動作する任意のコンピュータ内の任意の記憶装置など、例えば光ディスクまたは磁気ディスクが挙げられる。揮発性媒体としては、このようなコンピュータプラットフォームのメインメモリなどの動的メモリが挙げられる。物理的伝送媒体としては、コンピュータシステム内のバスを構成するワイヤなど、同軸ケーブル、銅線、および光ファイバが挙げられる。
【0046】
従ってコンピュータ可読媒体の一般的な形としては、例えば、フロッピーディスク、フレキシブルディスク、ハードディスク、磁気テープ、フラッシュドライブ、および任意の他の磁気媒体と、CD−ROM、DVD、および任意の他の光媒体と、パンチカード、紙テープ、および孔のパターンを有する任意の他の物理的媒体など、あまり一般的に使用されていない媒体と、RAM、PROM、EPROM、FLASH−EPROM、および任意の他のメモリチップまたはカートリッジと、データまたは命令を移送する搬送波、このような搬送波を移送するケーブルまたはリンク、またはコンピュータがプログラミングコードおよび/またはデータをこれから読み取ることが可能な任意の他の媒体とが挙げられる。こういった形のコンピュータ可読媒体の多くは、1以上の連続した1以上の命令を、実行のためにプロセッサ152へと伝送することに関与し得る。
【0047】
一例においてコントローラ150は、測定されたモードスペクトルに基づいて、イオン交換基板20の少なくとも1つの特性を判定するようにプログラムされている。特性の例としては、表面応力、応力プロファイル、圧縮応力、層深さ、屈折率プロファイル、および複屈折が挙げられる。一例においてコントローラ150は、A. Brandenburgによる論文「イオン交換ガラス導波路における応力(Stress in Ion-Exchanged Glass Waveguides)」、Journal of Lightwave Technology 4、第10号、1986年10月、1580〜1593頁において開示されている、さらに前述の’546出願において開示されている、計算を実行するようにプログラムされている。
【0048】
システム10は、日本の東京所在の折原製作所より製造および販売されているプリズム結合器FSM−6000など、市販のプリズム結合器の変形バージョンでもよい。FSM−6000計器は、平坦なイオン交換ガラスの応力の高スループット非破壊測定における最先端のものに相当し、589nmでプリズム屈折率n
p=1.72の結合プリズム40を利用する。FSM−6000は、屈折率n
f=1.64の屈折率整合流体を使用する。FSM−6000計器では、最初の2つの横磁界(TM)モードおよび最初の2つの横電界(TE)モードの有効屈折率n
effから表面圧縮応力(CS)を計算し、一方線形屈折率プロファイルの仮定に基づく層深さ(DOL)の計算のために、基板屈折率と前述の最初の2つのモードの有効屈折率と共に、確認されたモードの総数を使用する。
結合プリズム
図4は、イオン交換基板20の上部表面22と界面接合している結合プリズム40を、一例の光線62の経路と共に示した拡大側面図であり、光線62は、入力面42を通過する集束光62Fとして始まり、プリズム出力面46の法線に対する入射角β
1の反射光62Rとして、結合面44から角度θで反射し、さらに出力面から出射角β
2の反射光として出て行く。
【0049】
所与の導波モードに対し、プリズムの結合面の法線に対する入射共鳴角は以下で与えられる。
【0051】
ここでn
pはプリズムの屈折率であり、またn
effは導波モードの有効屈折率である。結合プリズム40の出力面46の法線Nに対する、対応する入射角β
1および出射角β
2間の関係は、
【0053】
であり、ここでn
air=1は空気の屈折率である。
【0054】
入射角β
1の大きさと角度θに対するプリズム角度αとの関係は以下で与えられる。
【0056】
方程式(1)および(2)より、プリズム角度αの関数としての出射角β
2と有効屈折率n
effとの間の関係は以下のように書ける。
【0058】
次に、対応する有効屈折率n
effに対するプリズム出射角β
2の感度は、以下のように表現される。
【0060】
光検出器系130を集光光学系90に対して、軸A2がカメラ110の焦点面92にほぼ垂直になるように配置すると、出射角β
2において差Δβ
2を有する2つの(鉛直)モードライン115間の間隔Δxは以下で与えられる。
【0062】
イオン交換基板20により支持される全モードのスペクトル全体を光検出器系130で取り込むためには、有効屈折率n
effが基板20の屈折率n
sに等しいか、あるいはこれより若干大きい場合、プリズム角度αは出射角β
2=90°となる角度よりも小さくなければならない。これは最大プリズム角度α
maxの以下の条件につながる。
【0064】
光検出器系130によってモードスペクトル全体を取り込むことが可能な最小プリズム角度α
minは、n
effが基板表面22の屈折率n
0に等しいか、あるいはこれより若干より小さい場合、条件β
2≦90°により規定され、以下により与えられる。
【0066】
従って、導波路内の全モードのスペクトル全体を取り込むためには、プリズム角度αはα
max≧α≧α
minの範囲でなければならない。
最適なプリズム角度
プリズム結合システムの従来の常識では、採用される結合プリズム(多くは二等辺のもの)の結合面と出口面との間のプリズム角度αは、60°またはほぼ60°が最も多く、一般的に75°未満である。75°程度の大きさのプリズム角度は、プリズムの屈折率が測定されるガラス基板の屈折率よりも極わずかに大きい(2%〜4%大きい)稀な事例で使用されていた。こういったプリズムの寸法は、結合長さが小さいため小さいものであった(<8mm)し、DOLが大きいDIOXプロファイルのスペクトルの分解には適さなかった。典型的なプリズム角度がもたらす、dβ
2/dn
effと表現される有効屈折率n
effに対する出射角の感度は、n
effの増加に伴って増加する。これまでこれは問題にはならなかったが、より高い有効屈折率n
effに関連するまばらな間隔のより低次モードと、より低い有効屈折率に関連する密な間隔のより高次モードとを呈する、DOLの大きい導波路を測定すると、この感度が望ましくないことが判明する。
【0067】
図5Aおよび5Bは、有効屈折率n
effの関数としての有効屈折率n
effに対するプリズム出射角β
2の感度のプロットであり、すなわちプリズム屈折率n
p=1.7298に基づく、40°、45°、50°、55°、および60°のプリズム角度αでの(
図5A)、さらに60°、74°、82°、86°、88°、90°、および92°のプリズム角度αでの(
図5B)、dβ
2/dn
eff(ラジアン/RIU)対n
effのプロットである。
図5Aのdβ
2/dn
effに対する範囲は、
図5Bのものよりも小さいことに留意されたい。
図5Aのプリズム角度α=60°の曲線は、正の傾きと、n
effの範囲に亘って変化率が小さいことを示している。これは種々の屈折率を有する導波路の測定を可能にするが、dβ
2/dn
effの曲線の正の傾きは、プロファイルが急峻であり屈折率差が大きい導波路、すなわち例えばAg
+およびK
+の拡散により形成されたDIOXガラスのプロファイルなど深いプロファイル部分を有する導波路の測定では問題になる。
【0068】
dβ
2/dn
eff対n
effの正の傾きは、TEモードスペクトルおよびTMモードスペクトルの画像(
図3C参照)における、低次モード(すなわち高い有効屈折率)のライン間の比較的広い間隔と、高次モード(すなわち低い有効屈折率)のライン間の非常に狭い間隔とを持続させる。これは2つの主な測定の問題につながる。第1に、高次モードのライン間隔が狭いと、適度なコストの産業用高分解能センサを用いた場合にこのラインの分解能力が限定され、これにより測定可能なDOLが限定される。第2に、広い間隔の高次モードでは測定のダイナミックレンジが減少し、従って、屈折率または応力プロファイルの深い部分に対する測定の確度および感度を向上させるためにより長い焦点距離を有する集光光学系90を使用できなくなってしまう。
【0069】
図5Aおよび5Bは、dβ
2/dn
eff曲線の傾きが、プリズム角度αが約86°よりも大きくなると負から正に変化することを示している。プリズム角度αが増加すると、低い範囲のn
eff(1.45から1.5)における出射角感度dβ
2/dn
effが急速に増大し、一方高い範囲のn
eff(1.5から1.6)における感度は、よりゆっくりと変化する。この特徴はまさに、高い範囲のn
effにおけるモード間のモードライン間隔Δxを著しく変化させることなく、低い範囲のn
effにおけるモードライン115間のライン間隔を著しく拡大させるため、前述の2つの測定の問題を抑制するために必要なものである。
【0070】
この相対的増加を低いn
eff範囲で可能にする物理的効果は、入射角β
1での、内部全反射の臨界角に近づくような相当な屈折である。この効果は、低屈折率のモードの出力面46での入射角β
1が、より高い有効屈折率n
effを有する低次モードの入射角よりも大きいと、低屈折率のモードの感度に利益をもたらす。プリズム角度を60°から92°まで変化させたときの、n
effの関数としてのプリズム角度αの感度の向上は、n
eff=1.45で約600%である。これは、有効屈折率1.45に対してモード間のライン間隔が約6倍拡大されることを意味する。一方、最も高い有効屈折率n
eff=1.6での感度の変化は約27%のみである。大きな感度の向上は、より高いプリズム屈折率n
p、例えばn
p=1.8などを選択することによって、n
eff=1.45を上回る1.5などのより高い有効屈折率値まで押し上げられ得る。
【0071】
上記の方程式(6)で示されているように、光検出器系130で測定されたときのモード(モードライン115)間の間隔Δxは、集光光学系90の焦点距離にほぼ等しい集光光学系90と検出器110との間の距離に比例し、またモードの有効屈折率n
effに対する出射角β
2の感度に比例する。モードスペクトル全体を取り込むためには、その空間的範囲は感光性表面112のサイズ以下でなければならない。システム10において使用される一例の検出器は、幅22.3mmの感光性表面112を有している。従って、感度dβ
2/dn
effが増加されると、モードスペクトルの画像サイズを確実に実質的に同一のままとするよう、集光光学系90を異なる焦点距離で構成することが必要になり得る。一方、結合プリズム40と集光光学系90との種々の組合せに対するモードライン115間のライン間隔の変化を比較して、実質的に同一の画像サイズを生み出す組合せを識別することができる。
【0072】
図6は、モードスペクトル画像の幅を出射角α=60°のプリズムとの比較で同一に維持した状態での、プリズム角度α=92°に対する集光光学系90の焦点面92における隣接するモードライン間の間隔Δxの変化D(Δx)(%)を、有効屈折率n
effに対して示したプロットである。プロット内の水平の点線は、モードライン間隔が増加または減少する間の移行部を示し、すなわちモードライン間隔に変化が生じない位置を示している。集光光学系90の焦点距離はα=60°で130mmであり、またα=92°では63.3mmまで変化する。
図6のプロットは、プリズム角度αを60°から92°に増加させることによって、低い範囲のn
eff(<1.5)における隣接するモード間のライン間隔xが増加することを示している。一方、高い範囲のn
eff(>1.5)では、プリズム角度αを60°から92°に変化させることによってモードライン115間のライン間隔xは減少し、それにより感度の向上とダイナミックレンジとの間の好ましいトレードオフが強化される。
【0073】
低い有効屈折率範囲よりも高い有効屈折率範囲においてモードライン間隔xが大幅に大きいため、この特徴はDIOX基板20の測定に特に有用である。従って、より間隔の空いたモードライン115を空間的に圧縮することができると同時に、より密集されたモードラインを空間的に伸長する(すなわち、広げる)ことができるように、プリズム角度αは選択され得る。このモードライン間隔の圧縮および伸長は、出力面46から結合プリズム40を出て行くときの、異なるモードライン115に対する反射光62Rの異なる屈折角度によるものである。
【0074】
この定義上の圧縮および伸長は、実際のまたは真のモードスペクトルを変化させる(歪ませる、調整する等)ものであり、検出器110によってモードライン115を検出した後に、補正する(再調整する、歪んでいないものとする等)必要がある。この補正は測定および特性評価プロセスにステップを追加するものであるが、一方、モードライン115を選択的に圧縮および伸長させることによってモードスペクトルを変化させることで、検出された全てのモードラインを適切にサンプリングすることができる十分な検出器画素112pが与えられる形で、モードスペクトルは検出器110の範囲内に収まることができる。これにより、既存の検出器のサイズを効率的に使用することができ、モードスペクトルの適切な空間サンプリングを得るために検出器のサイズを増加させる(これは通常、より大きくより高価な検出器110の購入を意味する)必要がなくなり、さらにスペクトル光全体を集めるために、より大きくより高価な光学系を使用する必要がなくなる。
【0075】
図5Aおよび5Bに示されているように、プリズム角度αが大きくなればなるほど、低い有効屈折率範囲での感度が向上することが分かる。しかしながら全てのモードのスペクトル全体を取り込むためには、上で定義したように、プリズム角度αは最大プリズム角度α
maxよりも小さいものでなければならない。最大プリズム角度α
maxは、プリズム屈折率n
pおよび基板20の屈折率n
sに依存する。
【0076】
図7は、基板の屈折率n
s=1.45、1.46、1.47、1.48、1.49、1.50、および1.51に対する、最大プリズム角度α
max対プリズム屈折率n
pのプロットである。
図8は、プリズム屈折率n
p=1.7298に対する、最大プリズム角度α
max対基板の屈折率n
sのプロットである。最大プリズム角度α
maxは、基板20の屈折率n
sとともに、ほぼ直線的に増加することが分かる。
【0077】
反射光62Rが結合プリズム40内から、臨界角に近い大きな入射角β
1で出力面46に入射すると、TM偏光とTE偏光との間の反射性に大きな差が生じ得る。これは、
図3Bに示されているようにTMモードスペクトルおよびTEモードスペクトルが同時に取り込まれる場合に、現実的な問題をいくつか引き起こし得る。特に、検出器110に到達するTEモードスペクトルの光は大幅に少なくなり得る。従って、一例の実施形態において出力面46は、測定される所望範囲の有効屈折率n
effの入射角β
1特性の範囲に対して最適化された、アンチリフレクションコーティングを有している。
【0078】
一例において、プリズム角度αは最大プリズム角度α
maxよりも若干小さくなるように選択される。種々の例においてこのプリズム角度αは、0.81α
max≦α≦0.99α
maxの範囲、または0.90α
max≦α≦0.99α
maxの範囲、または0.95α
max≦α≦0.99α
maxの範囲である。
【0079】
上記の通りに選択されたプリズム角度αを有する結合プリズム40を含むシステム10を用いて一旦モードスペクトルの測定が行われると、コントローラ150を使用して、測定されたモードスペクトルの後処理を行う。これは、モードスペクトルが、様々な出射角β
2を有する様々なモードライン115によって「歪められている」ためである。別の言い方をすると、隣接するモード間の間隔は、方程式(5)で与えられ
図5に示されているdβ
2/dn
effによって明示されているように、非線形の形で影響される。幸いにも、モードスペクトルの「歪み」すなわち選択的な調整は明確に定義され、システム10の特定の動作パラメータに基づいて分かるものであり、そのためコントローラ150を用いて、測定されたスペクトルを後処理することにより補正することができる。方程式(5〜6)をコントローラ150で使用して、後処理の補正を行うことができ、また方程式(6)をコントローラ150で使用して、TEモードスペクトルおよびTMモードスペクトルにおける隣接するモード間の適切な間隔Δn
effを確立することができる。代わりの実施形態においてn
effは、前述の’377公開において開示された厳密式を使用して、センサ上の位置xから直接計算される。
【0080】
有効屈折率を、画像の中心のx座標、すなわちx
centerに対応して割り当てる。次いで、その中心の屈折率に対応する出射角を、その関係から見出す。
【0082】
上記の関係を利用し、センサ上の任意の位置xに対応する有効屈折率を、以下の厳密関係より見出すことができる。
【0084】
コントローラ150は次いで、当技術において既知の計算を用いる、DIOX基板20の前述の特性のうちの少なくとも1つの計算へと進む。
【0085】
図9Aは、上で論じたようにモードの順に応じて変化する夫々のモードライン間隔Δxを伴うモードライン115を有する、理想的で純粋な、歪んでいない(測定の角度範囲に亘ってdβ
2/dn
effがほぼ一定である場合)、あるいはそれ以外の変化をしていない、モードスペクトル113の例を示した概略図である。この理想的なモードスペクトル113は基板‐プリズム界面50に存在するが、容易に接近可能なものではなく、そのため一般的に直接測定することはできない。
【0086】
図9Bは
図9Aに類似したものであり、モードスペクトル113の調整されたバージョンとしてモードスペクトル113’を示している。調整されたモードスペクトル113’では、対応するモードライン115をつなぐ点線により示されているようにモードライン間隔は既に変化し、かつΔx’で画成されている。上で論じたようにモードライン間隔の変化は、モードスペクトルの様々なモードに関連する反射光62Rの出力面46での屈折によって生じる。モードスペクトル113’の、より間隔の空いたより低次モードLの調整されたモードライン間隔Δx’が、理想的なモードスペクトル113に比べてどのように減少し、また同時により間隔の狭いより高次モードHのモードライン間隔が理想的なモードスペクトルに比べて増加したかに留意されたい。この例では、調整されたモードスペクトル113’の全体のサイズは、
図9Aの理想的なモードスペクトル113のものとほぼ同じであることにも留意されたい。
【0087】
図9Cは、調整されたバージョンのモードスペクトルに113’に対して補正(すなわち再調整)を行って、
図9Aの補正された(未調整の)モードスペクトル113を得るものを示しており、これはこれまでに公知ではないと考えられるものであった。この補正は、結合プリズム40の構成を含めたシステム10の構成を知り、さらに、元のまたは真のモードスペクトル113の様々なモードに対する様々なモードライン115に関連する測定光62の経路に、結合プリズムの出力面46での屈折がどのように影響を与えるかを知ることによって達成される。上で論じたように、方程式(5〜6)は有効屈折率n
effの関数としてモードライン間隔Δxの変化との間に関係を与える。従って、コントローラ150を使用して、コンピュータ可読媒体(例えば、ソフトウェア)内の方程式(6)を実行することによって、真のまたは未調整のモードスペクトル113を得ることができる。
【0088】
添付の請求項において画成される本開示の精神または範囲から逸脱することなく、本書で説明した本開示の好適な実施形態の種々の改変が作製可能であることは当業者には明らかであろう。従って、その改変および変形が添付の請求項およびその同等物の範囲内であるならば、本開示はこの改変および変形を含む。
【0089】
以下、本発明の好ましい実施形態を項分け記載する。
【0090】
実施形態1
基板の上部表面に形成されかつ50μmを超える層深さ(DOL)を有する、導波路の、少なくとも1つのモードスペクトルを測定する測定システムであって、
入力面、出力面、結合面、屈折率n
p、および出力面と結合面との間のプリズム角度α、を有し、かつ前記結合面が前記基板の前記上部表面で前記導波路と界面接合して、それにより基板‐プリズム界面を画成する、結合プリズムと、
前記プリズムの前記入力面を通して前記基板‐プリズム界面を照らし、それにより第1のサイズを有する前記少なくとも1つのモードスペクトルのモードラインを含む、前記結合プリズムの前記出力面を出て行く反射光を形成するように構成された、光源系と、
検出器を含み、かつ前記結合プリズムからの前記反射光を受けて前記検出器で前記少なくとも1つのモードスペクトルを検出するように配置された、光検出器系と、
前記結合プリズムの前記出力面で前記反射光の屈折によって引き起こされた前記モードラインの歪みを、第2のサイズを有する補正されたモードスペクトルへと補正するよう、検出された前記少なくとも1つのモードスペクトルを処理するように構成された、コントローラと、
を備え、さらに、臨界角であって、該臨界角を超えると前記反射光が前記プリズムの前記出力面で内部全反射される、臨界角に、前記結合プリズムの最大プリズム角度α
maxが等しく、かつ前記プリズム角度αが0.81α
max≦α≦0.99α
maxの範囲であり、さらに前記第1のサイズが前記第2のサイズと実質的に同一であることを特徴とする測定システム。
【0091】
実施形態2
前記プリズム角度αが、0.90α
max≦α≦0.99α
maxの範囲であることを特徴とする実施形態1記載の測定システム。
【0092】
実施形態3
前記プリズム角度αが、0.95α
max≦α≦0.99α
maxの範囲であることを特徴とする実施形態2記載の測定システム。
【0093】
実施形態4
前記少なくとも1つのモードスペクトルが、TEモードスペクトルおよびTMモードスペクトルを含むことを特徴とする実施形態1記載の測定システム。
【0094】
実施形態5
前記検出器が、TEモードスペクトルを検出する第1の部分と、TMモードスペクトルを検出する第2の部分とを含むことを特徴とする実施形態1記載の測定システム。
【0095】
実施形態6
前記プリズム角度αが90°よりも大きいことを特徴とする実施形態1記載の測定システム。
【0096】
実施形態7
前記結合プリズムが、平坦な上部表面を有していることを特徴とする実施形態1記載の測定システム。
【0097】
実施形態8
50μmを超える層深さ(DOL)を有する、基板の上部表面に形成された導波路の、モードスペクトルを測定する方法において、
結合プリズムであって、出力面によって画成される、0.81α
max≦α≦0.99α
maxの範囲の結合プリズム角度αを有する結合プリズムを、前記基板と界面接合させて、基板‐プリズム界面を形成するステップであって、このときα
maxは、前記結合プリズム内で起こる内部全反射に関連する最大結合プリズム角度を明示するものである、ステップ、
光を前記結合プリズムに通して前記基板‐プリズム界面へと導き、前記導波路の少なくとも1つのモードスペクトルのモードラインを含む、前記結合プリズムの前記出力面から出て行く反射光を形成するステップ、
前記結合プリズムの前記出力面での前記反射光の屈折に起因して調整されたモードライン間隔を有する、前記結合プリズムから出て行く前記反射光の前記少なくとも1つのモードスペクトルの前記モードラインを、検出するステップ、および、
前記調整されたモードライン間隔を、前記検出するステップの後に補正するステップ、
を含むことを特徴とする方法。
【0098】
実施形態9
前記プリズム角度αが、0.90α
max≦α≦0.99α
maxの範囲であることを特徴とする実施形態8記載の方法。
【0099】
実施形態10
前記プリズム角度αが、0.95α
max≦α≦0.99α
maxの範囲であることを特徴とする実施形態9記載の方法。
【0100】
実施形態11
前記プリズム角度αが90°よりも大きいことを特徴とする実施形態8記載の方法。
【0101】
実施形態12
前記補正されたモードライン間隔に基づいて、前記導波路の少なくとも1つの特性を判定するステップをさらに含むことを特徴とする実施形態8記載の方法。
【0102】
実施形態13
前記導波路の前記少なくとも1つの特性が、表面応力、応力プロファイル、圧縮応力、DOL、屈折率プロファイル、および複屈折、のうちの1以上を含むことを特徴とする実施形態12記載の方法。
【0103】
実施形態14
前記少なくとも1つのモードスペクトルが第1のサイズを有し、かつ前記調整されたモードライン間隔を、前記検出するステップの後に補正する前記ステップが、前記第1のサイズと実質的に同一の第2のサイズを有する、調整されたモードスペクトルを形成するものであることを特徴とする実施形態8記載の方法。
【0104】
実施形態15
前記少なくとも1つのモードスペクトルが、TEモードスペクトルおよびTMモードスペクトルから成ることを特徴とする実施形態8記載の方法。
【0105】
実施形態16
二重イオン拡散(DIOX)プロセスによって前記導波路を形成するステップを含むことを特徴とする実施形態8記載の方法。
【0106】
実施形態17
50μmを超える層深さ(DOL)への二重イオン拡散によって、基板の上部表面に形成された導波路の、モードスペクトルを測定する方法において、
入力面、出力面、前記上部表面と界面接合して基板‐プリズム界面を画成する、結合面、前記結合面および前記出力面によって画成される、結合プリズム角度α、を有する結合プリズムを、前記導波路と界面接合させるステップであって、前記結合プリズムの最大プリズム角度α
maxが、前記出力面での内部全反射角度に相当し、前記結合プリズム角度が、0.81α
max≦α≦0.99α
maxの範囲である、ステップ、
光を前記入力面に通して前記基板‐プリズム界面へと導き、それにより前記モードスペクトルのより高次のモードラインおよびより低次のモードラインを含む、反射光を形成するステップであって、前記反射光が前記出力面から前記結合プリズムを出て行き、かつ前記反射光を検出器に入射させる、ステップ、
前記結合プリズムの前記出力面での前記反射光の屈折に起因して調整されたモードライン間隔を有する、前記モードスペクトルのより高次のモードラインおよびより低次のモードラインを、検出器で検出するステップ、および、
前記検出するステップの後に、前記モードライン間隔の前記調整を補正するステップ、
を含むことを特徴とする方法。
【0107】
実施形態18
前記補正されたモードライン間隔に基づいて、前記導波路の少なくとも1つの特性を判定するステップをさらに含むことを特徴とする実施形態17記載の方法。
【0108】
実施形態19
前記導波路の前記少なくとも1つの特性が、表面応力、応力プロファイル、圧縮応力、DOL、屈折率プロファイル、および複屈折、のうちの1以上を含むことを特徴とする実施形態18記載の方法。
【0109】
実施形態20
前記結合プリズム角度αが、0.90α
max≦α≦0.99α
maxの範囲であることを特徴とする実施形態17記載の方法。