特許第6751773号(P6751773)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ オリンパス株式会社の特許一覧

特許6751773画像処理装置及び画像処理装置の作動方法
<>
  • 特許6751773-画像処理装置及び画像処理装置の作動方法 図000014
  • 特許6751773-画像処理装置及び画像処理装置の作動方法 図000015
  • 特許6751773-画像処理装置及び画像処理装置の作動方法 図000016
  • 特許6751773-画像処理装置及び画像処理装置の作動方法 図000017
  • 特許6751773-画像処理装置及び画像処理装置の作動方法 図000018
  • 特許6751773-画像処理装置及び画像処理装置の作動方法 図000019
  • 特許6751773-画像処理装置及び画像処理装置の作動方法 図000020
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6751773
(24)【登録日】2020年8月19日
(45)【発行日】2020年9月9日
(54)【発明の名称】画像処理装置及び画像処理装置の作動方法
(51)【国際特許分類】
   A61B 1/045 20060101AFI20200831BHJP
   G02B 23/24 20060101ALI20200831BHJP
【FI】
   A61B1/045 610
   A61B1/045 614
   A61B1/045 618
   G02B23/24 B
【請求項の数】7
【全頁数】24
(21)【出願番号】特願2018-555385(P2018-555385)
(86)(22)【出願日】2016年12月7日
(86)【国際出願番号】JP2016086408
(87)【国際公開番号】WO2018105062
(87)【国際公開日】20180614
【審査請求日】2019年11月22日
(73)【特許権者】
【識別番号】000000376
【氏名又は名称】オリンパス株式会社
(74)【代理人】
【識別番号】110002907
【氏名又は名称】特許業務法人イトーシン国際特許事務所
(72)【発明者】
【氏名】白谷 文行
【審査官】 北島 拓馬
(56)【参考文献】
【文献】 国際公開第2016/181720(WO,A1)
【文献】 特開2012−050601(JP,A)
【文献】 特開2003−093328(JP,A)
【文献】 特開平10−210454(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 1/00 − 1/32
G02B 23/24 −23/26
(57)【特許請求の範囲】
【請求項1】
被検体を撮像して得られた画像を観察しながら作業を行うユーザの作業状態を推定して推定結果を得るように構成された作業状態推定部と、
前記被検体を撮像して得られる画像に含まれる鏡面反射領域を補正するための処理を行うように構成された鏡面反射領域補正部と、
前記作業状態推定部により得られた推定結果に基づき、前記被検体における所望の被写体の探索に係る第1の作業が行われていることを検出した場合に、前記鏡面反射領域が維持された画像を観察画像として出力させるための制御を行うとともに、前記被検体において発見された前記所望の被写体の鑑別に係る第2の作業が行われていることを検出した場合に、前記鏡面反射領域補正部により前記鏡面反射領域が補正された画像を観察画像として出力させるための制御を行うように構成された制御部と、
を有することを特徴とする画像処理装置。
【請求項2】
前記作業状態推定部は、前記被検体を内視鏡で撮像して得られた画像である内視鏡画像を観察しながら作業を行うユーザの作業状態を推定する
ことを特徴とする請求項1に記載の画像処理装置。
【請求項3】
前記作業状態推定部は、前記被検体を前記内視鏡で観察する際の観察モードと、前記内視鏡画像の明るさと、前記被検体を前記内視鏡で観察する際の観察倍率と、前記被検体を前記内視鏡で観察する際に用いられる観察補助具の使用状態と、前記内視鏡画像の色調と、前記内視鏡画像に含まれる前記所望の被写体の位置及びサイズと、のうちの少なくとも1つに基づいて前記作業状態を推定する
ことを特徴とする請求項2に記載の画像処理装置。
【請求項4】
前記所望の被写体の有無を検出するための処理を行うように構成された第1の画像認識処理部と、
前記所望の被写体を所定の分類基準に従って分類するための処理を行うように構成された第2の画像認識処理部と、
をさらに有し、
前記制御部は、前記作業状態推定部により得られた推定結果に基づき、前記第1の作業が行われていることを検出した場合に、前記鏡面反射領域が維持された画像に対して前記第1の画像認識処理部による処理を施して得られた処理結果に応じた観察画像を出力させるための制御を行うとともに、前記第2の作業が行われていることを検出した場合に、前記鏡面反射領域補正部により前記鏡面反射領域が補正された画像に対して前記第2の画像認識処理部による処理を施して得られた処理結果に応じた観察画像を出力させるための制御を行う
ことを特徴とする請求項1に記載の画像処理装置。
【請求項5】
前記第1の画像認識処理部がコンボリューショナルニューラルネットワークを用いて構成されている
ことを特徴とする請求項4に記載の画像処理装置。
【請求項6】
前記第2の画像認識処理部がコンボリューショナルニューラルネットワークを用いて構成されている
ことを特徴とする請求項4に記載の画像処理装置。
【請求項7】
作業状態推定部、鏡面反射領域補正部、制御部を有する画像処理装置の作動方法であって、
前記作業状態推定部が、被検体を撮像して得られた画像を観察しながら作業を行うユーザの作業状態を推定して推定結果を得る第1ステップと、
前記鏡面反射領域補正部が、前記被検体を撮像して得られる画像に含まれる鏡面反射領域を補正するための処理を行う第2ステップと、
前記制御部が、前記第1ステップにより得られた推定結果に基づき、前記被検体における所望の被写体の探索に係る第1の作業が行われていることを検出した場合に、前記鏡面反射領域が維持された画像を観察画像として出力させるための制御を行うとともに、前記被検体において発見された前記所望の被写体の鑑別に係る第2の作業が行われていることを検出した場合に、前記第2ステップにより前記鏡面反射領域が補正された画像を観察画像として出力させるための制御を行う第3ステップと、
を有することを特徴とする画像処理装置の作動方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、画像処理装置及び画像処理装置の作動方法に関する。
【背景技術】
【0002】
内視鏡観察においては、内視鏡の外部へ照明光を出射する光学部材の出射面と、当該照明光により照明される物体と、の間の距離の近さ等に起因する鏡面反射が発生し得る。
【0003】
これに対し、例えば、日本国特開平10−210454号公報には、内視鏡により得られた内視鏡画像に対して画像処理を施す画像処理装置であって、鏡面反射に伴って生じるハレーション部等のような、IHb量の算出を行う上で不適当なデータを持つ領域を無効領域として除去する技術が開示されている。
【0004】
しかし、日本国特開平10−210454号公報には、内視鏡観察を行うユーザの作業状態に応じ、内視鏡画像から無効領域を除去するか否かを決定するための構成については特に開示等されていない。そのため、日本国特開平10−210454号公報に開示された構成によれば、例えば、体腔内のポリープ及び金属表面の傷のような、鏡面反射を利用して発見(検出)される異常箇所の発見率(検出精度)が低下し、その結果、当該異常箇所の診断を行うユーザに対して過度な負担を強いてしまうおそれがある、という課題が生じている。
【0005】
本発明は、前述した事情に鑑みてなされたものであり、鏡面反射を利用して発見または検出される異常箇所の診断を行うユーザの負担を軽減可能な画像処理装置及び画像処理装置の作動方法を提供することを目的としている。
【発明の開示】
【課題を解決するための手段】
【0006】
本発明の一態様の画像処理装置は、被検体を撮像して得られた画像を観察しながら作業を行うユーザの作業状態を推定して推定結果を得るように構成された作業状態推定部と、前記被検体を撮像して得られる画像に含まれる鏡面反射領域を補正するための処理を行うように構成された鏡面反射領域補正部と、前記作業状態推定部により得られた推定結果に基づき、前記被検体における所望の被写体の探索に係る第1の作業が行われていることを検出した場合に、前記鏡面反射領域が維持された画像を観察画像として出力させるための制御を行うとともに、前記被検体において発見された前記所望の被写体の鑑別に係る第2の作業が行われていることを検出した場合に、前記鏡面反射領域補正部により前記鏡面反射領域が補正された画像を観察画像として出力させるための制御を行うように構成された制御部と、を有する。
【0007】
本発明の一態様の画像処理装置の作動方法は、作業状態推定部、鏡面反射領域補正部、制御部を有する画像処理装置の作動方法であって、前記作業状態推定部が、被検体を撮像して得られた画像を観察しながら作業を行うユーザの作業状態を推定して推定結果を得る第1ステップと、前記鏡面反射領域補正部が、前記被検体を撮像して得られる画像に含まれる鏡面反射領域を補正するための処理を行う第2ステップと、前記制御部が、前記第1ステップにより得られた推定結果に基づき、前記被検体における所望の被写体の探索に係る第1の作業が行われていることを検出した場合に、前記鏡面反射領域が維持された画像を観察画像として出力させるための制御を行うとともに、前記被検体において発見された前記所望の被写体の鑑別に係る第2の作業が行われていることを検出した場合に、前記第2ステップにより前記鏡面反射領域が補正された画像を観察画像として出力させるための制御を行う第3ステップと、を有する。
【図面の簡単な説明】
【0008】
図1】実施形態に係る画像処理装置を含む内視鏡システムの要部の構成を示す図。
図2】第1の実施形態に係る画像処理部の構成の一例を説明するための図。
図3】第2の実施形態に係る画像処理部の構成の一例を説明するための図。
図4】第2の実施形態に係る画像処理部の探索支援用画像認識処理部において用いられる検出用コンボリューショナルニューラルネットワークの構成例等を説明するための概念図。
図5図4の検出用コンボリューショナルニューラルネットワークの学習手順の一例を説明するためのフローチャート。
図6】第2の実施形態に係る画像処理部の鑑別支援用画像認識処理部において用いられる分類用コンボリューショナルニューラルネットワークの構成例等を説明するための概念図。
図7】DeepLabシステムに含まれるネットワーク構成の一例を示す図。
【発明を実施するための最良の形態】
【0009】
以下、本発明の実施の形態について、図面を参照しつつ説明を行う。
【0010】
(第1の実施形態)
図1及び図2は、本発明の第1の実施形態に係るものである。
【0011】
内視鏡システム1は、図1に示すように、生体である被検者の体腔内に挿入可能であるとともに、当該体腔内に存在する生体組織等の被写体を撮像して撮像信号を出力する内視鏡2と、当該被写体を照明するための照明光を内視鏡2へ供給する光源装置3と、内視鏡2から出力される撮像信号に応じた観察画像を生成して出力するプロセッサ4と、プロセッサ4から出力される観察画像等を表示することが可能な表示装置5と、を有して構成されている。図1は、実施形態に係る画像処理装置を含む内視鏡システムの要部の構成を示す図である。
【0012】
内視鏡2は、被検者の体腔内に挿入可能な細長形状に形成された挿入部2aと、挿入部2aの基端側に設けられた操作部2bと、を具備して構成されている。
【0013】
挿入部2aの内部には、光源装置3から供給される照明光を挿入部2aの先端部へ伝送するように構成されたライトガイド7が挿通されている。また、挿入部2aの先端部には、ライトガイド7を経て出射される照明光を被写体へ照射する照明レンズ21と、当該照明光により照明された当該被写体から発生する反射光(以降、戻り光とも称する)を撮像して撮像信号を出力する撮像部22と、が設けられている。また、挿入部2aの内部には、被検者の体腔内に存在する病変の移動及び切除等に用いられる細長の処置具8を挿通可能な処置具チャンネル23が設けられている。すなわち、処置具8は、被検体を内視鏡2で観察する際に用いられる観察補助具としての機能を有している。
【0014】
撮像部22は、対物レンズ22aと、結像レンズ22bと、撮像素子22cと、レンズ駆動機構22dと、を有して構成されている。
【0015】
対物レンズ22aは、照明レンズ21を経て出射される照明光により照明された被写体から発せられる戻り光に応じた光学像を形成するように構成されている。
【0016】
結像レンズ22bは、対物レンズ22aにより形成された光学像を結像するように構成されている。また、結像レンズ22bは、レンズ駆動機構22dの動作に応じ、光軸方向に沿って移動することができるように構成されている。
【0017】
撮像素子22cは、例えば、CCDまたはCMOS等を具備して構成されている。また、撮像素子22cは、結像レンズ22bにより結像された光学像を光電変換して撮像するための複数の画素と、当該複数の画素を2次元状に配置した撮像面上に設けられたカラーフィルタと、を具備して構成されている。なお、前述のカラーフィルタは、例えば、R(赤色)、G(緑色)及びB(青色)の微小なフィルタを撮像素子22cの各画素に対応する位置にベイヤ配列で(市松状に)配置することにより形成されている。また、撮像素子22cは、プロセッサ4から出力される撮像素子駆動信号に応じて駆動するとともに、結像レンズ22bにより結像された光学像を撮像することにより撮像信号を生成し、当該生成した撮像信号をプロセッサ4へ出力するように構成されている。
【0018】
レンズ駆動機構22dは、プロセッサ4から出力されるレンズ駆動信号に基づき、対物レンズ22aの光出射面と撮像素子22cの撮像面との間の所定の可動範囲内で結像レンズ22bを移動させるための動作を行うことができるように構成されている。
【0019】
処置具チャンネル23は、挿入部2aの基端部に設けられた開口である挿入口23aと、挿入部2aの先端部に設けられた開口である突出口23bと、を有して構成されている。また、処置具チャンネル23は、挿入口23aから挿入された細長の処置具8を突出口23bから突出させることが可能な管形状を具備して形成されている。
【0020】
操作部2bは、ユーザが把持して操作することが可能な形状を具備して構成されている。また、操作部2bには、ユーザの入力操作に応じた指示をプロセッサ4に対して行うことが可能なスイッチを具備して構成されたスコープスイッチ24が設けられている。
【0021】
具体的には、スコープスイッチ24には、例えば、内視鏡システム1の観察モードを白色光観察モードまたは狭帯域光観察モードのいずれかに設定するための指示をプロセッサ4に対して行うことが可能な観察モード設定スイッチ(不図示)が設けられている。また、スコープスイッチ24には、例えば、光学的な変倍に係る指示をプロセッサ4に対して行うことが可能な光学ズームスイッチ(不図示)が設けられている。また、スコープスイッチ24には、例えば、被検者の体腔内に存在する異常箇所であるポリープの診断を支援するための機能(以降、診断支援機能とも称する)をオンまたはオフに設定するための指示をプロセッサ4に対して行うことが可能なポリープ診断支援スイッチ(不図示)が設けられている。
【0022】
光源装置3は、発光部31と、合波器32と、集光レンズ33と、光源制御部34と、を有して構成されている。
【0023】
発光部31は、赤色光源31aと、緑色光源31bと、青色光源31c及び31dと、を有して構成されている。
【0024】
赤色光源31aは、例えば、赤色LEDを具備して構成されている。また、赤色光源31aは、例えば、600nm付近の赤色域に中心波長が設定された狭帯域な赤色光であるR光を発するように構成されている。また、赤色光源31aは、光源制御部34の制御に応じて点灯状態または消灯状態に切り替わるように構成されている。また、赤色光源31aは、点灯状態において、光源制御部34の制御に応じた強度または光量のR光を発生するように構成されている。
【0025】
緑色光源31bは、例えば、緑色LEDを具備して構成されている。また、緑色光源31bは、例えば、540nm付近の緑色域に中心波長が設定された狭帯域な緑色光であるG光を発するように構成されている。また、緑色光源31bは、光源制御部34の制御に応じて点灯状態または消灯状態に切り替わるように構成されている。また、緑色光源31bは、点灯状態において、光源制御部34の制御に応じた強度または光量のG光を発生するように構成されている。
【0026】
青色光源31cは、例えば、青色LEDを具備して構成されている。また、青色光源31cは、例えば、460nm付近の青色域に中心波長が設定された狭帯域な青色光であるBL光を発するように構成されている。また、青色光源31cは、光源制御部34の制御に応じて点灯状態または消灯状態に切り替わるように構成されている。また、青色光源31cは、点灯状態において、光源制御部34の制御に応じた強度または光量のBL光を発生するように構成されている。
【0027】
青色光源31dは、例えば、青色LEDを具備して構成されている。また、青色光源31dは、例えば、410nm付近の青色域に中心波長が設定された狭帯域な青色光であるBS光を発するように構成されている。また、青色光源31dは、光源制御部34の制御に応じて点灯状態または消灯状態に切り替わるように構成されている。また、青色光源31dは、点灯状態において、光源制御部34の制御に応じた強度または光量のBS光を発生するように構成されている。
【0028】
合波器32は、発光部31から発せられた各光を合波して集光レンズ33に入射させることができるように構成されている。
【0029】
集光レンズ33は、合波器32を経て入射した光を集光してライトガイド7へ出射するように構成されている。
【0030】
光源制御部34は、例えば、光源制御回路を具備して構成されている。また、光源制御部34は、プロセッサ4から出力されるシステム制御信号に応じ、発光部31の各光源に対する制御を行うように構成されている。
【0031】
プロセッサ4は、撮像制御部41と、画像処理部42と、制御部43と、を有して構成されている。
【0032】
撮像制御部41は、例えば、撮像制御回路を具備して構成されている。また、撮像制御部41は、制御部43から出力されるシステム制御信号に応じ、撮像素子22cを駆動させるための撮像素子駆動信号を生成して出力するように構成されている。また、撮像制御部41は、制御部43から出力されるシステム制御信号に応じ、レンズ駆動機構22dを駆動させるためのレンズ駆動信号を生成して出力するように構成されている。
【0033】
画像処理部42は、例えば、画像処理回路を具備して構成されている。また、画像処理部42は、例えば、図2に示すように、画像生成部42aと、セレクタ42bと、鏡面反射領域補正部42cと、表示制御部42dと、を有して構成されている。図2は、第1の実施形態に係る画像処理部の構成の一例を説明するための図である。
【0034】
画像生成部42aは、内視鏡2から出力される撮像信号に基づいて画像を生成し、当該生成した画像をセレクタ42b及び制御部43へ出力するように構成されている。
【0035】
セレクタ42bは、制御部43から出力されるシステム制御信号に応じ、画像生成部42aから出力される画像の出力先を鏡面反射領域補正部42cまたは表示制御部42dのいずれかに設定するための動作を行うように構成されている。
【0036】
鏡面反射領域補正部42cは、セレクタ42bを経て出力される画像から鏡面反射領域を抽出するとともに、当該抽出した鏡面反射領域を補正するための処理を行うように構成されている。また、鏡面反射領域補正部42cは、前述の処理により鏡面反射領域を補正した画像を表示制御部42dへ出力するように構成されている、
具体的には、鏡面反射領域補正部42cは、例えば、セレクタ42bを経て出力される画像に基づき、所定の閾値以上の画素値を具備する1つ以上の画素により構成される領域を鏡面反射領域として抽出する処理を行う。また、鏡面反射領域補正部42cは、前述のように抽出した鏡面反射領域の周囲の画素値を用いて当該鏡面反射領域に含まれる各画素の画素値を補間する処理を行う。
【0037】
なお、鏡面反射領域補正部42cは、以上に例示したような方法で鏡面反射領域を補正するものに限らず、日本国特開平10−210454号公報等に開示された公知の方法を用いて鏡面反射領域を補正してもよい。
【0038】
表示制御部42dは、制御部43から出力されるシステム制御信号に応じ、画像生成部42aまたは鏡面反射領域補正部42cのいずれかから出力される画像を観察画像として表示装置5へ出力するための動作を行うように構成されている。
【0039】
制御部43は、例えば、CPU等の制御回路を具備して構成されている。また、制御部43は、スコープスイッチ24からの指示に基づき、光源制御部34、撮像制御部41及び画像処理部42の各部を制御するためのシステム制御信号を生成して出力することができるように構成されている。
【0040】
具体的には、制御部43は、例えば、スコープスイッチ24の観察モード設定スイッチからの指示に基づき、内視鏡システム1の観察モードに応じた照明光を内視鏡2へ供給させるためのシステム制御信号を生成して光源制御部34へ出力するように構成されている。また、制御部43は、例えば、スコープスイッチ24の光学ズームスイッチからの指示に基づき、撮像部22の観察倍率に応じた位置に結像レンズ22bを移動及び配置させるためのシステム制御信号を生成して撮像制御部41へ出力するように構成されている。
【0041】
制御部43は、スコープスイッチ24からの指示及び/または画像処理部42から出力される画像に基づき、被検体を内視鏡2で撮像して得られた画像(内視鏡画像)を観察しながら作業を行うユーザの作業状態を推定して推定結果を得るように構成された作業状態推定部43aを具備している。また、制御部43は、スコープスイッチ24のポリープ診断支援スイッチからの指示と、作業状態推定部43aにより得られた推定結果と、に基づき、セレクタ42b及び表示制御部42dの動作を制御するためのシステム制御信号を生成して出力することができるように構成されている。
【0042】
続いて、本実施形態に係る内視鏡システム1の具体的な動作等について説明する。
【0043】
ユーザは、内視鏡システム1の各部を接続して電源を投入した後、スコープスイッチ24を操作することにより、内視鏡システム1の観察モードを白色光観察モードに設定するとともにプロセッサ4の診断支援機能をオフに設定するための指示を行う。その後、ユーザは、被検者の体腔内への挿入部2aの挿入を開始する。
【0044】
制御部43は、スコープスイッチ24からの指示に基づき、内視鏡システム1の観察モードが白色光観察モードに設定されていることを検出した場合に、白色光を照明光として内視鏡2へ供給させるためのシステム制御信号を生成して光源制御部34へ出力する。また、制御部43は、スコープスイッチ24からの指示に基づき、プロセッサ4の診断支援機能がオフに設定されていることを検出した場合に、画像生成部42aにより生成された画像を観察画像として表示装置5へ出力させるためのシステム制御信号を生成してセレクタ42b及び表示制御部42dへ出力する。
【0045】
光源制御部34は、制御部43から出力されるシステム制御信号に応じ、内視鏡システム1の観察モードが白色光観察モードに設定されている場合に、赤色光源31a、緑色光源31b及び青色光源31cを同時に点灯させつつ青色光源31dを消灯させるための制御を発光部31に対して行う。すなわち、このような光源制御部34の制御によれば、白色光観察モード時において、R光、G光及びBL光を合波した白色光が光源装置3から内視鏡2へ供給され、当該白色光が照明レンズ21を経て被写体に照射され、当該白色光の反射光に応じた当該被写体の光学像が撮像素子22cにより撮像される。また、白色光観察モード時においては、撮像素子22cにより撮像された光学像に応じた白色光画像が画像生成部42aにより生成される。
【0046】
セレクタ42bは、制御部43から出力されるシステム制御信号に応じ、プロセッサ4の診断支援機能がオフに設定されている場合に、画像生成部42aから出力される白色光画像の出力先を表示制御部42dに設定するための動作を行う。
【0047】
表示制御部42dは、制御部43から出力されるシステム制御信号に応じ、プロセッサ4の診断支援機能がオフに設定されている場合に、画像生成部42aから出力される白色光画像を観察画像として表示装置5へ出力するための動作を行う。
【0048】
一方、ユーザは、被検者の体腔内におけるポリープの存在が疑われる部分に挿入部2aの先端部を配置した状態において、スコープスイッチ24を操作することにより、プロセッサ4の診断支援機能をオンに設定するための指示を行う。
【0049】
作業状態推定部43aは、スコープスイッチ24からの指示に基づき、プロセッサ4の診断支援機能がオンに設定されかつ内視鏡システム1の観察モードが白色光観察モードに設定されている場合に、被検体を内視鏡2で撮像して得られた画像(内視鏡画像)を観察するユーザがポリープの探索に係る作業を行っているとの推定結果を得る。
【0050】
制御部43は、作業状態推定部43aにより得られた推定結果に基づき、内視鏡2が挿入されている被検体における所望の被写体または発見対象であるポリープの探索に係る作業が行われていることを検出した場合に、鏡面反射領域が維持された画像を観察画像として表示装置5へ出力させるためのシステム制御信号を生成してセレクタ42b及び表示制御部42dへ出力する。
【0051】
セレクタ42bは、制御部43から出力されるシステム制御信号に応じ、ポリープの探索に係る作業が行われている場合に、画像生成部42aから出力される白色光画像の出力先を表示制御部42dに設定するための動作を行う。
【0052】
表示制御部42dは、制御部43から出力されるシステム制御信号に応じ、ポリープの探索に係る作業が行われている場合に、画像生成部42aから出力される白色光画像を観察画像として表示装置5へ出力するための動作を行う。
【0053】
一方、ユーザは、鏡面反射領域が維持された状態で表示装置5に表示される白色光画像を確認しつつ挿入部2aを操作することにより、当該被検者の体腔内に存在するポリープを探索する。そして、ユーザは、ポリープを発見した際に、スコープスイッチ24を操作することにより、内視鏡システム1の観察モードを狭帯域光観察モードに設定するための指示を行う。
【0054】
作業状態推定部43aは、スコープスイッチ24からの指示に基づき、プロセッサ4の診断支援機能がオンに設定されかつ内視鏡システム1の観察モードが狭帯域光観察モードに設定されている場合に、被検体を内視鏡2で撮像して得られた画像(内視鏡画像)を観察するユーザがポリープの鑑別に係る作業を行っているとの推定結果を得る。
【0055】
制御部43は、スコープスイッチ24からの指示に基づき、内視鏡システム1の観察モードが狭帯域光観察モードに設定されていることを検出した場合に、G光及びBS光を照明光として内視鏡2へ供給させるためのシステム制御信号を生成して光源制御部34へ出力する。また、制御部43は、作業状態推定部43aにより得られた推定結果に基づき、内視鏡2が挿入されている被検体において発見された所望の被写体または発見対象であるポリープの鑑別に係る作業が行われていることを検出した場合に、鏡面反射領域補正部42cにより鏡面反射領域が補正された画像を観察画像として表示装置5へ出力させるためのシステム制御信号を生成してセレクタ42b及び表示制御部42dへ出力する。
【0056】
光源制御部34は、制御部43から出力されるシステム制御信号に応じ、狭帯域光観察モードにおいて、緑色光源31b及び青色光源31dを同時に点灯させつつ赤色光源31a及び青色光源31cを消灯させるための制御を発光部31に対して行う。すなわち、このような光源制御部34の制御によれば、狭帯域光観察モード時において、G光及びBS光を合波した混合光が光源装置3から内視鏡2へ供給され、当該混合光が照明レンズ21を経て被写体に照射され、当該混合光の反射光に応じた当該被写体の光学像が撮像素子22cにより撮像される。また、狭帯域光観察モード時においては、撮像素子22cにより撮像された光学像に応じた狭帯域光画像が画像生成部42aにより生成される。
【0057】
セレクタ42bは、制御部43から出力されるシステム制御信号に応じ、ポリープの鑑別に係る作業が行われている場合に、画像生成部42aから出力される画像の出力先を鏡面反射領域補正部42cに設定するための動作を行う。
【0058】
表示制御部42dは、制御部43から出力されるシステム制御信号に応じ、ポリープの鑑別に係る作業が行われている場合に、鏡面反射領域補正部42cから出力される画像を観察画像として表示装置5へ出力するための動作を行う。
【0059】
一方、ユーザは、鏡面反射領域が補正された状態で表示装置5に表示される狭帯域光画像を確認することにより、前述の探索に係る作業を経て発見したポリープの悪性度等を鑑別する。そして、ユーザは、ポリープの鑑別に係る作業を完了した後で、スコープスイッチ24を操作することにより、例えば、内視鏡システム1の観察モードを白色光観察モードに設定するとともにプロセッサ4の診断支援機能をオフに設定するための指示を行う。
【0060】
ここで、出願人の検討によれば、ポリープの探索時に得られた画像から鏡面反射領域を除去した場合に、当該鏡面反射領域を除去しない場合よりもポリープの発見率または検出精度が低下してしまう、との知見が得られている。また、出願人の検討によれば、探索を経て発見または検出されたポリープの鑑別時において、当該ポリープを含む画像から鏡面反射領域を除去することにより、当該ポリープの悪性度の判別精度を安定させることができる、との知見が得られている。そして、このような知見に鑑み、本実施形態においては、プロセッサ4の診断支援機能がオンに設定されている場合に、作業状態推定部43aにより得られた推定結果に応じ、鏡面反射領域が維持された観察画像、または、鏡面反射領域が補正された観察画像のいずれかを選択的に表示装置5へ出力させるようにしている。従って、本実施形態によれば、鏡面反射を利用して検出されるポリープの診断を行うユーザの負担を軽減することができる。
【0061】
なお、本実施形態の作業状態推定部43aは、プロセッサ4の診断支援機能がオンに設定されている場合に、以上に述べたような推定方法によりユーザの作業状態を推定するものに限らず、以下に例示するような推定方法によりユーザの作業状態を推定するようにしてもよい。
【0062】
作業状態推定部43aは、例えば、画像処理部42から出力される画像の明るさに基づき、被検体を内視鏡2で撮像して得られた画像(内視鏡画像)を観察するユーザの作業状態を推定して推定結果を得るものであってもよい。
【0063】
具体的には、作業状態推定部43aは、例えば、画像処理部42から出力される画像に含まれる各画素の平均輝度値を算出し、当該算出した平均輝度値が閾値TH1以上である場合にポリープの探索作業中であるとの推定結果を取得する一方で、当該算出した平均輝度値が当該閾値TH1未満である場合にポリープの鑑別作業中であるとの推定結果を取得するようにしてもよい。
【0064】
作業状態推定部43aは、例えば、内視鏡2(撮像部22)の現在の観察倍率に基づき、被検体を内視鏡2で撮像して得られた画像(内視鏡画像)を観察するユーザの作業状態を推定して推定結果を得るものであってもよい。
【0065】
具体的には、作業状態推定部43aは、例えば、スコープスイッチ24からの指示により設定されている内視鏡2(撮像部22)の現在の観察倍率を取得し、当該取得した現在の観察倍率が閾値TH2未満である場合にポリープの探索作業中であるとの推定結果を取得する一方で、当該取得した現在の観察倍率が閾値TH2以上である場合にポリープの鑑別作業中であるとの推定結果を取得するようにしてもよい。
【0066】
作業状態推定部43aは、例えば、処置具8の使用状態に基づき、被検体を内視鏡2で撮像して得られた画像(内視鏡画像)を観察するユーザの作業状態を推定して推定結果を得るものであってもよい。
【0067】
具体的には、作業状態推定部43aは、例えば、画像処理部42から出力される画像に対して画像認識処理を施した際の処理結果に基づき、処置具8の先端部を検出することができなかった場合にポリープの探索作業中であるとの推定結果を取得する一方で、処置具8の先端部を検出することができた場合にポリープの鑑別作業中であるとの推定結果を取得するようにしてもよい。または、作業状態推定部43aは、例えば、スコープスイッチ24に設けられた所定のスイッチからの指示を検出することができなかった場合にポリープの探索作業中であるとの推定結果を取得する一方で、当該所定のスイッチからの指示を検出することができた場合にポリープの鑑別作業中であるとの推定結果を取得するようにしてもよい。
【0068】
作業状態推定部43aは、例えば、画像処理部42から出力される画像の色調に基づき、被検体を内視鏡2で撮像して得られた画像(内視鏡画像)を観察するユーザの作業状態を推定して推定結果を得るものであってもよい。
【0069】
具体的には、作業状態推定部43aは、例えば、画像処理部42から出力される画像に含まれる各画素の中から(ポリープ用の染色液の色に相当する)所定の色の画素を抽出するとともに、当該抽出した画素の数が閾値TH3未満である場合にポリープの探索作業中であるとの推定結果を取得する一方で、当該抽出した画素の数が閾値TH3以上である場合にポリープの鑑別作業中であるとの推定結果を取得するようにしてもよい。
【0070】
作業状態推定部43aは、例えば、画像処理部42から出力される画像に含まれるポリープの位置及びサイズに基づき、被検体を内視鏡2で撮像して得られた画像(内視鏡画像)を観察するユーザの作業状態を推定して推定結果を得るものであってもよい。
【0071】
具体的には、作業状態推定部43aは、例えば、画像処理部42から出力される画像に対して画像認識処理及びトラッキング処理を施した際の処理結果に基づき、ポリープを検出することができなかった場合、当該画像の周縁部にポリープが存在する場合、または、当該画像においてポリープが占める面積の割合が閾値TH4未満である場合に、ポリープの探索作業中であるとの推定結果を取得するようにしてもよい。また、作業状態推定部43aは、例えば、画像処理部42から出力される画像に対して画像認識処理及びトラッキング処理を施した際の処理結果に基づき、当該画像の中央部にポリープが存在し、かつ、当該画像においてポリープが占める面積の割合が閾値TH4以上である場合に、ポリープの鑑別作業中であるとの推定結果を取得するようにしてもよい。
【0072】
また、本実施形態によれば、作業状態推定部43aは、ユーザの作業状態を推定して推定結果を得る際に、以上に例示した方法を単独で用いてもよく、または、以上に例示した方法を複数組み合わせて用いてもよい。すなわち、作業状態推定部43aは、被検体を内視鏡2で観察する際の観察モードと、当該被検体を内視鏡2で撮像して得られた内視鏡画像の明るさと、当該被検体を内視鏡2で観察する際の観察倍率と、当該被検体を内視鏡2で観察する際に用いられる処置具8の使用状態と、当該内視鏡画像の色調と、当該内視鏡画像に含まれるポリープの位置及びサイズと、のうちの少なくとも1つに基づいて前記作業状態を推定するものであればよい。
【0073】
また、本実施形態によれば、スコープスイッチ24のポリープ診断支援スイッチからの指示の代わりに、例えば、挿入部2aが体腔内に挿入されているか否かを検出して得られた検出結果に基づき、プロセッサ4の診断支援機能がオンまたはオフに設定されるようにしてもよい。
【0074】
具体的には、例えば、制御部43(または作業状態推定部43a)は、画像処理部42から出力される画像の明るさ及び/または色調に基づき、挿入部2aが体腔内に挿入されていることを検出した場合にプロセッサ4の診断支援機能をオンに設定する一方で、挿入部2aが体腔内に挿入されていないことを検出した場合にプロセッサ4の診断支援機能をオフに設定するようにしてもよい。
【0075】
一方、本実施形態の診断支援機能は、ポリープの診断を行う場合に限らず、例えば、金属表面の傷のような、鏡面反射を利用して検出される様々な異常箇所の診断を行う場合において略同様に利用することができる。
【0076】
具体的には、本実施形態の診断支援機能によれば、例えば、被検体における所望の被写体または発見対象である金属表面の傷の探索作業中であるとの推定結果が作業状態推定部43aにより得られた場合に、鏡面反射領域が維持された観察画像を表示装置5へ出力させることができるとともに、当該被検体において発見された金属表面の傷の鑑別作業中であるとの推定結果が作業状態推定部43aにより得られた場合に、鏡面反射領域が鏡面反射領域補正部42cにより補正された観察画像を表示装置5へ出力させることができる。
【0077】
(第2の実施形態)
図3から図7は、本発明の第2の実施形態に係るものである。
【0078】
なお、本実施形態においては、第1の実施形態と同様の構成等を有する部分に関する詳細な説明を省略するとともに、第1の実施形態と異なる構成等を有する部分に関して主に説明を行う。
【0079】
本実施形態のプロセッサ4は、画像処理部42の代わりに、図3に例示するような画像処理部62を具備して構成されている。図3は、第2の実施形態に係る画像処理部の構成の一例を説明するための図である。
【0080】
画像処理部62は、例えば、画像処理回路を具備して構成されている。また、画像処理部62は、例えば、図3に示すように、画像生成部42aと、セレクタ42bと、鏡面反射領域補正部42cと、表示制御部42dと、セレクタ42bの出力側と表示制御部42dの入力側との間に設けられた探索支援用画像認識処理部62a(以降、画像認識処理部62aと略記する)と、鏡面反射領域補正部42cの出力側と表示制御部42dの入力側との間に設けられた鑑別支援用画像認識処理部62b(以降、画像認識処理部62bと略記する)と、を有して構成されている。
【0081】
セレクタ42bは、制御部43から出力されるシステム制御信号に応じ、ポリープの探索に係る作業が行われている場合に、画像生成部42aから出力される画像の出力先を画像認識処理部62aに設定するための動作を行う。
【0082】
セレクタ42bは、制御部43から出力されるシステム制御信号に応じ、ポリープの鑑別に係る作業が行われている場合に、画像生成部42aから出力される画像の出力先を鏡面反射領域補正部42cに設定するための動作を行う。
【0083】
画像認識処理部62aは、セレクタ42bを経て出力される画像、すなわち、鏡面反射領域が維持された画像におけるポリープの有無を検出するための処理を行うように構成されている。また、画像認識処理部62aは、セレクタ42bを経て出力される画像からポリープを検出した際に、当該ポリープの位置及びサイズを示す検出枠を生成するための処理を行うとともに、当該生成した検出枠と当該画像とを併せて表示制御部42dへ出力するように構成されている。なお、本実施形態の画像認識処理部62aは、検出用コンボリューショナルニューラルネットワーク(以降、検出用CNNと略記する)を用いてポリープの有無の検出及び検出枠の生成を行うように構成されている。このような検出用CNNの構成例等については、後程詳述する。
【0084】
画像認識処理部62bは、セレクタ42b及び鏡面反射領域補正部42cを経て出力される画像、すなわち、鏡面反射領域補正部42cにより鏡面反射領域が補正された画像に含まれるポリープを所定の分類基準に従って分類して分類結果を得るための処理を行うとともに、当該得られた分類結果と当該画像とを併せて表示制御部42dへ出力するように構成されている。なお、本実施形態の画像認識処理部62bは、分類用コンボリューショナルニューラルネットワーク(以降、分類用CNNと略記する)を用いてポリープの分類を行うように構成されている。このような分類用CNNの構成例等については、後程詳述する。また、以降においては、画像認識処理部62bが、鏡面反射領域補正部42cにより鏡面反射領域が補正された画像に含まれるポリープをNICE分類のType1、Type2またはType3のいずれかに分類するための処理を行う場合を例に挙げて説明する。また、本実施形態においては、鏡面反射領域が補正された画像が画像認識処理部62bに入力されるものに限らず、例えば、セレクタ42bから出力される画像におけるポリープを含む部分を矩形に切り出す処理により鏡面反射領域が除外された画像が画像認識処理部62bに入力されるようにしてもよい。
【0085】
表示制御部42dは、制御部43から出力されるシステム制御信号に応じ、ポリープの探索に係る作業が行われている場合に、画像認識処理部62aから出力される鏡面反射領域が維持された画像と、画像認識処理部62aから出力される処理結果であるポリープの検出枠と、を用いて生成した観察画像を表示装置5へ出力するための動作を行う。
【0086】
表示制御部42dは、制御部43から出力されるシステム制御信号に応じ、ポリープの鑑別に係る作業が行われている場合に、画像認識処理部62bから出力される鏡面反射領域が補正された画像と、画像認識処理部62bから出力される処理結果であるポリープの分類結果と、を用いて生成した観察画像を表示装置5へ出力するための動作を行う。
【0087】
制御部43は、作業状態推定部43aにより得られた推定結果に基づき、ポリープの探索に係る作業が行われていることを検出した場合に、鏡面反射領域が維持された画像に対して画像認識処理部62aによる処理を施して得られた処理結果に応じた観察画像を出力させるための制御をセレクタ42b及び表示制御部42dに対して行う。
【0088】
制御部43は、作業状態推定部43aにより得られた推定結果に基づき、ポリープの鑑別に係る作業が行われていることを検出した場合に、鏡面反射領域補正部42cにより鏡面反射領域が補正された画像に対して画像認識処理部62bによる処理を施して得られた処理結果に応じた観察画像を出力させるための制御をセレクタ42b及び表示制御部42dに対して行う。
【0089】
すなわち、以上に述べたような本実施形態の各部の動作によれば、例えば、ポリープの探索に係る作業が行われている場合に、鏡面反射領域が維持された画像と、当該画像に含まれるポリープの周囲に形成された検出枠と、を具備する観察画像が表示装置5に表示される。また、以上に述べたような本実施形態の各部の動作によれば、例えば、ポリープの鑑別に係る作業が行われている場合に、鏡面反射領域が補正された画像と、当該画像に含まれるポリープがNICE分類のType1、Type2及びType3のうちのいずれに属するかをユーザに報知するための文字列等の視覚情報と、を具備する観察画像が表示装置5に表示される。
【0090】
ここで、画像認識処理部62aにおいて用いられる検出用CNNの構成例等について、図4を参照しつつ説明する。なお、本実施形態においては、Faster R−CNNを検出用CNNとして用いた場合を例に挙げて説明する。図4は、第2の実施形態に係る画像処理部の探索支援用画像認識処理部において用いられる検出用CNNの構成例等を説明するための概念図である。
【0091】
検出用CNN71は、図4に示すように、鏡面反射領域が維持された入力画像の中からポリープを含む矩形の候補枠を検出するRegion Proposal Network(以降、RPNと略記する)71aと、当該検出した候補枠に含まれるポリープを精査することにより検出枠を生成するFast R−CNN(以降、FRCNNと略記する)71bと、を有して構成されている。
【0092】
RPN71aは、図4に示すように、特徴量抽出用CNN72aと、候補枠検出用CNN72bと、を有して構成されている。また、FRCNN71bは、図4に示すように、特徴量抽出用CNN72aと、ROI Pooling層72cと、候補枠分類用全結合層72dと、を有して構成されている。すなわち、特徴量抽出用CNN72aは、RPN71a及びFRCNN71bの両方において共有されている。
【0093】
特徴量抽出用CNN72aは、入力画像に対して複数回の畳み込み演算及びプーリング演算を施すことにより、当該入力画像の特徴マップを演算結果として得るように構成されている。また、特徴量抽出用CNN72aは、例えば、AlexNetまたはVGG−16のようなネットワーク構造を用いて構成されている。
【0094】
なお、以降においては、特に言及の無い限り、特徴量抽出用CNN72aがVGG−16を用いて構成されているものとして説明を行う。すなわち、以降においては、例えば、横幅W、縦幅H及びチャンネル数3(Red、Green及びBlue)を具備する入力画像が特徴量抽出用CNN72aに入力された場合に、横幅W/16、縦幅H/16及びチャンネル数512を具備する特徴マップが特徴量抽出用CNN72aの演算結果として得られるものとして説明を行う。
【0095】
候補枠検出用CNN72bは、例えば、RPN枠変動量マップを取得して出力するRPN枠変動量マップ出力用畳み込み層731と、RPNスコアマップを取得して出力するRPNスコアマップ出力用畳み込み層732と、を有する3層のCNNとして構成されている。また、候補枠検出用CNN72bは、RPN枠変動量マップ及びRPNスコアマップを用いて後述の演算を行うことにより、候補枠の座標値及びポリープらしさを表すRPNスコアを算出するように構成されている。
【0096】
RPN枠変動量マップ出力用畳み込み層731は、特徴量抽出用CNN72aの演算結果として得られた特徴マップを用いて演算を行うことにより、例えば、横幅W/16、縦幅H/16及びチャンネル数4×Aを具備するRPN枠変動量マップを取得して出力するように構成されている。すなわち、RPN枠変動量マップは、空間方向の位置が入力画像の位置に対応するとともに、チャンネル方向に各アンカーの枠変動量(xy方向それぞれの枠中心移動量及び枠幅拡大量)を具備するものとして取得される。なお、前述のAの値は、アンカー数を表すものとする。また、アンカーは、縦横比及びスケールを含む候補枠の形状を表すものとする。
【0097】
RPNスコアマップ出力用畳み込み層732は、RPN枠変動量マップ出力用畳み込み層731から出力されるRPN枠変動量マップを用いて演算を行うことにより、例えば、横幅W/16、縦幅H/16及びチャンネル数2×Aを具備するRPNスコアマップを取得して出力するように構成されている。すなわち、RPNスコアマップは、空間方向の位置が入力画像の位置に対応するとともに、チャンネル方向に各アンカーのスコア(ポリープスコア及び背景スコア)を具備するものとして取得される。
【0098】
ここで、アンカーaが表す矩形の候補枠の(0,0)を中心としたときの座標値(矩形の左上のx座標及びy座標、及び、当該矩形の右下のx座標及びy座標)は、下記数式(1)を用いて算出される。なお、下記数式(1)において、bはアンカーベースサイズを表し、rは縦横比を表し、sはスケールを表すものとする。また、下記数式(1)において、Rは縦横比数を表し、Sはスケール数を表し、R×S=Aの関係が成り立つものとする。
【0099】


そして、候補枠検出用CNN72bは、下記数式(2)を用いた演算を行うことにより、候補枠の座標値pを算出する。
【0100】


なお、上記数式(2)に含まれる各パラメータは、下記数式(3)から(11)を用いてそれぞれ算出される。但し、下記数式(3)から(6)におけるbmapは、RPN枠変動量マップを示すものとする。
【0101】


また、候補枠検出用CNN72bは、下記数式(12)を用いた演算を行うことにより、ポリープらしさを表すRPNスコアscを算出する。但し、下記数式(12)におけるsmapは、RPNスコアマップを示すものとする。
【0102】


ROI Pooling層72cは、特徴量抽出用CNN72aの演算結果として得られた特徴マップと、候補枠検出用CNN72bの演算結果として得られた候補枠の座標値と、を用い、特徴マップを候補枠毎に切り出すとともに、当該切り出した各特徴マップに対してMax Poolingによるリサイズを施すように構成されている。そして、ROI Pooling層72cは、候補枠毎の特徴マップとして、例えば、横幅7、縦幅7及びチャンネル数512を具備する特徴マップを取得して出力するように構成されている。
【0103】
候補枠分類用全結合層72dは、例えば、FRCNN枠変動量マップを取得して出力するFRCNN枠変動量マップ出力用全結合層733と、FRCNNスコアマップを取得して出力するFRCNNスコアマップ出力用全結合層734と、を有する4層のCNNとして構成されている。また、候補枠分類用全結合層72dは、FRCNN枠変動量マップ及びFRCNNスコアマップを用い、上記数式(1)から(12)に示したものと同様の演算を行うことにより、検出枠の座標値及びポリープらしさを表すFRCNNスコアを算出するように構成されている。
【0104】
FRCNN枠変動量マップ出力用全結合層733は、特徴量抽出用CNN72aの演算結果として得られた特徴マップを用いて演算を行うことにより、例えば、横幅1、縦幅1、切り出されたマップ数M、及び、チャンネル数4(xy方向それぞれの枠中心移動量及び枠幅拡大量)×Aを具備するFRCNN枠変動量マップを取得して出力するように構成されている。
【0105】
FRCNNスコアマップ出力用全結合層734は、FRCNN枠変動量マップ出力用全結合層733から出力されるFRCNN枠変動量マップを用いて演算を行うことにより、例えば、横幅1、縦幅1、切り出されたマップ数M、及び、チャンネル数2(ポリープスコア及び背景スコア)×Aを具備するFRCNNスコアマップを取得して出力するように構成されている。
【0106】
次に、検出用CNN71の学習手順の一例について、図5を参照しつつ説明する。なお、本実施形態においては、RPN71a及びFRCNN71bを1回ずつ学習させた後で、さらに、特徴量抽出用CNN72aを固定してRPN71a及びFRCNN71bを1回ずつ学習させることにより、RPN71a及びFRCNN71bの両方において特徴量抽出用CNN72aを共有させる場合を例に挙げて説明する。また、本実施形態においては、例えば、内視鏡を用いて体腔内を撮像して得られた内視鏡画像が学習画像として用いられるものとする。また、本実施形態においては、例えば、前述の学習画像におけるポリープ領域を白色で着色し、かつ、前述の学習画像における背景領域(ポリープ領域以外の領域)を黒色で着色した画像が正解マスク画像として用いられるものとする。図5は、図4の検出用コンボリューショナルニューラルネットワークの学習手順の一例を説明するためのフローチャートである。
【0107】
図5のステップS1において、学習画像と、正解マスク画像と、プレトレーニングデータと、がRPN71aに入力される。
【0108】
なお、図5のステップS1の処理において入力されるプレトレーニングデータは、例えば、ImageNetのような大規模画像データベースに含まれる画像群を用いてRPN71aの学習を行うことにより予め得られたデータである。
【0109】
その後、図5のステップS2において、図5のステップS1の処理により入力された正解マスク画像を用いてRPN71aの学習用の正解枠変動量マップ及び正解ラベルマップが作成される。
【0110】
なお、図5のステップS2の処理により作成される正解枠変動量マップは、例えば、横幅W/16、縦幅H/16及びチャンネル数4(xy方向それぞれの枠中心移動量及び枠幅拡大量)×Aを具備するものとして作成される。また、図5のステップS2の処理により作成される正解ラベルマップは、例えば、横幅W/16、縦幅H/16及びチャンネル数1(ラベル)×Aを具備するものとして作成される。また、図5のステップS2の処理においては、例えば、マップの各点に対応する候補枠の座標値と正解マスク画像との重複度が50%以上の場合にはポリープを示すラベル=0が正解ラベルマップに格納される一方で、当該重複度が0%以上50%未満の場合には背景を示すラベル=1が正解ラベルマップに格納される。また、図5のステップS2の処理においては、ラベル=0が正解ラベルマップに格納される際に、候補枠から正解マスク画像のポリープ領域に外接する矩形への変動量が正解枠変動量マップに格納される。
【0111】
その後、図5のステップS3において、図5のステップS1の処理により入力された学習画像と、図5のステップS2の処理により作成された正解枠変動量マップ及び正解ラベルマップと、を用い、1回目のRPN71aの学習が行われる。
【0112】
なお、図5のステップS3の処理においては、図5のステップS1で入力されたプレトレーニングデータが特徴量抽出用CNN72aの初期値として用いられる。また、図5のステップS3の処理は、特徴量抽出用CNN72a及び候補枠検出用CNN72bの両方を最適化するために行われる。また、図5のステップS3の処理においては、正解ラベルマップ及びRPNスコアマップのSoftmax交差エントロピーと、正解枠変動量マップ及びRPN枠変動量マップのSmooth L1 Lossと、に対して重み付けを行って加えたものをloss関数として用いるものとする。また、図5のステップS3の処理においては、確率的勾配降下法(Stochastic Gradient Descent:SGD)を用いて特徴量抽出用CNN72a及び候補枠検出用CNN72bを最適化するものとする。
【0113】
その後、図5のステップS4において、図5のステップS3の処理を経て構築された1回目の学習済のRPN71aを、図5のステップS1の処理により入力された学習画像に対して適用することにより、候補枠の座標値と、ポリープらしさを表すRPNスコアと、がそれぞれ算出される。
【0114】
その後、図5のステップS5において、図5のステップS4の処理により算出された候補枠の座標値と、図5のステップS1の処理により入力された正解マスク画像と、を用い、1回目のFRCNN71bの学習用の正解枠変動量マップ及び正解ラベルマップが作成される。
【0115】
なお、図5のステップS5の処理により作成される正解枠変動量マップは、例えば、横幅W/16、縦幅H/16、出力候補枠数M、及び、チャンネル数4(xy方向それぞれの枠中心移動量及び枠幅拡大量)×Aを具備するものとして作成される。また、図5のステップS5の処理により作成される正解ラベルマップは、例えば、横幅W/16、縦幅H/16、出力候補枠数M、及び、チャンネル数1(ラベル)×Aを具備するものとして作成される。また、図5のステップS5の処理においては、例えば、図5のステップS4の処理により算出された候補枠の座標値と正解マスク画像との重複度が50%以上の場合にはポリープを示すラベル=0が正解ラベルマップに格納される一方で、当該重複度が0%以上50%未満の場合には背景を示すラベル=1が正解ラベルマップに格納される。また、図5のステップS5の処理においては、ラベル=0が正解ラベルマップに格納される際に、候補枠から正解マスク画像のポリープ領域に外接する矩形への変動量が正解枠変動量マップに格納される。
【0116】
その後、図5のステップS6において、図5のステップS1の処理により入力された学習画像と、図5のステップS5の処理により作成された正解枠変動量マップ及び正解ラベルマップと、に基づき、1回目のFRCNN71bの学習が行われる。
【0117】
なお、図5のステップS6の処理においては、図5のステップS1で入力されたプレトレーニングデータが特徴量抽出用CNN72aの初期値として用いられる。また、図5のステップS6の処理は、特徴量抽出用CNN72a及び候補枠分類用全結合層72dの両方を最適化するために行われる。また、図5のステップS6の処理においては、図5のステップS3の処理で用いたものと同様のloss関数及び最適化手法が用いられる。
【0118】
その後、図5のステップS7において、図5のステップS1の処理により入力された学習画像と、図5のステップS2の処理により作成された正解枠変動量マップ及び正解ラベルマップと、を用い、2回目のRPN71aの学習が行われる。
【0119】
なお、図5のステップS7の処理においては、特徴量抽出用CNN72aが、図5のステップS6の処理を経て取得された1回目のFRCNN71bの学習結果で固定されているものとする。また、図5のステップS7の処理は、候補枠検出用CNN72bだけを最適化するために行われる。
【0120】
その後、図5のステップS8において、図5のステップS7の処理を経て構築された2回目の学習済のRPN71aを、図5のステップS1の処理により入力された学習画像に対して適用することにより、候補枠の座標値と、ポリープらしさを表すRPNスコアと、がそれぞれ算出される。
【0121】
その後、図5のステップS9において、図5のステップS8の処理により算出された候補枠の座標値と、図5のステップS1の処理により入力された正解マスク画像と、を用い、2回目のFRCNN71bの学習用の正解枠変動量マップ及び正解ラベルマップが作成される。
【0122】
その後、図5のステップS10において、図5のステップS1の処理により入力された学習画像と、図5のステップS9の処理により作成された正解枠変動量マップ及び正解ラベルマップと、を用い、2回目のFRCNN71bの学習が行われる。
【0123】
なお、図5のステップS10の処理においては、特徴量抽出用CNN72aが、図5のステップS6の処理を経て取得された1回目のFRCNN71bの学習結果で固定されているものとする。また、図5のステップS7の処理は、候補枠分類用全結合層72dだけを最適化するために行われる。
【0124】
すなわち、本実施形態の画像認識処理部62aは、図5に例示した一連の学習手順を経て構築された検出用CNN71を用い、セレクタ42bを経て出力される画像(鏡面反射領域が維持された画像)におけるポリープの有無を検出するとともに、当該検出したポリープの位置及びサイズを示す検出枠を生成するように構成されている。
【0125】
次に、画像認識処理部62bにおいて用いられる分類用CNNの構成例等について、図6を参照しつつ説明する。図6は、第2の実施形態に係る画像処理部の鑑別支援用画像認識処理部において用いられる分類用コンボリューショナルニューラルネットワークの構成例等を説明するための概念図である。
【0126】
分類用CNN81は、図6に示すように、鏡面反射領域が補正された入力画像に対し、コンボリューション層81a及びプーリング層(サブサンプリング層)81bによる処理を3回繰り返して施した後で、2層の全結合層81cによる処理をさらに施すことにより、当該入力画像に含まれるポリープをNICE分類に従って分類して分類結果を得るように構成されている。
【0127】
なお、分類用CNN81の各コンボリューション層81aは、コンボリューション処理の後に非線形関数(ReLU)を適用して得られる処理結果をプーリング層81bへ出力するように構成されているものとする。また、分類用CNN81においては、入力画像に対し、コンボリューション層81a及びプーリング層81bによる処理が1回以上繰り返して行われればよい。また、分類用CNN81においては、全結合層81cが1層以上存在していればよい。
【0128】
一方、本実施形態においては、Alex−net、ZFNet、VGG−16、GoogLeNet、または、Network in Network等を用いて分類用CNN81を構築することができる。そのため、VGG−16を用いて分類用CNN81を構築した場合の例について以下に説明する。
【0129】
VGG−16を用いて構築された分類用CNN81においては、3×3のサイズのコンボリューションフィルターが用いられるとともに、当該コンボリューションフィルターと入力画像とのコンボリューション処理結果が非線形関数ReLUに適用される。また、VGG−16を用いて構築された分類用CNN81においては、コンボリューション層による処理が2回または3回続いた後で、MaxPooling(前層の2×2の出力の中の最大値を選択するサブサンプリング)が行われる。(なお、VGG−16においては、プーリングが層の数としてはカウントされない。)そして、VGG−16を用いて構築された分類用CNN81においては、13層のコンボリューション層による処理と、5回のMax Poolingと、を経た後で、3層の全結合層による処理が行われる。
【0130】
次に、分類用CNN81の学習手順の一例について説明する。
【0131】
分類用CNN81の学習においては、例えば、内視鏡システム1の外部の消化器内視鏡画像データベース(以降、消化器内視鏡画像DBと略記する)91に格納された白色光画像または狭帯域光画像のような内視鏡画像を利用することができる。そして、分類用CNN81の学習を行う際には、例えば、内視鏡画像と、当該内視鏡画像をNICE分類に従って分類することにより生成したラベルと、を1組ずつ組み合わせたデータである学習データセットが用いられる。
【0132】
分類用CNN81の学習においては、例えば、前述の学習データセットを数万組準備することができる場合には、VGG−16ネットワークを直接学習させることができる。但し、前述の学習データセットを十分な数だけ準備できない場合には、例えば、ImageNetのような大規模画像DBを用いてプレトレーニングが行われたVGG−16ネットワークに対し、消化器内視鏡画像を含むデータセットによるファインチューニングを施すようにしてもよい。
【0133】
分類用CNN81の学習においては、前述の学習データセットに含まれる画像が入力された際に、当該入力された画像に対するコンボリューション及びプーリングが繰返し行われることにより信号が順方向に(入力側から出力側へ)伝播し、出力層の信号と教師信号との差が誤差として算出され、当該算出された誤差が小さくなるように信号が逆方向に(出力側から入力側へ)伝播するに従って各層の重みが更新される。そして、分類用CNN81の学習が完了した際に、各層の重みが固定される。
【0134】
そして、例えば、学習済の分類用CNN81に対して未知の画像が入力された場合には、当該入力された画像に対するコンボリューション及びプーリングが繰返し行われることにより信号が順方向に伝播するとともに、出力層(全結合層)から出力される各信号値に基づいて当該入力された画像が分類される。具体的には、例えば、NICE分類のType1、Type2及びType3の3つのラベルにそれぞれ対応する3つの信号値が分類用CNN81の出力層(全結合層)から出力されるとともに、当該3つの信号値の中で最大値を示すラベルが分類結果として取得される。
【0135】
すなわち、本実施形態の画像認識処理部62bは、以上に述べたような方法で構築された分類用CNN81を用い、セレクタ42b及び鏡面反射領域補正部42cを経て出力される画像(鏡面反射領域補正部42cにより鏡面反射領域が補正された画像)に含まれるポリープをNICE分類に従って分類して分類結果を得るように構成されている。
【0136】
以上に述べたように、本実施形態によれば、画像処理部42の代わりに画像処理部62を設けてプロセッサ4が構成されている場合であっても、第1の実施形態と同様の作用効果を発揮することができる。
【0137】
なお、本実施形態によれば、例えば、分類用CNN81を用いて画像認識処理部62bを構成する一方で、検出用CNN71の代わりに領域抽出用コンボリューショナルニューラルネットワーク(以降、領域抽出用CNNと略記する)を用いて画像認識処理部62aを構成するようにしてもよい。
【0138】
領域抽出用CNNは、例えば、セレクタ42bを経て出力される画像(鏡面反射領域が維持された画像)から正常な領域及びポリープが存在する領域をそれぞれ抽出して領域抽出結果を取得し、当該取得した領域抽出結果を連結処理し、連結領域を含む画像に対して鏡面反射領域を補正する処理を施し、当該処理を施した画像を分類用CNNに入力してNICE分類に従う分類(Type1、Type2またはType3)を行うように構成されている。
【0139】
ここで、図7のようなネットワーク構成を含むDeepLabシステムを用いた領域抽出用CNNの構成例等について以下に説明する。図7は、DeepLabシステムに含まれるネットワーク構成の一例を示す図である。
【0140】
DeepLabシステムにおいては、入力画像がCNN(具体的にはVGG−16の修正モデル)に入力され、縦横の画像サイズがそれぞれ当該入力画像の1/8であるスコアマップ(所定のカテゴリの尤度を表す)がカテゴリごとに出力され、当該出力されたスコアマップがバイリニア補間により当該入力画像と同サイズの画像となるように解像度変換される。そして、入力画像及び解像度変換されたスコアマップに対して条件付き確率場(具体的にはFully Connected CRF)に係る処理が施されることにより、各画素がどのカテゴリに属するかを表す画像が出力される。
【0141】
画像のカテゴリ分類用のCNNをカテゴリの領域抽出用のCNNに転用したものとして、例えば、全結合層を全てコンボリューション層に置き換えることにより、出力層から出力されるカテゴリ確率に空間情報が含まれるようにしたFully Convolutional Network(FCN)が提案されている。そして、DeepLabシステムにおいては、VGG−16の修正モデルとしてFCNが導入されている。
【0142】
VGG−16の修正モデルは、図8に示すように、VGGの処理を構成する4つ目と5つ目のプーリングにおけるストライドを2から1に修正し、3層ある全結合層を全てコンボリューション層に置き換えることにより、出力層からの出力が入力画像の1/8のサイズになるようにしている。また、ストライドを2から1に修正した4つ目のプーリングの直後のコンボリューション層では、フィルタの入力側のサンプリングの画素間隔を元の2倍の間隔とすることにより、フィルタ特性と入力側の画像のサンプル画素位置とを整合するようにしている。同様に、5つ目のプーリングの直後のコンボリューション層の入力側のサンプリング画素間隔を元の4倍の間隔としている。VGG−16の修正モデルの出力スコアマップは、入力画像の1/8のサイズとなっているため、バイリニア補間により入力画像と同じサイズに解像度変換された後で、Fully Connected CRFに係る処理を行う。
【0143】
DeepLabシステムにおいては、VGG−16の修正モデルの出力スコアマップに含まれる空間情報が低解像度であるため、当該出力スコアマップに対してFully Connected CRFに係る処理を施すことにより、画素単位の高精度な領域抽出が行われるようにしている。また、Fully Connected CRFは、入力画像及び解像度変換されたスコアマップの入力に応じてカテゴリマップを出力するように構成されている。また、Fully Connected CRFは、スコアマップから得られるカテゴリの尤度に基づくunary potentialと、入力画像の全ての画素間で計算される「似た色が近くにあるか」を示す指標及び「カテゴリ領域のスムーズさ」を示す指標に基づくpairwise potentialと、を用いた反復的な処理を行うことにより、当該入力画像に含まれる各画素のカテゴリを推定する。
【0144】
また、本実施形態によれば、例えば、検出用CNN71を用いて画像認識処理部62aを構成する一方で、分類用CNN81の代わりに前述の領域抽出用CNNを用いて画像認識処理部62bを構成するようにしてもよい。なお、このような構成においては、セレクタ42bから出力される画像におけるポリープを含む部分を矩形に切り出す処理により鏡面反射領域が除外された画像が画像認識処理部62bに入力されることが望ましい。
【0145】
また、本実施形態によれば、例えば、前述の検出用CNN71を適宜変形することにより、画像認識処理部62a及び62bの両方の機能を実現するようにしてもよい。具体的には、例えば、RPN71a及びFRCNN71bが別々の特徴量抽出用CNNを具備し、ポリープの探索が行われている際に、鏡面反射領域が維持された画像がRPN71aの特徴量抽出用CNNに入力され、ポリープの鑑別が行われている際に、鏡面反射領域補正部42cにより鏡面反射領域が補正された画像がFRCNN71bの特徴量抽出用CNNに入力されるようにすればよい。
【0146】
なお、本発明は、上述した各実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変更や応用が可能であることは勿論である。
図1
図2
図3
図4
図5
図6
図7