(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0011】
本実施形態の微細セルロース繊維含有乾燥固形物、微細セルロース繊維含有乾燥固形物の製造方法、および微細セルロース繊維再分散液について、順に詳説する。
【0012】
<1.微細セルロース繊維含有乾燥固形物>
本実施形態に係る微細セルロース繊維含有乾燥固形物は、微細セルロース繊維を含み、後述の製造方法により好適に製造することができる。当該微細セルロース繊維含有乾燥固形物は水等の溶媒と混合し再分散した微細セルロース繊維再分散液として使用することができる。
【0013】
当該微細セルロース繊維含有乾燥固形物における水分率は、特に制限されず、JIS P 8203に準拠して測定し、50%以下が好ましく、より好ましくは30%以下、さらに好ましくは20%以下、特に好ましくは10%である。水分率が高い範囲では、輸送におけるエネルギーやコスト、保存におけるスペースやコストの増大に係る問題の解消に寄与することができない。
【0014】
「微細セルロース繊維」
微細セルロース繊維とは、植物由来のセルロース原料(パルプ繊維)をナノ化処理(機械的解繊やTEMPO触媒酸化など)した微小繊維である。その特性は、繊維幅がナノメートルオーダー、繊維長が数百nmの結晶性をもち、軽量、高弾性、高強度、低線熱膨張性を有している。
【0015】
本実施形態において、微細セルロース繊維は、水酸基の一部に置換基が導入されており、その置換基がイオン性置換基(例えば、スルホ基、カルボキシル基、リン酸基、亜リン酸基、その他アニオン性基、カチオン性基)であることがより望ましく、イオン性置換基がスルホ基であることがさらに望ましい。イオン性置換基を導入することで、微細セルロース繊維の親水性が増す観点、イオン同士の静電的な反発が生じる観点から、微細セルロース繊維分散液製造における解繊時の省エネルギー化や分散液中での安定した分散性を得られやすくなり、さらに、乾燥後の微細セルロース繊維含有乾燥固形物への水の浸透にも寄与でき、再分散性が向上する。
【0016】
(スルホン化微細セルロース繊維)
スルホン化微細セルロース繊維は、セルロース繊維が微細化された微細セルロース繊維であって、微細セルロース繊維を構成するセルロース(D−グルコースがβ(1→4)グリコシド結合した鎖状の高分子)の少なくとも一部の水酸基(−OH基)が下記式(1)で示されるスルホ基で置換(スルホ化)されたものである。
【0017】
(スルホ基)
(−SO
3−)
r・Z
r+ (1)
(ここで、rは、独立した1〜3の自然数であり、Z
r+は、r=1のとき、水素イオン、アルカリ金属の陽イオン、アンモニウムイオン、脂肪族アンモニウムイオン、芳香族アンモニウムイオンよりなる群から選ばれる少なくとも1種である。また、r=2または3のとき、アルカリ土類金属の陽イオンまたは多価金属の陽イオンよりなる群から選ばれる少なくとも1種である。)
【0018】
(スルホン化微細セルロース繊維の製造方法)
本実施形態のスルホン化微細セルロース繊維は、パルプ繊維にスルホ基を導入する化学処理工程後に、物理的に機械解繊をする微細化処理工程をすることで得ることができる。
一方で、パルプ繊維に微細化処理した後に、化学処理することにより、スルホン化微細セルロース繊維を製造することもできるが、解繊時に要するエネルギーを低減させ製造コストを下げる観点と、繊維幅が小さくかつ均一な微細セルロース繊維を得られやすい観点から、パルプ繊維にスルホ基を導入した後に、微細化処理工程を適用することが望ましい。
【0019】
(化学処理工程)
化学処理工程は、パルプ繊維に対してスルホ基を有するスルホン化剤と尿素または/およびその誘導体を接触させる接触工程と、この接触工程後のパルプ繊維に含まれるセルロースの水酸基の少なくとも一部にスルホ基を導入する反応工程とを含んでいる。
【0020】
(反応工程)
本実施形態のスルホン化微細セルロース繊維の製造方法の化学処理工程における反応工程は、上述したように繊維原料に含まれるセルロースの水酸基に接触させたスルホン化剤のスルホ基を置換して、繊維原料に含まれるセルロースにスルホ基を導入する工程である。
この反応工程は、セルロースの水酸基にスルホ基を置換するスルホン化反応が可能な方法であれば、とくに限定されない。例えば、上記反応液を含浸させた繊維原料を所定の温度で加熱すれば、繊維原料に含まれるセルロースにスルホ基を導入することができる。
【0021】
(反応工程における反応温度)
反応工程における加熱する温度は、繊維の熱分解や加水分解反応を抑えながら、上記繊維原料を構成するセルロースにスルホ基を導入できる温度であれば、とくに限定されない。
具体的には、接触工程後の繊維原料を直接的または間接的に上記要件を満たしながら加熱することができるものであればよい。このようなものとしては、公知の乾燥機や、減圧乾燥機、マイクロ波加熱装置、オートクレーブ、赤外線加熱装置等を挙げることができる。とくに、反応工程において、ガスが発生する可能性があるので、循環送風式の乾燥機を使用するのが好ましい。
【0022】
なお、接触工程後の繊維原料の形状はとくに限定されないが、例えば、シート状にしたものや、ある程度ほぐした状態で上記機器等を用いて加熱すれば、反応を均一に進行させやすくなるので好ましい。
【0023】
反応工程における加熱温度は、上記要件を満たせば、とくに限定されない。例えば、雰囲気温度は250℃以下が好ましく、より好ましくは雰囲気温度が200℃以下であり、さらに好ましくは雰囲気温度が180℃以下である。加熱時における雰囲気温度が250℃よりも高くなると、上述したように熱分解が起こったり、繊維の変色の進行が早くなったりする。一方、加熱温度が100℃よりも低くなると、反応時間が長くなる傾向にある。
したがって、作業性の観点から、加熱時における加熱温度(具体的には雰囲気温度)が100℃以上250℃以下、より好ましくは100℃以上200℃以下、さらに好ましくは100℃以上180℃以下となるように調整する。
【0024】
(反応工程における反応時間)
また、反応工程として上記加熱方法を採用した場合の加熱時間は、とくに限定されない。
例えば、反応工程における加熱時間は、反応温度を上記範囲となるように調整した場合、1分以上となるように調整する。より具体的には、5分以上が好ましく、より好ましくは10分以上であり、さらに好ましくは20分以上とする。加熱時間が1分よりも短い場合は、反応がほとんど進行していなと推察される。一方、加熱時間をあまり長くしてもスルホ基の導入量の向上が期待できない傾向にある。
したがって、反応工程として上記加熱方法を採用した場合の加熱時間は、とくに限定されないが、反応時間や操作性の観点から、5分以上300分以内が好ましく、より好ましくは5分以上120分以内とするのがよい。
【0025】
(スルホン化剤)
スルホン化はスルホン化剤のみでもスルホ基を導入することが可能であるが、1)スルホ基の導入に要する時間が長くなったり、
2)スルホン化剤の酸の影響により繊維の短繊維化が起こりやすくなったり、3)スルホン化剤の酸の影響により反応後の繊維に着色が生じてしまったり、などの問題が発生することから、尿素または/およびその誘導体を共に化学処理工程に供することで、上記問題点を克服することができる。
【0026】
化学処理工程に供するスルホン化剤はスルホ基を有する化合物であればとくに限定されない。
例えば、スルファミン酸、スルファミン酸塩、硫黄と共有結合する2つの酸素を持つスルホニル基を有するスルフリル化合物などを挙げることができる。なお、スルホン化剤として、これらの化合物を単独で用いてもよいし、2種以上混合して用いてもよい。
【0027】
スルホン化剤は、上記のような化合物であればとくに限定されないが、硫酸等と比べて酸性度が低く、スルホ基の導入効率が高く、低コストで、安全性が高いといった取り扱い性の観点から、スルファミン酸を採用するのが好ましい。
【0028】
(尿素とその誘導体)
化学処理工程における尿素とその誘導体のうち、尿素の誘導体は、尿素を含有する化合物であればとくに限定されない。
例えば、カルボン酸アミド、イソシアネートとアミンの複合化合物、チアミドなどを挙げることができる。なお、尿素とその誘導体は、それぞれ単独で用いてもよいし、両者を混合して用いてもよい。また、尿素の誘導体は、上記化合物を単独で用いてもよいし、2種以上混合して用いてもよい。
【0029】
尿素とその誘導体は、上記のような化合物であればとくに限定されないが、低コストで、環境負荷の影響が少なく、安全性が高いといった取り扱い性の観点から、尿素を採用するのが好ましい。
【0030】
(繊維原料)
スルホン化微細セルロース繊維の製造に用いられる繊維原料は、セルロースを含むものであればとくに限定されない。
例えば、木材系のパルプ(以下単に木材パルプという)や、溶解パルプ、コットンリンタなどの綿系のパルプ、麦わら、稲わら、バガス、楮、三椏、麻、ケナフのほか、果物等などの非木材系のパルプ、ホヤや海藻などから単離されるセルロースや、新聞古紙、雑誌古紙やダンボール古紙などから製造された古紙系のパルプなどのパルプを繊維原料として使用することができる。なお、入手のし易さの観点から、木材パルプを使用することが好ましい。
【0031】
この木材パルプには、様々な種類が存在するが、使用に際してとくに限定されない。
例えば、各種木材由来のクラフトパルプ(KP)やサルファイトパルプ(SP)等の化学パルプ、サーモメカニカルパルプ(TMP)やグランドパルプ(GP)等の機械パルプ、それらを粉砕した粉末セルロースなどを挙げることができる。漂白済みのクラフトパルプ(NBKPやLBKP等)であれば、製造コストや量産化の観点から好ましい。
【0032】
なお、繊維原料として、上記パルプを使用する場合に上述した種類のパルプ1種を単独で用いてもよいし、2種以上混合して用いてもよい。
【0033】
(乾燥工程)
本実施形態のスルホン化微細セルロース繊維の製造方法の化学処理工程は、接触工程と反応工程の間に乾燥工程を含んでいてもよい。
この乾燥工程は、反応工程の前処理工程として機能する工程であり、接触工程後の繊維原料の含水率が平衡状態となるように乾燥する工程である。接触工程後の繊維原料を湿潤状態のまま反応工程に供給して加熱してもよいが、スルファミン酸や尿素等の一部が加水分解を受ける可能性がある。このため、反応工程におけるスルホン化反応を適切に進行させる上では、反応工程前に乾燥工程を設けることが好ましい。
【0034】
この乾燥工程は、反応液を接触させた状態の繊維原料を反応工程における加熱温度よりも低い温度で乾燥することによって、反応溶液の溶媒を除去する工程である。この乾燥工程に用いられる装置等は、とくに限定されず、上述した反応工程で用いられる乾燥機等を使用することができる。
【0035】
この乾燥工程における乾燥温度は、とくに限定されない。
例えば、加熱装置内の雰囲気温度が100℃以下が好ましく、より好ましくは20℃以上100℃以下であり、さらに好ましくは、50℃以上100℃以下である。加熱時における雰囲気温度が100℃よりも高くなると、スルホン化剤等の分解が起こる可能性がある。一方、加熱時における雰囲気温度が20℃よりも低いと、乾燥に時間がかかる。
したがって、上述した反応を適切に行う上では加熱時における雰囲気温度が100℃以下が好ましく、操作性の観点では加熱時における雰囲気温度が20℃以上が好ましい。
【0036】
(洗浄工程)
また、本実施形態のスルホン化微細セルロース繊維の製造方法の化学処理工程における反応工程の後には、スルホ基を導入した後の繊維原料を洗浄する洗浄工程を含んでもよい。
【0037】
スルホ基を導入した後の繊維原料は、スルホン化剤の影響により表面が酸性になっている。また、未反応の反応液も存在した状態となっている。このため、反応を確実に終了させ、余分な反応液を除去して中性状態にすれば、取り扱い性を向上させることができるようなるので望ましい。
【0038】
この洗浄工程は、スルホ基を導入した後の繊維原料がほぼ中性になるようにできれば、とくに限定されない。例えば、スルホ基を導入した後の繊維原料が中性になるまで純水等で洗浄するという方法を採用することができる。
【0039】
また、アルカリ等を用いた中和洗浄を行ってもよい。かかる中和洗浄を行う場合、アルカリ溶液に含まれるアルカリ化合物としては、無機アルカリ化合物、有機アルカリ化合物などを挙げることができる。そして、無機アルカリ化合物としては、アルカリ金属の水酸化物、炭酸塩、リン酸塩等を挙げることができる。有機アルカリ化合物としては、アンモニア、脂肪族アミン、芳香族アミン、脂肪族アンモニウム、芳香族アンモニウム、複素環式化合物、複素環式化合物の水酸化物などを挙げることができる。
【0040】
(微細化処理工程)
上記微細化処理工程はスルホン化した繊維原料を微細化して所定の大きさの(例えば、ナノレベル)微細繊維にする工程である。この微細化処理工程に用いられる処理装置は、上記機能を有するものであれば、とくに限定されない。例えば、低圧ホモジナイザー、高圧ホモジナイザー、グラインダー(石臼型粉砕機)、ボールミル、カッターミル、ジェットミル、短軸押出機、2軸押出機、超音波攪拌機、家庭用のミキサーなどを使用することができるが、処理装置は、これらの装置に限定されるものはない。これらのうち、材料に均等に力を加えることができ、均質化に優れているという点で、高圧ホモジナイザーを用いるのが望ましいが、かかる装置に限定されない。
【0041】
(スルホ基導入量)
前記スルホ基の導入量は、特に限定されないが、0.5mmol/g〜3.0mmol/gが好ましく、より好ましくは0.6mmol/g〜3.0mmol/g、さらに好ましくは0.8mmol/g〜3.0mmol/g、特に好ましくは1.0mmol/g〜3.0mmol/gである。
【0042】
スルホ基導入量が0.5mmol/gよりも少ないと、微細セルロース繊維含有乾燥体分散液中の微細セルロース繊維の分散性が悪くなり、微細セルロース繊維含有乾燥体の水等の溶媒への再分散性も低下する。一方で、スルホ基導入量が3.0mmol/gよりも多いと、微細セルロース繊維の結晶性の低下による前記微細セルロース繊維本来の特性の消失が懸念され、スルホ基を導入する際のコストも増大する。
【0043】
(スルホ基導入量の測定方法)
なお、スルホン化微細セルロース繊維のスルホ基導入量は、スルホン化微細セルロース繊維の所定量を燃焼させて、燃焼イオンクロマトグラフを用いて燃焼物に含まれる硫黄分をIEC 62321に準拠した方法で測定することができる。また、上述したスルホン化した繊維原料からスルホン化微細セルロース繊維を調製する場合には、かかるスルホン化繊維原料の硫黄導入量から求めてもよい。
【0044】
(スルホン化微細セルロース繊維の平均繊維幅)
スルホン化微細セルロース繊維の平均繊維幅は、特に限定されないが、電子顕微鏡で観察して1nm〜1000nmであり、好ましくは2nm〜500nm、より好ましくは2nm〜100nmであり、さらに好ましくは2nm〜30nmであり、よりさらに好ましくは2nm〜20nmである。
【0045】
微細セルロース繊維の繊維幅が1nm未満であると、セルロース分子として水に溶解しているため、微細セルロース繊維としての特性(強度や剛性、又は寸法安定性)が発現しなくなる。一方、1000nmを超えると微細セルロース繊維とは言えず、通常のパルプに含まれる繊維にすぎないため、微細セルロース繊維としての特性(透明性や強度や剛性、又は寸法安定性)が得にくくなる。
また、微細セルロース繊維の平均繊維幅が、30nmよりも大きくなるとアスペクト比が低下して、繊維同士のからみあいが減少する傾向にある。さらに、平均繊維幅が、30nmよりも大きくなると可視光の波長の1/10に近づき、マトリックス材料と複合した場合には界面で可視光の屈折及び散乱が生じ易く、可視光の散乱が生じてしまい、透明性が低下する傾向にある。
【0046】
したがって、スルホン化微細セルロース繊維の平均繊維幅はとくに限定されないが、取り扱い性や透明性が求められる用途の観点から、2nm〜30nmが好ましく、より好ましくは2nm〜20nmであり、さらに好ましくは2nm〜10nmである。また、透明性の観点から、平均繊維幅が20nm以下となるように調整するのが好ましく、より好ましくは10nm以下となるように調整する。平均繊維幅が10nm以下となるように調製すれば、可視光の散乱をより少なくできるので、高い透明性を有するスルホン化微細セルロース繊維を得ることができる(つまり、高い透明性を有していれば、平均繊維幅が小さく十分に微細化された微細セルロース繊維であるとも言うことができる)。
【0047】
(平均繊維幅の測定方法)
スルホン化微細セルロース繊維の平均繊維幅は、以下の方法で測定することができる。
例えば、スルホン化微細セルロース繊維を純水等の溶媒に分散させて、所定の質量%となるように混合溶液を調整する。そしてこの混合溶液をし、PEI(ポリエチレンイミン)をコーティングしたシリカ基盤上にスピンコートを行い、このシリカ基盤上のスルホン化微細セルロース繊維を観察する。観察は、例えば、走査型プローブ顕微鏡(例えば、島津製作所製;SPM−9700)を用いて行うことができる。そして、観察画像中のスルホン化微細セルロース繊維をランダムに20本選び、各繊維幅を測定し平均化すればスルホン化微細セルロース繊維の平均繊維幅を求めることができる。
【0048】
(ヘイズ(Haze)値)
スルホン化微細セルロース繊維分散液および後述するスルホン化微細セルロース繊維再分散液の透明性は、該分散液のヘイズ値により評価することができる。
【0049】
具体的には、スルホン化微細セルロース繊維を分散液に分散させた際の固形分濃度が0.5質量%となるように調整した分散液のヘイズ値は、視認した際に透明性が有していれば、その値はとくに限定されない。
例えば、上記分散液のヘイズ値は、20%以下が好ましく、より好ましくは15%以下であり、さらに好ましくは10%以下である。かかる分散液のヘイズ値が20%よりも高いと透明性を適切に発揮させにくくなる。
したがって、スルホン化微細セルロース繊維は、固形分濃度が0.5質量%となるように調整した分散液のヘイズ値が上記範囲となるように調製するのが好ましい。
【0050】
本実施形態に係る分散液とは、微細セルロース繊維が大きな凝集塊を形成することなく溶媒中にばらけた状態にある懸濁液のことである。該分散液の溶媒は、水溶性の溶媒(水溶性溶媒)であればとくに限定されない。例えば、この水溶性溶媒として、水のみの場合のほか、アルコール類、ケトン類、アミン類、カルボン酸類、エーテル類、アミド類などやこれらの混合物などを採用することができる。
【0051】
(全光線透過率)
全光線透過率は、上記分散液のヘイズ値が上記範囲内において、全光線透過率が90%以上であり、より好ましくは95%以上となるように調製するのが好ましい。かかる分散液の全光線透過率が90%よりも低いと透明性を適切に発揮させにくくなる。
【0052】
(ヘイズ値および全光線透過率の測定方法)
ヘイズ値および全光線透過率は、以下のようにして測定することができる。
【0053】
上述した分散液にスルホン化微細セルロース繊維を所定の固形分濃度となるように分散させる。そして、この分散液をJIS K 7105に準拠して分光光度計を用いて測定すれば、スルホン化微細セルロース繊維分散液ならびに後述する微細セルロース繊維再分散液の透明性であるヘイズ値および全光線透過率を求めることができる。
【0054】
以上のごとく、スルホン化微細セルロース繊維の平均繊維幅を、上記のごとき範囲となるように調製することにより、優れた透明性を発揮させることができる。このため、スルホン化微細セルロース繊維を利用した複合材料等においては、高い透明性を発揮させることが可能となる。
【0055】
(粘度特性)
スルホン化微細セルロース繊維分散液の粘度特性は、分散液のB型粘度により評価することができる。
かかる粘度は、スルホン化微細セルロース繊維の固形分濃度が0.5質量%、温度が25℃とした微細セルロース繊維分散液において、測定条件は回転数12rpm、3分の測定条件下で、好ましくは500mPa・s以上であり、より好ましくは1000mPa・s、さらに好ましくは1500mPa・s、特に好ましくは2000mPa・s以上である。
市販されているポリエチレンオキサイドからなる増粘剤では、上記条件(温度25℃、増粘剤濃度0.5%、12rpm)でのB型粘度が100mPa・s以上である。
したがって、微細セルロース繊維分散液のB型粘度が上述のような大きい粘度を発揮させることができれば、微細セルロース繊維分散液を増粘剤として好適に使用することができる。
【0056】
(B型粘度の測定方法)
B型粘度は、以下のようにして測定することができる。
【0057】
上述した分散液にスルホン化微細セルロース繊維を所定の固形分濃度となるように分散させる。そして、この分散液をJIS Z 8803に準拠したBrookfield粘度計を用いて測定すれば、スルホン化微細セルロース繊維分散液ならびに後述する微細セルロース繊維再分散液の粘度を求めることができる。
【0058】
<2.微細セルロース繊維含有乾燥固形物の製造方法>
本実施形態に係る微細セルロース繊維含有乾燥固形物の製造方法は、金属イオンや、水溶性高分子などの分散剤を添加することなく、スルホン化微細セルロース繊維分散液を、上述した所定の水分率以下となるように乾燥させることにより得ることができる。
なお、スルホン化微細セルロース繊維分散液を乾燥させることによって得られる微細セルロース繊維含有乾燥固形物が、特許請求の範囲の微細セルロース繊維を乾燥させた乾燥物に相当する。
【0059】
スルホン化微細セルロース繊維分散液を乾燥させるとは、スルホン化微細セルロース繊維分散液から水分を少しでも除去した状態を意味しており、例えば、乾燥後の微細セルロース繊維含有乾燥固形物の水分率がほぼなくなるような状態はもちろん、乾燥後の微細セルロース繊維含有乾燥固形物が以下のように水分を含んだ状態も含む概念である。
例えば、乾燥後の微細セルロース繊維含有乾燥固形物の水分率は、50%以下となるように調整するのが好ましく、より好ましくは30%以下であり、さらに好ましくは20%以下であり、特に好ましくは10%以下である。一方、輸送の観点では50%以下が好ましい。
なお、水分率は、JIS P 8203に準拠して、乾燥後の微細セルロース繊維含有乾燥固形物の重量に対する水分量で表すことができる。
【0060】
(乾燥温度)
微細セルロース繊維分散液の乾燥時の温度は、熱による微細セルロース繊維同士の凝集を低減する観点、また、加熱後の変色を防ぐ観点から、120℃以下であればよく、より優れた再分散性を確保する観点から、好ましくは80℃以下、さらに好ましくは70℃以下、より好ましくは40℃以下、特に好ましくは10℃以下である。特に、40℃以下であれば、微細セルロース繊維中の置換基導入量が少ない場合であっても、優れた再分散性を確保することができる。
【0061】
(乾燥方法)
微細セルロース繊維分散液の乾燥方法は特に限定されず、自然乾燥、加熱乾燥、真空乾燥、噴霧乾燥等の公知の方法により微細セルロース繊維含有乾燥固形物を得ることができる。
【0062】
特に、上記のように乾燥温度が低いほうが微細セルロース繊維含有乾燥固形物の再分散性が良好である観点から、比較的低温な条件下での乾燥においても乾燥時間を短縮できる、減圧雰囲気下または真空雰囲気下で乾燥させる方法を採ることが望ましい。
減圧雰囲気下の圧力は、例えば、80℃の水の飽和水蒸気圧付近である480hPa以下、より好ましくは70℃の水の飽和水蒸気圧付近である320hPa以下、さらに好ましくは40℃の水の飽和水蒸気圧付近である75hPa以下、特に好ましくは10℃の水の飽和水蒸気圧付近である15hPa以下等の減圧または真空条件を挙げることができる。
【0063】
なお、本実施形態の微細セルロース繊維含有乾燥固形物では、上述したように乾燥する際に再分散時の分散性を発揮させるための特別の分散剤を添加する必要はないが、例えば、上述したアルミニウムイオンやカルシウムイオン等の金属等のほかに、グリセリンやその誘導体、エチレングリコールやイソプロパノール等のアルコール類などを分散剤として含有させてもよい。この場合、再分散性をより向上させることが可能となる。
【0064】
(再分散方法)
上記微細セルロース繊維再分散液は、微細セルロース繊維含有乾燥固形物に水等の溶媒を加え、微細セルロース繊維含有乾燥固形物含有液を得た後、当該混合液を撹拌することにより得られたものである。
【0065】
上記撹拌を行う際の撹拌方法は、手動でのシェイク、または、撹拌機能を有する装置で比較的低エネルギーで再分散させることができる。例えば、撹拌の際に用いられる装置としては、自動式シェイカー、マグネティックスターラー、超音波動子、家庭用ミキサー、その他の各種撹拌子を有する攪拌機が挙げられるが、特に限定されない。
【0066】
なお、撹拌機能を有する装置として、微細セルロース繊維を製造する際に用いられるような比較的高エネルギーな装置を使用してもよく、例えば、粉砕機能を有する石臼を用いたグラインダー、ジェットミル、均質化機能を有するホモジナイザー、高圧ホモジナイザー、静止型攪拌機であるスタティックミキサー、分散機能を有するメディアミル等の装置を挙げることができるが、特に限定されない。
【0067】
<3.微細セルロース繊維再分散液>
本実施形態に係る微細セルロース繊維再分散液とは、微細セルロース繊維含有乾燥固形物を水等の水溶性の溶媒(水溶性溶媒)へ分散させた分散液である。
水溶性溶媒へ再分散後の微細セルロース繊維含有乾燥固形物の固形分濃度は、特に限定されず、再分散後の微細セルロース繊維再分散液の用途に応じて適宜調整することができる。
【0068】
再分散に使用する溶媒は、微細セルロース繊維再分散液の使用用途を限定させないために、水が好ましく、特に純水が好ましい。
水以外の溶媒であっても使用用途に応じて好適な溶媒を選択することができ、例えば、溶解度パラメーターに大きな差がない、極性有機溶媒が挙げられる。極性有機溶媒には、アルコール類、ケトン類、エーテル類、ジメチルスルホキシド(DMSO)等が挙げられるが、特に限定されない。
【0069】
(再分散性の評価)
微細セルロース繊維含有乾燥固形物の再分散性は、微細セルロース繊維含有乾燥固形物を水へ再分散させた、微細セルロース繊維再分散液と微細セルロース含有固形物のヘイズ値または全光線透過率またはB型粘度または沈殿特性の少なくとも一項目を測定し比較することで評価できる。
再分散性が良いというのは、
1)再分散後と乾燥前を比較して、全光線透過率の差が小さい場合、
2)再分散後と乾燥前を比較して、ヘイズ値の差が小さい場合、
3)再分散後と乾燥前を比較して、粘度の差が小さい場合(つまり粘度の復元率が高い場合)、
4)沈殿特性試験において、再分散後に凝集等が見られない場合
の何れか一つまたは複数の所見を得られることをいう。
【0070】
上記沈殿特性とは、微細セルロース繊維含有乾燥固形物を水へ再分散させ一定時間経過後(例えば一昼夜)の微細セルロース繊維再分散液中の微細セルロース繊維の凝集による粗大繊維や沈降状態を観察することにより確認できる。
【実施例】
【0071】
以下、実施例を挙げて本発明を詳細に記載するが、本発明はこれらに限定されるものではない。
【0072】
(実施例1)
<スルホン化微細セルロース繊維分散液の製造>
針葉樹クラフトパルプ(丸住製紙製NBKP)を使用した。以下では、実験に供したNBKPを単にパルプとして説明する。パルプは、大量の純水で洗浄後、200メッシュのふるいで水を切り、固形分濃度を測定後、実験に供した。
【0073】
(化学処理工程)
パルプを以下のように調製した反応液に加え撹拌してスラリー状にした。なお、パルプを反応液に加えてスラリー状にする工程が、本実施形態の化学処理工程の接触工程に相当する。
【0074】
(反応液の調製工程)
スルホン化剤と尿素または/およびその誘導体が以下の固形分濃度となるように調製した。
実験では、スルホン化剤として、スルファミン酸(純度98.5%、扶桑化学工業製)を使用し、尿素またはその誘導体として、尿素溶液(純度99%、和光純薬工業製、型番;特級試薬)を使用した。両者の混合比は、濃度比(g/L)において、1:2.5となるように混合し水溶液を調整した。
【0075】
具体的には、スルファミン酸と尿素は、以下のように混合した。
スルファミン酸/尿素比((g/L)/(g/L))=200/500
反応液の調製の一例を以下に示す。
容器に水100mlを加えた。ついで、この容器にスルファミン酸20g、尿素50gを加えて、スルファミン酸/尿素比((g/L)/(g/L))が200/500(1:2.5)の反応液を調製した。つまり、尿素は、スルファミン酸100重量部に対して250重量部となるように加えた。
【0076】
実験では、この調製した反応液に対してパルプを絶乾重量にして2gを加えた。つまり、上記スルファミン酸/尿素比((g/L)/(g/L))が200/500(1:2.5)の反応液の場合、スルファミン酸はパルプ100重量部に対して、1000重量部、尿素は2500重量部となるように調製した。
【0077】
反応液にパルプを添加して調製したスラリーを、10分間撹拌子を用いて撹拌した。撹拌後、スラリーをろ紙(No.2)を用いて吸引ろ過した。吸引ろ過は溶液が滴下しなくなるまで行った。吸引ろ過後、ろ紙からパルプを剥がし、ろ過したパルプを恒温槽の温度を50℃に設定した乾燥機(いすゞ製作所製、型番;VTR−115)に入れて水分率が平衡状態になるまで乾燥した。
【0078】
水分率が平衡状態になった後、加熱反応を行った。加熱反応は、乾燥機(いすゞ製作所製、型番;VTR−115)を用いた。反応条件は以下の通りである。
恒温槽の温度:120℃、加熱時間:20分
【0079】
加熱反応後、反応させたパルプを固形分で1重量%以下となるように純水で希釈し、過剰量の炭酸水素ナトリウムを添加することにより中和後、純水で十分に洗浄して、スルファミン酸/尿素処理パルプ懸濁液を調製した。
【0080】
(微細化処理工程)
高圧ホモジナイザー(コスにじゅういち製N2000−2C−045型)を用いてスルファミン酸/尿素処理パルプの解繊を行い、スルホン化微細セルロース繊維分散液を調製した。高圧ホモジナイザーの処理条件は、以下の通りとした。
【0081】
スルファミン酸/尿素処理パルプは、固形分濃度が0.5重量%となるように調製したものを高圧ホモジナイザーに供給した。パス回数は目視にて粗大繊維が視認できなくなるまで行った。なお、その際の圧力は、60MPaとした。
【0082】
(乾燥工程)
得られた0.5重量%スルホン化微細セルロース繊維分散液50g(絶乾重量にして0.25g分)をシャーレ上に分取し真空装置(真空ポンプ到達圧力は10Pa)内で水分率が平衡となるまで(水分率10%以下)乾燥させ、微細セルロース繊維含有乾燥固形物を得た。乾燥条件は以下の通りである。
真空装置バキューム計指針値:−0.1MPa以下
真空装置内雰囲気温度:40℃
サンプル温度:10℃
【0083】
(再分散工程)
得られた微細セルロース繊維含有乾燥固形物の全量をバイアル瓶に入れ、固形分濃度が0.5重量%となるように純水を加え、30分静置後、10分間強く手動で振り混ぜ微細セルロース繊維含有乾燥固形物を再分散させた微細セルロース繊維再分散液を得た。
後述する評価は、分散液をさらに一昼晩静置した後に実施した。
【0084】
「評価」
(化学処理後のパルプの元素分析(硫黄))
化学処理後のパルプに含まれる硫黄分を燃焼イオンクロマトグラフにより求めた。測定方法はIEC 62321の測定条件に準拠して測定した。
燃焼装置:三菱ケミカルアナリテック社製、型番;AQF−2100 H
イオンクロマト:サーモフィッシャーサイエンス社製、型番;ICS−1600
【0085】
(微細セルロース繊維分散液及び微細セルロース繊維再分散液のヘイズ値の測定および全光線透過率の測定)
ヘイズ値の測定および全光線透過率の測定はスルホン化微細セルロース繊維を純水で、固形分濃度が0.5%となるように調製した。そして調製した溶液を分取して分光光度計(日本分光(株)社製、型番;V−570)を用いて測定した。なお、測定方法は、JIS K 7105の方法に準拠して行った。
【0086】
(微細セルロース繊維分散液及び微細セルロース繊維再分散液の粘度測定)
微細セルロース繊維分散液及び後述の方法で作成した微細セルロース繊維再分散液の粘度をB型粘度にて測定した。
具体的には、測定サンプルはそれぞれ0.5質量%、温度25℃とし、測定条件は回転数12rpm、3分とした。
【0087】
B型粘度復元率は以下の通り算出した。
(B型粘度復元率(%))=(微細セルロース繊維再分散液)/(微細セルロース繊維分散液)×100
【0088】
(微細セルロース繊維再分散液の沈殿特性)
微細セルロース繊維含有乾燥固形物(絶乾重量0.25g分)をバイアル瓶へ入れ、純水を加え、微細セルロース繊維含有乾燥固形物が0.5重量%となるように調整し、手動にて振り混ぜ、一晩放置し微細セルロース繊維再分散液を得た。得られた分散液は、目視にて沈殿の状態を確認し、以下の通り評価した。
◎:凝集がほとんどなく透明である
○:一部凝集している繊維が見られ若干の白濁があるが、沈降はない
×:凝集している繊維が見られ、さらに沈降している
【0089】
(実施例2)
乾燥工程において、40℃の条件にて加熱乾燥を行なった以外、実施例1と同様にして実施した。
【0090】
(比較例1)
乾燥工程において、70℃の条件にて加熱乾燥を行なった以外、実施例1と同様にして実施した。
【0091】
(比較例2)
乾燥工程において、105℃の条件にて加熱乾燥を行なった以外、実施例1と同様にして実施した。
【0092】
(実施例3)
反応液の調製工程において、スルファミン酸/尿素比((g/L)/(g/L))=200/200となるように調整した反応液を用いて、パルプ100重量部に対して、スルファミン酸は1000重量部、尿素は1000重量部となるように調製した以外、実施例1と同様にして実施した。
【0093】
(実施例4)
乾燥工程において、40℃の条件にて加熱乾燥を行なった以外、実施例3と同様にして実施した。
【0094】
(実施例5)
乾燥工程において、70℃の条件にて加熱乾燥を行なった以外、実施例3と同様にして実施した。
【0095】
(比較例3)
乾燥工程において、105℃の条件にて加熱乾燥を行なった以外、実施例3と同様にして実施した。
【0096】
(実施例6)
反応液の調製工程において、スルファミン酸/尿素比((g/L)/(g/L))=200/300パルプ100重量部に対して、スルファミン酸は1000重量部、尿素は1500質量部となるように調製した。さらに、加熱工程において、反応温度を160℃、反応時間を1時間とした以外、実施例1と同様にして実施した。
【0097】
(実施例7)
乾燥工程において、40℃の条件にて加熱乾燥を行なった以外、実施例6と同様にして実施した。
【0098】
(実施例8)
乾燥工程において、70℃の条件にて加熱乾燥を行なった以外、実施例6と同様にして実施した。
【0099】
(実施例9)
乾燥工程において、105℃の条件にて加熱乾燥を行なった以外、実施例6と同様にして実施した。
【0100】
(比較例4)
反応液の調製工程において、パルプ100重量部に対して、スルファミン酸は250重量部、尿素は125重量部となるように調製した以外、実施例1と同様にして実施した。
【0101】
(比較例5)
乾燥工程において、40℃の条件にて加熱乾燥を行なった以外、比較例4と同様にして実施した。
【0102】
(比較例6)
乾燥工程において、70℃の条件にて加熱乾燥を行なった以外、比較例4と同様にして実施した。
【0103】
(比較例7)
乾燥工程において、105℃の条件にて加熱乾燥を行なった以外、比較例4と同様にして実施した。
【0104】
(比較例8)
(リン酸エステル化微細セルロース繊維含有物の作成)
実施例1に供したものと同じNBKPを用い、NBKPの絶乾質量として100質量部に対しリン酸二水素アンモニウム56質量部、尿素150質量部となるように圧搾し、薬液含浸パルプを得た。該薬液含浸パルプを105℃の雰囲気下で乾燥させた後、反応工程として140℃の雰囲気温度下で20分間加熱し、リン酸基を導入した以外、実施例1と同様に実施した。
【0105】
(リン酸基導入量の測定)
得られた上記リン酸エステル化微細セルロース繊維中のリン酸基量をアルカリ滴定により測定した。具体的には以下のように実施した。前処理として、リン酸エステル化微細セルロース繊維スラリーを、固形分濃度が0.2質量%になるように純水で希釈した後、スラリーに対して10体積%の強酸性イオン交換樹脂を混合し1時間振とうし、目開きが90μmメッシュの金網にてスラリーのみを分離した。
【0106】
上記前処理により分離したスラリーを使用して、アルカリ滴定を行なった。使用したアルカリ溶液は、水酸化ナトリウム水溶液であり、その濃度は0.1Nとした。具体的には、アルカリ滴下毎に電気伝導度を測定し、そのアルカリ滴定量と電気伝導度のプロットから変極点の滴定量を読み取り、その値を測定に供したリン酸エステル化微細セルロース繊維の固形分重量で除することで、リン酸基量を算出した。(なお、リン酸基には強酸性基と弱酸性基が存在し、これに起因して変極点が2点存在するが、本実験では強酸性基量をリン酸基量として表記している。)
【0107】
(比較例9)
乾燥工程において、40℃の条件にて加熱乾燥を行なった以外、比較例8と同様にして実施した。
【0108】
(比較例10)
乾燥工程において、70℃の条件にて加熱乾燥を行なった以外、比較例8と同様にして実施した。
【0109】
(比較例11)
乾燥工程において、105℃の条件にて加熱乾燥を行なった以外、比較例8と同様にして実施した。
【0110】
(比較例12)
<カルボキシ化CNFの製造>
実施例1に供したものと同じNBKPに、2,2,6,6−テトラメチル−1−ピペリジン−オキシラジカル(以下TEMPOと記載する)と臭化物を触媒として、次亜塩素酸塩存在下でNBKPにカルボキシ基を導入した。
【0111】
具体的には、TEMPO(Sigma Aldrich社)78mgと臭化ナトリウム754mgを水に溶解した水溶液を作製後、NBKPを絶乾重量として5gを加え均一になるまで撹拌し、触媒成分の入ったパルプスラリーを得た。得られたパルプスラリーに2M次亜塩素酸ナトリウム水溶液を16.25mL添加した後、0.5N塩酸水溶液を添加しpH10.3に調整し、酸化反応を開始した。酸化反応中は、pHが経時的に低下していくが、3時間後にpHの低下が確認できなくなったため、この時点で反応終了とみなし、十分に水洗しカルボキシ化パルプを得た。上記カルボキシ化パルプを得た工程以外、実施例9と同様に実施した。
【0112】
(カルボキシル基量の測定)
得られた上記カルボキシ化微細セルロース繊維中のカルボキシ基は、微細化処理前のカルボキシ化パルプをアルカリ滴定することにより測定した。具体的には以下のように実施した。絶乾重量0.3gのカルボキシ化パルプを精秤し、固形分濃度が0.5%になるように純水で希釈した。得られたカルボキシ化パルプスラリーに、0.1M塩酸水溶液を加えpH2.5とした後、アルカリ滴定に供した。使用したアルカリ溶液は、0.05Nの水酸化ナトリウム水溶液であり、pH11となるまで、アルカリ溶液を滴下する毎に電気伝導度を測定することで、アルカリ滴定量と電気伝導度のプロットを得た。得られたプロットから変極点の滴定量を読み取り、その値を測定に供したカルボキシ化パルプの固形分重量で除することで、カルボキシ基量を算出した。
【0113】
(比較例13)
(亜リン酸エステル化微細セルロース繊維含有物の作成)
実施例1に供したものと同じNBKPを用い、反応のための薬品を、パルプ100質量部に対して、亜リン酸水素ナトリム・5水和物130質量部、尿素108質量部し、反応工程として180℃の雰囲気温度下で過熱した以外実施例9と同様にして実施した。
【0114】
(亜リン酸基導入量の測定)
得られた上記亜リン酸エステル化微細セルロース繊維分散液中の亜リン酸基量は、比較例10と同様にして測定した。
【0115】
なお、前述した実施例と比較例は、微細セルロース繊維分散液を分散剤等の添加物を使用せずに乾燥させたものである。
【0116】
(結果)
比較例4、実施例1、実施例3、比較例8の微細セルロース繊維分散液と再分散後の微細セルロース繊維再分散液の透明度、粘度特性を
図1に示す。
実施例1〜9と比較例1〜13の微細セルロース繊維再分散液における沈殿特性を
図2に示す。
【0117】
図1、
図2に示すように、本願発明では、分散剤等の添加剤を使用していないにも拘らず、再分散後の凝集した繊維の沈降が見られず、さらに、再分散後においても粘度特性や透明性(全光線透過率、ヘイズ値)が大きく低下しておらず、優れた再分散性を有していることがわかる。