特許第6753018号(P6753018)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ジヤトコ株式会社の特許一覧 ▶ 日産自動車株式会社の特許一覧

<>
  • 特許6753018-自動変速機の制御装置 図000002
  • 特許6753018-自動変速機の制御装置 図000003
  • 特許6753018-自動変速機の制御装置 図000004
  • 特許6753018-自動変速機の制御装置 図000005
  • 特許6753018-自動変速機の制御装置 図000006
  • 特許6753018-自動変速機の制御装置 図000007
  • 特許6753018-自動変速機の制御装置 図000008
  • 特許6753018-自動変速機の制御装置 図000009
  • 特許6753018-自動変速機の制御装置 図000010
  • 特許6753018-自動変速機の制御装置 図000011
  • 特許6753018-自動変速機の制御装置 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6753018
(24)【登録日】2020年8月24日
(45)【発行日】2020年9月9日
(54)【発明の名称】自動変速機の制御装置
(51)【国際特許分類】
   F16H 61/04 20060101AFI20200831BHJP
   F16H 61/66 20060101ALN20200831BHJP
【FI】
   F16H61/04
   !F16H61/66
【請求項の数】2
【全頁数】12
(21)【出願番号】特願2016-172514(P2016-172514)
(22)【出願日】2016年9月5日
(65)【公開番号】特開2018-40378(P2018-40378A)
(43)【公開日】2018年3月15日
【審査請求日】2019年6月7日
(73)【特許権者】
【識別番号】000231350
【氏名又は名称】ジヤトコ株式会社
(73)【特許権者】
【識別番号】000003997
【氏名又は名称】日産自動車株式会社
(74)【代理人】
【識別番号】100119644
【弁理士】
【氏名又は名称】綾田 正道
(72)【発明者】
【氏名】大塚 征史
(72)【発明者】
【氏名】片倉 秀策
(72)【発明者】
【氏名】清水 豊
【審査官】 中島 亮
(56)【参考文献】
【文献】 国際公開第2015/053072(WO,A1)
【文献】 特開2011−021716(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F16H 59/00−61/12
F16H 61/16−61/24
F16H 61/66−61/70
F16H 63/40−63/50
(57)【特許請求の範囲】
【請求項1】
変速比を無段階に変速可能な主変速機構と、複数の固定変速段を有する副変速機構とを有する自動変速機と、
前記自動変速機の目標変速比を演算し、前記主変速機構の変速比と前記副変速機構の変速比とを組み合わせて得られる前記自動変速機の変速比が前記目標変速比を達成するように前記主変速機構及び前記副変速機構の変速比を制御するコントローラと、
を備え、
前記コントローラは、前記自動変速機の変速比が前記目標変速比に向けてダウンシフトするために、前記主変速機構と前記副変速機構の両方ダウンシフトしている間は、前記主変速機構アップシフトし前記副変速機構ダウンシフトしている間よりも、前記主変速機構の変速速度を大きくすることを特徴とする自動変速機の制御装置。
【請求項2】
請求項1に記載の自動変速機の制御装置において、
前記コントローラは、前記自動変速機が前記目標変速比に向けてダウンシフトするとき、前記主変速機構と前記副変速機構の両方がダウンシフトする場合は、前記主変速機構がアップシフトし前記副変速機構がダウンシフトする場合よりも、前記副変速機構の変速速度を大きくすることを特徴とする自動変速機の制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、副変速機構と無段変速機構とを備えた自動変速機の制御装置に関する。
【背景技術】
【0002】
副変速機構と無段変速機構とを備えた自動変速機の制御装置として、特許文献1の技術が知られている。この公報には、副変速機構の変速比と無段変速機構の変速比の両方から得られる自動変速機の変速比(以下、スルー変速比と記載する。)がダウンシフトする際、副変速機構のダウンシフトを伴う場合には、副変速機構のダウンシフトを行うとともに、自動変速機がスルー変速比を達成するように無段変速機構の変速比を制御するものである。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2011−21716号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ここで、スルー変速比がダウンシフトする際に副変速機構がダウンシフトを伴うと、無段変速機構は、ダウンシフトする場合と、アップシフトする場合とが存在する。しかしながら、上述の従来技術にあっては、無段変速機構におけるシフト状態が異なることを考慮しておらず、更なる改善の余地があった。
【0005】
本発明は上記課題に着目し、スルー変速比が副変速機構のダウンシフトを伴うダウンシフトを行う際、無段変速機構のシフト状態を考慮することで、良好な変速制御を達成可能な自動変速機の制御装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
この目的のため、本発明の自動変速機の制御装置では、変速比を無段階に変速可能な主変速機構と、複数の固定変速段を有する副変速機構とを有する自動変速機と、前記自動変速機の目標変速比を演算し、前記主変速機構の変速比と前記副変速機構の変速比とを組み合わせて得られる前記自動変速機の変速比が前記目標変速比を達成するように前記主変速機構及び前記副変速機構の変速比を制御するコントローラと、を備え、前記コントローラは、前記自動変速機の変速比が前記目標変速比に向けてダウンシフトするために、前記主変速機構と前記副変速機構の両方ダウンシフトしている間は、前記主変速機構アップシフトし前記副変速機構ダウンシフトしている間よりも、前記主変速機構の変速速度を大きくすることとした。


【発明の効果】
【0007】
よって、ダウンシフト時の応答性を改善することができ、良好な変速制御を達成できる。
【図面の簡単な説明】
【0008】
図1】実施例1の車両の駆動系およびその全体制御システムを示す概略系統図である。
図2】実施例1の車両において、 (a)は、当該車両の駆動系およびその全体制御システムを示す概略系統図であり、 (b)は、当該車両の駆動系におけるVベルト式無段変速機に内蔵された副変速機内におけるクラッチの締結論理図である。
図3】実施例1の変速機コントローラに格納される変速マップの一例である。
図4】実施例1の運転点P1におけるダウンシフトを表すタイムチャートである。
図5】実施例1の運転点P2におけるダウンシフトを表すタイムチャートである。
図6】実施例1の自動変速機がある車速においてダウンシフトする際、バリエータがダウンシフトする場合におけるトルクの関係を表す特性図である。
図7】実施例1の自動変速機がある車速においてダウンシフトする際、バリエータがアップシフトする場合におけるトルクの関係を表す特性図である。
図8】実施例1の自動変速機がある車速においてダウンシフトする前後のバリエータ変速比Ivを表す図である。
図9】実施例1の自動変速機がある車速においてダウンシフトする際の加速度変化を表す図である。
図10】実施例1のダウンシフト時変速時間制御処理を表すフローチャートである。
図11】実施例1の予測アクセルペダル開度算出マップである。
【発明を実施するための形態】
【0009】
〔実施例1〕
図1は、実施例1の車両の駆動系およびその全体制御システムを示す概略系統図である。図1の車両は、エンジン1を動力源として搭載する。エンジン1は、スタータモータ3により始動する。エンジン1は、自動変速機4を介して駆動輪5に適宜切り離し可能に駆動結合する。
【0010】
自動変速機4のバリエータCVTは、プライマリプーリ6と、セカンダリプーリ7と、これらプーリ6,7間に掛け渡したVベルト8(無端可撓部材)とからなるVベルト式無段変速機構である。尚、Vベルト8は複数のエレメントを無端ベルトによって束ねる構成を採用したが、チェーン方式等であってもよく特に限定しない。プライマリプーリ6はトルクコンバータT/Cを介してエンジン1のクランクシャフトに結合し、セカンダリプーリ7はクラッチCLおよびファイナルギヤ組9を順次介して駆動輪5に結合する。尚、本実施例にあっては、動力伝達経路を断接する要素(クラッチやブレーキ等)を総称してクラッチと記載する。図1は、動力伝達経路を概念的に示すものであり、後述する副変速機31内に設けられたハイクラッチH/C,リバースブレーキR/B及びローブレーキL/Bを、総称してクラッチCLと記載している。クラッチCLが締結状態のとき、エンジン1からの動力はトルクコンバータT/Cを経てプライマリプーリ6へ入力され、その後Vベルト8、セカンダリプーリ7、クラッチCLおよびファイナルギヤ組9を順次経て駆動輪5に達し、走行する。
【0011】
エンジン動力伝達中、プライマリプーリ6のプーリV溝幅を小さくしつつ、セカンダリプーリ7のプーリV溝幅を大きくすることで、Vベルト8とプライマリプーリ6との巻き掛け円弧径を大きくすると同時にセカンダリプーリ7との巻き掛け円弧径を小さくする。これにより、バリエータCVTはHigh側プーリ比(High側変速比)へのアップシフトを行う。High側変速比へのアップシフトを限界まで行った場合、変速比は最高変速比に設定される。
【0012】
逆にプライマリプーリ6のプーリV溝幅を大きくしつつ、セカンダリプーリ7のプーリV溝幅を小さくすることで、Vベルト8とプライマリプーリ6との巻き掛け円弧径を小さくすると同時にセカンダリプーリ7との巻き掛け円弧径を大きくする。これにより、バリエータCVTはLow側プーリ比(Low側変速比)へのダウンシフトを行う。Low側変速比へのダウンシフトを限界まで行った場合、変速は最低変速比に設定される。
【0013】
バリエータCVTは、プライマリプーリ6の回転数を検出するプライマリ回転数センサ6aと、セカンダリプーリ7の回転数を検出するセカンダリ回転数センサ7aとを有し、これら両回転数センサにより検出された回転数に基づいて実CVT変速比Ivを算出し、この実CVT変速比Ivが目標CVT変速比Iv*となるように各プーリの油圧制御等が行われる。
【0014】
エンジンコントローラ22は、エンジン1を出力制御し、変速機コントローラ24は、エンジン駆動される機械式オイルポンプO/Pからのオイルを媒体として、バリエータCVTの変速制御および副変速機31の変速制御及びクラッチCLの締結、解放制御を行う。
【0015】
図2(a)は、実施例1の車両の駆動系およびその全体制御システムを示す概略系統図であり、図2(b)は、実施例1の車両の駆動系における自動変速機4に内蔵された副変速機31内におけるクラッチCL(具体的には、H/C, R/B, L/B)の締結論理図である。図2(a)に示すように、副変速機31は、複合サンギヤ31s-1および31s-2と、インナピニオン31pinと、アウタピニオン31poutと、リングギヤ31rと、ピニオン31pin, 31poutを回転自在に支持したキャリア31cとからなるラビニョオ型プラネタリギヤセットで構成する。
【0016】
複合サンギヤ31s-1および31s-2のうち、サンギヤ31s-1は入力回転メンバとして作用するようセカンダリプーリ7に結合し、サンギヤ31s-2はセカンダリプーリ7に対し同軸に配置するが自由に回転し得るようにする。
【0017】
サンギヤ31s-1にインナピニオン31pinを噛合させ、このインナピニオン31pinおよびサンギヤ31s-2をそれぞれアウタピニオン31poutに噛合させる。
アウタピニオン31poutはリングギヤ31rの内周に噛合させ、キャリア31cを出力回転メンバとして作用するようファイナルギヤ組9に結合する。
キャリア31cとリングギヤ31rとをクラッチCLであるハイクラッチH/Cにより適宜結合可能となし、リングギヤ31rをクラッチCLであるリバースブレーキR/Bにより適宜固定可能となし、サンギヤ31s-2をクラッチCLであるローブレーキL/Bにより適宜固定可能となす。
【0018】
副変速機31は、ハイクラッチH/C、リバースブレーキR/BおよびローブレーキL/Bを、図2(b)に○印により示す組み合わせで締結させ、それ以外を図2(b)に×印で示すように解放させることにより前進第1速、第2速、後退の変速段を選択することができる。ハイクラッチH/C、リバースブレーキR/BおよびローブレーキL/Bを全て解放すると、副変速機31は動力伝達を行わない中立状態であり、この状態でローブレーキL/Bを締結すると、副変速機31は前進第1速選択(減速)状態となり、ハイクラッチH/Cを締結すると、副変速機31は前進第2速選択(直結)状態となり、リバースブレーキR/Bを締結すると、副変速機31は後退選択(逆転)状態となる。
【0019】
図2(a)の自動変速機4は、全てのクラッチCL(H/C, R/B, L/B)を解放して副変速機31を中立状態にすることで、バリエータCVT(セカンダリプーリ7)と駆動輪5との間を切り離すことができる。
【0020】
図2(a)の自動変速機4は、エンジン駆動される機械式オイルポンプO/Pからのオイルを作動媒体として制御されるもので、変速機コントローラ24がライン圧ソレノイド35、ロックアップソレノイド36、プライマリプーリ圧ソレノイド37-1、セカンダリプーリ圧ソレノイド37-2、ローブレーキ圧ソレノイド38、ハイクラッチ圧&リバースブレーキ圧ソレノイド39およびスイッチバルブ41を介し、バリエータCVTの当該制御を以下のように制御する。尚、変速機コントローラ24には、アクセルペダル踏み込み量(アクセルペダル開度)APOを検出するアクセルペダル開度センサ27からの信号(図1参照)、車速VSPを検出する車速センサ32からの信号、および車両加減速度Gを検出する加速度センサ33からの信号を入力する。
【0021】
ライン圧ソレノイド35は、変速機コントローラ24からの指令に応動し、機械式オイルポンプO/Pからのオイルを車両要求駆動力対応のライン圧PLに調圧する。ロックアップソレノイド36は、変速機コントローラ24からのロックアップ指令に応動し、ライン圧PLを適宜トルクコンバータT/Cに向かわせることで、トルクコンバータT/Cを所要に応じて入出力要素間が直結されたロックアップ状態にする。プライマリプーリ圧ソレノイド37-1は、変速機コントローラ24からのCVT変速比指令に応動してライン圧PLをプライマリプーリ圧に調圧し、これをプライマリプーリ6へ供給することにより、プライマリプーリ6のV溝幅と、セカンダリプーリ7のV溝幅とを、CVT変速比が変速機コントローラ24からの指令に一致するよう制御して変速機コントローラ24からのCVT変速比指令を実現する。セカンダリプーリ圧ソレノイド37-2は、変速機コントローラ24からのクランプ力指令に応じてライン圧PLをセカンダリプーリ圧に調圧し、これをセカンダリプーリ7に供給することにより、セカンダリプーリ7がVベルト8をスリップしないよう挟圧する。
ローブレーキ圧ソレノイド38は、変速機コントローラ24が副変速機31の第1速選択指令を発しているとき、ライン圧PLをローブレーキ圧としてローブレーキL/Bに供給することによりこれを締結させ、第1速選択指令を実現する。
ハイクラッチ圧&リバースブレーキ圧ソレノイド39は、変速機コントローラ24が副変速機31の第2速選択指令または後退選択指令を発しているとき、ライン圧PLをハイクラッチ圧&リバースブレーキ圧としてスイッチバルブ41に供給する。
【0022】
第2速選択指令時はスイッチバルブ41が、ソレノイド39からのライン圧PLをハイクラッチ圧としてハイクラッチH/Cに向かわせ、これを締結することで副変速機31の第2速選択指令を実現する。
後退選択指令時はスイッチバルブ41が、ソレノイド39からのライン圧PLをリバースブレーキ圧としてリバースブレーキR/Bに向かわせ、これを締結することで副変速機31の後退選択指令を実現する。
【0023】
〔変速制御処理について〕
次に変速制御処理について説明する。図3は実施例1の変速機コントローラ24に格納される変速マップの一例である。変速機コントローラ24は、この変速マップを参照しながら、車両の運転状態(実施例1では車速VSP、プライマリ回転速度Npri、アクセルペダル開度APO)に応じて、自動変速機4を制御する。この変速マップでは、自動変速機4の動作点が車速VSPとプライマリ回転速度Npriとにより定義される。自動変速機4の動作点と変速マップ左下隅の零点を結ぶ線の傾きが自動変速機4の変速比(バリエータCVTの変速比Ivに副変速機31の変速比Isubを掛けて得られる全体の変速比Ith、以下、「スルー変速比」という。)に対応する。
【0024】
この変速マップには、従来のベルト式無段変速機の変速マップと同様に、アクセルペダル開度APO毎に変速線が設定されており、自動変速機4の変速はアクセルペダル開度APOに応じて選択される変速線に従って行われる。なお、図3には簡単のため、全負荷線(アクセルペダル開度APO=8/8のときの変速線)、パーシャル線(アクセルペダル開度APO=4/8のときの変速線)、コースト線(アクセルペダル開度APO=0/8のときの変速線)のみが示されている。
【0025】
自動変速機4が低速モードのときは、自動変速機4はバリエータCVTの変速比を最Low変速比にして得られる低速モード最Low線とバリエータCVTの変速比を最High変速比にして得られる低速モード最High線の間で変速することができる。このとき、自動変速機4の動作点はA領域とB領域内を移動する。一方、自動変速機4が高速モードのときは、自動変速機4はバリエータCVTの変速比を最Low変速比にして得られる高速モード最Low線とバリエータCVTの変速比を最High変速比にして得られる高速モード最High線の間で変速することができる。このとき、自動変速機4の動作点はB領域とC領域内を移動する。
【0026】
副変速機31の各変速段の変速比は、低速モード最High線に対応する変速比(低速モード最High変速比)が高速モード最Low線に対応する変速比(高速モード最Low変速比)よりも小さくなるように設定される。これにより、低速モードでとりうる自動変速機4のスルー変速比Ithの範囲(図中、「低速モードレシオ範囲」)と高速モードでとりうる自動変速機4のスルー変速比Ithの範囲(図中、「高速モードレシオ範囲」)とが部分的に重複し、自動変速機4の動作点が高速モード最Low線と低速モード最High線で挟まれるB領域にあるときは、自動変速機4は低速モード、高速モードのいずれのモードも選択可能になっている。
【0027】
また、この変速マップ上には副変速機31の変速を行うモード切換変速線が低速モード最High線上に重なるように設定されている。モード切換変速線に対応するスルー変速比(以下、「モード切換変速比mRatio」という。)は低速モード最High変速比と等しい値に設定される。モード切換変速線をこのように設定するのは、バリエータCVTの変速比が小さいほど副変速機31への入力トルクが小さくなり、副変速機31を変速させる際の変速ショックを抑えられるからである。
【0028】
そして、自動変速機4の動作点がモード切換変速線を横切った場合、すなわち、スルー変速比Ithの実際値がモード切換変速比mRatioを跨いで変化した場合は、変速機コントローラ24はバリエータCVTと副変速機31の両方で協調変速を行い、高速モード−低速モード間の切換えを行う。
【0029】
次に、高速モードから低速モードに移行する場合の変速状態について詳述する。図3には、ある運転点Pxを示す。このとき、運転者がアクセルペダルを踏みこみ、運転点Pxがモード切替変速比mRatioを跨ぐと、副変速機31のダウンシフトを伴うスルー変速比Ithのダウンシフトが行われる。ここで、アクセルペダルが小さく踏み込まれた場合をP1、アクセルペダルが大きく踏み込まれた場合をP2とする。
【0030】
図4は、実施例1の運転点P1におけるダウンシフトを表すタイムチャート、図5は、実施例1の運転点P2におけるダウンシフトを表すタイムチャートである。図4に示すように、アクセルペダルの踏み込みが小さいと、スルー変速比Ithのダウンシフト量は小さいため、副変速機31の変速比Isubがダウンシフトすると、バリエータCVTのCVT変速比Ivは、アップシフトする場合がある。一方、図5に示すように、アクセルペダルの踏み込み量が大きいと、スルー変速比Ithのダウンシフト量は大きいため、副変速機31の変速比Isubがダウンシフトすると共に、バリエータCVTのCVT変速比Ivもダウンシフトする場合がある。
【0031】
図6は、実施例1の自動変速機がある車速においてダウンシフトする際、バリエータがダウンシフトする場合におけるトルクの関係を表す特性図である。この特性図は、横軸にバリエータCVTの変速速度を表し、縦軸にトルクを表したものである。バリエータCVTがダウンシフトする場合には、バリエータCVTへの入力トルク変動Tinと、イナーシャトルクTiとの合計であるクラッチ入力トルク変動Tclは、変速速度によらず比較的低い値で安定している。言い換えると、バリエータCVTがダウンシフトするときは、変速速度を上昇させたとしても、変速ショックの原因となるクラッチ入力トルク変動Tclへの影響は小さい。
【0032】
図7は、実施例1の自動変速機がある車速においてダウンシフトする際、バリエータがアップシフトする場合におけるトルクの関係を表す特性図である。バリエータCVTがアップシフトする場合には、バリエータCVTへの入力トルク変動Iinと、イナーシャトルクTiとの合計であるクラッチ入力トルク変動Tclは、変速速度によらず比較的高い値となる。言い換えると、バリエータCVTがアップシフトするときは、変速ショックの原因となるクラッチ入力トルク変動Tclが恒常的に大きく、変速速度を上昇させるほど、大きなトルク変動を招くおそれがある。
【0033】
図8は、実施例1の自動変速機がある車速においてダウンシフトする前後のバリエータ変速比Ivを表す図である。この図は、横軸に変速前のアクセルペダル開度APO_before取り、縦軸にバリエータ変速比Ivを取ったものである。変速前のバリエータ変速比をIv_beforeとし、変速後のバリエータ変速比をIv_afterとする。そして、Iv_beforeがIv_afterよりも下方の領域は、バリエータCVTがダウンシフトする領域(以下、ダウンシフト領域と記載する。)を表し、Iv_beforeがIv_afterよりも上方の領域は、バリエータCVTがアップシフトする領域(以下、アップシフト領域と記載する。)を表す。図8に示すように、変速前のアクセルペダル開度APO_beforeが所定開度APO_before1よりも小さいときはダウンシフトが発生し、大きいときはアップシフトが発生する。
【0034】
図9は、実施例1の自動変速機がある車速においてダウンシフトする際の加速度変化を表す図である。この図は、横軸に変速前のアクセルペダル開度APO_beforeを取り、縦軸に加速度変化ΔGを取ったものである。ここで、図9は、図8と横軸が同じパラメータであることから、図9図8で設定されたAPO_before1を重ねると、ダウンシフト領域では加速度変化ΔGが0近傍の比較的狭い範囲に収束しているのに対し、アップシフト領域では加速度変化ΔGが0から離れた比較的広い範囲で発生していることが分かる。
【0035】
以上の結果から、発明者は、スルー変速比Ithがダウンシフトする際、副変速機31がダウンシフトしつつ、バリエータCVTがアップシフトする場合には、加速度変化ΔGが生じやすく、バリエータCVTがダウンシフトする場合には、変速速度に係らず加速度変化ΔGが生じにくいことを見出した。
【0036】
ここで、ダウンシフトの応答性を確保するために、バリエータCVTのシフト方向に係らずバリエータCVTの変速時間を短くしてしまうと、バリエータCVTがアップシフトしているときには、変速ショックが悪化する恐れがある。一方、変速ショックを抑制するために、バリエータCVTのシフト方向に係らずバリエータCVTの変速時間を長くしてしまうと、応答性を十分に確保できないおそれがある。
【0037】
そこで、実施例1では、上記知見に基づき、変速時間を短くしたとしても変速ショックに影響を与えないとき、具体的にはバリエータCVTのダウンシフト時には、変速速度を短くすることでダウンシフト時の応答性を向上し、変速ショックが比較的大きなとき、具体的にはバリエータCVTのアップシフト時には、バリエータCVTのダウンシフト時に比べて変速時間を長くし、変速ショックを抑制することとした。
【0038】
図10は、実施例1のダウンシフト時変速時間制御処理を表すフローチャートである。
ステップS1では、運転点Pxがモード切替変速比mRatioiを図3のマップで下から上に向けて通過したか否かを判断し、通過したときは副変速機31がダウンシフトすると判断してステップS2に進み、それ以外は本制御フローを終了する。
ステップS2では、APO及びΔAPOに基づいて予測アクセルペダル開度APO(n+1)を以下の式により演算する。
APO(n+1)=APO+α
ここで、αは、APO補正量である。図11は、実施例1の予測アクセルペダル開度算出マップである。横軸にΔAPOを取り、ΔAPOが大きいほど最終的な運転点の位置が大きく移動すると判断して大きなαを設定する。
【0039】
ステップS3では、図3に示す変速マップと、ステップS2で演算された予測アクセルペダル開度APO(n+1)と、車速VSPとに基づいて目標プライマリプーリ回転数Npri*を演算する。これにより、目標スルー変速比Ith*を演算する。
ステップS4では、ダウンシフト後の副変速機31の変速比Isubと、ステップS3において演算された目標スルー変速比Ith*に基づいて、目標バリエータ変速比Iv*を下記式より演算する。
Iv*=Ith*/Isub
【0040】
ステップS5では、現在のバリエータCVTの実変速比Ivと目標バリエータ変速比Iv*とから、バリエータCVTがダウンシフトするか否かを判断し、ダウンシフトする場合はステップS6に進み、アップシフトする場合はステップS7に進む。
ステップS6では、バリエータCVTの変速時間を短縮設定する。言い換えると、バリエータCVTの変速速度が、バリエータCVTがアップシフトする場合よりも速くなるように制御する。尚、バリエータCVTのダウンシフト時における変速速度を早くすることで、副変速機31における架け替え変速の進行も促進されるため、全体の変速の早く進行できる。これにより、変速ショックを悪化させることなく応答性の高いダウンシフトを達成できる。
ステップS7では、バリエータCVTの変速時間を通常設定とする。言い換えると、バリエータCVTの変速速度が、バリエータCVTがダウンシフトする場合よりも遅くなるように制御する。これにより、変速時間を確保することで変速ショックを抑制しつつダウンシフトを達成できる。
【0041】
以上説明したように、実施例1にあっては下記の作用効果が得られる。
(1)変速比を無段階に変速可能なバリエータCVT(主変速機構)と、複数の固定変速段を有する副変速機31(副変速機構)とを有する自動変速機4と、自動変速機の目標スルー変速比Ith*(目標変速比)を演算し、バリエータCVTのバリエータ変速比Ivと副変速機31の変速比Isubとを組み合わせて目標スルー変速比Iv*を達成するようにバリエータCVT及び副変速機31の変速比を制御する変速機コントローラ24と、を備え、変速機コントローラ24は、自動変速機4が目標スルー変速比Ith*に向けてダウンシフトするために、バリエータCVTと副変速機31の両方をダウンシフトする場合は、バリエータCVTをアップシフトし副変速機31をダウンシフトする場合よりも、バリエータCVTの変速速度を大きくすることとした。
よって、ダウンシフト時の応答性を改善することができ、良好な変速制御を達成できる。
【0042】
(他の実施例)
以上、本願発明を各実施例に基づいて説明したが、上記構成に限られず、他の構成であっても本願発明に含まれる。
例えば、実施例1では、ステップS6においてバリエータCVTの変速速度が高くなるように制御したが、副変速機31の変速速度が高くなるように制御してもよい。具体的には、ローブレーキL/Bの締結圧を高めに設定し、1速へのダウンシフトを早めることで、バリエータCVTの変速速度を上昇させるようにしてもよい。
また、実施例1では、図3の変速マップにおいて、モード切替変速線と低速モード最High線とを一致させたが、B領域内であれば、他の位置にモード切替変速線を設定してもよい。
また、実施例1では、エンジンから見て順にバリエータCVTと副変速機31を並べたが、この順番を入れ替えても構わない。
【符号の説明】
【0043】
1 エンジン(動力源)
2 電動モータ(動力源)
3 スタータモータ
4 Vベルト式無段変速機
5 駆動輪
6 プライマリプーリ
7 セカンダリプーリ
8 Vベルト
CVT バリエータ(無段変速機構)
T/C トルクコンバータ
9 ファイナルギヤ組
19 アクセルペダル
22 エンジンコントローラ
24 変速機コントローラ
27 アクセルペダル開度センサ
O/P オイルポンプ
31 副変速機
CL クラッチ
H/C ハイクラッチ
R/B リバースブレーキ
L/B ローブレーキ
32 車速センサ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11