(58)【調査した分野】(Int.Cl.,DB名)
排気と吸気の少なくとも一方のポート(1)の弁口(1a)を開閉するポペット弁(2)と、このポペット弁(2)の往復動をガイドする筒状の弁ガイド(3)と、この弁ガイド(3)が挿入されるガイド挿入孔(4)及び上記ポート(1)を有するシリンダヘッド(5)を備えた、エンジンにおいて、
弁ガイド(3)は、その内周に、ポペット弁(2)の弁軸(2a)をガイドする摺動ガイド面(3a)と、この摺動ガイド面(3a)よりも弁ガイド(3)の径方向外側に凹入されたガイド内凹入部(3b)を備え、
摺動ガイド面(3a)は、弁ガイド(3)のポート(1)側の先端部(6)とその反対側の基端部(8)とこれらの間にある中間部(7)のうち、先端部(6)に設けられた先端部内ガイド面(6a)と、中間部(7)に設けられた中間部内ガイド面(7a)と、基端部(8)に設けられた基端部内ガイド面(8a)を備え、
ガイド内凹入部(3b)は、中間部(7)に設けられた中間部内凹入部(7b)を備え、
中間部内凹入部(7b)は、弁ガイド(3)の中間部(7)内の螺旋溝で構成され、中間部内ガイド面(7a)は、中間部内凹入部(7b)を除く中間部(7)の内周面で構成され、
ガイド内凹入部(3b)は、弁ガイド(3)の先端部(6)内に設けられた先端部内凹入部(6b)を備え、先端部内凹入部(6b)は、先端部内ガイド面(6a)よりも先端(6c)側に設けられ、ポート(1)に向けて開口され、
摺動ガイド面(3a)は、先端部内ガイド面(6a)よりも先端(6c)寄りに設けられた最先端部内ガイド面(6α)を備え、先端部内凹入部(6b)は、弁ガイド(3)内の周方向に所定間隔を保持して複数配置され、最先端部内ガイド面(6α)は、上記周方向で隣り合う先端部内凹入部(6b)・(6b)の間に設けられ、上記周方向に複数配置されている、ことを特徴とするエンジン。
【発明の概要】
【発明が解決しようとする課題】
【0006】
《問題点》 弁ガイド内で弁軸が膠着するおそれがある。
特許文献1の発明では、弁ガイドの先端部内で排気中の未然燃料の炭化物が形成されると、この炭化物が先端部内ガイド面に噛み込み、弁ガイド内で弁軸が膠着するおそれがある。
【0007】
本発明の課題は、弁ガイド内での弁軸の膠着を抑制することができるエンジンと弁ガイドと弁ガイドの製造方法を提供することにある。
【課題を解決するための手段】
【0008】
(請求項1に係る発明の発明特定事項)
図1(A)に例示するように、排気と吸気の少なくとも一方のポート(1)の弁口(1a)を開閉するポペット弁(2)と、このポペット弁(2)の往復動をガイドする筒状の弁ガイド(3)と、この弁ガイド(3)が挿入されるガイド挿入孔(4)及び上記ポート(1)を有するシリンダヘッド(5)を備えた、エンジンにおいて、
図1(A)に例示するように、弁ガイド(3)は、その内周に、ポペット弁(2)の弁軸(2a)をガイドする摺動ガイド面(3a)と、この摺動ガイド面(3a)よりも弁ガイド(3)の径方向外側に凹入されたガイド内凹入部(3b)を備え、
摺動ガイド面(3a)は、弁ガイド(3)のポート(1)側の先端部(6)とその反対側の基端部(8)とこれらの間にある中間部(7)のうち、先端部(6)に設けられた先端部内ガイド面(6a)と、中間部(7)に設けられた中間部内ガイド面(7a)と、基端部(8)に設けられた基端部内ガイド面(8a)を備え、
ガイド内凹入部(3b)は、中間部(7)に設けられた中間部内凹入部(7b)を備え、
図1(B)に例示するように、中間部内凹入部(7b)は、弁ガイド(3)の中間部(7)内の螺旋溝で構成され、中間部内ガイド面(7a)は、中間部内凹入部(7b)を除く中間部(7)の内周面で
構成され、
ガイド内凹入部(3b)は、弁ガイド(3)の先端部(6)内に設けられた先端部内凹入部(6b)を備え、先端部内凹入部(6b)は、先端部内ガイド面(6a)よりも先端(6c)側に設けられ、ポート(1)に向けて開口されるように構成され、
摺動ガイド面(3a)は、先端部内ガイド面(6a)よりも先端(6c)寄りに設けられた最先端部内ガイド面(6α)を備え、先端部内凹入部(6b)は、弁ガイド(3)内の周方向に所定間隔を保持して複数配置され、最先端部内ガイド面(6α)は、上記周方向で隣り合う先端部内凹入部(6b)・(6b)の間に設けられ、上記周方向に複数配置されている、ことを特徴とするエンジン。
【0009】
(
請求項9に係る発明の発明特定事項)
請求項1から請求項8のいずれかに記載されたエンジンに用いる弁ガイドであって、弁ガイド(3)は、請求項1に記載された構成とされている、ことを特徴とする弁ガイド。
【0010】
(
請求項10に係る発明の発明特定事項)
請求項9に記載された弁ガイドの製造方法であって、
図2に例示するように、弁ガイド(3)を金属粉末(9)の焼結で製造するに当たり、
金属粉末(9)の成形時に弁ガイド(3)の内周を形成する樹脂製中子(10)を用い、金属粉末(9)の焼結時の熱で、樹脂製中子(10)を溶融または熱分解させて、樹脂製中子(10)を弁ガイド(3)の焼結品から除くことを特徴とする弁ガイドの製造方法。
【発明の効果】
【0011】
(請求項1また
請求項9に係る発明)
請求項1または
請求項9に係る発明は、次の効果を奏する。
《効果》 弁ガイド(3)内での弁軸(2a)の膠着を抑制することができる。
図1(A)に例示するように、弁ガイド(3)の先端部(6)内で排気中の未燃燃料や吸気中のブローバイガスやEGRガスの成分が炭化物となっても、この炭化物は、複数の中間部内凹入部(7b)内に排出され、炭化物が先端部内ガイド面(6a)や中間部内ガイド面(7a)に噛み込み難く、弁ガイド(3)内での弁軸(2a)の膠着を抑制することができる。
【0012】
《効果》 弁ガイド(3)内での弁軸(2a)の膠着を抑制することができる。
図1(A)に例示するように、弁軸(2a)の表面で排気中の未燃燃料や吸気中のブローバイガスやEGRガスの成分が炭化物となっても、弁軸(2a)の表面に固着した炭化物は、弁軸(2a)の回転により、中間部内凹入部(7b)の縁部で掻き落とされるとともに、中間部内凹入部(7b)内に溜まった炭化物は、弁軸(2a)の回転方向と中間部内凹入部(7b)を構成する螺旋溝の旋回方向に応じ、中間部内凹入部(7b)から弁ガイド(3)の先端部(6)側に押し戻され、または中間部内凹入部(7b)を基端部(8)側に移動して中間部内凹入部(7b)全体に分散され、炭化物が中間部内ガイド面(7a)に噛み込み難く、弁ガイド(3)内での弁軸(2a)の膠着を抑制することができる。
【0013】
《効果》 弁軸(2a)の放熱が促進される。
図1(A)に例示するように、弁ガイド(3)内で発生する弁軸(2a)の摺動熱は、先端部内ガイド面(6a)と中間部内ガイド面(7a)と基端部内ガイド面(8a)からなる広い放熱領域を介して弁ガイド(3)からシリンダヘッド(5)に効率よく放熱され、弁軸(2a)の放熱が促進される。
《効果》 弁軸(2a)の放熱が促進される。
図1(A)に例示するように、弁軸(2a)の摺動熱が先端部内凹入部(6b)内の排気や吸気に放熱されても、放熱を受けて高温になった排気や吸気が対流によりポート(1)内の比較的低温の排気や吸気と入れ替わり、弁軸(2a)の放熱が促進される。
《効果》 弁ガイド(3)内での弁軸(2a)の膠着を抑制することができる。
図1(A)に例示するように、弁軸(2a)の表面で排気中の未燃燃料や吸気中のブローバイガスやEGRガスの成分が炭化物となっても、弁軸(2a)の表面の炭化物は、弁軸(2a)の閉弁方向への摺動により、弁ガイド(3)の先端(6c)の縁部で掻き落とされるとともに、弁軸(2a)の回転により、先端部内凹入部(6b)の縁部で掻き落とされ、炭化物が先端部内ガイド面(6a)や最先端部内ガイド面(6α)に噛み込みにくく、弁ガイド(3)内での弁軸(2a)の膠着を抑制することができる。
《効果》 弁軸(2a)の放熱が促進される。
図1(A)に示すように、弁ガイド(3)内で発生する弁軸(2a)の摺動熱は、複数の最先端部内ガイド面(6α)と先端部内ガイド面(6a)と中間部内ガイド面(7a)と基端部内ガイド面(8a)からなる広い放熱領域を介して弁ガイド(3)からシリンダヘッド(5)に効率よく放熱され、弁軸(2a)の放熱が促進される。
【0014】
(
請求項10に係る発明)
請求項10に係る発明は、次の効果を奏する。
《効果》 外周に凸部がある樹脂製中子(10)を簡単に除去される。
図2に例示するように、弁ガイド(3)の焼結品から外周に凸部がある樹脂製中子(10)を簡単に除去される。
【発明を実施するための形態】
【0016】
図1は本発明の実施形態に係るエンジン、
図2は
図1のエンジンで用いる弁ガイドの製造方法を説明する図で、各実施形態では、立形ディーゼルエンジン及びそのエンジンで用いる弁ガイドの製造方法について説明する。
【0017】
まず、実施形態に係るエンジンについて説明する。
図1(A)に示すように、この立形ディーゼルエンジンは、排気(及び吸気)のポート(1)の弁口(1a)を開閉するポペット弁(2)と、このポペット弁(2)の往復動をガイドする弁ガイド(3)と、この弁ガイド(3)が挿入されるガイド挿入孔(4)及び上記ポート(1)を有するシリンダヘッド(5)を備えている。
この種のエンジンによれば、ポペット弁(2)の往復動を弁ガイド(3)でスムーズにガイドすることができる利点がある。
この実施形態では、排気のポートも吸気のポートも同じ構造であり、以下の説明では、特に断らない限り、ポート(1)は排気のポート、吸気のポートのいずれをも意味する。
【0018】
図1(A)に示すように、ポペット弁(2)は、弁軸(2a)と弁頭(2c)を備えている。
ポート(1)の開口端には円環形の弁座(1f)が内嵌され、弁座(1f)内に弁口(1a)が開口されている。
このエンジンは、ポペット弁(2)の弁軸(2a)に取り付けられたスプリングリテーナ(11)と、スプリングリテーナ(11)とシリンダヘッド(5)のスプリング座(5b)の間に配置されたバルブスプリング(12)と、弁軸(2a)に当接されたロッカアーム(13)と、弁ガイド(3)の基端(8b)に外嵌された弁軸シール(14)を備え、バルブスプリング(12)の付勢力で、弁頭(2c)の弁面(2d)が弁座(1f)に着座し、ロッカアーム(13)の押圧力により、バルブスプリング(12)の付勢力に抗して、ポペット弁(2)が下降し、ポペット弁(2)が開く。
【0019】
弁ガイド(3)の構成は、次の通りである。
図1(A)に示すように、弁ガイド(3)は、その内周に、ポペット弁(2)の弁軸(2a)をガイドする摺動ガイド面(3a)と、この摺動ガイド面(3a)よりも弁ガイド(3)の径方向外側に凹入されたガイド内凹入部(3b)を備えている。
摺動ガイド面(3a)は、弁ガイド(3)のポート(1)側の先端部(6)とその反対側の基端部(8)とこれらの間にある中間部(7)のうち、先端部(6)に設けられた先端部内ガイド面(6a)と、中間部(7)に設けられた中間部内ガイド面(7a)と、基端部(8)に設けられた基端部内ガイド面(8a)を備えている。
【0020】
ガイド内凹入部(3b)は、中間部(7)に設けられた中間部内凹入部(7b)を備えている。
図1(B)に示すように、中間部内凹入部(7b)は、弁ガイド(3)の中間部(7)内の螺旋溝で構成され、中間部内ガイド面(7a)は、中間部内凹入部(7b)を除く中間部(7)の内周面で構成されている。
【0021】
このため、この実施形態では、
図1(A)に示すように、弁ガイド(3)の先端部(6)内で排気中の未燃燃料や吸気中のブローバイガスやEGRガスの成分が炭化物となっても、この炭化物は、複数の中間部内凹入部(7b)に排出され、炭化物が先端部内ガイド面(6a)や中間部内ガイド面(7a)に噛み込み難く、弁ガイド(3)内での弁軸(2a)の膠着が抑制される。
【0022】
また、
図1(A)に示すように、弁軸(2a)の表面で排気中の未燃燃料や吸気中のブローバイガスやEGRガスの成分が炭化物となっても、弁軸(2a)の表面に固着した炭化物は、弁軸(2a)の回転により、中間部内凹入部(7b)の縁部で掻き落とされるとともに、中間部内凹入部(7b)内に溜まった炭化物は、弁軸(2a)の回転方向と中間部内凹入部(7b)を構成する螺旋溝の旋回方向に応じ、中間部内凹入部(7b)から弁ガイド(3)の先端部(6)側に押し戻され、または中間部内凹入部(7b)を基端部(8)側に移動して中間部内凹入部(7b)全体に分散され、炭化物が中間部内ガイド面(7a)に噛み込み難く、弁ガイド(3)内での弁軸(2a)の膠着を抑制することができる。
【0023】
また、
図1(A)に示すように、弁ガイド(3)内で発生する弁軸(2a)の摺動熱は、先端部内ガイド面(6a)と中間部内ガイド面(7a)と基端部内ガイド面(8a)からなる広い放熱領域を介して弁ガイド(3)からシリンダヘッド(5)に効率よく放熱され、弁軸(2a)の放熱が促進される。
【0024】
また、
図1(A)に示すように、弁ガイド(3)の先端部(6)から先端部内ガイド面(6a)に沿って浮上した炭化物は、弁軸(2a)の回転方向と中間部内凹入部(7b)を構成する螺旋溝の旋回方向に応じ、中間部内凹入部(7b)から基端(8)側に移動し、中間部内凹入部(7b)全体に分散して溜まり、中間部内凹入部(7b)に溜まる炭化物の荷重で先端部内ガイド面(6a)に沿う炭化物の浮上が妨げられることがなく、中間部内凹入部(7b)への炭化物の排出が促進される。
【0025】
図1(A)に示すように、先端部内ガイド面(6a)と基端部内ガイド面(8a)は、いずれも弁軸(2a)の全周をガイドしている。中間部内凹入部(7b)・(7b)の先端と基端は、先端部内ガイド面(6a)と基端部内ガイド面(8a)の肉壁でそれぞれ塞がれている。
弁ガイド(3)の軸長方向は、上下方向に向けられ、上側が弁ガイド(3)の基端部(8)とされ、下側が弁ガイド(3)の先端部(6)とされている。
【0026】
図1(A)に示すように、中間部内凹入部(7b)が内設されている中間部(7)は、ガイド挿入孔(4)に内嵌されている。
このため、この実施形態では、
図1(A)(B)に示すように、弁軸(2a)の摺動熱を受けた中間部内凹入部(7b)内の炭化物の熱は、中間部(7)を介してシリンダヘッド(5)に放熱され、炭化物の放熱が促進される。
【0027】
図1(A)に示すように、中間部内凹入部(7b)が内設されている中間部(7)は、ガイド挿入孔(4)の内周面に密着している。
このため、この実施形態では、
図1(A)に示すように、中間部内凹入部(7b)内の炭化物の熱は、中間部(7)の外周面からガイド挿入孔(4)の内周面を介してシリンダヘッド(5)に放熱され、炭化物の放熱効率が高い。
【0028】
図1(A)に示すように、シリンダヘッド(5)は、エンジン冷却水を通過させるウォータージャケット(5a)を備えている。
このため、この実施形態では、
図1(A)に示するように、中間部内凹入部(7b)内の炭化物の熱は、ウォータージャケット(5a)を通過するエンジン冷却水で強力に冷却されるシリンダヘッド(5)に放熱され、炭化物の放熱効率が高い。
【0029】
図1(A)に示すように、ガイド内凹入部(3b)は、弁ガイド(3)の先端部(6)内に設けられた先端部内凹入部(6b)を備え、先端部内凹入部(6b)は、先端部内ガイド面(6a)よりも先端(6c)側に設けられ、ポート(1)に向けて開口されている。
【0030】
このため、この実施形態では、
図1(A)に示すように、弁軸(2a)の摺動熱が先端部内凹入部(6b)内の排気や吸気に放熱されても、放熱を受けて高温になった排気や吸気が対流によりポート(1)内の比較的低温の排気や吸気と入れ替わり、弁軸(2a)の放熱が促進される。
【0031】
図1(A)に示すように、摺動ガイド面(3a)は、先端部内ガイド面(6a)よりも先端(6c)寄りに設けられた最先端部内ガイド面(6α)を備え、先端部内凹入部(6b)は、弁ガイド(3)内の周方向に所定間隔を保持して複数配置され、最先端部内ガイド面(6α)は、上記周方向で隣り合う先端部内凹入部(6b)・(6b)の間に設けられ、上記周方向に複数配置されてい
る。
【0032】
このため、この実施形態では、
図1(A)に示すように、弁軸(2a)の表面で排気中の未燃燃料や吸気中のブローバイガスやEGRガスの成分が炭化物となっても、弁軸(2a)の表面の炭化物は、弁軸(2a)の閉弁方向への摺動により、弁ガイド(3)の先端(6c)の縁部で掻き落とされるとともに、弁軸(2a)の回転により、先端部内凹入部(6b)の縁部で掻き落とされ、炭化物が先端部内ガイド面(6a)や最先端部内ガイド面(6α)に噛み込みにくく、弁ガイド(3)内での弁軸(2a)の膠着を抑制することができる。
【0033】
また、
図1(A)に示すように、弁ガイド(3)内で発生する弁軸(2a)の摺動熱は、複数の最先端部内ガイド面(6α)と先端部内ガイド面(6a)と中間部内ガイド面(7a)と基端部内ガイド面(8a)からなる広い放熱領域を介して弁ガイド(3)からシリンダヘッド(5)に効率よく放熱され、弁軸(2a)の放熱が促進される。
【0034】
ロッカアームから弁軸(2a)への入力は、弁軸(2a)の中心軸からオフセットされた位置になされ、ロッカアームの揺動により、ポペット弁(2)は下降時に回転する。
【0035】
図1(A)に示すように、弁ガイド(3)の先端部(6)は、ガイド挿入孔(4)に内嵌され、ガイド挿入孔(4)の内周面と弁ガイド(3)の先端部(6)の外周面の間にポート(1)に向けて開口される先端部外隙間(4a)が形成されている。
【0036】
このため、この実施形態では、
図1(A)に示すように、弁軸(2a)の摺動熱が弁ガイド(3)を介して先端部外隙間(4a)内の排気や吸気に放熱されても、放熱を受けて高温になった排気や吸気が対流によりポート(1)内の比較的低温の排気や吸気と入れ替わり、弁軸(2a)の放熱が促進される。
【0037】
図1(A)に示すように、ポペット弁(2)の全開時にポート(1)内に露出するポペット弁(2)の露出弁軸部分(2b)の外周面は、段差なく形成されている。
ポペット弁(2)の露出弁軸部分(2b)の外周面は、単一径とされている。
【0038】
このため、この実施形態では、ポペット弁(2)の全開時にポート(1)内を高速で通過する排気や吸気の衝突を受けるポペット弁(2)の露出弁軸部分(2b)の外周面に、応力集中やヒートポイントの要因となる段差による隅角部が形成されず、排気や吸気の衝突によるポペット弁(2)の損傷が抑制される。
【0039】
図1(A)に示すように、ポート(1)は、ポート内面(1b)がガイド挿入孔(4)のポート側開口(4b)に向けて凹入されたポート内凹入部(1c)を備え、弁ガイド(3)の先端(6c)がポート内凹入部(1c)内に臨んでいる。
【0040】
このため、この実施形態では、
図1(A)に示すように、ポート(1)を通過する排気や吸気が弁ガイド(3)の先端部(6)に衝突しにくく、弁ガイド(3)の先端部(6)内での炭化物の発生が抑制される。
【0041】
図1(A)に示すように、弁ガイド(3)の先端(6c)は、ガイド挿入孔(4)内からポート内凹入部(1c)内に臨んでいる。
このため、この実施形態では、
図1(A)に示すように、ポート(1)を通過する排気や吸気が弁ガイド(3)の先端部(6)に衝突しにくい。
【0042】
図1(A)に示すように、ポート(1)は、ガイド挿入孔(4)が設けられる位置で、ポート壁内周面(1d)からポート(1)内に突出するボス(1e)を備え、ボス(1e)の突出端面(1g)が凹入されたポート内凹入部(1c)を備えている。
このため、この実施形態では、
図1(A)に示すように、ポート壁内周面(1d)に沿ってポート(1)内を流れる排気や吸気がボス(1e)の外周面で案内され、排気や吸気が弁ガイド(3)の先端部(6)から遠ざかる。
【0043】
図1(A)に示すように、ポート(1)はタンジェンシャル吸気ポートを備え、ポート内凹入部(1c)は、タンジェンシャル吸気ポートに設けられている。
タンジェンシャル吸気ポートとは、シリンダ中心軸と平行な向きに見て、シリンダの接線方向に方向付けられた吸気ポートをいう。
【0044】
スワールポートに比べ、ポート中心の吸気流量が多いタンジェンシャルポートは、ブローバイガスやEGRガスを含む吸気が弁ガイド(3)の先端部(6)の対面を多く通過し、弁ガイド(3)の先端部(6)内で炭化物が発生しやすい傾向があるが、この実施形態では、吸気が弁ガイド(3)の先端部(6)に衝突しにくい構造が採用され、先端部(6)での炭化物の発生が大幅に低減され、 弁ガイド(3)の先端部(6)内での炭化物の発生抑制機能が顕在化する。
【0045】
図1に示す実施形態に係るエンジンで用いる弁ガイド(3)の構成は、上記の通りである。
【0046】
次に、
図1に示す実施形態に係るエンジンで用いる弁ガイド(3)の製造方法の実施形態について説明する。
図2に示すように、この製造方法では、弁ガイド(3)を金属粉末(9)の焼結で製造するに当たり、金属粉末(9)の成形時に弁ガイド(3)の内周を形成する樹脂製中子(10)を用いる。
次に、金属粉末(9)の焼結時の熱で、樹脂製中子(10)を溶融または熱分解させて、樹脂製中子(10)を弁ガイド(3)の焼結品から除く。
【0047】
このため、この実施形態では、
図2に示すように、弁ガイド(3)の焼結品から外周に凸部がある樹脂製中子(10)が簡単に除去される。
【0048】
金属粉末(9)には、鉄系の焼結金属材料を用いる。
金属粉末(9)の成形には、金型(15)によるプレス成形がなされる。金型(15)は金属粉末(9)を充填するキャビティ(15a)と金属粉末(9)をキャビティ(15a)に供給する供給口(15b)を備えたダイ(15c)と、ダイ(15c)の内部で昇降する上下パンチ(15d)(15e)で構成されている。
樹脂製中子(10)には、ナイロン等の熱可塑性樹脂やフェノール樹脂等の熱硬化性樹脂を用いることができる。
樹脂製中子(10)に熱可塑性樹脂を用いた場合には、樹脂製中子(10)は、溶融により弁ガイド(3)の焼結品から除かれる。
樹脂製中子(10)に熱硬化性樹脂を用いた場合には、樹脂製中子(10)は、熱分解により弁ガイド(3)の焼結品から除かれる。
樹脂製中子(10)には、ガラス繊維等の繊維で補強したものを用いる。
この樹脂製中子(10)の外周には、先端側から順に、先端部内凹入部(6b)、先端部内ガイド面(6a)、中間部内凹入部(7b)、基端部内ガイド面(8a)を形成するための凹凸が形成されている。