【実施例】
【0021】
以下、本発明に係る実施形態について、図面を参照しながら説明する。ただし、本発明はここで取り挙げた実施形態に限定されるものではなく、発明の技術的思想を逸脱しない範囲で、公知技術と適宜組み合わせたり公知技術に基づいて改良したりすることが可能である。
【0022】
[実験1]
(合金部材1の作製)
本発明の対象となるタービン用高温部材の模擬試料を作製した。まず、表1に示す名目化学組成を有する合金1のマスターインゴットを高周波溶解した後、一方向凝固鋳造により板状鋳造材(縦200 mm×横200 mm×厚さ10 mm)を作製した。合金1におけるγ’相の固溶温度(ソルバス温度)は、約1190℃である。
【0023】
【表1】
【0024】
上記で用意した板状鋳造材に対して、溶体化熱処理(真空中、1210℃で2時間保持後、急冷)と、第1時効熱処理(真空中、1100℃で4時間保持後、急冷)と、第2時効熱処理(真空中、850℃で10時間保持後、急冷)とを順次行ってタービン用高温部材の模擬試料(合金部材1)を作製した。
【0025】
[実験2]
(使用済部材の試料の用意、クリープ損傷度合およびγ相結晶粒の内部ひずみの評価)
得られた合金部材1から、一方向凝固の凝固方向が長手方向となるようにして、複数個のクリープ試験片(直径9 mm×長さ100 mm)を採取した。次に、各クリープ試験片に対して、クリープ試験(900℃、245 MPa)を行った。
【0026】
このとき、一つの試験としては、新品部材の試料のクリープ寿命(t
v)を測定した。t
v≒950時間であった。他の試験としては、所定のクリープひずみ量(0.8〜3%ひずみ)になった時点でクリープ試験片を取り出した。所定のクリープひずみ量で取り出した試験片が、使用済部材の試料となる。また、所定のクリープひずみ量に到達するまでの時間(t
c)と上記t
vとの比(t
c/t
v)から、該ひずみ量のクリープ損傷度合を算出した。なお、各試験において複数個のクリープ試験片を用いた。
【0027】
上記で用意した新品部材および使用済部材の試料に対して、γ相結晶粒の内部ひずみを評価するために、電子線後方散乱回折(EBSD)法によりγ相の結晶粒のGROD(grain reference orientation deviation)値を測定した。
【0028】
本実験におけるクリープひずみ量とクリープ損傷度合とγ相結晶粒の内部ひずみとの関係を表2に示す。
【0029】
【表2】
【0030】
表2に示したように、クリープひずみ量とクリープ損傷度合との間は良好な相関関係が認められた。また、クリープひずみ量やクリープ損傷度合の増加に伴って、GROD値も増加する傾向が認められた。ただし、GROD値は、測定値のゆらぎが大きいため、GROD値からクリープ損傷度合を一義的に推定するのは困難と思われた。
【0031】
[実験3]
(再生部材の試料の作製、γ相再結晶粒の発生挙動の調査、再生クリープ寿命の調査)
実験2で用意した使用済部材の各試料に対して、延命/再生化処理を意図して、溶体化熱処理(真空中、1200℃で2時間保持後、急冷)を行った。その後、溶体化熱処理を施した各試料の金属組織(微細組織)を観察した。
【0032】
その結果、クリープひずみ量が1.2%以下の試料では、微細組織に特段の変化は観察されなかった。一方、クリープひずみ量が1.3〜1.5%の試料では、γ相再結晶粒の発生が確認されたと共に、クリープひずみ量が大きくなるにつれて、γ相再結晶粒の数と大きさとが増加していくことが確認された。クリープひずみ量が1.5%超の試料でも、γ相再結晶粒の発生が確認されたが、γ相再結晶粒の発生の様子が1.5%の試料のそれと同程度であり、明確な差異は判別困難であった。
【0033】
次に、溶体化熱処理を施した各試料に対して、実験1と同様の第1時効熱処理と第2時効熱処理とを行って、再生部材の試料を作製した。得られた各再生部材試料に対して、実験2と同様のクリープ試験を行い、各再生部材のクリープ寿命(t
r)を測定した。また、該t
rと先の新品部材のクリープ寿命(t
v)との比(t
r/t
v)を再生度合として求めた。結果を表3に示す。
【0034】
【表3】
【0035】
表3に示したように、溶体化熱処理後に微細組織に特段の変化が観察されなかったクリープひずみ量1.2%以下の試料は、上記の熱処理によって0.95以上の再生度合にクリープ寿命が延命化できることが確認された。一方、クリープひずみ量1.3%以上の試料(すなわち、溶体化熱処理によってγ相再結晶粒が発生した試料)は、再生度合が不十分であった。特に、クリープひずみ量1.4%以上の試料では、再生部材のクリープ寿命t
rが、もともとの残存クリープ寿命(t
v−t
c)を下回っていた。言い換えると、溶体化熱処理を行うことによって、かえってクリープ寿命が短くなっていることが判った。
【0036】
次に、クリープひずみ量1.5%以上の試料(クリープ損傷度合0.5以上の試料)において、望ましい溶体化熱処理条件を検討した。具体的には、溶体化熱処理における保持時間を変化させた以外は先と同様にして、再生部材の試料を作製し、再生度合を調査した。結果を表4に示す。
【0037】
【表4】
【0038】
表4の結果は、驚くべきものであった。先の溶体化熱処理(真空中、1200℃で2時間保持後、急冷)では延命/再生化が困難であったクリープひずみ量1.5%以上の試料であっても、溶体化熱処理の保持時間を短くすることにより、0.95以上の再生度合に延命/再生化が可能であることが判明した。
【0039】
具体的には、クリープひずみ量1.5%の試料(クリープ損傷度合0.5の試料)は1時間保持、クリープひずみ量2%の試料(クリープ損傷度合0.65の試料)は30分間保持、クリープひずみ量2.5%の試料(クリープ損傷度合0.7の試料)は15分間保持とした場合に0.95以上の再生度合に延命/再生化が可能であった。ただし、クリープひずみ量2.5%超の試料(クリープ損傷度合0.7超の試料)は、溶体化熱処理の保持時間を短くしても、クリープ寿命の延命/再生化は困難であった。
【0040】
再生度合0.95以上の試料の微細組織を観察したところ、いずれの試料もγ相再結晶粒が発生していないことを確認した。また、再生度合0.95以上の試料に対して、EBSD法によりγ相結晶粒のGROD値を測定したところ、いずれの試料も0.4〜0.6°の範囲に収まることが確認され、γ相結晶粒の内部ひずみが部分緩和していると考えられた。
【0041】
なお、溶体化熱処理により再結晶粒が発生した試料に対して、γ相結晶粒のGROD値を測定したところ、GROD値が0.2〜0.4°であった。これは、内部ひずみが完全緩和したγ相結晶粒が存在していることを示唆する。
【0042】
表3〜表4のような結果が得られるメカニズムは、現段階で未解明であるが、例えば、次のようなモデルが考えられる。
【0043】
クリープひずみは、結晶粒の内部ひずみとして蓄積されると言える。結晶粒の内部ひずみは、溶体化熱処理の際に緩和しようとする(言い換えると、結晶粒の内部ひずみを駆動力として再結晶を生じさせようとする)。ただし、ここでの再結晶の発生は、均質核生成の一種と考えられることから、不均質核生成よりもポテンシャル障壁が高く大きな駆動力が必要(すなわち、核生成頻度が低い)と考えられる。
【0044】
表3〜表4の結果を見ると、クリープひずみ量が大きな試料ほど、再結晶粒が発生し易くかつ短時間の熱処理で発生しており、当該モデルでおおよそ説明できる。また、一方向凝固材や単結晶凝固材においては、新たな結晶粒界の生成につながる再結晶粒の発生はクリープ特性の観点で好ましくないため、再結晶粒が発生した試料の再生クリープ寿命が短かったものと考えられる。
【0045】
一連の実験により、クリープ損傷したNi基合金部材を再生化するためには、クリープ損傷部材のγ’相を固溶させる溶体化熱処理において、γ相再結晶粒が生じないようにしながらγ相結晶粒の内部ひずみを部分緩和する溶体化・非再結晶熱処理を行うことが肝要であるという重要な技術的知見が得られた。γ相結晶粒の内部ひずみを緩和する観点からは、再結晶粒が生じない範囲でできるだけ長い時間の熱処理が好ましいと考えられる。
【0046】
また、表4の結果から、0.5以上のクリープ損傷度合が予想されるがクリープひずみ量を直接的に計測することが困難な合金部材(例えば、複雑形状を有する部材、部位によってクリープひずみ量が異なるような部材)であっても、クリープ損傷部材への溶体化熱処理におけるγ相再結晶粒が発生し始める保持時間から、0.5以上のクリープ損傷度合を従来技術よりも明確に判定できることが判った。これは、クリープ損傷度合を評価する技術/手法として利用できる。
【0047】
[実験4]
(合金2〜3を用いた合金部材での再現性確認実験)
下記の表5に示す名目化学組成を有する合金2〜3を用いて合金部材2〜3を作製し、再生化のための溶体化熱処理温度を1250℃としたこと以外は、前述の実験2〜3と同様の実験を行った。その結果、先と同様の実験結果が得られることが確認された。すなわち、クリープ損傷したNi基合金部材を再生化するためには、クリープ損傷部材のγ’相を固溶させる溶体化熱処理において、γ相再結晶粒が生じないようにしながらγ相結晶粒の内部ひずみを部分緩和する溶体化・非再結晶熱処理を行うことが肝要であると確認された。
【0048】
【表5】
【0049】
なお、上記の実験1〜4は一方向凝固材に対して行ったものであるが、本発明は、単結晶凝固材に対しても適用可能である。
【0050】
[再生部材の製造方法]
上記の実験1〜4による知見を踏まえ、本発明に係るNi基合金再生部材の製造方法について説明する。
【0051】
図1は、本発明に係るNi基合金再生部材の製造方法の工程例を示すフロー図である。
図1に示したように、まず、タービンで所定時間使用したNi基合金の使用済部材に対して、本発明で修復困難な傷(例えば、クラック、チッピング)の有無を外観検査する前準備工程(ステップ1:S1)を行う。本発明においては、そのような傷が確認された場合、次工程以降の対象から外すものとする。なお、使用済部材が熱遮蔽コーティング(TBC)を施されている場合、該TBCを除去する作業も前準備工程に含めるものとする。本工程は、必須の工程ではないが、行うことが好ましい。
【0052】
次に、前準備工程S1を経た使用済部材に対して、γ’相の固溶温度より10℃高い温度以上かつγ相の融点より10℃低い温度以下の温度で、γ相の再結晶粒が生じない時間範囲の保持時間の溶体化・非再結晶熱処理を施す溶体化・非再結晶熱処理工程(ステップ2:S2)を行う。前述したように、本発明は、この溶体化・非再結晶熱処理工程S2に最大の特徴がある。
【0053】
溶体化・非再結晶熱処理をγ’相の固溶温度より10℃高い温度以上とする理由は、γ’相をγ相中に完全に固溶させるためである。また、該熱処理をγ相の融点より10℃低い温度以下とする理由は、熱処理中に使用済部材の望まない変形を防ぐためである。γ相再結晶粒の発生を抑制する観点からは、熱処理の上限温度はγ相の融点より20℃低い温度以下がより好ましい。当該温度の保持時間をγ相の再結晶粒が生じない時間範囲とする理由は、前述の実験3で説明したとおりである。
【0054】
ここで、γ相の再結晶粒が生じない保持時間を見出す方法について簡単に説明する。例えば、タービン用Ni基合金部材がタービン翼である場合、定期点検時に複数個の使用済部材が生じ、各使用済部材はほぼ同じクリープ損傷を受けていると考えられる。
【0055】
そのような場合、複数個の使用済部材うちの一つから、溶体化・非再結晶熱処理の試験用試料を複数個採取する。それら複数個の試料を用いて、保持時間をパラメータとした溶体化・非再結晶熱処理の試験を行い、微細組織観察を行うことによって適切な保持時間を見出せばよい。
【0056】
また、溶体化・非再結晶熱処理の試験を行った試料に対して、EBSD法によりγ相結晶粒のGROD値を測定することは好ましい。GROD値を測定することにより、γ相結晶粒の内部ひずみが部分緩和していることを確認することができ、再生部材の品質を事前チェックすることができる。なお、GROD値の測定(γ相結晶粒の内部ひずみが部分緩和していることの確認)は、後述の時効熱処理工程の後でもよい。
【0057】
溶体化・非再結晶熱処理における適切な保持時間が決まったら、その他の使用済部材に対して溶体化・非再結晶熱処理工程を行う。
【0058】
次に、溶体化・非再結晶熱処理工程S2を経た使用済部材に対して、γ相中にγ’相を析出させる時効熱処理を施す時効熱処理工程(ステップ3:S3)を行う。該時効熱処理としては、合金部材の新品材を製造したときの時効熱処理を好ましく利用できる。
【0059】
次に、時効熱処理工程S3を経た使用済部材に対して、再生部材として完成させるための仕上げ作業や外観検査を行う仕上げ・検査工程(ステップ4:S4)を行う。本工程は、必須の工程ではないが、行うことが好ましい。仕上げ作業は、必要に応じて部材の形状矯正やTBCの施工を含むものとする。
【0060】
以上の工程により、Ni基合金再生部材を得ることができる。
【0061】
[Ni基合金再生部材]
図2は、本発明に係るNi基合金再生部材の一例としてのタービン動翼を示す斜視模式図である。
図2に示したように、タービン動翼100は、概略的に、翼部110とシャンク部120とルート部(ダブティル部とも言う)130とから構成される。シャンク部120は、プラットホーム121とラジアルフィン122とを備えている。タービンがガスタービンである場合、タービン動翼100の大きさ(図中縦方向の長さ)は、通常5〜50 cm程度である。
【0062】
上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、実施形態の構成の一部を当業者の技術常識の構成で置き換えることが可能であり、また、実施形態の構成に当業者の技術常識の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。