(58)【調査した分野】(Int.Cl.,DB名)
測定対象光の受光量に応じた検出信号を出力する光電変換部を備え、前記測定対象光についての予め規定された光学的パラメータを前記検出信号の信号レベルに基づいて測定可能に構成された光パワーメータであって、
前記測定対象光の通過が可能な入射孔が設けられて当該光パワーメータへの当該測定対象光の入射許容範囲を規定する入射許容範囲規定部と、前記入射孔を通過した前記測定対象光が透過可能に前記入射許容範囲規定部に隣接配置されて当該測定対象光を拡散させる透過拡散板と、筒状に形成されて一端部側に前記入射許容範囲規定部および前記透過拡散板が配設されると共に当該透過拡散板を透過した前記測定対象光を内面において拡散反射させる拡散反射部とを備えて、当該拡散反射部において拡散された前記測定対象光の一部が前記光電変換部によって受光されるように構成され、
前記透過拡散板は、前記入射許容範囲規定部側の一面に凹部が形成されて前記入射孔を通過して当該凹部の底面において反射される前記測定対象光の一部が当該凹部の内側面から当該透過拡散板に入射可能に構成されると共に、前記凹部の周囲の厚みよりも薄い薄厚部が外縁部に設けられている光パワーメータ。
有底円筒状のケーシングを備え、当該ケーシングにおける底板が前記入射許容範囲規定部として機能するように前記入射孔が当該底板に形成されると共に、前記ケーシングの内径よりも小径の円板状に形成された前記透過拡散板、および当該ケーシングの内径よりも小径の円筒状に形成された前記拡散反射部が当該ケーシング内に収容されて当該ケーシングと一体化されている請求項1または2記載の光パワーメータ。
測定対象光の受光量に応じた検出信号を出力する光電変換部を備え、前記測定対象光についての予め規定された光学的パラメータを前記検出信号の信号レベルに基づいて測定可能に構成され、
前記測定対象光の通過が可能な入射孔が設けられて当該光パワーメータへの当該測定対象光の入射許容範囲を規定する入射許容範囲規定部と、前記入射孔を通過した前記測定対象光が透過可能に前記入射許容範囲規定部に隣接配置されて当該測定対象光を拡散させる透過拡散板と、筒状に形成されて一端部側に前記入射許容範囲規定部および前記透過拡散板が配設されると共に当該透過拡散板を透過した前記測定対象光を内面において拡散反射させる拡散反射部とを備えて、当該拡散反射部において拡散された前記測定対象光の一部が前記光電変換部によって受光されるように構成され、
前記透過拡散板は、前記入射許容範囲規定部側の一面に凹部が形成されて前記入射孔を通過して当該凹部の底面において反射される前記測定対象光の一部が当該凹部の内側面から当該透過拡散板に入射可能に構成されている光パワーメータであって、
有底円筒状のケーシングを備え、当該ケーシングにおける底板が前記入射許容範囲規定部として機能するように前記入射孔が当該底板に形成されると共に、前記ケーシングの内径よりも小径の円板状に形成された前記透過拡散板、および当該ケーシングの内径よりも小径の円筒状に形成された前記拡散反射部が当該ケーシング内に収容されて当該ケーシングと一体化されている光パワーメータ。
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところが、従来の光パワー測定器には、以下の解決すべき課題が存在する。すなわち、従来の光パワー測定器では、アパーチャを通過して透過拡散板において拡散された測定対象光の一部が筐体内の光電変換部に入射する構成が採用されている。この場合、従来の光パワー測定器では、レーザー光のような拡散性が低い光(光源から非放射状に出力された光)を測定対象光としたときに、透過拡散板を透過させるだけでは測定対象光を十分に拡散させることができず、アパーチャ(入射孔)への測定対象光の入射位置によっては、入射させた測定対象光を光電変換部によって好適に受光することが困難な状態となる。このため、従来の光パワー測定器では、アパーチャ(入射孔)への測定対象光の入射位置によって光電変換部による受光量が変動してしまうこと(以下、この測定対象光の入射位置による受光量の変動について「入射位置依存性」ともいう)がある。
【0006】
そこで、出願人は、上記の光パワー測定器を改良して、透過拡散板を透過させることで拡散させた測定対象光を拡散反射させる(乱反射させる)拡散反射部を透過拡散板に並設した光パワーメータを試作した。具体的には、
図6に示すように、出願人が試作した光パワーメータは、筒体の内面31axに拡散反射コーティング剤を塗布した拡散反射部31xを有する受光センサ2xを備えている。以下、出願人が試作した光パワーメータの構成要素については、符号の末尾に「x」を付して説明する。
【0007】
この受光センサ2xでは、拡散反射部31xの一端側(同図における左端側)にアパーチャ11xおよび透過拡散板21xが配設されると共に、拡散反射部31xの他端側(同図における右側において図示を省略している部位)に光電変換部が配設され、アパーチャ11xの入射孔11axを通過して透過拡散板21xに入射した測定対象光Lが透過拡散板21xにおいて拡散されると共に、透過拡散板21xにおいて拡散させられた測定対象光Lが拡散反射部31xの内面31axにおいて拡散反射され、その一部が光電変換部に入射する。したがって、出願人が試作した光パワーメータ(受光センサ2x)では、透過拡散板だけで測定対象光を拡散させる従来の光パワー測定器と比較して、透過拡散板21xおよび拡散反射部31xの双方において測定対象光Lが拡散されることで上記の入射位置依存性が軽減されている。
【0008】
一方、この種の測定器では、その保管性や携行性を良好とするために十分に小形化されることが望まれている。このため、出願人が試作した光パワーメータにおいても、受光センサ2xを十分に小形化するのが好ましい。この場合、受光センサ2xを小形化するために拡散反射部31xの外径L3bxを小径化したときには、その内径L3axも小径化されることとなる。また、出願人は、拡散反射部31xの内径L3axを小径化した場合に、入射孔11axの中央部に測定対象光Lを入射させたときよりも入射孔11axの外縁部寄りに測定対象光Lを入射させたときの方が光電変換部への測定対象光Lの入射量が少なくなる傾向(従来の光パワー測定器の入射位置依存性とは異なる入射位置依存性)があるのを見出した。
【0009】
このような入射位置依存性は、内径L3axを小径化したことで拡散反射部31xの内面31axとアパーチャ11xの入射孔11axとの距離が短くなることに起因するものと推測される。具体的には、入射孔11axの外縁部寄りに入射して、透過拡散板21xにおいて拡散された測定対象光Lが拡散反射部31xの内面31axにおいて拡散反射されたときに、透過拡散板21x側に向かって反射された測定対象光Lの一部が透過拡散板21xを透して入射孔11axから受光センサ2xの外に出射され易くなることが要因と考えられる。したがって、拡散反射部31xの内径L3axを十分に大径化して内面31axを入射孔11axから十分に離間させることにより、このような入射位置依存性が小さくなることが確認された。
【0010】
しかしながら、出願人が試作した光パワーメータ(受光センサ2x)に生じる上記の入射位置依存性を軽減するために拡散反射部31xの内径L3axを大径化した場合、単に小形化が困難となるだけでなく、拡散反射部31xの製作コスト(筒体を生成する材料や拡散反射コーティング剤などの材料コスト)が高騰する結果、受光センサ2xの製作コストが高騰する。したがって、上記のような入射位置依存性を軽減するために拡散反射部31xの内径L3axを大径化した場合には、受光センサ2xの小形化が困難となるだけでなく、光パワーメータの製造コストが高騰するおそれがある。このため、この点を改善する必要がある。
【0011】
本発明は、かかる改善すべき課題に鑑みてなされたものであり、製造コストの低減および装置の小型化を図りつつ、装置への測定対象光の入射位置依存性を十分に軽減し得る光パワーメータを提供することを主目的とする。
【課題を解決するための手段】
【0012】
上記目的を達成すべく、請求項1記載の光パワーメータは、測定対象光の受光量に応じた検出信号を出力する光電変換部を備え、前記測定対象光についての予め規定された光学的パラメータを前記検出信号の信号レベルに基づいて測定可能に構成された光パワーメータであって、前記測定対象光の通過が可能な入射孔が設けられて当該光パワーメータへの当該測定対象光の入射許容範囲を規定する入射許容範囲規定部と、前記入射孔を通過した前記測定対象光が透過可能に前記入射許容範囲規定部に隣接配置されて当該測定対象光を拡散させる透過拡散板と、筒状に形成されて一端部側に前記入射許容範囲規定部および前記透過拡散板が配設されると共に当該透過拡散板を透過した前記測定対象光を内面において拡散反射させる拡散反射部とを備えて、当該拡散反射部において拡散された前記測定対象光の一部が前記光電変換部によって受光されるように構成され、前記透過拡散板は、前記入射許容範囲規定部側の一面に凹部が形成されて前記入射孔を通過して当該凹部の底面において反射される前記測定対象光の一部が当該凹部の内側面から当該透過拡散板に入射可能に構成されると共に、前記凹部の周囲の厚みよりも薄い薄厚部が外縁部に設けられている。
【0014】
また、請求項
2記載の光パワーメータは、請求項
1記載の光パワーメータにおいて、前記透過拡散板は、前記凹部の内径が前記入射孔の口径よりも大径となるように形成されている。
【0015】
さらに、請求項
3記載の光パワーメータは、請求項1
または2記載の光パワーメータにおいて、有底円筒状のケーシングを備え、当該ケーシングにおける底板が前記入射許容範囲規定部として機能するように前記入射孔が当該底板に形成されると共に、前記ケーシングの内径よりも小径の円板状に形成された前記透過拡散板、および当該ケーシングの内径よりも小径の円筒状に形成された前記拡散反射部が当該ケーシング内に収容されて当該ケーシングと一体化されている。
また、請求項4記載の光パワーメータは、測定対象光の受光量に応じた検出信号を出力する光電変換部を備え、前記測定対象光についての予め規定された光学的パラメータを前記検出信号の信号レベルに基づいて測定可能に構成され、前記測定対象光の通過が可能な入射孔が設けられて当該光パワーメータへの当該測定対象光の入射許容範囲を規定する入射許容範囲規定部と、前記入射孔を通過した前記測定対象光が透過可能に前記入射許容範囲規定部に隣接配置されて当該測定対象光を拡散させる透過拡散板と、筒状に形成されて一端部側に前記入射許容範囲規定部および前記透過拡散板が配設されると共に当該透過拡散板を透過した前記測定対象光を内面において拡散反射させる拡散反射部とを備えて、当該拡散反射部において拡散された前記測定対象光の一部が前記光電変換部によって受光されるように構成され、前記透過拡散板は、前記入射許容範囲規定部側の一面に凹部が形成されて前記入射孔を通過して当該凹部の底面において反射される前記測定対象光の一部が当該凹部の内側面から当該透過拡散板に入射可能に構成されている光パワーメータであって、有底円筒状のケーシングを備え、当該ケーシングにおける底板が前記入射許容範囲規定部として機能するように前記入射孔が当該底板に形成されると共に、前記ケーシングの内径よりも小径の円板状に形成された前記透過拡散板、および当該ケーシングの内径よりも小径の円筒状に形成された前記拡散反射部が当該ケーシング内に収容されて当該ケーシングと一体化されている。
【発明の効果】
【0016】
請求項1記載の光パワーメータでは、入射許容範囲規定部の入射孔を通過した測定対象光が透過可能に入射許容範囲規定部に隣接配置されて測定対象光を拡散させる透過拡散板における入射許容範囲規定部側の一面に凹部が形成されて、凹部の底面において反射される測定対象光の一部が凹部の内側面から透過拡散板に入射可能に構成されると共に、透過拡散板の外縁部に凹部の周囲の厚みよりも薄い薄厚部が設けられている。
【0017】
したがって、請求項1記載の光パワーメータによれば、出願人が試作した光パワーメータと同様にして、透過拡散板に加えて拡散反射部を備えた分だけ、入射孔から入射させた測定対象光を十分に拡散させることができ、これにより、入射孔に対する測定対象光の入射位置依存性を軽減することができるだけでなく、透過拡散板に設けた凹部の存在により、入射孔の外縁部寄りに測定対象光を入射させたときに拡散反射部内に進入した測定対象光の一部が拡散反射部の内面において反射されて入射孔から外部に出射されたとしても、入射孔を通過して凹部の底面において反射された測定対象光の一部が凹部の内側面から透過拡散板内に入射して拡散された後に拡散反射部内に入射するため、この測定対象光の分だけ、最終的に光電変換部に入射する測定対象光の量が増加する結果、入射孔に対する測定対象光の入射位置依存性を十分に軽減することができる。これにより、光パワーメータの性能を低下させることなく拡散反射部を小径化することができるため、光パワーメータを十分に小形化することができると共に、拡散反射部の製作コストを低減して光パワーメータの製造コストを十分に低減することができる。また、入射位置依存性を軽減するために凹部の深さや内径だけを変更して好適な光学的特性を有する透過拡散板を設計するのとは異なり、寸法の変化による影響が小さい外縁部に薄厚部を設けてその厚みを任意に変更することにより、透過拡散板の光学的特性を理想的な状態に容易に近付けることができる。
【0018】
請求項
4記載の光パワーメータでは、入射許容範囲規定部の入射孔を通過した測定対象光が透過可能に入射許容範囲規定部に隣接配置されて測定対象光を拡散させる透過拡散板における入射許容範囲規定部側の一面に凹部が形成されて、凹部の底面において反射される測定対象光の一部が凹部の内側面から透過拡散板に入射可能に構成されている。
【0019】
したがって、請求項
4記載の光パワーメータによれば、出願人が試作した光パワーメータと同様にして、透過拡散板に加えて拡散反射部を備えた分だけ、入射孔から入射させた測定対象光を十分に拡散させることができ、これにより、入射孔に対する測定対象光の入射位置依存性を軽減することができるだけでなく、透過拡散板に設けた凹部の存在により、入射孔の外縁部寄りに測定対象光を入射させたときに拡散反射部内に進入した測定対象光の一部が拡散反射部の内面において反射されて入射孔から外部に出射されたとしても、入射孔を通過して凹部の底面において反射された測定対象光の一部が凹部の内側面から透過拡散板内に入射して拡散された後に拡散反射部内に入射するため、この測定対象光の分だけ、最終的に光電変換部に入射する測定対象光の量が増加する結果、入射孔に対する測定対象光の入射位置依存性を十分に軽減することができる。これにより、光パワーメータの性能を低下させることなく拡散反射部を小径化することができるため、光パワーメータを十分に小形化することができると共に、拡散反射部の製作コストを低減して光パワーメータの製造コストを十分に低減することができる。
【0020】
請求項
2記載の光パワーメータによれば、凹部の内径が入射孔の口径よりも大径となるように透過拡散板を形成したことにより、入射孔の外縁部寄りに測定対象光を入射させたときに内側面から透過拡散板に入射する測定対象光の量が過剰に多くなる事態を回避して、入射孔に対する測定対象光の入射位置依存性を好適に軽減することができる。
【0021】
請求項
3,4記載の光パワーメータによれば、有底円筒状のケーシングにおける底板が入射許容範囲規定部として機能するように入射孔を底板に形成すると共に、円板状の透過拡散板、および円筒状の拡散反射部をケーシング内に収容してケーシングと一体化したことにより、透過拡散板および拡散反射部がケーシングによって覆われた状態となり、透過拡散板や拡散反射部に対して直接的に外力が加わる事態が回避される結果、光パワーメータの破損を好適に回避することができる。
【発明を実施するための形態】
【0023】
以下、光パワーメータの実施の形態について、添付図面を参照して説明する。
【0024】
図1に示す光パワーメータ1は、「光パワーメータ」の一例であって、受光センサ2、信号処理回路3、操作部4、表示部5、処理部6および記憶部7を備え、レーザー光などの測定対象光Lの放射量や測光量等(「測定対象光についての予め規定された光学的パラメータ」の一例)を測定可能に構成されている。また、
図2に示すように、受光センサ2は、ケーシング10、拡散光学系12および光電変換部13(
図1参照)を備えて構成されている。
【0025】
ケーシング10は、「ケーシング」の一例であって、有底円筒状に形成されている。この場合、本例の光パワーメータ1(受光センサ2)では、ケーシング10の底板10aが「入射許容範囲規定部」の一例であるアパーチャ11として機能するように、円形の入射孔11aが底板10aに形成されている。また、入射孔11aは、その口径L1が、測定対象光Lのビーム径よりも広径であって、かつ、後述するように拡散光学系12において測定対象光Lを十分に拡散させ得る入射範囲(受光センサ2が好適な光学的特性を発揮し得る測定対象光Lの入射位置の範囲)を外れた位置からの測定対象光Lの入射を規制する大きさに規定されている。
【0026】
拡散光学系12は、透過拡散板21および拡散反射部31を備えている。透過拡散板21は、「透過拡散板」の一例であって、上記の入射孔11aを通過した測定対象光Lが透過可能に乳白色の樹脂材料等で円板状に形成され、後述するように、拡散反射部31と共にケーシング10内に収容されることでアパーチャ11(ケーシング10の底板10a)に隣接配置される。
【0027】
この透過拡散板21は、ケーシング10の内径よりも小径に形成されると共に、アパーチャ11(ケーシング10の底板10a)に接する側の一面に深さD2の凹部22が形成され、
図4に示すように、入射孔11aを通過して凹部22の底面22aにおいて反射される測定対象光Lの一部が凹部22の内側面22bから透過拡散板21に入射するように構成されている。この凹部22は、
図2に示すように、その内径L2が入射孔11aの口径L1よりも大径となるように形成されている。これにより、本例の光パワーメータ1(受光センサ2)では、アパーチャ11における入射孔11aの口縁部が全周に亘って透過拡散板21の凹部22上に延出した状態となっている。なお、本例の透過拡散板21では、口縁部から底面22aまで内径L2が同径となるように凹部22が形成され、これにより、底面22aの延面と内側面22bの延面とが直角に交わるように構成されている。
【0028】
また、この透過拡散板21では、その外縁部に凹部22の周囲の厚みT1よりも薄い厚みT2(一例として、凹部22の深さD2と同じ厚み)で環状の薄厚部23が設けられている。なお、凹部22や薄厚部23の光学的機能については、後に詳細に説明するが、外縁部の厚みT2については、必要に応じて、凹部22の深さD2よりも薄くしたり、凹部22の深さD2よりも厚くしたりすることができる。
【0029】
拡散反射部31は、「拡散反射部」の一例であって、アパーチャ11の入射孔11aを通過して拡散光学系12を透過させられた(拡散光学系12において拡散された)測定対象光Lを内面31aにおいて拡散反射可能に構成されている。この拡散反射部31は、外径L3bがケーシング10の内径と同径で、かつ、内径L3aが入射孔11aの口径L1や凹部22の内径L2よりも大径の円筒状に形成されている。この場合、本例の光パワーメータ1(受光センサ2)では、上記の透過拡散板21および拡散反射部31がケーシング10内に収容されることでケーシング10と一体化され、これにより、アパーチャ11(底板10a)、透過拡散板21および拡散反射部31が、光源からの測定対象光Lの出射方向に沿って隣接配置された状態となっている。
【0030】
光電変換部13は、測定対象光Lの受光量に応じた検出信号を出力する。この場合、本例の光パワーメータ1(受光センサ2)では、一例として、拡散光学系12(透過拡散板21および拡散反射部31)において拡散された測定対象光Lの一部を受光可能に拡散反射部31における図示しない端部(
図2における右側の端部)に光電変換部13が配設されている。なお、実際の光パワーメータ1では、その用途に応じて、任意の波長範囲の測定対象光Lだけを透過させる光学フィルタ、波長毎の透過率が異なる光学フィルタ、および測定対象光Lの光路を変更する反射光学系や屈折光学系などの各種の光学部品が光電変換部13の手前に配設されるが、光パワーメータ1についての理解を容易とするために、これらについての図示および説明を省略する。
【0031】
信号処理回路3は、光電変換部13から出力される検出信号(電流信号)をI/V変換するI/V変換部やI/V変換部の出力信号(電圧信号)をA/D変換するA/D変換部を備え、光電変換部13による測定対象光Lの受光量に応じたデジタル信号を処理部6に出力する。操作部4は、測定処理の条件の設定操作や、測定処理の開始/停止を指示する各種の操作スイッチを備え、スイッチ操作に応じた操作信号を処理部6に出力する。表示部5は、処理部6の制御に従い、測定条件設定画面や測定結果表示画面など(いずれも図示せず)を表示する。
【0032】
処理部6は、光パワーメータ1を総括的に制御する。具体的には、処理部6は、操作部4の操作によって測定処理の開始を指示されたときに信号処理回路3を制御して光電変換部13からの検出信号の信号処理を開始させ、信号処理回路3から出力される検出信号(光電変換部13による測定対象光Lの受光量に応じて値が相違するデジタル信号)を記憶部7に記憶させる。また、処理部6は、記憶部7に記憶させた検出信号に基づき、測定対象光Lの放射量や測光量などを演算する。さらに、処理部6は、演算した結果を示す測定結果データを生成して記憶部7に記憶させると共に、その値を表示部5に表示させる。記憶部7は、処理部6の動作プログラム、信号処理回路3から出力された検出信号、および測定結果データなどを記憶する。
【0033】
この光パワーメータ1の製造に際しては、まず、ケーシング10および拡散光学系12(透過拡散板21および拡散反射部31)をそれぞれ製作して受光センサ2を組み立てる。具体的には、一例として、円柱状のアルミニウム塊を切削して底円筒状に加工すると共に、底板10aの中央部に口径L1の入射孔11aを形成する。これにより、底板10aがアパーチャ11として機能する状態となり、ケーシング10が完成する。
【0034】
また、透過拡散板21については、一例として、ケーシング10の内径と同径で厚みT1(
図2参照)の円板を切削加工することにより、一方の面の中央部に内径L2で深さD2の凹部22を形成すると共に、他方の面の外縁部を全周に亘って薄厚化して厚みT2の薄厚部23を形成する。なお、薄厚部23については、凹部22の形成面とは逆側の面を切削する上記の構成に代えて、凹部22の形成面における外縁部を切削して形成することもできる。また、この透過拡散板21については、円板を切削加工する上記の製作方法に変えて、凹部22および薄厚部23を成形可能な金型を使用して射出成形によって製作することもできる。
【0035】
さらに、拡散反射部31については、一例として、PTFE(ポリテトラルフルオロエチレン)の粉体を焼結した外径L3bの円柱状の樹脂焼結体を切削することにより、内径L3aの円筒体に加工する。この場合、上記のような樹脂焼結体が非常に高価であるため、その外径L3bを必要最低限の大きさとすることで拡散反射部31の製作コスト(材料コスト)を低減することができる。
【0036】
次いで、ケーシング10における底板10aとは逆側の端部から、透過拡散板21および拡散反射部31をこの順で挿入する。この際には、
図2に示すように、透過拡散板21における凹部22の形成面が底板10a(アパーチャ11)と対向するように透過拡散板21を挿入する。これにより、透過拡散板21における凹部22の周囲がケーシング10における底板10aの内面に接し、かつ、透過拡散板21における薄厚部23に拡散反射部31の一端部が接した状態となる。この場合、本例の光パワーメータ1(受光センサ2)では、透過拡散板21の外径が拡散反射部31の内径よりも大径となるように(一例として、透過拡散板21の外径が拡散反射部31の外径と同径となるように)形成されている。したがって、上記のようにケーシング10内に透過拡散板21および拡散反射部31を挿入することにより、ケーシング10の底板10a(アパーチャ11)および拡散反射部31の間に透過拡散板21が挟み込まれるようにして、これらが一体化される。
【0037】
続いて、一例として、ケーシング10における底板10aとは逆側の端部に光電変換部13を取り付ける。これにより、受光センサ2が完成する。この後、製作した受光センサ2を、信号処理回路3、操作部4、表示部5、処理部6および記憶部7などと共に本体部(図示せず)に組み付ける。なお、光電変換部13をケーシング10の他端部側に予め取り付けておく上記の製造方法に代えて、本体部における受光センサ2の配設部位に光電変換部13を予め取り付けておき、その光電変換部13に測定対象光Lが入射するように、ケーシング10および拡散光学系12を本体部に取り付ける方法を採用することもできる。以上により、光パワーメータ1が完成する
【0038】
この光パワーメータ1を使用して測定対象光Lの放射量や測光量等(以下、「被測定量」といもいう)を測定する際には、アパーチャ11の入射孔11aから受光センサ2に測定対象光Lを入射させる。この際には、入射孔11aを通過した測定対象光Lが透過拡散板21を透過させられる際に拡散され、かつ拡散反射部31の内面31aにおいて拡散反射される結果、入射孔11aを通過した測定対象光Lの一部が光電変換部13に対して確実に入射する。これにより、光電変換部13への測定対象光Lの入射量(光電変換部13による受光量)に応じた信号レベルの検出信号が光電変換部13から出力される。
【0039】
また、信号処理回路3が光電変換部13から出力される検出信号を信号処理し、処理部6が処理後の検出信号のデータを記憶部7に記憶させると共に、その値(検出信号の信号レベル)に基づき、被測定量を演算する。これにより、演算された(測定された)被測定量が表示部5に表示されて測定処理が完了する。
【0040】
この場合、
図3に示すように、上記の測定処理に際して入射孔11aの中央部に測定対象光Lを入射させたときに、入射孔11aを通過して矢印A1で示すように凹部22内に進入した測定対象光Lは、その一部が矢印A2a,A2bなどで示すように底面22aにおいて反射されて入射孔11aから受光センサ2の外に出射されるものの、凹部22内に進入した測定対象光Lの大半は、凹部22の底面22aから透過拡散板21内に入射して透過拡散板21内において拡散され、透過拡散板21におけるアパーチャ11とは逆側の面から拡散反射部31内に出射される。
【0041】
また、拡散反射部31内に出射された測定対象光L(透過拡散板21の透過時に拡散された測定対象光L)は、内面31aにおいて拡散反射される。これにより、この光パワーメータ1(受光センサ2)では、入射孔11aの中央部、およびその近傍における測定対象光Lの入射位置依存性が十分に軽減され、入射孔11aを通過した測定対象光Lのうちの一定量の測定対象光Lを図示しない光電変換部13に対して入射させることが可能となっている。
【0042】
一方、
図4に示すように、入射孔11aの外縁部寄りに測定対象光Lを入射させたときに、入射孔11aを通過して矢印B1で示すように凹部22内に進入した測定対象光Lの大半は、入射孔11aの中央部に測定対象光Lを入射させたときと同様にして、凹部22の底面22aから透過拡散板21内に入射して透過拡散板21内において拡散され、透過拡散板21におけるアパーチャ11とは逆側の面から拡散反射部31内に出射される。
【0043】
しかしながら、矢印B1で示すように凹部22内に進入した測定対象光Lの一部は、矢印B2a,B2bなどで示すように底面22aにおいて反射され、そのうちの矢印B2a等で示すように反射された測定対象光Lは、入射孔11aから受光センサ2の外に出射されるものの、矢印B2b等で示すように反射された測定対象光Lは、凹部22の内側面22bから透過拡散板21内に入射して透過拡散板21内において拡散され、凹部22の底面22aから入射した測定対象光Lと共に透過拡散板21におけるアパーチャ11とは逆側の面から拡散反射部31内に出射される。
【0044】
このため、入射孔11aの外縁部寄りに測定対象光Lを入射させたときには、入射孔11aの中央部に測定対象光Lを入射させたときのように底面22aにおいて反射された測定対象光Lのすべてが受光センサ2内に入射しない状態と比較して、底面22aにおいて反射された後に内側面22bから透過拡散板21内に入射する測定対象光Lの分だけ、透過拡散板21におけるアパーチャ11とは逆側の面から拡散反射部31内に出射される光量が増加する。
【0045】
この場合、本例の光パワーメータ1(受光センサ2)では、小形化および材料コストの低減を目的として拡散反射部31の内径L3aを十分に小径化している。したがって、透過拡散板21の凹部22における上記のような測定対象光Lの反射や入射を考慮しなければ、この光パワーメータ1(受光センサ2)においても、出願人が試作した従来の光パワーメータ(受光センサ2x)と同様にして、拡散反射部31の内面31aと入射孔11aとの距離が短いことに起因して入射孔11aの外縁部寄りに測定対象光Lを入射させたときに光電変換部13への測定対象光Lの入射量が少なくなる入射位置依存性が生じることとなる。
【0046】
しかしながら、本例の光パワーメータ1(受光センサ2)では、前述したように、入射孔11aの外縁部寄りに測定対象光Lを入射させたときに、透過拡散板21における凹部22の底面22aにおいて反射された測定対象光Lの一部が内側面22bから透過拡散板21内に入射し、この測定対象光Lの分だけ、透過拡散板21から拡散反射部31内に進入する測定対象光Lの光量が増加する。このため、拡散反射部31の内面31aにおいて拡散反射された測定対象光Lの一部が透過拡散板21を透過して入射孔11aから受光センサ2の外部に出射されたとしても、入射孔11aの中央部に測定対象光Lを入射させたときと同程度の十分な量の測定対象光Lを光電変換部13に入射させることが可能となっている。これにより、本例の光パワーメータ1(受光センサ2)では、入射孔11aに対する測定対象光Lの入射位置依存性が十分に軽減されている。
【0047】
この場合、入射孔11aの外縁部寄りに測定対象光Lを入射させた際に凹部22の底面22aにおいて反射されて内側面22bから透過拡散板21内に入射する測定対象光Lの量は、内側面22bの高さ、すなわち凹部22の深さD2に応じて変化する。具体的には、凹部22の深さD2が深いとき(内側面22bが高いとき)には、底面22aにおいて反射された測定対象光Lが内側面22bから透過拡散板21内に入射し易くなるため、底面22aにおいて反射される測定対象光Lに占める内側面22bからの入射量が増加する。また、凹部22の深さD2が浅いとき(内側面22bが低いとき)には、底面22aにおいて反射された測定対象光Lが内側面22bから透過拡散板21内に入射し難くなるため、底面22aにおいて反射される測定対象光Lに占める内側面22bからの入射量が減少する。
【0048】
また、入射孔11aの外縁部寄りに測定対象光Lを入射させた際に凹部22の底面22aにおいて反射されて内側面22bから透過拡散板21内に入射する測定対象光Lの量は、上記の内側面22bの高さだけでなく、底面22aへの測定対象光Lの入射位置と内側面22bとの間の距離、すなわち、入射孔11aの口径L1と凹部22の内径L2との差の大きさにも応じて変化する。
【0049】
具体的には、凹部22の内径L2と入射孔11aの口径L1との差が小さいときには、底面22aへの測定対象光Lの入射位置と内側面22bとの間の距離が短くなることで底面22aにおいて反射された測定対象光Lが内側面22bから透過拡散板21内に入射し易くなるため、底面22aにおいて反射される測定対象光Lに占める内側面22bからの入射量が増加する。また、凹部22の内径L2と入射孔11aの口径L1との差が大きいときには、底面22aへの測定対象光Lの入射位置と内側面22bとの間の距離が長くなることで底面22aにおいて反射された測定対象光Lが内側面22bから透過拡散板21内に入射し難くなるため、底面22aにおいて反射される測定対象光Lに占める内側面22bからの入射量が減少する。
【0050】
このように、透過拡散板21に形成する凹部22の深さD2や内径L2は、入射孔11aの外縁部寄りに測定対象光Lを入射させた際に内側面22bから透過拡散板21内に入射する測定対象光Lの光量に対して大きく影響することが理解できる。このため、光パワーメータ1(受光センサ2)の設計時には、入射孔11aに対する測定対象光Lの入射位置依存性を十分に軽減できるように、凹部22の深さD2や内径L2の値を最適化する必要がある。
【0051】
しかしながら、凹部22の深さD2や内径L2については、その寸法を僅かに変更しただけでも、内側面22bからの測定対象光Lの入射量が大きく変化する。また、凹部22の深さD2や内径L2については、内側面22bからの測定対象光Lの入射量だけでなく、透過拡散板21内における測定対象光Lの拡散性に対しても大きく影響するため、内側面22bからの入射量だけを考慮してその寸法を規定することは困難である。
【0052】
したがって、本例の光パワーメータ1(受光センサ2)では、その設計段階において、一例として、まず、入射孔11aの外縁部寄りに測定対象光Lを入射させたときの内側面22bからの測定対象光Lの入射量が理想的な入射量(入射孔11aに対する測定対象光Lの入射位置依存性が実質的に「0」となるような入射量)に満たない状態とはならないことを条件として、透過拡散板21に求められる本来的な光学的特性(透過拡散性)を考慮して凹部22の深さD2や内径L2を規定する。次いで、上記のように深さD2や内径L2を規定することにより、入射孔11aの外縁部寄りに測定対象光Lを入射させたときの内側面22bからの測定対象光Lの入射量が理想的な入射量とは相違する入射量となったときに、理想的な入射量との差を考慮して、透過拡散板21の外縁部に形成する薄厚部23の厚みT2を最適化する。
【0053】
この場合、透過拡散板21におけるいずれかの部位の厚みを薄厚化することで、その薄厚化した部位における測定対象光Lの拡散性が薄厚化していない状態から変化するため、どの部位をどの程度薄厚化するかを適宜変更することにより、入射孔11aの外縁部寄りに測定対象光Lを入射させたときの内側面22bからの測定対象光Lの入射量を理想的な状態とすることができる。
【0054】
また、透過拡散板21における中央部寄り(入射孔11aに近い部位)よりも、透過拡散板21における外縁部寄り(入射孔11aから遠い部位)を薄厚化したときの方が、薄厚化による拡散性への影響が小さくなることが確認されている。つまり、薄厚部23の厚みT2については、凹部22の深さD2や内径L2よりも入射位置依存性に対する影響が小さく、また、入射孔11aから十分に離れている外縁部を薄厚部23にすることで、透過拡散板21に求められている本来的な光学的特定に対する影響も十分に小さくなっている。このため、厚みT2については、上記の深さD2や内径L2よりも容易にその寸法を変更することが可能となっている。これにより、凹部22の深さD2や内径L2だけを変更して透過拡散板21に求められる光学的機能(測定対象光Lの拡散)を妨げることなく入射位置依存性を低減するのと比較して、所望の光学的機能を有し、かつ入射位置依存性を十分に低減し得る透過拡散板21を容易に設計することが可能となっている。
【0055】
一方、この種の測定器では、携行時や使用時に測定器に対して衝撃や振動が加えられることがある。この場合、樹脂焼結体で構成された拡散反射部31は、一般的な樹脂材料によって射出成形した筒状体と比較して、その物理的強度がやや低くなっている。したがって、上記のような振動や衝撃が拡散反射部31に対して直接的に加えられたときには、拡散反射部31に変形や破損が生じるおそれがある。しかしながら、本例の光パワーメータ1(受光センサ2)では、透過拡散板21と共に拡散反射部31がケーシング10内に収容されてケーシング10と一体化されているため、この拡散反射部31に対して衝撃や振動が直接的に加えられる事態が好適に回避されている。
【0056】
このように、この光パワーメータ1では、アパーチャ11の入射孔11aを通過した測定対象光Lが透過可能にアパーチャ11に隣接配置されて測定対象光Lを拡散させる透過拡散板21におけるアパーチャ11側の一面に凹部22が形成されて、凹部22の底面22aにおいて反射される測定対象光Lの一部が凹部22の内側面22bから透過拡散板21に入射可能に構成されると共に、透過拡散板21の外縁部に凹部22の周囲の厚みT1よりも薄い厚みT2の薄厚部23が設けられている。
【0057】
したがって、この光パワーメータ1によれば、出願人が試作した光パワーメータと同様にして、透過拡散板21に加えて拡散反射部31を備えた分だけ、入射孔11aから入射させた測定対象光Lを十分に拡散させることができ、これにより、入射孔11aに対する測定対象光Lの入射位置依存性を軽減することができるだけでなく、透過拡散板21に設けた凹部22の存在により、入射孔11aの外縁部寄りに測定対象光Lを入射させたときに拡散反射部31内に進入した測定対象光Lの一部が拡散反射部31の内面31aにおいて反射されて入射孔11aから外部に出射されたとしても、入射孔11aを通過して凹部22の底面22aにおいて反射された測定対象光Lの一部が凹部22の内側面22bから透過拡散板21内に入射して拡散された後に拡散反射部31内に入射するため、この測定対象光Lの分だけ、最終的に光電変換部13に入射する測定対象光Lの量が増加する結果、入射孔11aに対する測定対象光Lの入射位置依存性を十分に軽減することができる。これにより、光パワーメータ1の性能を低下させることなく拡散反射部31を小径化することができるため、光パワーメータ1を十分に小形化することができると共に、拡散反射部31の製作コストを低減して光パワーメータ1の製造コストを十分に低減することができる。また、入射位置依存性を軽減するために凹部22の深さD2や内径L2だけを変更して好適な光学的特性を有する透過拡散板21を設計するのとは異なり、寸法の変化による影響が小さい外縁部に薄厚部23を設けてその厚みT2を任意に変更することにより、透過拡散板21の光学的特性を理想的な状態に容易に近付けることができる。
【0058】
また、この光パワーメータ1によれば、凹部22の内径L2が入射孔11aの口径L1よりも大径となるように透過拡散板21を形成したことにより、入射孔11aの外縁部寄りに測定対象光Lを入射させたときに内側面22bから透過拡散板21に入射する測定対象光Lの量が過剰に多くなる事態を回避して、入射孔11aに対する測定対象光Lの入射位置依存性を好適に軽減することができる。
【0059】
さらに、この光パワーメータ1によれば、有底円筒状のケーシング10における底板10aが「入射許容範囲規定部(アパーチャ11)として機能するように入射孔11aを底板10aに形成すると共に、円板状の透過拡散板21、および円筒状の拡散反射部31をケーシング10内に収容してケーシング10と一体化したことにより、透過拡散板21および拡散反射部31がケーシング10によって覆われた状態となり、透過拡散板21や拡散反射部31に対して直接的に外力が加わる事態が回避される結果、光パワーメータ1の破損を好適に回避することができる。
【0060】
なお、「光パワーメータ」の構成は、上記の光パワーメータ1の構成に限定されない。例えば、外縁部に薄厚部23を設けた透過拡散板21を有する拡散光学系12を備えた受光センサ2の構成を例に挙げて説明したが、凹部22の深さD2や内径L2の最適化によって入射位置依存性が十分に軽減される状態となる場合には、
図5に示す受光センサ2Aのように、外縁部に「薄厚部」が存在しない透過拡散板21Aを有する拡散光学系12Aを備えて構成することもできる。
【0061】
なお、この受光センサ2A(拡散光学系12A)において前述した受光センサ2(拡散光学系12)の構成要素と同様の機能を有する構成要素については、同一の符号を付して重複する説明を省略する。また、この受光センサ2Aにおいて入射孔11aの外縁部寄りに測定対象光Lを入射させた際の凹部22の機能(内側面22bからの測定対象光Lの入射等)については、受光センサ2(拡散光学系12)に関する上記の説明事項と同様のため、重複する説明を省略する。
【0062】
このように、この受光センサ2Aを備えて構成された光パワーメータ1では、アパーチャ11の入射孔11aを通過した測定対象光Lが透過可能にアパーチャ11に隣接配置されて測定対象光Lを拡散させる透過拡散板21におけるアパーチャ11側の一面に凹部22が形成されて、凹部22の底面22aにおいて反射される測定対象光Lの一部が凹部22の内側面22bから透過拡散板21に入射可能に構成されている。
【0063】
したがって、この光パワーメータ1によれば、出願人が試作した光パワーメータと同様にして、透過拡散板21Aに加えて拡散反射部31を備えた分だけ、入射孔11aから入射させた測定対象光Lを十分に拡散させることができ、これにより、入射孔11aに対する測定対象光Lの入射位置依存性を軽減することができるだけでなく、透過拡散板21Aに設けた凹部22の存在により、入射孔11aの外縁部寄りに測定対象光Lを入射させたときに拡散反射部31内に進入した測定対象光Lの一部が拡散反射部31の内面31aにおいて反射されて入射孔11aから外部に出射されたとしても、入射孔11aを通過して凹部22の底面22aにおいて反射された測定対象光Lの一部が凹部22の内側面22bから透過拡散板21A内に入射して拡散された後に拡散反射部31内に入射するため、この測定対象光Lの分だけ、最終的に光電変換部13に入射する測定対象光Lの量が増加する結果、入射孔11aに対する測定対象光Lの入射位置依存性を十分に軽減することができる。これにより、光パワーメータ1の性能を低下させることなく拡散反射部31を小径化することができるため、光パワーメータ1を十分に小形化することができると共に、拡散反射部31の製作コストを低減して光パワーメータ1の製造コストを十分に低減することができる。
【0064】
また、樹脂焼結体を切削加工した円筒状の拡散反射部31を有する拡散光学系12,12Aを備えた受光センサ2,2Aの構成を例に挙げて説明したが、このような構成に代えて、出願人が試作した光パワーメータの受光センサ2xにおける拡散反射部31xのように、筒状体(円筒体)の内面に硫化バリュウム粉体含有塗料などの白色拡散反射コーティング剤を塗布することによって「拡散反射部」を構成することもできる(図示せず)。このような構成を採用した場合、「入射許容範囲規定部(アパーチャ)」については、板体の中央部に「入射孔」を形成したもので構成することもできる(図示せず)。
【0065】
さらに、凹部22の内径L2を入射孔11aの口径L1よりも大径とした透過拡散板21,21Aを備えた構成を例に挙げて説明したが、「凹部」の内径と「入射孔」の口径(内径)とを同径とすることもできる。また、底面22aの延面と内側面22bの延面とが直角に交わるように形成された凹部22を備えた透過拡散板21を例に挙げて説明したが、「底面」の延面と「内側面」の延面とが直角以外の任意の角度で交わるように「凹部」を形成することもできる。具体的には、口縁部側の内径よりも底面側の内径の方が大径となるように「凹部」を形成したり、口縁部側の内径よりも底面側の内径の方が小径となるように「凹部」を形成したりすることができる。