(58)【調査した分野】(Int.Cl.,DB名)
前記熱可塑性樹脂(a2)が、ポリオレフィン樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、脂肪族ポリアミド樹脂、半芳香族ポリアミド樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルサルフォン樹脂、ポリエーテル芳香族ケトン樹脂、ポリエーテルイミド樹脂および熱可塑性ポリイミド樹脂よりなる群から選ばれる少なくとも1種である、請求項1〜請求項3のいずれか一項に記載の複合積層体。
前記強化繊維(a1)の含有量が、前記A層に含まれる成分の全量100質量%中において0.5質量%〜30質量%である、請求項1〜請求項4のいずれか一項に記載の複合積層体。
前記球状粒子(a11)の含有量が、前記A層に含まれる成分の全量100質量%中において0.5質量%〜20質量%である、請求項1〜請求項5のいずれか一項に記載の複合積層体。
前記強化繊維(b1)が、炭素繊維、ガラス繊維およびアラミド繊維よりなる群から選ばれる少なくとも1種である、請求項1〜請求項7のいずれか一項に記載の複合積層体。
前記強化繊維(b1)の含有量が、前記B層に含まれる成分の全量100質量%中において10質量%〜80質量%である、請求項1〜請求項8のいずれか一項に記載の複合積層体。
前記熱可塑性樹脂(b2)が、ポリオレフィン樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、脂肪族ポリアミド樹脂、半芳香族ポリアミド樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルサルフォン樹脂、ポリエーテル芳香族ケトン樹脂、ポリエーテルイミド樹脂および熱可塑性ポリイミド樹脂よりなる群から選ばれる少なくとも1種である、請求項1〜請求項9のいずれか一項に記載の複合積層体。
【発明を実施するための形態】
【0025】
以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。
【0026】
本発明の複合積層体は、A層とB層とを備え、B層の片面上又は両面上に、直接的又は間接的にA層が設けられている。B層の片面上又は両面上に、直接A層が設けられていることが好ましい。もっとも、B層の片面上又は両面上に、他の層を介してA層が設けられていてもよい。この場合、他の層は、A層及びB層とは異なる層であればよい。
【0027】
A層は、平均繊維長が1μm〜300μmである強化繊維(a1)と、体積平均粒子径が0.01μm〜100μmである球状粒子(a11)と、熱可塑性樹脂(a2)とを含む。一方、B層は、平均繊維長が1mm以上である強化繊維(b1)と熱可塑性樹脂(b2)とを含む。
【0028】
より具体的に、
図1は、本発明の第1の実施形態に係る複合積層体を示す模式的断面図である。
図1に示すように、複合積層体1は、第1の層であるA層2と第2の層であるB層3とを備える。B層3は、互いに対向している第1の主面3a及び第2の主面3bを有する。B層3の第1の主面3a上に、A層2が設けられている。A層2は、強化繊維(a1)と球状粒子(a11)と熱可塑性樹脂(a2)とを含むフィルム(a3)により形成されている。また、B層3は、強化繊維(b1)と熱可塑性樹脂(b2)とを含むシート(b3)により形成されている。なお、フィルム(a3)及びシート(b3)は、一体化されている。具体的には、例えば、後述する製造方法で説明するように、シート(b3)の片面上又は両面上にフィルム(a3)を積層配置し、積層配置された積層物を加熱及び加圧することにより一体化されている。
【0029】
また、
図2は、本発明の第2の実施形態に係る複合積層体を示す模式的断面図である。
図2に示すように、複合積層体21では、B層3の第2の主面3b上にも、A層2が設けられている。その他の点は、第1の実施形態と同様である。
【0030】
第1の実施形態及び第2の実施形態で示すように、本発明の複合積層体では、B層の片面上にのみA層が設けられていてもよく、B層の両面上にA層が設けられていてもよい。
【0031】
本発明の複合積層体の各構成要素等について以下に説明する。
【0032】
<A層>
本発明の複合積層体を構成するA層は、平均繊維長が1μm〜300μmである強化繊維(a1)と、体積平均粒子径が0.01μm〜100μmである球状粒子(a11)と、熱可塑性樹脂(a2)とを含むフィルム(a3)により形成されている。A層が後述するB層の片面上又は両面上に存在する。A層が、本複合積層体の表層、裏層、又は表裏層に存在することで、成形時の離型性、複合積層体の表面平滑性及び機械的物性に優れ、さらに加工性及び塗装密着性にも優れる。
【0033】
A層の厚みは、B層の厚みより小さいことが好ましく、より好ましくは500μm未満であり、さらに好ましくは30μm〜450μmであり、特に好ましくは50μm〜300μmであり、最も好ましくは100μm〜200μmである。A層の厚みが厚くなりすぎると複合積層体中の強化繊維(b1)の含有量が低下し強度低下を招くおそれがある。一方、A層の厚みがB層の厚みより小さいことで、B層の機械的物性を最大限に生かし、より一層機械的物性に優れた複合積層体を得ることができる。なお、A層がB層の両面に存在する場合のA層の厚みとは、両面のA層の厚みの合計のことをいう。
【0034】
A層とB層との厚みの比(A層/B層)は、好ましくは0.01以上、より好ましくは0.05以上、好ましくは0.50以下、より好ましくは0.30以下である。
【0035】
(強化繊維(a1))
フィルム(a3)に使用する強化繊維(a1)は、繊維状粒子から構成される粉末であり、平均繊維長が1μm〜300μmであり、好ましくは1μm〜200μmであり、より好ましくは3μm〜100μmであり、さらに好ましくは5μm〜50μmである。
【0036】
強化繊維(a1)の平均アスペクト比は、好ましくは3〜200であり、より好ましくは3〜100であり、さらに好ましくは5〜50であり、特に好ましくは10〜40である。
【0037】
本発明で使用する強化繊維(a1)は、複合積層体の摺動特性の観点から、モース硬度が5以下であることが好ましく、例えば、チタン酸カリウム、ワラストナイト、ホウ酸アルミニウム、ホウ酸マグネシウム、ゾノトライト、酸化亜鉛、塩基性硫酸マグネシウム等が挙げられる。これらの機械的物性の観点から、強化繊維(a1)は、チタン酸カリウムおよびワラストナイトのうち少なくとも一方であることが好ましい。モース硬度とは、物質の硬さを表す指標であり、鉱物同士を擦り付けて傷ついたほうが硬度の小さい物質となる。
【0038】
チタン酸カリウムとしては、従来公知のものを広く使用でき、4チタン酸カリウム、6チタン酸カリウム、8チタン酸カリウム等が挙げられる。チタン酸カリウムの寸法は、上述の強化繊維(a1)の寸法の範囲であれば特に制限はないが、平均繊維径が好ましくは0.01μm〜1μm、より好ましくは0.05μm〜0.8μm、さらに好ましくは0.1μm〜0.7μm、平均繊維長が好ましくは1μm〜50μm、より好ましくは3μm〜30μm、さらに好ましくは10μm〜20μm、平均アスペクト比が好ましくは10以上、より好ましくは10〜100、さらに好ましくは15〜35である。本発明は市販品でも使用でき、例えば、大塚化学社製の「TISMO D」(平均繊維長15μm、平均繊維径0.5μm)、「TISMO N」(平均繊維長15μm、平均繊維径0.5μm)等を使用することができる。
【0039】
ワラストナイトは、メタ珪酸カルシウムからなる無機繊維である。ワラストナイトの寸法は上述の強化繊維の寸法の範囲であれば特に制限はないが、平均繊維径が好ましくは0.1μm〜15μm、より好ましくは1μm〜10μm、さらに好ましくは2μm〜7μm、平均繊維長が好ましくは3μm〜180μm、より好ましくは10μm〜100μm、さらに好ましくは20μm〜40μm、平均アスペクト比が好ましくは3以上、より好ましくは3〜30、さらに好ましくは5〜15である。本発明では市販品でも使用でき、例えば、大塚化学社製の「バイスタルW」(平均繊維長25μm、平均繊維径3μm)等を使用することができる。
【0040】
上述の平均繊維長及び平均繊維径は、走査型電子顕微鏡の観察により測定することができ、平均アスペクト比(平均繊維長/平均繊維径)は平均繊維長及び平均繊維径より算出することできる。例えば、走査型電子顕微鏡により、複数の強化繊維(a1)を撮影し、その観察像から強化繊維(a1)を任意に300個選択し、それらの繊維長および繊維径を測定し、繊維長の全てを積算して個数で除したものを平均繊維長、繊維径の全てを積算し個数で除したものを平均繊維径とすることができる。
【0041】
本発明において繊維状の粒子とは、粒子に外接する直方体のうち最小の体積をもつ直方体(外接直方体)の最も長い辺を長径L、次に長い辺を短径B、最も短い辺を厚さT(B>T)と定義したときに、L/BおよびL/Tがいずれも3以上の粒子のことをいい、長径Lが繊維長、短径Bが繊維径に相当する。非繊維状の粒子とは、L/Bが3より小さい粒子のことをいい、非繊維状の粒子のうちL/Bが3より小さく、L/Tが3以上の粒子を板状の粒子という。
【0042】
強化繊維(a1)は、熱可塑性樹脂(a2)との濡れ性を高め、得られる樹脂組成物の機械的物性等の物性をより一層向上させるために、本発明で使用する強化繊維(a1)の表面に表面処理剤からなる処理層が形成されていてもよい。
【0043】
表面処理剤としては、シランカップリング剤、チタンカップリング剤等が挙げられる。これらの中でもシランカップリング剤が好ましく、アミノ系シランカップリング剤、エポキシ系シランカップリング剤、アルキル系シランカップリング剤がより好ましい。上記表面処理剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
【0044】
アミノ系シランカップリング剤としては、例えば、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−エトキシシリル−N−(1,3−ジメチルブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシラン等を挙げることができる。
【0045】
エポキシ系シランカップリング剤としては、例えば、3−グリシジルオキシプロピル(ジメトキシ)メチルシラン、3−グリシジルオキシプロピルトリメトキシシラン、ジエトキシ(3−グリシジルオキシプロピル)メチルシラン、トリエトキシ(3−グリシジルオキシプロピル)シラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等を挙げることができる。
【0046】
アルキル系シランカップリング剤としては、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、n−プロピルトリメトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、n−ヘキシルトリメトキシシラン、n−ヘキシルトリエトキシシラン、シクロヘキシルメチルジメトキシシラン、n−オクチルトリエトキシシラン、n−デシルトリメトキシシラン等を挙げることができる。
【0047】
強化繊維(a1)の表面に表面処理剤からなる処理層を形成する方法としては、公知の表面処理方法を使用することができ、例えば、加水分解を促進する溶媒(例えば、水、アルコール又はこれらの混合溶媒)に表面処理剤を溶解して溶液として、その溶液を強化繊維(a1)に噴霧する湿式法、樹脂組成物に強化繊維(a1)と表面処理剤とを配合するインテグラルブレンド法等でなされる。
【0048】
表面処理剤を本発明で用いる強化繊維(a1)の表面へ処理する際の該表面処理剤の量は特に限定されないが、湿式法の場合、例えば、強化繊維(a1)100質量部に対して表面処理剤が0.1質量部〜20質量部となるように表面処理剤の溶液を噴霧すればよい。また、インテグラルブレンド法の場合は強化繊維(a1)100質量部に対して好ましくは表面処理剤が1質量部〜50質量部、より好ましくは10質量部〜40質量部となるように表面処理剤を樹脂組成物に配合すればよい。表面処理剤の量を上記範囲内にすることで、熱可塑性樹脂(a2)との密着性がより一層向上し、強化繊維(a1)の分散性をより一層向上するこができる。
【0049】
強化繊維(a1)の含有量は、フィルム(a3)に含有する成分の全量100質量%中において0.5質量%〜30質量%であることが好ましく、1質量%〜20質量%であることがより好ましく、5質量%〜15質量%であることが更に好ましい。
【0050】
強化繊維(a1)を0.5質量%以上とすることで、成形時の離型性、複合積層体の表面平滑性、機械的物性および加工性をより一層向上することができ、30質量%以下とすることで後述するフィルムの製膜性がより一層向上する。
【0051】
(球状粒子(a11))
フィルム(a3)に使用する球状粒子(a11)は、シリカ、ガラスビーズ、ガラスバルーン、アルミナ、炭酸カルシウム、炭酸マグネシウム等が挙げられ、好ましくはシリカ、アルミナおよびガラスビーズよりなる群から選ばれる少なくとも1種である。
【0052】
本明細書において、「球状」とは、真球状のみならず、楕円状等の略球状、これらの表面に凹凸があるものなども含む。球状シリカのアスペクト比(長径と短径の比)は、例えば、2以下が好ましく、1.5以下がより好ましい。アスペクト比は、例えば、走査型電子顕微鏡(SEM)を用いて任意の50個の粒子の形状を観察し、これらの粒子のアスペクト比を平均した値として求めることができる。
【0053】
シリカとしては、狭義の二酸化ケイ素のみを示すものではなくケイ酸系充填材を意味し、従来の樹脂充填材として使用されるものの中から適宜選択して用いることができるが、非晶質シリカであることが好ましい。
【0054】
非晶質シリカとしては、例えば、乾式シリカ(無水シリカ)および湿式シリカ(含水ケイ酸)が挙げられる。乾式シリカは、例えば、四塩化ケイ素を酸素・水素炎中で燃焼させる燃焼法で得られる。湿式シリカは、例えば、珪酸ナトリウムを無機酸で中和する沈殿法もしくはゲル法、またはアルコキシシランを加水分解するゾルゲル法等で得られる。
【0055】
球状粒子(a11)の体積平均粒子径は、0.01μm〜100μmであり、好ましくは0.01μm〜10μmであり、より好ましくは0.05μm〜6μmであり、さらに好ましくは0.1μm〜4μmであり、特に好ましくは0.3μm〜2μmである。体積平均粒子径を上記範囲とすることで、複合積層体の機械的物性を低下させることなく、複合積層体の塗装密着性を向上させることができる。
【0056】
体積平均粒子径とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めたとき、体積50%に相当する点の粒子径のことであり、レーザー回折散乱法を用いた粒度分布測定装置等で測定することができる。
【0057】
球状粒子(a11)の比表面積(BET法)は、1m
2/g〜30m
2/gであることが好ましく、2m
2/g〜20m
2/gであることがより好ましく、3m
2/g〜10m
2/gであることが更に好ましい。
【0058】
比表面積(BET法)は、JIS Z8830に準拠して測定することができる。BET法とは、試料粉体粒子の表面上に占有面積のわかった窒素ガスを吸着させ、その吸着量から試料粉体粒子の比表面積を求める方法であり、この方法で求めた比表面積を「BET比表面積」という。
【0059】
球状粒子(a11)は、熱可塑性樹脂(a2)との濡れ性を高め、得られる樹脂組成物の機械的物性等の物性をより一層向上させるために、本発明で使用する球状粒子(a11)の表面に表面処理剤からなる処理層が形成されていてもよい。
【0060】
表面処理剤としては、シランカップリング剤、チタンカップリング剤等が挙げられる。これらの中でもシランカップリング剤が好ましく、アミノ系シランカップリング剤、エポキシ系シランカップリング剤、アルキル系シランカップリング剤がより好ましい。上記表面処理剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
【0061】
アミノ系シランカップリング剤としては、例えば、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−エトキシシリル−N−(1,3−ジメチルブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシラン等を挙げることができる。
【0062】
エポキシ系シランカップリング剤としては、例えば、3−グリシジルオキシプロピル(ジメトキシ)メチルシラン、3−グリシジルオキシプロピルトリメトキシシラン、ジエトキシ(3−グリシジルオキシプロピル)メチルシラン、トリエトキシ(3−グリシジルオキシプロピル)シラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等を挙げることができる。
【0063】
アルキル系シランカップリング剤としては、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、n−プロピルトリメトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、n−ヘキシルトリメトキシシラン、n−ヘキシルトリエトキシシラン、シクロヘキシルメチルジメトキシシラン、n−オクチルトリエトキシシラン、n−デシルトリメトキシシラン等を挙げることができる。
【0064】
球状粒子(a11)の表面に表面処理剤からなる処理層を形成する方法としては、公知の表面処理方法を使用することができ、例えば、加水分解を促進する溶媒(例えば、水、アルコール又はこれらの混合溶媒)に表面処理剤を溶解して溶液として、その溶液を球状粒子(a11)に噴霧する湿式法、樹脂組成物に球状粒子(a11)と表面処理剤とを配合するインテグラルブレンド法等でなされる。
【0065】
表面処理剤を本発明で用いる球状粒子(a11)の表面へ処理する際の該表面処理剤の量は特に限定されないが、湿式法の場合、例えば、球状粒子(a11)100質量部に対して表面処理剤が0.1質量部〜20質量部となるように表面処理剤の溶液を噴霧すればよい。また、インテグラルブレンド法の場合は球状粒子(a11)100質量部に対して好ましくは表面処理剤が1質量部〜50質量部、より好ましくは10質量部〜40質量部となるように表面処理剤を樹脂組成物に配合すればよい。表面処理剤の量を上記範囲内にすることで、熱可塑性樹脂(a2)との密着性がより一層向上し、球状粒子(a11)の分散性をより一層向上するこができる。
【0066】
球状粒子(a11)の含有量は、フィルム(a3)に含有する成分の全量100質量%中において0.5質量%〜20質量%であることが好ましく、1質量%〜15質量%であることがより好ましく、3質量%〜10質量%であることが更に好ましい。
【0067】
球状粒子(a11)を0.5質量%以上とすることで、複合積層体の機械的物性を低下させることなく、複合積層体の塗装密着性をより一層向上することができ、20質量%以下とすることで後述するフィルムの製膜性がより一層向上する。
【0068】
(熱可塑性樹脂(a2))
フィルム(a3)に使用する熱可塑性樹脂(a2)としては、フィルム化できる熱可塑性樹脂であれば特に限定されないが、例えば、ポリプロピレン(PP)樹脂、ポリエチレン(PE)樹脂、環状ポリオレフィン(COP)樹脂、環状オレフィン・コポリマー(COC)樹脂等のポリオレフィン樹脂;ポリスチレン(PS)樹脂、シンジオタクチックポリスチレン(SPS)樹脂、耐衝撃性ポリスチレン(HIPS)樹脂、アクリロニトリル−ブチレン−スチレン共重合体(ABS)樹脂、メタクリル酸メチル/スチレン共重合体(MS)、メタクリル酸メチル/スチレン/ブタジエン共重合体(MBS)、スチレン/ブタジエン共重合体(SBR)、スチレン/イソプレン共重合体(SIR)、スチレン/イソプレン/ブタジエン共重合体(SIBR)、スチレン/ブタジエン/スチレン共重合体(SBS)、スチレン/イソプレン/スチレン共重合体(SIS)、スチレン/エチレン/ブチレン/スチレン共重合体(SEBS)、スチレン/エチレン/プロピレン/スチレン共重合体(SEPS)等のポリスチレン系樹脂;ポリ乳酸(PLA)樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリシクロヘキセレンジメチレンテレフタレート(PCT)樹脂等のポリエステル系樹脂;ポリアセタール(POM)樹脂;ポリカーボネート(PC)樹脂;ポリアミド6樹脂、ポリアミド66樹脂、ポリアミド11樹脂、ポリアミド12樹脂、ポリアミド46樹脂、ポリアミド6C樹脂、ポリアミド9C樹脂、ポリアミド6樹脂とポリアミド66樹脂の共重合体(ポリアミド6/66樹脂)、ポリアミド6樹脂とポリアミド12樹脂の共重合体(ポリアミド6/12樹脂)等の脂肪族ポリアミド(PA)樹脂;ポリアミドMXD6樹脂、ポリアミドMXD10樹脂、ポリアミド6T樹脂、ポリアミド9T樹脂、ポリアミド10T樹脂等の芳香環を有する構造単位と有さない構造単位からなる半芳香族ポリアミド(PA)樹脂;ポリフェニレンサルファイド(PPS)樹脂;ポリエーテルサルフォン(PES)樹脂;液晶ポリエステル(LCP)樹脂;ポリエーテルケトン(PEK)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルケトンケトン(PEKK)樹脂、ポリエーテルエーテルケトンケトン(PEEKK)等のポリエーテル芳香族ケトン樹脂;ポリエーテルイミド(PEI)樹脂;ポリアミドイミド(PAI)樹脂;熱可塑性ポリイミド(TPI)樹脂;ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、エチレン/テトラフルオロエチレン共重合体(ETFE)等のフッ素系樹脂等を例示することができる。上記熱可塑性樹脂から選ばれる相溶性のある2種以上の熱可塑性樹脂同士の混合物、すなわちポリマーアロイ等も使用できる。
【0069】
これらのなかでも熱可塑性樹脂(a2)としては、ポリオレフィン樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、脂肪族ポリアミド(PA)樹脂、半芳香族ポリアミド(PA)樹脂、ポリフェニレンサルファイド(PPS)樹脂、ポリエーテルサルフォン(PES)樹脂、ポリエーテル芳香族ケトン樹脂、ポリエーテルイミド(PEI)樹脂および熱可塑性ポリイミド(TPI)樹脂よりなる群から選ばれる少なくとも1種であることが好ましい。
【0070】
熱可塑性樹脂(a2)は、B層との密着性をより一層高める観点から、後述する熱可塑性樹脂(b2)と同種であることが好ましい。例えば、熱可塑性樹脂(b2)が脂肪族ポリアミド(PA)である場合、熱可塑性樹脂(a2)は脂肪族ポリアミド(PA)樹脂または半芳香族ポリアミド(PA)であることが好ましい。
【0071】
熱可塑性樹脂(a2)の形状は、溶融混練が可能であれば特に制限はなく、例えば、粉末状、顆粒状、ペレット状のいずれも使用することができる。
【0072】
熱可塑性樹脂(a2)の含有量は、フィルム(a3)に含有する成分の全量100質量%中において50質量%〜99質量%であることが好ましく、65質量%〜98質量%であることがより好ましく、70質量%〜92質量%であることが更に好ましい。
【0073】
(その他添加剤)
フィルム(a3)は、その好ましい物性を損なわない範囲において、その他添加剤を含有することができる。その他添加剤としては、アラミド繊維、ポリフェニレンベンズオキサゾール(PBO)繊維、ガラス繊維、炭素繊維、アルミナ繊維、ボロン繊維、炭化ケイ素繊維、炭酸カルシウム、雲母、マイカ、セリサイト、イライト、タルク、カオリナイト、モンモリナイト、ベーマイト、スメクタイト、バーミキュライト、二酸化チタン、チタン酸カリウム、チタン酸リチウムカリウム、ベーマイト等の上述の強化繊維(a1)及び上述の球状粒子(a11)以外の充填材;ポリテトラフルオロエチレン(PTFE)、低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン等のポリオレフィン樹脂、グラファイト、二硫化モリブテン、二硫化タングステン、窒化ホウ素等の固体潤滑剤;銅化合物等の熱安定剤;ヒンダードフェノール系光安定剤等の光安定剤;核形成剤;アニオン性帯電防止剤、カチオン性帯電防止剤、非イオン系帯電防止剤等の帯電防止剤;老化防止剤(酸化防止剤);耐候剤;耐光剤;金属不活性剤;ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、サリシレート系紫外線吸収剤等の紫外線吸収剤;防菌・防黴剤;防臭剤;炭素系導電剤、金属系導電剤、金属酸化物系導電剤、界面活性剤等の導電性付与剤;分散剤;ポリエステル系可塑剤、グリセリン系可塑剤、多価カルボン酸エステル系可塑剤、リン酸エステル系可塑剤、ポリアルキレングリコール系可塑剤、エポキシ系可塑剤等の軟化剤(可塑剤);カーボンブラック、酸化チタン等の顔料、染料等の着色剤;ホスファゼン系化合物、リン酸エステル、縮合リン酸エステル、無機リン系難燃剤、ハロゲン系難燃剤、シリコーン系難燃剤、金属酸化物系難燃剤、金属水酸化物系難燃剤、有機金属塩系難燃剤、窒素系難燃剤、ホウ素化合物系難燃剤等の難燃剤;ドリッピング防止剤;制振剤;中和剤;ブロッキング防止剤;流動性改良剤;脂肪酸、脂肪酸金属塩等の離型剤;滑剤;耐衝撃性改良剤等が挙げられ、これらの1種又は2種以上を含有することができる。
【0074】
フィルム(a3)にその他添加剤を含む場合、その配合量は、本発明の好ましい物性を損なわない範囲であれば特に制限はなく、好ましくはフィルム(a3)に含有する成分の全量100質量%中において5質量%以下、より好ましくは1質量%以下である。
【0075】
(A層の製造方法)
本発明の複合積層体は後述する通り、A層を構成するフィルム(a3)と、B層を形成するシート(b3)を各々作製し、フィルム(a3)をシート(b3)の片面上又は両面上に積層配置して、得られた積層物を成形機により加熱及び加圧することでフィルム(a3)及びシート(b3)を一体化することにより得られる。
【0076】
A層を形成するフィルム(a3)の製造方法としては特に限定されず、例えば、Tダイキャスト法、カレンダー法、プレス法などの公知の溶融成膜方法を採用することができる。
【0077】
より具体的には、上記含有量になるように、強化繊維(a1)と、球状粒子(a11)と、熱可塑性樹脂(a2)と、必要に応じてその他添加剤とを、直接混合して溶融製膜する方法;上記含有量になるように、強化繊維(a1)と、球状粒子(a11)と、熱可塑性樹脂(a2)と、必要に応じてその他添加剤を、あらかじめ溶融混練して混合物のペレットを作製し、これを用いて溶融製膜する方法等を挙げることができる。
【0078】
フィルム(a3)は、延伸フィルム、未延伸フィルムのいずれでも使用可能であるが、延伸フィルムは、加熱溶融時の収縮で、皺やたるみが防止できて成形品の外観がより一層向上するため好ましい。延伸倍率は2倍〜15倍が好ましい。本発明において、延伸倍率は、フィルム製膜時のキャスティングロールが出てきたフィルム寸法を基準として、横方向の延伸倍率を縦方向の延伸倍率と掛け合わせた、面積倍率を延伸倍率とする。
【0079】
本発明の複合積層体を製造する前における、A層を形成するフィルム(a3)の厚みは、500μm未満であることが好ましく、30μm〜450μmであることがより好ましく、50μm〜300μmであることが更に好ましく、100μm〜200μmであることが最も好ましい。A層を形成するフィルム(a3)の厚みが500μm未満であれば、複合積層体の機械的物性を損なうことなく、スタンピング成形後の複合積層体表面の表面平滑性をより一層向上することができる。
【0080】
<B層>
本発明の複合積層体を構成するB層は、平均繊維長が1mm以上である強化繊維(b1)と熱可塑性樹脂(b2)とを含有するシート(b3)から形成される層であり、複合積層体のコア層である。強化繊維(b1)の平均繊維長を1mm以上とすることで、優れた機械的物性の複合積層体を得ることができる。
【0081】
B層の厚みは、目的とする部材の形状により任意に選択でき、機械的物性の観点から0.3mm〜15mmであることが好ましく、1mm〜10mmであることがより好ましく、1.5mm〜5mmであることがさらに好ましい。
【0082】
(強化繊維(b1))
シート(b3)に使用する強化繊維(b1)は、平均繊維長が1mm以上であれば特に限定されず、無機繊維、有機繊維、金属繊維、またはこれらの2種以上を組み合わせて使用できる。無機繊維としては、炭素繊維、黒鉛繊維、炭化珪素繊維、アルミナ繊維、タングステンカーバイド繊維、ボロン繊維、ガラス繊維などが挙げられる。有機繊維としては、アラミド繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、高密度ポリエチレン繊維、その他一般のポリアミド繊維、ポリエステルなどが挙げられる。金属繊維としては、ステンレス、鉄等の繊維が挙げられ、また金属を被覆した炭素繊維でもよい。これらのなかでも炭素繊維、ガラス繊維およびアラミド繊維よりなる群から選ばれる少なくとも1種であることが好ましい。最終成形物の強度等の機械的物性をより一層向上させる観点から、炭素繊維が更に好ましい。炭素繊維とは、アクリル繊維やピッチ(石油、石炭、コールタール等の副生成物)等を原料に高温で炭化して製造した繊維であり、JIS規格では有機繊維の前駆体を加熱炭化処理して得られる、質量比で90%以上が炭素で構成される繊維と定義されている。アクリル繊維を使った炭素繊維はPAN系炭素繊維、ピッチを使った炭素繊維はピッチ系炭素繊維と称されている。
【0083】
強化繊維(b1)は、繊維長が長すぎるとスタンピング成形時の流動性が低下する場合があり、繊維長が短すぎると強化繊維の抄造の製造が困難となる場合があり、成形性をより一層向上させる観点から、非連続繊維であることが好ましく、平均繊維長が1mm〜100mmであることがより好ましく、2mm〜50mmであることがさらに好ましい。強化繊維(b1)の平均繊維径は、1μm〜50μmであることが好ましく、5μm〜20μmであることがより好ましい。強化繊維(b1)は、上記平均繊維径であれば収束剤等で凝集した強化繊維の束となっていてもよい。
【0084】
強化繊維(b1)の含有量は、シート(b3)に含有する成分の全量100質量%中において10質量%〜80質量%であることが好ましく、20質量%〜70質量%であることがより好ましく、30質量%〜60質量%であることが更に好ましい。
【0085】
強化繊維(b1)を10質量%以上とすることで繊維によるより一層の補強効果が得られ、80質量%以下とすることで後述するシートの製造性がより一層向上する。
【0086】
(熱可塑性樹脂(b2))
シート(b3)に使用する熱可塑性樹脂(b2)としては、繊維化又はフィルム化できる熱可塑性樹脂であれば特に限定はないが、例えば、ポリプロピレン(PP)樹脂、ポリエチレン(PE)樹脂、環状ポリオレフィン(COP)樹脂、環状オレフィン・コポリマー(COC)樹脂等のポリオレフィン樹脂;ポリスチレン(PS)樹脂、シンジオタクチックポリスチレン(SPS)樹脂、耐衝撃性ポリスチレン(HIPS)樹脂、アクリロニトリル−ブチレン−スチレン共重合体(ABS)樹脂、メタクリル酸メチル/スチレン共重合体(MS)、メタクリル酸メチル/スチレン/ブタジエン共重合体(MBS)、スチレン/ブタジエン共重合体(SBR)、スチレン/イソプレン共重合体(SIR)、スチレン/イソプレン/ブタジエン共重合体(SIBR)、スチレン/ブタジエン/スチレン共重合体(SBS)、スチレン/イソプレン/スチレン共重合体(SIS)、スチレン/エチレン/ブチレン/スチレン共重合体(SEBS)、スチレン/エチレン/プロピレン/スチレン共重合体(SEPS)等のポリスチレン系樹脂;ポリ乳酸(PLA)樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリシクロヘキセレンジメチレンテレフタレート(PCT)樹脂等のポリエステル系樹脂;ポリアセタール(POM)樹脂;ポリカーボネート(PC)樹脂;ポリアミド6樹脂、ポリアミド66樹脂、ポリアミド11樹脂、ポリアミド12樹脂、ポリアミド46樹脂、ポリアミド6C樹脂、ポリアミド9C樹脂、ポリアミド6樹脂とポリアミド66樹脂の共重合体(ポリアミド6/66樹脂)、ポリアミド6樹脂とポリアミド12樹脂の共重合体(ポリアミド6/12樹脂)等の脂肪族ポリアミド(PA)樹脂;ポリアミドMXD6樹脂、ポリアミドMXD10樹脂、ポリアミド6T樹脂、ポリアミド9T樹脂、ポリアミド10T樹脂等の芳香環を有する構造単位と有さない構造単位からなる半芳香族ポリアミド(PA)樹脂;ポリフェニレンサルファイド(PPS)樹脂;ポリエーテルサルフォン(PES)樹脂;液晶ポリエステル(LCP)樹脂;ポリエーテルケトン(PEK)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルケトンケトン(PEKK)樹脂、ポリエーテルエーテルケトンケトン(PEEKK)等のポリエーテル芳香族ケトン樹脂;ポリエーテルイミド(PEI)樹脂;ポリアミドイミド(PAI)樹脂;熱可塑性ポリイミド(TPI)樹脂;ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、エチレン/テトラフルオロエチレン共重合体(ETFE)等のフッ素系樹脂等を例示することができる。上記熱可塑性樹脂から選ばれる相溶性のある2種以上の熱可塑性樹脂同士の混合物、すなわちポリマーアロイ等も使用できる。
【0087】
これらのなかでも熱可塑性樹脂(b2)としては、ポリオレフィン樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、脂肪族ポリアミド(PA)樹脂、半芳香族ポリアミド(PA)樹脂、ポリフェニレンサルファイド(PPS)樹脂、ポリエーテルサルフォン(PES)樹脂、ポリエーテル芳香族ケトン樹脂、ポリエーテルイミド(PEI)樹脂および熱可塑性ポリイミド(TPI)樹脂よりなる群から選ばれる少なくとも1種であることが好ましい。
【0088】
熱可塑性樹脂(b2)の形状は、溶融混練が可能であれば特に制限はなく、例えば、粉末状、顆粒状、ペレット状のいずれも使用することができる。
【0089】
熱可塑性樹脂(b2)の含有量は、シート(b3)に含有する成分の全量100質量%中において20質量%〜90質量%であることが好ましく、30質量%〜80質量%であることがより好ましく、40質量%〜70質量%であることが更に好ましい。
【0090】
シート(b3)の目付重量は、本発明の複合積層体の成形加工をスムーズに行うことを考慮して100g/m
2〜1500g/m
2が好ましい。
【0091】
(B層の製造方法)
本発明の複合積層体は、A層を形成するフィルム(a3)と、B層を形成するシート(b3)を各々作製し、フィルム(a3)をシート(b3)の片面上又は両面上に積層配置して、得られた積層物を成形機により加熱及び加圧することでフィルム(a3)及びシート(b3)を一体化することにより得られる。
【0092】
B層を形成するシート(b3)としては、上記含有量になるように、強化繊維(b1)に熱可塑性樹脂(b2)を含浸させた複数のプリプレグを積層し、得られた積層物を成形機により加熱及び加圧することで一体化することで得られる。また、強化繊維(b1)に熱可塑性樹脂(b2)を含浸させたプリプレグをそのまま用いることもできる。すなわち、強化繊維(b1)に熱可塑性樹脂(b2)を含浸させたプリプレグをそのままシート(b3)として用いてもよい。
【0093】
プリプレグの製造方法としては、フィルム、不織布、マット、織編物状等のシート状とした熱可塑性樹脂(b2)を2枚準備し、その2枚の間に、強化繊維(b1)をシート状に並べたシート、または強化繊維(b1)をカットして抄紙法により作製したシート(不織材料)を挟み込み、加熱及び加圧を行うことにより得る方法を挙げることができる。より具体的には、2枚の熱可塑性樹脂からなるシートを送り出す、2つのロールから2枚のシートを送り出すとともに、強化繊維のシートのロールから供給される強化繊維のシートを2枚の熱可塑性樹脂からなるシートの間に挟み込ませた後に、加熱及び加圧する。加熱及び加圧する手段としては、公知のものを用いることができ、2個以上の熱ロールを利用したり、予熱装置と熱ロールの対を複数使用したりするなどの多段階の工程を要するものであってもよい。ここで、シートを構成する熱可塑性樹脂は1種類である必要はなく、別の種類の熱可塑性樹脂からなるシートを、上記のような装置を用いてさらに積層させてもよい。
【0094】
プリプレグの他の製造方法としては、強化繊維(b1)の繊維束を開繊した強化繊維(b1)と繊維状とした熱可塑性樹脂(b2)を所望の質量比にて混綿してシート状にし、さらに積層して不織布を得た後、該不織布を加熱及び加圧を行うことにより得る方法を挙げることができる。混綿は市販のブレンダー機を用いることができる。シート化及び積層化についてはカーディング方式を用いることができ、市販のカード機を用いることができる。また、加熱及び加圧する手段としては、公知のものを用いることができる。不織布の製造に用いる繊維状の熱可塑性樹脂(b2)の平均繊維長は、混綿する強化繊維(b1)と同程度のものを用いることができ、繊度は2.2dtex〜22dtexが好ましい。繊度を2.2dtex〜22dtexとすることで強化繊維(b1)と繊維状とした熱可塑性樹脂(b2)の分散性が良くなり、より均一な不織布を形成しやすくなる。また、プリプレグを用いて成形体を得る際の厚み方向へのシートが膨張する現象をより一層抑制する観点で、プリプレグは混綿において一般的に用いられるニードルパンチ機による痕跡が5個/cm
2以下であることが好ましい。さらに、プリプレグの断面において、強化繊維(b1)の一部と他部が厚み方向に1mm以上変位しているものの本数が80本/cm
2以下であることが好ましい。
【0095】
上記加熱温度は、熱可塑性樹脂(b2)の種類にもよるが、通常、100℃〜400℃であることが好ましい。一方、加圧時の圧力は、通常0.1MPa〜10MPaであることが好ましい。この範囲であれば、プリプレグに含まれる強化繊維(b1)の間に、熱可塑性樹脂(b2)をより一層含浸させることができるので好ましい。
【0096】
強化繊維(b1)と熱可塑性樹脂(b2)を含むプリプレグにおいて、強化繊維(b1)が一方向に配向した連続繊維の場合、本発明の複合積層体に用いることができるプリプレグは、レーザーマーカー、カッティングプロッタや抜型等を利用して切込を入れることにより得ることが好ましい。切込により強化繊維(b1)が切断されるが、機械的物性と流動性の観点から、切断された強化繊維(b1)の長さとしては5mm〜100mmとすることが好ましく、10mm〜50mmとすることがより好ましい。
【0097】
上記のようにして得られたプリプレグを強化繊維(b1)の方向が疑似等方、または交互積層になるよう2枚以上積層して積層基材を作製してもよい。上記積層基材は、プリプレグを4層〜96層となるように積層することが好ましい。プリプレグの層数のより好ましい範囲は8層〜32層である。プリプレグの層数を8層以上とすることで強化繊維の方向を疑似等方的に積層することができ、32層以下とすることで積層工程の作業負荷をより一層低減することができるので好ましい。
【0098】
上記のようにして得られた積層基材を加熱及び加圧して一体化した積層基材を成形することで、シート(b3)を製造してもよい。このとき、積層基材とプレス機の金型の間にフィルム(a3)を配置させることで、シート(b3)の製造と同時に、本発明の複合積層体を製造することもできる。加熱工程の後に、冷却工程を実施することが好ましい。冷却を行なうことにより、熱可塑性樹脂が固化するのでシート(b3)の取り扱いがより一層容易となる。
【0099】
上記加熱においては、プリプレグに含まれる熱可塑性樹脂(b2)の種類にもよるが、100℃〜400℃で加熱することが好ましく、150℃〜350℃で加熱することがより好ましい。また、上記加熱に先立って、予備加熱を行ってもよい。予備加熱については、通常150℃〜400℃、好ましくは200℃〜380℃で加熱することが望ましい。
【0100】
上記加圧において積層基材にかける圧力としては、好ましくは0.1MPa〜10MPaであり、より好ましくは0.2MPa〜2MPaである。この圧力については、プレス力を積層基材の面積で除した値とする。
【0101】
上記加熱及び加圧する時間は、0.1分間〜30分間であることが好ましく、より好ましくは0.5分間〜20分間である。また、加熱及び加圧の後に設ける冷却時間は、0.5分間〜30分間であることが好ましい。
【0102】
上記成形を経て一体化したシート(b3)の厚さは、目的とする部材の形状により任意に選択でき、成形性と機械的物性の観点から0.3mm〜15mmであることが好ましく、1mm〜12mmであることがより好ましい。
【0103】
<複合積層体の製造方法>
本発明の複合積層体は、フィルム(a3)がシート(b3)と金型の間に配置されるように、フィルム(a3)をシート(b3)の片面上又は両面上に積層配置して、得られた積層物を成形機により加熱及び加圧することでフィルム(a3)及びシート(b3)を一体化することにより製造することができる。また、2枚以上(好ましくは2枚〜5枚)のフィルム(a3)を、シート(b3)の片面上又は両面上に積層配置してもよい。加熱工程の後に、冷却工程を実施することが好ましい。冷却を行なうことにより、熱可塑性樹脂が固化するので複合積層体の取り扱いが容易となる。
【0104】
上記積層物の加熱においては、フィルム(a3)に含まれる熱可塑性樹脂(a2)、シート(b3)に含まれる熱可塑性樹脂(b2)の種類にもよるが、100℃〜400℃で加熱することが好ましく、150℃〜350℃で加熱することがより好ましい。また、上記加熱に先立って、予備加熱を行ってもよい。予備加熱については、通常150℃〜400℃、好ましくは200℃〜380℃で加熱することが好ましい。
【0105】
上記加圧において積層物にかける圧力としては、好ましくは0.1MPa〜10MPaであり、より好ましくは0.2MPa〜2MPaである。この圧力については、プレス力を積層物の面積で除した値とする。
【0106】
上記加熱及び加圧する時間は、0.1分間〜30分間であることが好ましく、より好ましくは0.5分間〜20分間である。また、加熱及び加圧の後に設ける冷却時間は、0.5分間〜30分間であることが好ましい。
【0107】
上記加熱における成形機の金型温度(Th)は、上記積層物に含まれる熱可塑性樹脂が融点(Tm)を有する場合、Tm≦Th≦(Tm+100)(℃)とすることが好ましく、(Tm+10)≦Th≦(Tm+80)(℃)とすることがより好ましい。上記加熱における成形機の金型温度(Th)は、上記積層物に含まれる熱可塑性樹脂が融点(Tm)を有さずガラス転移温度(Tg)を有する場合、Tg≦Th≦(Tg+100)(℃)とすることが好ましく、(Tg+10)≦Th≦(Tg+80)(℃)とすることがより好ましい。成形機の金型温度(Th)を上記範囲にすることで、金型の膨張を防ぎつつ、また樹脂の劣化を抑制しつつ、上記積層物を一体化することができる。
【0108】
上記加熱における成形機の金型温度(Th)と積層物を冷却する時の成形機の金型温度(Tc)の差(Th−Tc)は、10≦(Th−Tc)≦250(℃)とすることが好ましく、30≦(Th−Tc)≦200(℃)とすることがより好ましい。金型温度の差を上記範囲にすることで、熱可塑性樹脂のより一層均一な溶融、固化を可能とし、得られる複合積層体の耐久性をより一層向上することができる。
【0109】
本発明の複合積層体のB層のように、サイズの大きい強化繊維を含有する熱可塑性樹脂は、一般的にプレス成形によりヒケが発生するが、本発明の複合積層体では、ミクロ繊維である強化繊維を含有したA層を表面に形成することで、強化繊維(b1)間を強化繊維(a1)がミクロ補強し隙間を埋めることによって表面平滑性と機械的物性が向上するものと考えられる。
【0110】
本発明の複合積層体は、強化繊維(a1)を含有するA層を表面に形成することで、強化繊維(a1)による熱可塑性樹脂(a2)の核剤効果、強化繊維(a1)と金型との低接着性、強化繊維(a1)による熱時剛性向上等の効果により、金型からの離型性が向上するものと考えられる。
【0111】
本発明の複合積層体は、強化繊維(a1)を含有するA層を表面に形成することで、切削加工後の切削断面にバリが生じにくいという効果がある。
【0112】
本発明の複合積層体は、強化繊維(a1)を含有するA層を表面に形成することで、強化繊維(a1)表面の水酸基等の存在により複合積層体への塗装密着性が向上する。更に、非繊維状物は繊維状物と比較して機械的物性を向上させる作用が低いことが知られているが、本発明の複合積層体は、強化繊維(a1)の一部を球状粒子(a11)に置き換えることで、複合積層体の機械的物性を低下させることなく、複合積層体の塗装密着性がより一層向上することができる。
【0113】
本発明の複合積層体は、A層の強化繊維(a1)とB層の強化繊維(b1)との絡みあい(アンカー効果)によるA層のB層との密着力が向上することが期待される。
【0114】
上記特性から、本発明の複合積層体は、スタンピング成形等のプレス成形により任意の形状に賦形することができる成形用中間材料として用いることができ、自動車、電気・電子機器(パソコン筐体、タブレット等)などの各種部品・部材に賦形することができる。
【実施例】
【0115】
以下に実施例および比較例に基づいて具体的に説明するが、本発明は何らこれに限定されるものではない。なお、本実施例及び比較例で使用した原材料は具体的には以下の通りである。
【0116】
(強化繊維(a1))
チタン酸カリウム(商品名:TISMO D101、大塚化学社製、平均繊維長:15μm、平均繊維径:0.5μm、平均アスペクト比:30)
ワラストナイト(商品名:バイスタルW、大塚化学社製、平均繊維長:25μm、平均繊維径:3μm、平均アスペクト比:8)
【0117】
(球状粒子(a11))
球状シリカ(商品名:SC2500−SEJ、アドマテックス社製、非晶質シリカ、球状粒子、体積平均粒子径0.6μm、比表面積6.0m
2/g、表面処理剤:3−グリシドキシプロピルトリメトキシシラン)
【0118】
(熱可塑性樹脂(a2))
ポリアミドMXD10樹脂(商品名:LEXTER8500、三菱瓦斯化学社製)
ポリアミド6樹脂(商品名:アミランCM1017、東レ社製)
【0119】
(その他)
板状タルク(商品名:TALC GH7、林化成社製、平均長径:5.8μm、厚み:0.1μm)
ガラス繊維(商品名:ECS 03T−289P/W、日本電気硝子社製、平均繊維長:3mm、平均繊維径:13μm)
【0120】
<試験例1〜試験例7>
表1に示す配合割合で、二軸押出機を用いて溶融混練し、ペレットを製造した。なお、二軸押出機のシリンダ温度は、試験例1〜試験例5が240℃、試験例6および試験例7が230℃であった。
【0121】
得られたペレットを射出成形にて、JIS試験片(曲げ試験片)を作製した。なお、射出成形機のシリンダ温度は240℃、金型温度は試験例1〜試験例5が110℃、試験例6および試験例7が85℃であった。作製した曲げ試験片について、JIS K7171に準じ、オートグラフAG−5000(島津製作所社製)を用いて支点間距離60mmの3点曲げ試験を行い、曲げ強度、曲げ弾性率を測定した。結果を表1に示した。
【0122】
得られたペレットを乾燥後、フィルム押出機(東洋精機社製、ラボプラストミル4C150−01に単軸押出機D2020(L/D=20)を接続)を用いて、試験例1〜試験例5はシリンダ温度240℃にて、試験例6および試験例7はシリンダ温度230℃にて、Tダイ(幅150mm、厚み0.2mm)から押し出した溶融樹脂を、フィルム引取り装置を介してフィルムが目的の厚みになるように一軸延伸を行い、フィルムを得た。フィルムの厚みは、100μmとした。
【0123】
【表1】
【0124】
<実施例1、実施例2、比較例1〜比較例4>
(金型離型性)
金属板(鋼材 SS400 #2000仕上げ)上に、上記で得られた試験例1〜試験例5のフィルムの其々について、フィルム3枚、炭素繊維(平均繊維長70mm、平均繊維径7μm)にポリアミド6樹脂を含浸した炭素繊維シート(シートの厚み3mm、炭素繊維含有量51質量%)10枚、フィルム3枚、金属板(鋼材 SS400 #600仕上げ)の順に積層し、プレス機(放電精密加工研究所社製、商品名:ZENFormer 75t ダブルスライド機)にて天板温度270℃、予熱時間15分、圧力7MPa、加圧時間1分の条件にてプレスした。プレス後、室温まで冷却後、天板を上昇させ金属板と剥離させた。なお、フィルムを挿入せずに同条件でプレスしたものを比較例4とした。
【0125】
金属板(鋼材 SS400 #2000仕上げ)から複合積層体が完全に剥離したものを「A」、複合積層体の一部が金属板に残存したものを「B」、複合積層体が金属板から剥離しないものを「C」とした。結果を表2に示した。
【0126】
(最大高さ(Sz)の評価)
上記で得られた試験例1〜試験例5のフィルムの其々について、フィルムと、炭素繊維(平均繊維長70mm、平均繊維径7μm)にポリアミド6樹脂を含浸した炭素繊維シート(シートの厚み3mm、炭素繊維含有量51質量%)とを、フィルム/炭素繊維シート/フィルムの構成になるように、プレス機に挟み込み、プレス機(放電精密加工研究所社製、商品名:ZENFormer 75t ダブルスライド機)にて天板温度270℃、予熱時間15分、圧力7MPa、加圧時間1分の条件にてプレスし、プレス後、室温まで冷却後、天板を上昇させ金属板と剥離することで複合積層体を製造した。得られた複合積層体のA層全体の厚みは163μm、B層の厚みは1.81mmであった。なお、フィルムを挿入せずに同条件でプレスしたものを比較例4とした。
【0127】
得られた複合積層体の表面(A層側)を、ISO 25178に準拠し、レーザー顕微鏡(キーエンス社製、商品名:VK−X250)を用いて、表面の最大高さ(Sz)を測定した。最大高さ(Sz)が70μm未満のものを「A」、70μm以上100μm未満のものを「B」、100μm以上のものを「C」とした。結果を表2に示した。
【0128】
(切削加工性)
最大高さ(Sz)の評価に用いた上記複合積層体をアブレシブウォータージェット装置により縦90mm×横50mm(平板)の形状に切削した。切削条件は、ノズル径φ0.76mm、水圧400MPa、速度200mm/min、水量約2.5L/min、研磨剤使用量:garnet(石榴石)#80を400g/minとした。
【0129】
加工後切削断面からのバリの出方を評価し、バリが確認できなかったものを「A」、バリ程度が小さいもの(手で簡単に除去できるレベル)を「B」、バリ程度が大きいもの(工具を使用しなければ除去できないレベル)を「C」とした。評価における結果を表2に示した。
【0130】
(塗装密着性)
最大高さ(Sz)の評価に用いた上記複合積層体においてアブレシブウォータージェット装置により縦90mm×横50mm(平板)の形状に切削した。切削条件は、ノズル径φ0.76mm、水圧400MPa、速度200mm/min、水量約2.5L/min、研磨剤使用量:garnet(石榴石)#80を400g/minとした。
【0131】
得られた平板について、溶剤による表面を脱脂した表面に、2液アクリルウレタン系塗料(藤倉化成株社製、商品名:レクラック#110)を膜厚が18μmとなるように塗装し、その塗装面に更にクリア塗装を膜厚が13μmになるよう塗装した。塗装後、カッターによるカット試験を行い、カット部の溝幅を測定した。溝幅が30μm未満のものを「A」、30μm以上50μm未満のものを「B」、50μm以上80μm未満のものを「C」、80μm以上のものを「D」とした。表2に示した。
【0132】
(機械的物性)
最大高さ(Sz)の評価に用いた上記複合積層体においてアブレシブウォータージェット装置によりJIS試験片(曲げ試験片)の形状に切削した。切削条件は、ノズル径φ0.76mm、水圧400MPa、速度200mm/min、水量約2.5L/min、研磨剤使用量:garnet(石榴石)#80を400g/minとした。なお、曲げ試験片の長さ方向が、試験例1〜試験例5におけるフィルムの引き出し方向と一致するように切削した。
【0133】
得られた曲げ試験片について、JIS K7171に準じ、オートグラフAG−5000(島津製作所社製)を用いて支点間距離60mmの3点曲げ試験を行い、曲げ強さ、曲げ弾性率を測定した。結果を表2に示した。
【0134】
【表2】
【0135】
<比較例5および比較例6>
(金型離型性)
金属板(鋼材 SS400)上に、上記で得られた試験例6〜試験例7のフィルムの其々について、フィルム、炭素繊維(平均繊維長30mm、平均繊維径7μm)にポリアミド6樹脂を含浸した炭素繊維シート(シートの厚み10mm、炭素繊維含有量50質量%)、イミドフィルム(商品名:UPILEX 75S、宇部興産社製)の順に積層し、プレス機(東洋精機社製、商品名:Mini Test Press MP−WCH)にて天板温度220℃、予熱時間1分、圧力2MPa、加圧時間1分の条件にてプレスした。プレス後、イミドフィルムを金属板の90°上方へ引き上げてイミドフィルムを金属板から剥離した。イミドフィルム剥離時に、イミドフィルムとともに金属板から複合積層体が完全に剥離したものを「A」、複合積層体の一部が金属板に残存したものを「B」、複合積層体が金属板から剥離せずにイミドフィルムのみが剥離したものを「C」とした。結果を表3に示した。
【0136】
(最大高さ(Sz)の評価)
上記で得られた試験例6〜試験例7のフィルムの其々について、フィルムと、炭素繊維(平均繊維長30mm、平均繊維径7μm)にポリアミド6樹脂を含浸した炭素繊維シート(シートの厚み10mm、炭素繊維含有量50質量%)とを、フィルム/炭素繊維シートの構成になるように、2枚のイミドフィルム(商品名:UPILEX 75S、宇部興産社製)に挟み込み、プレス機(東洋精機社製、商品名:Mini Test Press MP−WCH)にて天板温度220℃、予熱時間1分、圧力2MPa、加圧時間1分の条件にてプレスし、プレス後にイミドフィルムを剥離することで複合積層体を製造した。得られた複合積層体のA層全体の厚みは65μm、B層の厚みは0.375mmであった。得られた複合積層体の表面(A層側)を、ISO 25178に準拠し、レーザー顕微鏡(キーエンス社製、商品名:VK−X250)を用いて、表面の最大高さ(Sz)を測定した。最大高さ(Sz)が70μm未満のものを「A」、70μm以上100μm未満のものを「B」、100μm以上のものを「C」とした。結果を表3に示した。
【0137】
【表3】
【0138】
A層のみと同一組成である試験例3からチタン酸カリウム繊維により機械的物性が向上することが分かるが、B層のみである比較例4よりも機械的物性は低い。また、A層全体の厚みはB層の厚みと比べて1/10以下と極めて小さいことから、A層により複合積層体の機械的物性は向上しないと予想されるが、チタン酸カリウム繊維が配合されたA層とB層からなる複合積層体である比較例1は、チタン酸カリウム繊維が配合されていないA層とB層からなる複合積層体である比較例3よりも機械的物性が向上する。さらに、A層のみと同一組成である試験例1からチタン酸カリウム繊維の一部を球状シリカに置き換えることで機械的物性が低下するが、試験例1のフィルムをA層に用いた複合積層体である実施例1は、比較例1に対して機械的物性が向上するという予期せぬ効果が得られていることが分かる。
A層2とB層3とを備え、B層3の片面上又は両面上に、直接的又は間接的にA層2が設けられている複合積層体1において、A層2が、平均繊維長が1μm〜300μmである強化繊維(a1)と、体積平均粒子径が0.01μm〜100μmである球状粒子(a11)と、熱可塑性樹脂(a2)とを含み、B層3が、平均繊維長が1mm以上である強化繊維(b1)と、熱可塑性樹脂(b2)とを含む、複合積層体1。