【課題を解決するための手段】
【0016】
驚くべきことに、本発明の方法によって作製されたワイヤは、上述の目的の少なくとも1つを解決することが見出された。さらに、本発明の方法によって作製されたワイヤを含むシステムおよびモジュールは、ワイヤと他の電気素子、例えばプリント回路基板、パッド/ピンなどとの間のインターフェースにおいて、より信頼性があることが見出された。
【0017】
本発明は、表面を有するコアを含むボンディングワイヤを製造する方法であって、コアは98.0%以上の銅を含み、7500から600000μm
2の範囲の断面積および40から95N/mm
2の範囲の弾性限界RP0.2(降伏強度)を有し、前記方法は、
(a)銅コア前駆体を準備する工程と、
(b)ワイヤコアの最終直径に到達するまで前駆体を延伸する工程と、
(c)延伸したワイヤを、4秒から2時間、好ましくは4秒から1時間の範囲の最小のアニーリング時間の間、断面全体にわたって650から1000℃の範囲の最小のアニーリング温度でアニーリングする工程と
を含む、方法に関する。
【0018】
一実施形態において、アニーリングは固定または静的アニーリングプロセスとして実施されてもよく、そして4秒から2時間、好ましくは4秒から1時間の範囲の最小のアニーリング時間であってもよく、一方で、アニーリングが動的(すなわちワイヤが動いている)に実施される場合、4から30秒の範囲の最小のアニーリング時間であってもよい。
【0019】
もし他に特定の定義が提供されなければ、現在全ての成分の含有量または占有率は重量による占有率として与えられている。特に、パーセントで与えられる占有率は重量%であると理解され、ppm(百万分率(parts per million))で与えられる占有率は重量ppmであると理解される。
【0020】
本発明の方法によって作製されたこのようなワイヤは、その機械的およびボンディング特性に関して最適化される。本発明のより好ましい実施形態において、ワイヤコアまたはワイヤの弾性限界RP0.2は、90N/mm
2以下であり、最も好ましくは85N/mm
2以下である。弾性限界RP0.2の下限は、好ましくは40N/mm
2以上であり、最も好ましくは50N/mm
2以上である。このことは特に、本発明の方法によって作製されたボンディングワイヤの降伏強度に関して、好ましく、有益な範囲を生じる。本発明の方法によって作製されたボンディングワイヤは、好ましくは、40〜95N/mm
2、50〜95N/mm
2、40〜90N/mm
2、または50〜90N/mm
2の範囲の1つ以上の弾性限界RP0.2を有する。非常に好ましい実施形態において、コアまたはワイヤの弾性限界RP0.2は65〜90N/mm
2または65〜85N/mm
2の範囲である。
【0021】
ワイヤまたはコアの弾性限界は降伏強度と同じである。弾性限界または降伏強度の定義について、参照が一般的な理解に対してなされる。材料の「降伏強度」は、材料が塑性変形し始める応力として工学および材料科学において定義されている。塑性変形を開始する前に、材料は弾性変形し、加えられた応力が取り除かれると元の形に戻る。好ましくは、弾性限界または降伏強度は、塑性変形の0.2%オフセット降伏点(RP0.2)を使用することによって定義される。
【0022】
弾性限界は、最終製品およびパッケージされた製品として提供されるボンディングワイヤの特性と理解される。さらに、ワイヤに課される過度の保存時間、環境への影響がないことなどが理解される。ボンディングワイヤの弾性限界はボンディングツールに供給される前のその状態で与えられる。
【0023】
機械的応力、屈曲、加熱、長時間の保存などは、ワイヤおよびその弾性限界の微細構造に影響を与え得ることが指摘される。例えば、通常、アニーリングオーブンから出した直後のワイヤの弾性限界と、パッケージされた段階の最終製品としてのワイヤの弾性限界との間に有意差が存在する。
【0024】
ワイヤの弾性限界は特に、アニーリング手段のパラメーターをそれに応じて選択することによって調節され得ることは理解される。本発明によれば、このことは、従来技術において一般的であるように、伸び値の最大までワイヤをアニーリングすることを意味するわけではない。代わりに、アニーリング手段およびワイヤのさらなるパラメーター(銅純度、添加剤など)は本発明による弾性限界値を達成するように選択される。
【0025】
ワイヤのコアは表面下のバルク材料の均質な領域と定義される。任意のバルク材料は基本的に、ある程度異なる特性を有する表面領域を有するので、ワイヤのコアの特性はこのバルク材料領域の特性と理解される。バルク材料領域の表面は、形態、組成(例えば酸素含有量)または他の特徴に関して異なってもよい。表面は、好ましい実施形態において、ワイヤの外面であってもよい。さらなる実施形態において、ワイヤコアの表面は、ワイヤコアとワイヤコアに重ね合わされたコーティング層との間のインターフェース領域として提供されてもよい。
【0026】
ワイヤは、特にマイクロエレクトロニクスにおける結合のためのボンディングワイヤである。ワイヤは好ましくは一体(ワンピース)物体である。
【0027】
ある成分の占有率が参照材料のさらなる成分の全てを超えているとき、この成分は「主成分」である。好ましくは、主成分は材料の総重量の少なくとも50%を含む。
【0028】
コアの銅含有量は98.0%以上である。さらにより好ましくは、銅の含有量は99%以上である。さらに好ましくは、ワイヤコアは99.9%以上の純度を有する銅(3N銅)からなる。最も好ましくは、ワイヤコアは99.99%以上の純度を有する銅(4N銅)からなる。純粋な銅ワイヤは一般に良好な導電性および良好な結合特性を示す。代替の実施形態において、少量のさらなる元素がワイヤコアに提供されてもよい。このような元素についての例としては、Pd、AgまたはBが挙げられる。
【0029】
本発明の一般的な好ましい態様において、アニーリング後のワイヤの伸び値は最大伸び値の40〜92%の範囲である。より好ましくは、伸び値は最大の伸び値の45〜85%の範囲、最も好ましくは50〜80%の範囲である。
【0030】
なおさらに好ましい場合、ワイヤは、最大伸び値がアニーリングによって達成される温度より少なくとも10℃高い温度でアニーリングされる。より好ましくは、温度は最大伸びの温度よりも少なくとも50℃高く、最も好ましくは、温度は最大伸びの温度よりも少なくとも80℃高い。しばしば、温度は、最大伸びの温度より150℃以下である。したがって、ワイヤは、最大伸びの温度よりも10〜150℃または50〜150℃または80〜150℃高い温度でアニーリングされ得る。
【0031】
最大伸び値は次のとおりに定義される。銅ベースのボンディングワイヤの一般的な場合において、ワイヤの伸びは最終アニーリング工程によって調整され得る。これに関する「最終」とは、その後にワイヤの形態に大きな影響を有する製造工程が確立されないことを意味する。アニーリングパラメーターを選択するとき、通常はパラメーターの組が選択される。ワイヤをアニーリングする簡単な場合においては、所与の長さのオーブン内で一定の温度が調整され、ワイヤは一定の速度でそのオーブンを通過する。これによって、ワイヤの全ての箇所が所与の時間だけその温度に露出され、この温度およびこのアニーリング時間がアニーリング手順の2つの関連パラメーターとなる。他の場合には、オーブンの特定の温度プロファイルが使用されて、システムにさらなるパラメーターを追加してもよい。
【0032】
いずれの場合にも、パラメーターの1つが変数として選択され得る。次いで、この変数に依存するワイヤの伸び値を受取ることによって、一般的に極大値を有するグラフが得られる。この極大値が本発明の意味でのワイヤの最大伸び値として定義される。変数がアニーリング温度である場合には、こうしたグラフは通常「アニーリング曲線」と呼ばれる。
【0033】
先行技術においては、極大が存在することによって特に安定な製造条件が提供されるために、変数パラメーターに関するこうした最大伸び値に対して任意のワイヤをアニーリングすることが普通であった。
【0034】
本発明に関しては、驚くべきことに、最大伸び値未満の異なる値に対するアニーリングによって、ワイヤ形態が有益な態様で影響され得るために、有益なワイヤ特性がもたらされ得ることが明らかになった。変数パラメーターとしてアニーリング温度が選択され、かつアニーリング時間を定数として設定するとき、最大伸びのアニーリング温度よりも高い値のアニーリング温度を選択するときが特に有益である。特にこの製造原理は、ワイヤの平均粒度を例えばもっと大きな粒度に調整するために用いられ得る。この調整によって、例えばワイヤの軟らかさ、ウェッジボンディング挙動などのその他の特性が、有益な態様で影響され得る。
【0035】
良好なスループットおよび効果的なアニーリングを提供するために、コアは、アニーリング工程(c)の間、その断面全体にわたって少なくとも650℃の最小アニーリング温度に加熱される。さらにより好ましくは、この温度は少なくとも680℃である。コアは、アニーリング工程(c)の間、その断面全体にわたって1000℃以下のアニーリング温度に加熱される。したがって、コアは、アニーリング工程(c)の間、その断面全体にわたって650〜1000℃または680〜1000℃の範囲の温度に加熱される。
【0036】
特に好ましい実施形態において、アニーリングはストランドアニーリングによって行われることにより、高い再現性を伴うワイヤの高速製造を可能にする。ストランドアニーリングとは、ワイヤがアニーリングオーブンを通過して、オーブンから出た後にリールに巻かれている間に、アニーリングが動的に行われることを意味する。
【0037】
好ましい実施形態において、ワイヤはパッケージされた形態で提供され、方法は、(d)工程(c)の後にワイヤを移送し、パッケージする工程であって、ワイヤは曲率半径Rcで屈曲され、ここでRcは0.25・(1/E−1)・Drに等しく、または簡略化された0.25・Dr/Eに等しく、ここでDrは曲率半径の方向において測定したワイヤの直径として定義され、Eは屈曲に起因するワイヤの外側繊維の相対伸びであり、Eは0.006以下である、工程をさらに含む。より好ましい実施形態において、Eは0.005以下または0.004以下であり、最も好ましくは、Eは0.003以下である。通常、Eは0.0002以上である。このような手段により、ワイヤの最適化された微細構造およびそれによるその機械的特性が、最終的な移送、巻きおよびパッケージングプロセスの影響によって劣化されないことが確実にされる。これらの手段によって、アニーリング工程(c)によってその微細構造を調整した後、ワイヤが好ましくない機械的応力を受けることが回避される。特に、アニーリング後のワイヤの強力な屈曲または他の強力な変形は、その結晶のサイズおよび分布に対して悪影響を与える可能性がある。これはワイヤの外部だけ影響を受ける作用を含み、ワイヤの全体の機械的特性は本発明による範囲内のままであり得る。
【0038】
ワイヤの繊維は、ワイヤの幾何学的中心線に平行に延び、ワイヤの幾何学的中心線から一定の距離がある非常に小さな直径の理論的繊維と定義される。したがって、上記の意味において外側繊維は、最大曲率半径を有する位置においてワイヤコアの表面に沿って延びる繊維である。
【0039】
ワイヤ屈曲の制限は、特にワイヤがリール上で提供されるパッケージング形態に向けられる。ワイヤ直径に依存して、パッケージングリールの最小直径が上記の所与のパラメーターに従って提供される必要がある。さらに、ワイヤを取り扱うとき、このような最小曲げ半径を超えないように注意すべきである。そのような取り扱いは、ワイヤを製造する手段およびワイヤをボンディングツールに供給し、移送する手段を含む。
【0040】
さらに好ましい実施形態において、本発明の方法によって作製されたワイヤは、アニーリング工程(c)の後、パッケージングリール上に直接巻かれる。このことは、ワイヤが、最終的なパッケージングリール上に巻かれる前に中間のリール上で巻かれないことを意味する。ワイヤを巻く任意の手段は、そのような手段のいずれかがワイヤを機械的応力下に置くために、その微細構造および機械的特性に影響を与えることが判明している。これは、大きな直径を有する中間のリールが使用される場合でさえもある程度当てはまる。
【0041】
パッケージングスプールの直径は上記に説明した意味においてワイヤの最小曲率半径を定義するので、本発明はまた、本発明によって製造され、スプール上でパッケージされたワイヤを提供することに関し、パッケージングスプールは曲率半径についての上記の所与のパラメーターを満たす。
【0042】
本発明の方法によって作製された円形断面を有するワイヤに関して、微細構造の独特な特性が観察されている。これらの構造は良好な結合特性と相関する可能性が高い。したがって、好ましいワイヤに関して、ワイヤの第2の領域(R2)の平均粒径とワイヤの第1の領域(R1)の平均粒径の比率は、0.05〜0.8、好ましくは0.05〜0.7、より好ましくは0.1〜0.6である。ワイヤの第1の領域(R1)は、ワイヤの幾何学的中心線からワイヤの最小直径の10%以下の距離を有する全ての点によって画定され、ワイヤの第2の領域(R2)は、コアの表面からワイヤの最小直径の10%以下の距離を有する全ての点によって画定される。ワイヤの最小直径は、その幾何学的中心線に垂直で、その幾何学的中心線を通ってワイヤを横切る可能な最短の直径と定義される。
【0043】
平均粒径の測定は、Electron Backscattering Dif−fractometry(EBSD)を用いて実施されている。ワイヤの一部は樹脂に埋め込まれ、その中心線の方向においてワイヤを通る縦断面を研削した。ワイヤの断面を研磨し、イオンミリングによってさらに調製した。ワイヤのマイクロテクスチャに関するいくつかの測定を行った。これらの測定によって、ワイヤの結晶粒のサイズおよび分布を決定した。
【0044】
驚くべきことに、結晶粒の平均サイズは、ワイヤの中心線の付近の中心領域よりも、ワイヤの表面付近の境界領域において顕著に小さくなることが判明した。平均粒径はワイヤの中心から開始して半径方向外側に急速に減少するようである。以前に知られている粒径
分布は、均質な分布またはワイヤの中心からの距離が増加するにつれて平均粒径の増加のいずれかを示す。
【0045】
方法のさらなる可能な発展において、前駆体を延伸する工程(b)の前または後のいずれかにコーティング層の材料で銅コアをコーティングする工程(e)が提供される。コーティング法の例は、電気めっき、物理蒸着および化学蒸着である。本発明のこのようなさらなる発展において、コーティング層はコアの表面上に重ね合わされる。このようなコーティング層が可能であるが、本発明の方法によって作製されるワイヤに必ずしも必要な特徴ではないことが理解される。ボンディングプロセスに対するこのようなコーティング層の材料の影響を最小化するために、コーティング層の厚さは0.5μm以下、より好ましくは0.2μm以下である。通常、コーティング層の厚さは20nm以上である。
【0046】
コーティング層を設ける場合、層は、主成分として貴金属、Ti、NiまたはCrの群の1つを含む。コーティング目的のための貴金属の特に好ましい例は、Pd、Au、PtおよびAgである。
【0047】
本発明の意味において「重ね合わされる」という用語は、例えばコーティング層などの第2の品目に関する、例えば銅コアなどの第1の品目の相対位置を説明するために用いられる。場合によっては、第1および第2の品目の間に、例えば中間層などのさらなる品目が配置されてもよい。好ましくは、第2の品目は第1の品目の上に、例えば第1の品目の合計表面に関して少なくとも30%、50%、70%または少なくとも90%など、少なくとも部分的に重ね合わされる。最も好ましくは、第2の品目は第1の品目の上に完全に重ね合わされる。本発明の状況における「中間層」という用語は、銅コアとコーティング層との間のワイヤの領域のことである。この領域においては、コアと同様の材料およびコーティング層と同様の材料が組み合わされて存在する。
【0048】
本発明の可能な実施形態において、コーティング層は中間層として提供され、少なくとも1つの外層が中間層の上に重ね合わされる。このような場合、外層は好ましくは主成分として少なくとも1種の貴金属を含む。そのような貴金属は特にAuまたはPdであり得る。最も好ましい組み合わせにおいて、それぞれ主成分として中間層はPdを含み、外層はAuを含む。
【0049】
外層が設けられる場合、中間層は、5nm〜100nmの範囲の厚さが好ましい。
【0050】
1つの好ましい実施形態において、ワイヤは円形断面形状を有し、断面領域を通る最短経路と最長経路の比率は0.8から1.0である。このようなワイヤは円形断面を有するワイヤと称される。
【0051】
別の好ましい実施形態において、ワイヤはリボンのように成形され、断面領域を通る最短経路と最長経路の比率は0.02から0.5である。
【0052】
要求によれば、本発明の方法は、工程(c)の前にワイヤをリボンの形状に圧延する工程(f)をさらに含んでもよい。これにより、円形ワイヤのリボンへの成形が最終ワイヤの微細構造に影響を与えないことが確実になる。
【0053】
本発明の主題は図面で説明される。しかしながら、図面は本発明の範囲または特許請求の範囲を決して限定するものではないことが意図される。