(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記特許文献1に記載の構造物の造形方法は、材料を所定の方向に走査して構造物を造形するため、造形された構造物は、走査方向と、走査方向とは異なる方向とにおいて、強度が異なると考えられる。このため、上記特許文献1のような積層造形法により造形された構造物は、型に入れて成形された構造物と異なり、強度を精度よく予測することが困難であるという問題点がある。
【0006】
この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、積層造形法により造形した構造物の強度を精度よく予測することが可能な構造物の強度予測方法、構造物の造形方法、構造物の積層造形支援方法およびプログラムを提供することである。
【課題を解決するための手段】
【0007】
上記目的を達成するために、この発明の第1の局面による構造物の強度予測方法は、積層造形法により造形
する構造物の強度予測方法であって、材料の走査方向、走査ピッチ、積層方向および積層ピッチのうち少なくとも1つを含む材料の積層方法を取得
することと、材料の積層方法による強度の異方性を考慮して前記構造物の強度を推定する
ことと、を備え、強度を推定することは、少なくとも構造物の中実部分をグループ化し、グループ化した部分の強度の異方性が等しいとして、構造物の中実部分の強度を推定することを含む。
【0008】
この発明の第1の局面による構造物の強度予測方法では、上記のように、材料の走査方向、走査ピッチ、積層方向および積層ピッチのうち少なくとも1つを含む材料の積層方法を取得し、材料の積層方法による強度の異方性を考慮して構造物の強度を推定する。これにより、材料の積層方法に基づいて、構造物の強度の異方性を考慮して、構造物全体の強度を推定することができるので、積層造形法により造形した構造物の強度を精度よく予測することができる。
【0010】
上記第1の局面による構造物の強度予測方法において、好ましくは、構造物は、縁部が走査された後、縁部の内部の中実部分が走査されて、層が造形されるように構成されており、強度を推定することは、縁部を第1グループとしてグループ化して、構造物の縁部の強度を推定するとともに、中実部分を第2グループとしてグループ化して構造物の中実部分の強度を推定することを含む。このように構成すれば、構造物の境界面となる縁部を第1グループとして構造物の境界面の強度を容易に予測することができる。また、構造物の内部を第2グループとして、構造物の境界面とは別個に強度を予測することができるので、構造物の強度をより精度よく予測することができる。
【0011】
上記第1の局面による構造物の強度予測方法において、好ましくは、構造物は、隣接する層間で、材料の走査方向が異なるように造形されるように構成されており、強度を推定することは、構造物が複数の方向の強度の異方性を有するものとして、構造物の強度を推定することを含む。このように構成すれば、材料の複数の走査方向に基づいて、複数の方向の強度の異方性を持たせて構造物の強度を推定することができるので、構造物の強度をより精度よく予測することができる。
【0012】
上記第1の局面による構造物の強度予測方法において、好ましくは、強度を推定することは、層における材料の走査方向を変化させて複数の種類の構造物の強度の推定を行うことを含み、推定した強度に基づいて、構造物を造形する層における材料の走査方向を決定する。このように構成すれば、所望の強度を満たすように、構造物を造形する際の材料の走査方向を決定することができるので、造形した構造物において所望の強度を確保することができる。
【0013】
この発明の第2の局面による構造物の造形方法は、層における材料の走査方向による強度の異方性を考慮して造形する構造物の強度を推定
することと、推定した強度に基づいて、構造物を造形する材料の走査方向を決定して、積層造形法により材料を積層して構造物を造形する
ことと、を備え、強度を推定することは、少なくとも構造物の中実部分をグループ化し、グループ化した部分の強度の異方性が等しいとして、構造物の中実部分の強度を推定することを含む。
【0014】
この発明の第2の局面による構造物の造形方法では、上記のように、層における材料の走査方向による強度の異方性を考慮して造形する構造物の強度を推定する。これにより、材料の走査方向に基づいて、構造物の強度の異方性を考慮して、構造物全体の強度を推定することができるので、積層造形法により造形した構造物の強度を精度よく予測することができる。また、推定した強度に基づいて、構造物を造形する材料の走査方向を決定して、積層造形法により材料を積層して構造物を造形する。これにより、所望の強度を満たすように、構造物を造形する際の材料の走査方向を決定することができるので、造形した構造物の強度が小さくなるのを抑制することができる。
【0015】
この発明の第3の局面による構造物の積層造形支援方法は、層における材料の走査方向による強度の異方性を考慮して造形する構造物の強度を推定
することと、推定した構造物の強度が所定値未満の場合、補強部材を追加して、積層造形法により材料を積層して構造物を造形するよう教示する
ことと、を備え、強度を推定することは、少なくとも構造物の中実部分をグループ化し、グループ化した部分の強度の異方性が等しいとして、構造物の中実部分の強度を推定することを含む。
【0016】
この発明の第3の局面による構造物の積層造形支援方法では、上記のように、層における材料の走査方向による強度の異方性を考慮して造形する構造物の強度を推定する。これにより、材料の走査方向に基づいて、構造物の強度の異方性を考慮して、構造物全体の強度を推定することができるので、積層造形法により造形した構造物の強度を精度よく予測することができる。また、推定した構造物の強度が所定値未満の場合、補強部材を追加して、積層造形法により材料を積層して構造物を造形するよう教示する。これにより、補強部材により構造物を補強して造形される構造物の強度を効果的に高めることができる。
【0017】
この発明の第4の局面によるプログラムは、第1の局面による構造物の強度予測方法
、または、第3の局面による構造物の積層造形支援方法をコンピュータに実行させる。
【0018】
この発明の第4の局面によるプログラムでは、上記のように、第1の局面による構造物の強度予測方法、第2の局面による構造物の造形方法、または、第3の局面による構造物の積層造形支援方法をコンピュータに実行させることにより、積層造形法により造形した構造物の強度を精度よく予測することができる。
【発明の効果】
【0019】
本発明によれば、上記のように、積層造形法により造形した構造物の強度を精度よく予測することができる。
【発明を実施するための形態】
【0021】
以下、本発明を具体化した実施形態を図面に基づいて説明する。
【0022】
[本実施形態]
(構造物造形装置の構成)
図1〜
図7を参照して、本実施形態による構造物造形装置100の構成について説明する。
【0023】
図1に示すように、構造物造形装置100は、コンピュータ1と、3Dプリンタ2とを備えている。コンピュータ1は、プログラム11を実行可能に構成されている。
【0024】
コンピュータ1は、構造物3(
図2参照)の3次元のデータに基づいて、3Dプリンタ2により、構造物3を造形させる制御を行うように構成されている。また、コンピュータ1は、プログラム11を実行して、造形される構造物3の強度を予測(推定)するように構成されている。なお、強度予測を実行するコンピュータ1は、3Dプリンタ2とは別個に設けられていてもよい。つまり、コンピュータ1は、3Dプリンタ2から積層情報を電子データの形で読み込めれば、3Dプリンタ2とは別個に設けられていても構造物3の強度を予測することが可能である。
【0025】
3Dプリンタ2は、積層造形法により立体的な(3次元の)構造物3を造形するように構成されている。具体的には、3Dプリンタ2は、糸状の材料31を所定の方向に走査して構造物3を造形するように構成されている。また、3Dプリンタ2は、材料31を積層して構造物3を造形するように構成されている。たとえば、3Dプリンタ2は、
図2に示すように、X方向に材料31を走査して層を形成する工程と、X方向と直交するY方向に材料31を走査して層を形成する工程とを繰り返して、材料31をZ方向に積層して構造物3を造形するように構成されている。なお、材料31は、3Dプリンタ2により融解可能な樹脂や金属などが用いられる。たとえば、3Dプリンタ2は、熱溶解積層法(FDM法)により構造物3を造形する。なお、
図2〜
図5に示す構造物3は、立方体形状を有しているが、構造物3の形状は、立方体形状に限られない。
【0026】
ここで、本実施形態では、コンピュータ1は、材料31の走査方向、走査ピッチ、積層方向および積層ピッチのうち少なくとも1つを含む材料31の積層方法を取得するように構成されている。そして、コンピュータ1は、材料31の積層方法による強度の異方性を考慮して構造物3の強度を推定するように構成されている。また、コンピュータ1は、強度の異方性をモデル化して、構造物3の強度を推定するように構成されている。なお、材料31の走査方向は、3Dプリンタ2により設定されてもよいし、コンピュータ1により設定された情報を3Dプリンタ2で使用してもよい。たとえば、3Dプリンタ2を制御するコンピュータに強度を予測するプログラムが搭載されていなくてもよい。つまり、構造物3の強度を予測するコンピュータと、3Dプリンタ2を動作させるコンピュータとは別個のコンピュータであってもよい。また、材料31の走査ピッチおよび積層ピッチは、糸状の材料31の太さに基づいて設定されてもよい。また、積層方向は、Z方向(上下方向)であってもよいし、水平方向(XY方向)であってもよいし、水平方向から傾いた斜め方向であってもよい。
【0027】
コンピュータ1は、有限要素法により、構造物3の強度を予測(推定)するように構成されている。たとえば、
図3に示すように、コンピュータ1は、構造物3を複数のメッシュに仮想分割して、各メッシュにおいて、弾性率、ポアソン比、ヤング率、密度などの物性を与えて、構造物3全体の強度を予測(推定)するように構成されている。また、メッシュの間隔は、糸状の材料31の径よりも大きくなるように設定される。これにより、メッシュの間隔が過度に小さくなり、メッシュの総数が多くなるのを抑制することができるので、コンピュータ1による強度予測処理が煩雑になるのを抑制することが可能である。
【0028】
また、コンピュータ1は、材料31の積層方法が共通する部分をグループ化して、グループ化した部分の強度の異方性が等しいとして、構造物3の強度を推定するように構成されている。たとえば、コンピュータ1は、
図4に示すように、構造物3の縁部を走査した後、縁部の内部の中実部分を走査して、層が造形される場合、縁部を第1グループ32としてグループ化して、構造物3の縁部の強度を推定するとともに、中実部分を第2グループ33としてグループ化して構造物3の中実部分の強度を推定するように構成されている。ここで、
図4のように縁部が非常に薄い場合に、
図3のように均等にメッシュ(要素)を分割すると、最外周部の要素は縁部と内部の中実部分とが混在し、正確な強度推定ができないおそれがある。そのため、第1グループ32と第2グループ33とで強度を予測するための要素の形状を異ならせてもよい。たとえば、第1グループ32を板状の要素の集合とし、第2グループ33を立方体状の要素の集合として強度の予測(推定)を行ってもよい。この場合、構造物3の縁部である第1グループ32は、縁部と略等しい厚さを有する要素に分割される。これにより、一つの要素に複数のグループが混在することを抑制することができるので、より精度よく強度推定を行うことが可能である。また、強度を予測するための要素の個数が過度に増加するのを抑制しながら強度推定を行うことができるので、強度推定の処理負担が増大するのを抑制することが可能であるとともに、処理時間が長くなるのを抑制することが可能である。
【0029】
また、コンピュータ1は、
図2に示すように、構造物3が隣接する層間で材料31の走査方向が異なるように造形される場合、構造物3が複数の方向の強度の異方性を有するものとして、構造物3の強度を推定するように構成されている。
【0030】
また、コンピュータ1は、層における材料31の走査方向(積層方法)を変化させて複数の種類の構造物3の強度の推定を行い、推定した強度に基づいて、構造物3を造形する層における材料31の走査方向を決定するように構成されている。たとえば、コンピュータ1は、材料31の走査方向の異なる複数の種類の構造物3のうち、最も高い強度が得られる構造物3を造形する材料31の走査方向(積層方法)により構造物3を造形する制御を行う。また、完成した構造物3にかかる荷重の方向が所定の方向で決まっている場合、当該所定の方向に関する強度を重視して評価しても良い。たとえば、構造物3にかかる荷重が大きくなる所定の方向の強度が高くなるように、材料31の走査方向(積層方法)を決定して構造物3を造形するように制御してもい。
【0031】
また、コンピュータ1は、推定した強度に基づいて、構造物3を造形する材料31の走査方向を決定して、3Dプリンタ2を制御して積層造形法により材料31を積層して構造物3を造形するように構成されている。また、コンピュータ1は、推定した構造物3の強度が所定値未満の場合、
図5に示すように、補強部材34を追加して、積層造形法により材料31を積層して構造物3を造形するよう教示するように構成されている。
【0032】
コンピュータ1は、たとえば、構造物3の物性を推定(作成)する際に、
図6に示すように、材料31の走査方向と、走査方向と直交する方向とで、ひずみに対する応力を異なるようにして物性を推定する。たとえば、走査方向と直交する方向の応力は、走査方向の応力に対して、所定の割合減算されて物性が推定される。つまり、コンピュータ1は、積層方法に基づいて、物性を推定する。この場合、実験値に基づいて物性を求めてもよいし、均質化法等の計算により物性を求めてもよい。
【0033】
また、コンピュータ1は、推定した物性に基づいて、
図7に示すように、異方性を考慮して、有限要素法の各メッシュ(
図3参照)に、それぞれ、物性を与える。たとえば、
図2に示す第1積層例のように積層された場合、X方向およびY方向(走査方向)の物性は、等しくなるように与えられ、Z方向(積層方向)の物性は、X方向およびY方向に比べて小さくなるように与えられる。そして、コンピュータ1は、このような物性に、拘束条件や荷重条件を加味して、構造物3の強度を予測するように構成されている。
【0034】
また、コンピュータ1は、材料31の積層方法による強度の異方性を考慮した構造物3の強度に基づいて、構造物3の破壊の判定を行うように構成されている。
【0035】
(構造物の強度予測処理)
次に、
図8を参照して、構造物の強度予測処理について説明する。なお、構造物の強度予測処理は、コンピュータ1により実行される。
【0036】
図8のステップS1において、材料31の積層方法が取得される。材料31の積層方法は、構造物3の形状に基づいて決定されてもよいし、ユーザにより決定されてもよい。ステップS2において、材料31の積層方法に基づいてグループ化が行われる。具体的には、材料31の積層方法が共通する部分をグループ化する。たとえば、
図4に示す第2積層例の場合、縁部を第1グループ32とし、中実部分(塗潰し部)を第2グループ33とする。また、
図2に示す第1積層例の場合、構造物3全体を1つのグループとする。
【0037】
ステップS3において、グループ毎に、材料31の積層方法に基づいて強度の異方性を考慮して構造物3の部分的な強度を推定する。ステップS4において、構造物3全体の強度を予測する。その後、構造物の強度予測処理が終了される。
【0038】
(構造物の造形処理)
次に、
図9を参照して、構造物の造形処理について説明する。なお、構造物の造形処理は、コンピュータ1により実行される。
【0039】
図9のステップS11において、材料31の走査方向(積層方法)を変化させた複数の種類の構造物3の強度の推定が行われる。ステップS12において、推定した構造物3の強度に基づいて材料31の走査方向(積層方法)が決定される。つまり、強度が高くなるよう構造部3を造形するよう走査方向(積層方法)が決定される。
【0040】
ステップS13において、3Dプリンタ2が制御されて決定された走査方向(積層方法)により構造物3が造形される。その後、構造物の造形処理が終了される。
【0041】
(構造物の造形方法教示処理)
次に、
図10を参照して、構造物の造形方法教示処理について説明する。なお、構造物の造形方法教示処理は、コンピュータ1により実行される。
【0042】
図10のステップS21において、材料31の走査方向(積層方法)に基づいて強度の異方性を考慮して構造物3の強度の推定が行われる。ステップS22において、推定した構造物3の強度が所定値未満か否かが判断される。所定値未満であれば、ステップS23に進み、所定値以上であれば、ステップS24に進む。なお、所定値は、予想最大応力に安全率を乗じて決定してもよい。
【0043】
ステップS23において、
図5に示すように、補強部材34を追加して構造物3の強度の推定が行われる。補強部材34は、たとえば、金属により円柱状に形成されている。また、補強部材34を追加した場合、構造物3は、補強部材34が立てられた状態で、補強部材34の周りに材料31を走査して積層させる。補強部材34は、材料31と異なる物性であることが好ましい。特に、補強部材34は、材料31よりも強度が高いことが好ましい。その後、ステップS22に戻る。
【0044】
ステップS22において、補強部材34を追加して推定した構造物3の強度が所定値未満か否かが判断される。所定値以上であれば、ステップS24に進む。所定値未満であれば、ステップS23に進み、補強部材34を変更して構造物3の強度の推定が行われる。変更後の補強部材34は、変更前の補強部材34に対して強度が高いものが選択される。たとえば、変更後の補強部材34は、変更前の補強部材34に対して強度が高い材料のものが選択されてもよい。また、変更後の補強部材34は、変更前の補強部材34に対して強度が高い構造のものが選択されてもよい。また、変更後の補強部材34は、変更前の補強部材34に対して大きいものが選択されてもよい。その後、ステップS22に戻る。ステップS22において、推定した構造物3の強度が所定値以上と判断されるまで、ステップS22〜S23の処理が繰り返される。
【0045】
ステップS22において、推定した構造物3の強度が所定値以上と判断されると、ステップS24において、構造物3の強度が所定値以上となる造形方法を教示する。その後、構造物の造形方法教示処理が終了される。
【0046】
(本実施形態の効果)
次に、本実施形態の効果について説明する。
【0047】
本実施形態では、上記のように、材料31の走査方向、走査ピッチ、積層方向および積層ピッチのうち少なくとも1つを含む材料31の積層方法を取得し、材料31の積層方法による強度の異方性を考慮して構造物3の強度を推定する。これにより、材料31の積層方法に基づいて、構造物3の強度の異方性を考慮して、構造物3全体の強度を推定することができるので、積層造形法により造形した構造物3の強度を精度よく予測することができる。
【0048】
また、本実施形態では、上記のように、材料31の積層方法が共通する部分をグループ化して、グループ化した部分の強度の異方性が等しいとして、構造物3の強度を推定する。これにより、材料31の積層方法が共通してグループ化された部分を同様の解析により強度を予測することができるので、構造物3の強度の予測が複雑になるのを抑制することができる。
【0049】
また、本実施形態では、上記のように、縁部を第1グループ32としてグループ化して、構造物3の縁部の強度を推定するとともに、中実部分を第2グループ33としてグループ化して構造物3の中実部分の強度を推定する。これにより、構造物3の境界面となる縁部を第1グループ32として構造物3の境界面の強度を容易に予測することができる。また、構造物3の内部を第2グループ33として、構造物3の境界面とは別個に強度を予測することができるので、構造物3の強度をより精度よく予測することができる。
【0050】
また、本実施形態では、上記のように、構造物3が隣接する層間で材料31の走査方向が異なるように造形される場合、構造物3が複数の方向の強度の異方性を有するものとして、構造物3の強度を推定する。これにより、材料31の複数の走査方向に基づいて、複数の方向の強度の異方性を持たせて構造物3の強度を推定することができるので、構造物3の強度をより精度よく予測することができる。
【0051】
また、本実施形態では、上記のように、層における材料31の走査方向を変化させて複数の種類の構造物3の強度の推定を行い、推定した強度に基づいて、構造物3を造形する層における材料31の走査方向を決定する。これにより、所望の強度を満たすように、構造物3を造形する際の材料31の走査方向を決定することができるので、造形した構造物3において所望の強度を確保することができる。
【0052】
また、本実施形態では、上記のように、推定した強度に基づいて、構造物3を造形する材料31の走査方向を決定して、積層造形法により材料31を積層して構造物3を造形する。これにより、所望の強度を満たすように、構造物3を造形する際の材料31の走査方向を決定することができるので、造形した構造物3の強度が小さくなるのを抑制することができる。
【0053】
また、本実施形態では、上記のように、推定した構造物3の強度が所定値未満の場合、補強部材34を追加して、積層造形法により材料31を積層して構造物3を造形するよう教示する。これにより、補強部材34より構造物3を補強して造形される構造物3の強度を効果的に高めることができる。
【0054】
[変形例]
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
【0055】
たとえば、上記実施形態では、熱溶解積層法により構造物を造形する例を示したが、本発明はこれに限られない。本発明では、熱溶解積層法以外の積層造形法により構造物を造形してもよい。たとえば、光造形法、インクジェット法などにより構造物を造形してもよい。
【0056】
また、上記実施形態では、有限要素法により構造物の強度を予測(推定)する構成の例を示したが、本発明はこれに限られない。本発明では、有限要素法以外により構造物の強度を予測(推定)してもよい。たとえば、有限差分法、境界要素法、粒子法などにより構造物の強度を予測してもよい。
【0057】
また、上記実施形態では、積層方向および積層ピッチを含む材料の積層方法に基づいて構造物の強度を推定する構成の例を示したが、本発明はこれに限られない。ここで、積層方向や積層ピッチなどと比較すれば影響は小さいものの、造形時の材料温度によって材料の収縮や3Dプリンタからの吐出量が変化するため、そり変形の発生や局所的な密度変化などが発生し、構造物の強度に影響を及ぼす可能性がある。このため、本発明では、材料温度の情報も取得して構造物の強度を推定しても良い。
【0058】
また、上記実施形態では、構造物の縁部と中実部分とを異なるグループに分けて構造物の強度を予測する構成の例を示したが、本発明はこれに限られない。本発明では、構造物の縁部および中実部分以外をグループ化して構造物の強度を予測してもよい。また、3以上のグループに分けて構造物の強度を予測してもよい。
【0059】
また、上記実施形態では、材料をX方向およびY方向の互いに直交する2方向に走査する構成の例を示したが、本発明はこれに限られない。本発明では、材料を1方向に走査してもよいし、3方向以上に走査してもよい。また、複数方向に走査する場合、走査する方向は互いに直交する方向でなくてもよい。
【0060】
また、上記実施形態では、構造物の内側を中実にして造形する構成の例を示したが、本発明はこれに限られない。本発明では、構造物の内側を中空にしてもよい。この場合、強度を確保するために、中空部に柱や梁を造形してもよい。
【0061】
また、上記実施形態では、補強部材が円柱形状を有する構成の例を示したが、本発明はこれに限られない。本発明では、補強部材は、円柱形状以外の形状を有していてもよい。たとえば、補強部材は、角柱形状を有していてもよいし、屈曲または湾曲した形状を有していてもよい。
【0062】
また、上記実施形態では、補強部材が金属により形成されている構成の例を示したが、本発明はこれに限られない。本発明では、補強部材は、金属以外により形成されていてもよい。たとえば、補強部材は、樹脂やFRP(繊維強化プラスチック)などにより形成されていてもよい。
【0063】
また、上記実施形態では、説明の便宜上、コンピュータの処理動作を処理フローに沿って順番に処理を行うフロー駆動型のフローチャートを用いて説明したが、本発明はこれに限らない。本発明では、コンピュータの処理動作を、イベント単位で処理を実行するイベント駆動型(イベントドリブン型)の処理により行ってもよい。この場合、完全なイベント駆動型で行ってもよいし、イベント駆動およびフロー駆動を組み合わせて行ってもよい。