(58)【調査した分野】(Int.Cl.,DB名)
溶接トーチへ送給された溶接ワイヤ、及び開先を有する母材間に電力を供給する溶接電源と、前記開先に沿ってウィービングさせながら前記溶接トーチを移動させる溶接ロボットとを備え、供給された前記電力により前記溶接ワイヤの先端部及び前記母材間にアークが発生し、前記母材に形成された凹状の溶融部分によって囲まれる空間に前記溶接ワイヤの先端部を進入させて前記母材を溶接する消耗電極式のアーク溶接装置であって、
前記溶接トーチのウィービングによって前記溶接ワイヤの先端部が前記開先を横切ることが可能な所定時間の間、一時的に前記溶接ワイヤの先端部が前記空間に進入しない非埋もれ状態へ遷移させる遷移制御部と、
前記溶接ワイヤ及び前記母材間に流れる溶接電流に基づいて前記開先の位置に対する溶接中心位置の偏倚量を検知するアークセンサから、少なくとも前記非埋もれ状態にて前記偏倚量の検知結果を取得する取得部と、
前記非埋もれ状態における前記アークセンサの検知結果に基づいて、前記開先に対する前記溶接トーチの位置を補正する補正制御部と
を備え、
前記溶接電源の設定電圧を上昇させることによって、前記非埋もれ状態へ遷移させる
アーク溶接装置。
前記非埋もれ状態へ遷移する期間においては前記アークセンサの検知結果に基づいて前記開先に対する前記溶接トーチの位置を補正し、他の期間においては前記溶接トーチの位置の補正を行わない
請求項1〜請求項4までのいずれか一項に記載のアーク溶接装置。
溶接トーチへ送給された溶接ワイヤ、及び開先を有する母材間に電力を供給する溶接電源と、前記開先に沿ってウィービングさせながら前記溶接トーチを移動させる溶接ロボットとを備え、供給された前記電力により前記溶接ワイヤの先端部及び前記母材間にアークが発生し、前記母材に形成された凹状の溶融部分によって囲まれる空間に前記溶接ワイヤの先端部を進入させて前記母材を溶接する消耗電極式のアーク溶接装置の動作を制御するアーク溶接方法であって、
前記溶接トーチのウィービングによって前記溶接ワイヤの先端部が前記開先を横切ることが可能な所定時間の間、前記溶接電源の設定電圧を上昇させることによって、一時的に前記溶接ワイヤの先端部が前記空間に進入しない非埋もれ状態へ遷移させ、
前記溶接ワイヤ及び前記母材間に流れる溶接電流に基づいて前記開先の位置に対する溶接中心位置の偏倚量を検知するアークセンサから、少なくとも前記非埋もれ状態にて前記偏倚量の検知結果を取得し、
前記非埋もれ状態における前記アークセンサの検知結果に基づいて、前記開先に対する前記溶接トーチの位置を補正する
アーク溶接方法。
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、埋もれアークを用いたウィービング溶接においては、溶接ワイヤの先端部が溶融部分に囲まれた状態にあるため、開先に対する溶接ワイヤの位置が溶接電流に反映されず、溶接トーチの位置補正を精度良く行うことができないという問題があった。
【0008】
本発明は斯かる事情に鑑みてなされたものであり、その目的は、埋もれアーク溶接においてもアークセンサを用いて溶接トーチの位置を補正することができるアーク溶接装置及びアーク溶接方法を提供することにある。
【課題を解決するための手段】
【0009】
本発明の一態様に係るアーク溶接装置は、溶接トーチへ送給された溶接ワイヤ、及び開先を有する母材間に電力を供給する溶接電源と、前記開先に沿ってウィービングさせながら前記溶接トーチを移動させる溶接ロボットとを備え、供給された前記電力により前記溶接ワイヤの先端部及び前記母材間にアークが発生し、前記母材に形成された凹状の溶融部分によって囲まれる空間に前記溶接ワイヤの先端部を進入させて前記母材を溶接する消耗電極式のアーク溶接装置であって、前記溶接トーチのウィービングによって前記溶接ワイヤの先端部が前記開先を横切ることが可能な所定時間の間、一時的に前記溶接ワイヤの先端部が前記空間に進入しない非埋もれ状態へ遷移させる遷移制御部と、前記溶接ワイヤ及び前記母材間に流れる溶接電流に基づいて前記開先の位置に対する溶接中心位置の偏倚量を検知するアークセンサから、少なくとも前記非埋もれ状態にて前記偏倚量の検知結果を取得する取得部と、前記非埋もれ状態における前記アークセンサの検知結果に基づいて、前記開先に対する前記溶接トーチの位置を補正する補正制御部とを備える。
【0010】
本態様によれば、埋もれアーク溶接において、遷移制御部は、溶融部分に溶接ワイヤの先端部を進入させた埋もれ状態から、一時的に非埋もれ状態へ遷移させる。非埋もれ状態においては、母材の開先と、溶接ワイヤの先端部との位置関係が、溶接電流の変化として反映され、アークセンサによって母材の開先の位置に対する溶接中心位置の偏倚量を検知することが可能になる。取得部は、上記非埋もれ状態にて、アークセンサから、開先に対する溶接中心位置の偏倚量に係る検知結果を取得し、補正制御部は、検知結果に基づいて母材の開先に対する溶接トーチの位置を補正する。
従って、埋もれアーク溶接においてもアークセンサを用いて溶接トーチの位置を補正することができる。
【0011】
本態様に係るアーク溶接装置は、前記溶接電源の設定電圧を上昇させることによって、前記非埋もれ状態へ遷移させる構成が好ましい。
【0012】
溶接電源の設定電圧を上昇させることによって、一時的に埋もれ状態から非埋もれ状態へ遷移させることができ、埋もれアーク溶接においてもアークセンサを用いた溶接トーチの正確な位置補正が可能になる。
【0013】
本態様に係るアーク溶接装置は、前記溶接トーチが前記母材から離隔する方向へ前記溶接トーチを移動させることによって、前記非埋もれ状態へ遷移させる構成が好ましい。
【0014】
母材から離隔する方向へ溶接トーチを移動させることによって、一時的に埋もれ状態から非埋もれ状態へ遷移させることができ、埋もれアーク溶接においてもアークセンサを用いた溶接トーチの正確な位置補正が可能になる。
【0015】
本態様に係るアーク溶接装置は、前記開先に沿って移動する前記溶接トーチの移動速度を変動させることによって、前記非埋もれ状態へ遷移させる構成が好ましい。
【0016】
開先に沿って移動する記溶接トーチの移動速度を加速させることによって、一時的に埋もれ状態から非埋もれ状態へ遷移させることができ、埋もれアーク溶接においてもアークセンサを用いた溶接トーチの正確な位置補正が可能になる。
【0017】
本態様に係るアーク溶接装置は、前記溶接ワイヤの送給速度を変動させることによって、前記非埋もれ状態へ遷移させる構成が好ましい。
【0018】
溶接ワイヤの溶融速度に対する溶接ワイヤの送給速度を減速させることによって、一時的に埋もれ状態から非埋もれ状態へ遷移させることができ、埋もれアーク溶接においてもアークセンサを用いた溶接トーチの正確な位置補正が可能になる。
【0019】
本態様に係るアーク溶接装置は、前記非埋もれ状態へ遷移する期間においては前記アークセンサの検知結果に基づいて前記開先に対する前記溶接トーチの位置を補正し、他の期間においては前記溶接トーチの位置の補正を行わない構成が好ましい。
【0020】
非埋もれ状態時にアークセンサによる溶接トーチの位置補正を行い、偏倚量の検知が不正確になる可能性がある埋もれ状態時においてはアークセンサによる溶接トーチの位置補正を行わない。
従って、常時、溶接トーチの位置補正を行う場合に比べて、より正確に溶接トーチの位置を補正することができる。
【0021】
本発明の一態様に係るアーク溶接方法は、溶接トーチへ送給された溶接ワイヤ、及び開先を有する母材間に電力を供給する溶接電源と、前記開先に沿ってウィービングさせながら前記溶接トーチを移動させる溶接ロボットとを備え、供給された前記電力により前記溶接ワイヤの先端部及び前記母材間にアークが発生し、前記母材に形成された凹状の溶融部分によって囲まれる空間に前記溶接ワイヤの先端部を進入させて前記母材を溶接する消耗電極式のアーク溶接装置の動作を制御するアーク溶接方法であって、前記溶接トーチのウィービングによって前記溶接ワイヤの先端部が前記開先を横切ることが可能な所定時間の間、一時的に前記溶接ワイヤの先端部が前記空間に進入しない非埋もれ状態へ遷移させ、前記溶接ワイヤ及び前記母材間に流れる溶接電流に基づいて前記開先の位置に対する溶接中心位置の偏倚量を検知するアークセンサから、少なくとも前記非埋もれ状態にて前記偏倚量の検知結果を取得し、前記非埋もれ状態における前記アークセンサの検知結果に基づいて、前記開先に対する前記溶接トーチの位置を補正する。
【0022】
本態様のアーク溶接方法によれば、埋もれアーク溶接においてもアークセンサを用いた溶接トーチの正確な位置補正が可能になる。
【発明の効果】
【0023】
本発明によれば、埋もれアーク溶接においてもアークセンサを用いて溶接トーチの位置を補正することができる。
【発明を実施するための形態】
【0025】
以下、本発明をその実施形態を示す図面に基づいて詳述する。
(実施形態1)
図1は、本実施形態1に係るアーク溶接装置の一構成例を示す模式図である。本実施形態1に係るアーク溶接装置は、300A以上の大電流埋もれアーク溶接が可能な消耗電極式のガスシールドアーク溶接機であり、溶接トーチ11及びワイヤ送給部12が取り付けられた溶接ロボット1、溶接電源2、アークセンサ3及び制御装置4を備える。制御装置4にはティーチペンダント4aが接続されている。制御装置4は、ティーチペンダント4aから出力される操作信号に基づいて、動作制御信号を溶接ロボット1へ出力すると共に、所定のタイミングで溶接制御信号を溶接電源2へ出力することによって、溶接ロボット1及び溶接電源2の動作を制御する。特に本実施形態1に係るアーク溶接方法は、埋もれアーク溶接においてもアークセンサ3を用いた溶接トーチ11の正確な位置補正を可能にするものである。
【0026】
溶接ロボット1は、床面の適宜箇所に固定される基部13を備える。基部13には、複数のアーム14が軸部を介して回動可能に連結している。先端側に連結されたアーム14の先端部位には、溶接トーチ11が保持されている。アーム14の連結部分にはサーボモータが設けられており、サーボモータの回転駆動力によって軸部を中心に各アーム14が回動する。サーボモータの回転は制御装置4によって制御されている。制御装置4は、各アーム14を回動させることによって、母材5に対して溶接トーチ11を上下前後左右に移動させることができる。各アーム14の連結部分には、アーム14の回動位置を示す信号を制御装置4へ出力するエンコーダが設けられており、制御装置4は、エンコーダから出力された信号に基づいて、溶接トーチ11の位置を認識する。また、制御装置4は溶接電源2と通信を行い、溶接ワイヤ6の送給及び溶接電流Iwの供給を制御する。
【0027】
溶接トーチ11は、銅合金等の導電性材料からなり、母材5の被溶接部へ溶接ワイヤ6を案内すると共に、アーク8(
図9参照)の発生に必要な溶接電流Iwを供給する円筒形状のコンタクトチップを有する。コンタクトチップは、その内部を挿通する溶接ワイヤ6に接触し、溶接電流Iwを溶接ワイヤ6に供給する。また、溶接トーチ11は、コンタクトチップを囲繞する中空円筒形状をなし、被溶接部へシールドガスを噴射するノズルを有する。シールドガスは、アーク8によって溶融した母材5及び溶接ワイヤ6の酸化を防止するためのものである。シールドガスは、例えば炭酸ガス、炭酸ガス及びアルゴンガスの混合ガス、アルゴン等の不活性ガス等である。
【0028】
溶接ワイヤ6は、例えばソリッドワイヤであり、その直径は0.9mm以上1.6mm以下であり、消耗電極として機能する。溶接ワイヤ6は、例えば、螺旋状に巻かれた状態でペールパックに収容されたパックワイヤ、あるいはワイヤリールに巻回されたリールワイヤである。
【0029】
ワイヤ送給部12は、溶接ワイヤ6を溶接トーチ11へ送給する送給ローラと、当該送給ローラを回転させるモータとを有する。ワイヤ送給部12は、送給ローラを回転させることによって、ワイヤリール等のワイヤ供給源から溶接ワイヤ6を引き出し、引き出された溶接ワイヤ6を溶接トーチ11へ供給する。なお、かかる溶接ワイヤ6の送給方式は一例であり、特に限定されるものでは無い。
【0030】
図2は、溶接電源2の一構成例を示す模式図である。溶接電源2は、給電ケーブルを介して、溶接トーチ11のコンタクトチップ及び母材5に接続され、溶接電流Iwを供給する電源部21と、溶接ワイヤ6の送給速度を制御する送給速度制御部22とを備える。なお、電源部21及び送給速度制御部22を別体で構成しても良い。電源部21は、定電圧特性の電源であり、PWM制御された直流電流を出力する電源回路21a、出力電圧設定回路21b、周波数設定回路21c、電流振幅設定回路21d、平均電流設定回路21e、電圧検出部21f、電流検出部21g及び比較回路21hを備える。
【0031】
電圧検出部21fは、溶接電圧Vwを検出し、検出した電圧値を示す電圧値信号Edを比較回路21hへ出力する。
【0032】
電流検出部21gは、例えば、溶接電源2から溶接トーチ11を介して溶接ワイヤ6へ供給され、アーク8を流れる溶接電流Iwを検出し、検出した電流値を示す電流値信号Idを出力電圧設定回路21bへ出力する。
【0033】
周波数設定回路21cは、母材5及び溶接ワイヤ6間の溶接電圧Vw及び溶接電流Iwを周期的に変動させる周波数を設定するための周波数設定信号を出力電圧設定回路21bへ出力する。
溶接電圧Vw及び溶接電流Iwを変動させる目的としては、本実施形態1に係るアーク溶接方法にて溶接トーチ11の位置補正を正確に行うことと、溶融金属を安定化させることがある。本実施形態1においては、溶接トーチ11の位置補正を行うための設定電圧Eの変動は制御装置4が都度制御し、周波数設定回路21cにて設定される周波数は、溶融金属を安定化させるためのものとする。具体的には周波数設定回路21cは、10Hz以上1000Hz以下の周波数、好ましくは50Hz以上300Hz以下の周波数、より好ましくは80Hz以上200Hz以下の周波数を示す周波数設定信号を出力するように構成しても良い。なお、溶接電流Iwを変動させることそれ自体は、埋もれアーク溶接を実施する必須の溶接条件では無い。
なお、本実施形態1に係るアーク溶接方法、即ち溶接トーチ11の位置補正を実施するために、周波数設定回路21cが、例えばウィービング周期の数倍ないし十数倍の周期で、好ましくはウィービング周期1周期以上の期間、設定電圧Eが上昇するように、周波数設定信号を出力電圧設定回路21bへ出力するように構成しても良い。
【0034】
電流振幅設定回路21dは、周期的に変動する溶接電流Iwの振幅を設定するための振幅設定信号を出力電圧設定回路21bへ出力する。本実施形態1に係るアーク溶接方法を実施する場合、電流振幅設定回路21dは、50A以上の電流振幅、好ましくは、100A以上500A以下の電流振幅、より好ましくは200A以上400A以下の電流振幅を示す振幅設定信号を出力する。
【0035】
平均電流設定回路21eは、周期的に変動する溶接電流Iwの平均電流を設定するための平均電流設定信号を出力電圧設定回路21b及び送給速度制御部22へ出力する。本実施形態1に係るアーク溶接方法を実施する場合、平均電流設定回路21eは、300A以上の平均電流、好ましくは平均電流を300A以上1000A以下の平均電流、より好ましくは500A以上800A以下の平均電流を示す平均電流設定信号を出力する。
【0036】
出力電圧設定回路21bは、各部から出力された電流値信号Id、周波数設定信号、振幅設定信号、平均電流設定信号に基づいて、溶接電流Iwが目標とする周波数、電流振幅及び平均電流となるように、例えば、矩形波状又は三角波状等の任意波形の目標電圧を示す出力電圧設定信号Ecrを生成し、生成した出力電圧設定信号Ecrを比較回路21hへ出力する。
【0037】
比較回路21hは、電圧検出部21fから出力された電圧値信号Edと、出力電圧設定回路21bから出力された出力電圧設定信号Ecrとを比較し、その差分を示す差分信号Evを電源回路21aへ出力する。
【0038】
電源回路21aは、商用交流を交直変換するAC−DCコンバータ、交直変換された直流をスイッチングにより所要の交流に変換するインバータ回路、変換された交流を整流する整流回路等を備える。電源回路21aは、比較回路21hから出力された差分信号Evに従って、インバータをPWM制御し、電圧を溶接ワイヤ6へ出力する。その結果、母材5及び溶接ワイヤ6間に、周期的に変動する溶接電圧Vwが印加され、溶接電流Iwが通電する。なお、溶接電源2には、制御通信線を介して制御装置4から溶接制御信号が入力されるように構成されており、電源部21は、溶接制御信号に基づいて電源回路21aに溶接電流Iwの供給を開始させる。
【0039】
送給速度制御部22は、平均電流設定信号に基づいてワイヤ送給部12による溶接ワイヤ6の送給を制御する。本実施形態1に係るアーク溶接方法を実施する場合、約5m〜100m/分で溶接ワイヤ6が送給されるように制御すると良い。
【0040】
なお、溶接電源2の電源部21は、定電圧特性を有する。例えば、電源部21は、100Aの溶接電流Iwの増加に対する溶接電圧Vwの低下が2V以上20V以下となる外部特性を有する。電源部21の外部特性をこのように設定することにより、埋もれアーク状態を維持することが容易となる。
【0041】
図3は、アークセンサ3の一構成例を示す模式図である。アークセンサ3は、アーク電流検出部31、増幅器32、A/D変換器33、演算処理部34、入出力部35、主記憶回路36、補助記憶回路37等を備える。
アーク電流検出部31は、トーチ側給電ケーブルLに取り付けられ、溶接電流Iwを検出する。具体的には、アーク電流検出部31は、トーチ側給電ケーブルLを囲繞する磁性体コア、トーチ側給電ケーブルLに流れる溶接電流Iwによって磁性体コアに生ずる磁場を検出し、電流の大きさ及び向きに応じた信号を出力するホール素子等を有する。増幅器32は、アーク電流検出部31から出力された信号を増幅し、A/D変換器33へ出力する。A/D変換器33は、増幅器32から出力されたアナログの信号をデジタル信号に変換し、デジタル変換された溶接電流Iwを演算処理部34へ出力する。入出力部35は、制御装置4との間で信号が入出力されるインタフェースである。主記憶回路36は、演算処理によって生ずる各種データを一時記憶する記憶素子である。補助記憶回路37は、EEPROM等のROMであり、アーク電流検出部31にて検出された溶接電流Iw、制御装置4から入出力部35に入力されたウィービング周期、振幅、位相等を示すウィービング情報等を記憶する。
演算処理部34は、A/D変換器33から出力された溶接電流Iwと、入出力部35に入力されたウィービング情報とを取得し、取得した溶接電流Iw及びウィービング情報に基づいて、母材5の開先5aに対する溶接ワイヤ6の先端部6aの偏倚量を検知する。言い換えると、開先5aに対するウィービング中心点の偏倚量を算出する。
具体的には、演算処理部34は、ウィービング情報に基づいて溶接トーチ11が振れている方向を判断し、溶接トーチ11の進行方向に対して、当該溶接トーチ11が右側に振れているときの溶接電流Iwの積分値と、左側に振れているときの溶接電流Iwの積分値とを算出する。そして、演算処理部34は、算出された各積分値の差分値を演算し、当該差分値を偏倚量に換算し、入出力部35を介して溶接ロボット1へ出力する。
【0042】
図4は、制御装置4の一構成例を示すブロック図である。制御装置4は、CPU41を備え、CPU41には、演算処理によって生ずる各種データを記憶するRAM42、制御プログラム48を記憶する不揮発性の記憶部43、第1乃至第4入出力部44、45、46、47が接続されている。制御装置4はコンピュータを構成している。制御プログラム48は、CPU41に実行させることによって、埋もれアーク溶接におけるアークセンサ3を用いた溶接トーチ11の位置補正を正確に実施するためのコンピュータプログラムである。
なお、本実施形態1に係る制御プログラム48は、記録媒体49にコンピュータ読み取り可能に記録された態様でも良い。記憶部43は、図示しない読出装置によって記録媒体49から読み出された制御プログラム48を記憶する。記録媒体49はCD(Compact Disc)−ROM、DVD(Digital Versatile Disc)−ROM、BD(Blu-ray(登録商標) Disc)等の光ディスク、フレキシブルディスク、ハードディスク等の磁気ディスク、磁気光ディスク、半導体メモリ等である。また、図示しない通信網に接続されている図示しない外部コンピュータから本実施形態1に係る制御プログラム48をダウンロードし、記憶部43に記憶させても良い。
【0043】
ティーチペンダント4aは可搬式の教示操作装置であり、第1入出力部44に接続されている。作業者は、ティーチペンダント4aを用いて溶接トーチ11の位置及び姿勢を示した複数の教示点を入力する。教示点は、例えば溶接開始点、溶接終了点、中間点等を含む。CPU41は、第1入出力部44にて教示点を取得して溶接プログラムを作成し、作成された溶接プログラムを記憶部43に記憶する。
【0044】
第2入出力部45にはアークセンサ3が接続されており、CPU41は、アークセンサ3にて検知された偏倚量を取得する。CPU41は、取得した偏倚量に基づいて、母材5の開先5aの位置と、溶接中心位置とのずれ量、即ち開先5aの位置に対するウィービング中心点のずれ量を把握することができる。
【0045】
第3入出力部46及び第4入出力部47には溶接ロボット1及び溶接電源2が接続されている。CPU41は、記憶部43が記憶する溶接プログラムを解釈し、溶接ロボット1のサーボモータを駆動して溶接ロボット1を動作させるため動作制御信号を生成し、生成した動作制御信号を溶接ロボット1へ出力する。動作制御信号を受信した溶接ロボット1は、複数の教示点によって定められる教示線に沿って溶接トーチ11を移動させる。特に本実施形態1においては、溶接ロボット1は、溶接トーチ11が教示線を繰り返し横切るように往復運動するするウィービング動作を行う。
また、CPU41は、溶接の開始指示又は停止指示、設定電圧E、溶接電流Iw等を示す溶接制御信号を生成し、生成した溶接制御信号を溶接電源2へ出力する。溶接制御信号を受信した溶接電源2は、溶接制御信号に従って、所要の設定電圧E及び電流にて溶接ワイヤ6及び母材5間に電力を供給する。
【0046】
図5は、実施形態1に係る埋もれアーク溶接及び溶接トーチ11の位置補正の手順を示すフローチャート、
図6は、ウィービング溶接の動作を示す斜視図、
図7は、設定電圧Eを一時的に上昇させることによる非埋もれ状態への遷移を示すタイミングチャートである。まず、アーク溶接を開始する前に、Y型の開先5aが形成された第1母材51及び第2母材52を
図6に示すように突き合わせて配置する。
母材5が用意され、溶接の開始操作が行われた制御装置4は、動作制御信号を溶接ロボット1へ出力することによって、溶接トーチ11を溶接開始点へ移動させると共に(ステップS11)、溶接制御信号を溶接電源2へ出力して埋もれアーク溶接を開始させる(ステップS12)。また、制御装置4は、
図6中実線矢印で示すように、溶接ロボット1にウィービングを開始させる(ステップS13)。
【0047】
次いで、制御装置4は、溶接ワイヤ6の偏倚量検知開始命令をアークセンサ3へ出力し(ステップS14)、
図6中白抜き矢印で示すように、溶接トーチ11を溶接線に沿って移動させる(ステップS15)。また、制御装置4は、ウィービング情報をアークセンサ3へ出力する(ステップS16)。ウィービング情報は、少なくともウィービング位置又は位相を示す情報を含む。
【0048】
開始命令を受信したアークセンサ3は、母材5の開先5aに対する溶接中心点位置の偏倚を検知し、当該偏倚の大きさ及び偏倚方向を示した偏倚量を制御装置4へ出力する。以下、アークセンサ3側の処理手順を説明する。
【0049】
アークセンサ3は、制御装置4から出力される信号を監視しており、偏倚量検知開始命令を受信したか否かを判定する(ステップS31)。開始命令を受信していないと判定した場合(ステップS31:NO)、アークセンサ3は処理をステップS31へ戻し、待機する。開始信号を受信したと判定した場合(ステップS31:YES)、偏倚量検知停止命令を受信するまでの間、開先5aに対する溶接トーチ11の偏倚量を検知する以下の処理を実行する。
【0050】
アークセンサ3は、制御装置4から出力されるウィービング情報を受信し、記憶する(ステップS32)。また、アーク電流検出部31にて溶接電流Iwを検出し、検出された溶接電流Iwを記憶する(ステップS33)。次いで、アークセンサ3は、溶接中心位置である教示点から溶接方向に対して右方へ溶接トーチ11が移動したときに検出される溶接電流Iwの積分値を算出する(ステップS34)。また、アークセンサ3は、教示点から左方へ溶接トーチ11が移動したときに検出される溶接電流Iwの積分値を算出する(ステップS35)。次いで、アークセンサ3は、溶接電流Iwの積分値の差分を算出し(ステップS36)、差分値に基づいて、溶接トーチ11の偏倚量を算出する(ステップS37)。そして、アークセンサ3は算出した偏倚量を制御装置4へ出力する(ステップS38)。
【0051】
制御装置4は、アークセンサ3から出力される偏倚量を取得し、取得した偏倚量に基づいて溶接トーチ11の位置を補正する(ステップS17)。溶接トーチ11の位置補正処理は、埋もれアーク溶接が行われている間、常時行われる。埋もれ状態にあるときに検知される偏倚量は通常はゼロに近い値であるため、埋もれ状態で溶接トーチ11の位置を補正しても問題にはならない。
【0052】
次いで、制御装置4は、偏倚量の検知に適した状態へ遷移させる所定の検知開始タイミングであるか否かを判定する(ステップS18)。検知開始タイミングは、例えば、ウィービング周期の数倍ないし十数倍の周期で到来する時点である。所定の検知タイミングであると判定した場合(ステップS18:YES)、制御装置4は、溶接制御信号を溶接電源2へ出力して溶接の設定電圧Eを上昇させることにより、埋もれ状態から非埋もれ状態へ遷移させる(ステップS19)。設定電圧Eが上昇すると、溶接ワイヤ6の溶融が進行し、埋もれ状態から脱し、非埋もれ状態へ移行する。
【0053】
検知開始タイミングで無いと判定した場合(ステップS18:NO)、又はステップS19の処理を終えた場合、制御装置4は、所定の検知終了タイミングであるか否かを判定する(ステップS20)。検知終了タイミングは、検知開始タイミングからウィービング1周期又は数周期に相当する所定時間が経過した時点である。検知終了タイミングであると判定した場合(ステップS20:YES)、制御装置4は、溶接制御信号を溶接電源2へ出力して溶接の設定電圧Eを元の電圧に低下させることにより、非埋もれ状態から埋もれ状態へ遷移させる(ステップS21)。
【0054】
ステップS18〜ステップS19の処理を実行することによって、制御装置4は、埋もれアーク溶接の実行中、
図7に示すように定期的に非埋もれ状態に遷移させる。例えば、ウィービングを10回行う毎に、ウィービング周期1周期の期間だけ非埋もれ状態にすることができる。非埋もれ状態においては、開先5aに対する溶接トーチ11の偏倚量を正確に検知することが可能になる。つまり、定期的に溶接トーチ11の偏倚を正確に補正することが可能な状態となる。
【0055】
図8は、ウィービング経路並びに埋もれ状態及び非埋もれ状態の位置を示す模式図である。
図8中、実線はウィービング経路を示している。
図8中、開先5aに沿って周期的に描かれた黒塗りの細長楕円部分は埋もれ状態に遷移して溶接が行われた部分を示し、細長楕円部分が途切れている部分は非埋もれ状態へ遷移して溶接が行われた部分を示している。なお、細長楕円部分は、ビードが形成される部位を示したものでは無い。ウィービング経路は非埋もれ状態で溶接が行われた箇所で開先5aを横切っており、開先5aに対する溶接中心点の検知が可能である。
【0056】
図9は、埋もれ状態及び非埋もれ状態を示す断面図である。
図9Aは埋もれ状態、
図9Bは非埋もれ状態を示している。埋もれアーク溶接が行われている場合、
図9Aに示すように、溶接ワイヤ6の先端部6a及び母材5間に発生したアーク8の熱によって溶融した母材5及び溶接ワイヤ6の溶融金属からなる凹状の溶融部分7が母材5に形成され、溶接ワイヤ6の先端部6aが溶融部分7に囲まれた空間7aに侵入する。溶接ワイヤ6は溶融部分7に囲まれているため、溶接トーチ11がウィービングしても、開先5aに対する溶接ワイヤ6の位置が溶接電流Iwの変化として反映されない。
一方、設定電圧Eが上昇して埋もれ状態を脱した場合、
図9Bに示すように、開先5aに対する溶接ワイヤ6の位置が溶接電流Iwの変化として反映される状態になる。
【0057】
図10は、埋もれアーク溶接過程で設定電圧Eを変動させることによる埋もれ状態及び非埋もれ状態間の遷移を示す側断面図である。
図10Aは埋もれ状態を示し、
図10Bは非埋もれ状態に遷移した状態を示し、
図10Cは再び埋もれ状態に遷移した状態を示している。設定電圧Eが上昇して非埋もれ状態になった場合であっても、溶接トーチ11は継続して移動しているため、
図10Bに示すように一時的に埋もれアーク溶接が行われない部分が生じ、埋もれ状態を脱することができる。しかし、埋もれアーク溶接が再開されると、
図10Cに示すように再び溶融部分7が広がって形成されるため、埋もれアーク溶接を連続的に行ったときと何ら変わらないビードが形成される。つまり、一時的に溶融部分7が形成されなかった部分にまで溶融部分7が広がり、埋もれアーク溶接が再開される。
【0058】
図5に戻り、ステップS20以降の処理を説明する。ステップS20において検知終了タイミングで無いと判定した場合(ステップS20:NO)、又はステップS21の処理を終えた場合、制御装置4は、溶接トーチ11が溶接終了点に到達したか否かを判定する(ステップS22)。溶接終了点に到達していないと判定した場合(ステップS22:NO)、制御装置4は処理をステップS15へ戻す。溶接終了点に到達したと判定した場合(ステップS22:YES)、制御装置4は、溶接ロボット1及び溶接電源2を停止させ、溶接を終了させる(ステップS23)。そして、制御装置4は、偏倚量検知停止命令をアークセンサ3へ出力し(ステップS24)、処理を終える。
【0059】
偏倚量の検知を行っているアークセンサ3は、制御装置4から出力される信号を監視しており、偏倚量検知停止命令を受信したか否かを判定する(ステップS39)。停止命令を受信していないと判定した場合(ステップS39:NO)、アークセンサ3は処理をステップS32へ戻す。終了信号を受信したと判定した場合(ステップS39:YES)、偏倚量の検知に係る処理を終える。
【0060】
埋もれアーク溶接においてもアークセンサ3を用いた溶接トーチ11の位置補正が可能になる溶接条件の一例は次の通りである。例えば、母材5の板厚が19mm、溶接ワイヤ6のワイヤ径が1.4mm、溶接ワイヤ6の送給速度が23m/分、溶接電流Iwが600A、アーク電圧が48V、溶接線に沿った溶接トーチ11の移動速度が約30cm/分、ウィービング幅、即ちウィービングの振幅が±3mm、ウィービング周波数が0.5〜3Hzの溶接条件で溶接を行うと良い。そして、ウィービング10往復につき1回の周期で、溶接の設定電圧Eを51Vまで上昇させることにより非埋もれ状態へ遷移させる。溶接トーチ11の位置を溶接電流Iwに反映させやすい状態にすることにより、アークセンサ3の検知精度を向上させることができ、正確に溶接トーチ11の位置を補正することができる。
非埋もれ状態へ遷移させる期間は特に限定されるものでは無いが、当該期間は、非埋もれ状態にある期間よりも埋もれ状態にある期間の方が長くなるように設定すると良い。
【0061】
以上の通り、本実施形態1に係る制御装置4、アーク溶接装置、アーク溶接方法及び制御プログラム48によれば、埋もれアーク溶接においてもアークセンサ3を用いた溶接トーチ11の位置補正を正確に行うことができる。具体的には、溶接電源2の設定電圧Eを上昇させることによって、一時的に埋もれ状態から非埋もれ状態へ遷移させ、アークセンサ3を用いた溶接トーチ11の位置補正を正確に行うことができる。
【0062】
また、ウィービング1周期以上の所定時間の間、一時的に非埋もれ状態に遷移させる構成であるため、非埋もれ状態がウィービング1周期以上継続し、溶接トーチ11のウィービングによって、溶接ワイヤ6の先端部6aは確実に母材5の開先5aを横切る。従って、開先5aに対する溶接中心点の偏倚量を確実に検知し、溶接トーチ11の位置を補正することができる。
【0063】
なお、本実施形態1においては、制御装置4が設定電圧Eを都度制御する例を説明したが、制御装置4の命令に従って、溶接電源2が設定電圧Eを周期的に変動させても良い。つまり、本実施形態1に係るアーク溶接方法、即ち溶接トーチ11の位置補正を実施するために、周波数設定回路21cが、例えばウィービング周期の数倍ないし十数倍の周期で、好ましくはウィービング周期1周期以上の期間、設定電圧Eが上昇するように、周波数設定信号を出力電圧設定回路21bへ出力するように構成しても良い。
【0064】
また、上記実施形態1では、設定電圧Eを上昇させることによって埋もれ状態から非埋もれ状態へ遷移させる例を説明したが、非埋もれ状態へ遷移させる方法は特に限定されるものでは無く、種々の変形が可能である。
【0065】
(変形例1)
変形例1は、母材5から離隔する方向へ溶接トーチ11を移動させることによって、非埋もれ状態へ遷移させる構成例である。
図11は、埋もれアーク溶接過程で溶接トーチ11の高さを変動させることによる埋もれ状態及び非埋もれ状態間の遷移を示す側断面図である。
図11Aは埋もれ状態を示し、
図11Bは非埋もれ状態に遷移した状態を示し、
図11Cは再び埋もれ状態に遷移した状態を示している。制御装置4は、動作制御信号を溶接ロボット1へ出力し、溶接トーチ11を引き上げることによって、
図11Aに示した埋もれ状態から
図11Bに示すように非埋もれ状態へ遷移させることができる。また、制御装置4は、動作制御信号を溶接ロボット1へ出力し、溶接トーチ11の高さを元に戻すことによって、
図11Cに示すように埋もれアーク溶接を再開させることができる。
【0066】
(変形例2)
変形例2は、溶接トーチ11が溶接線に沿って移動する移動速度を変動させることによって、非埋もれ状態へ遷移させる構成例である。
図12は、埋もれアーク溶接過程で溶接トーチ11の移動速度を変化させることによる埋もれ状態及び非埋もれ状態間の遷移を示す側断面図である。
図12Aは埋もれ状態を示し、
図12Bは非埋もれ状態に遷移した状態を示し、
図12Cは再び埋もれ状態に遷移した状態を示している。制御装置4は、動作制御信号を溶接ロボット1へ出力し、溶接トーチ11を溶接方向へ加速させることによって、
図12Aに示した埋もれ状態から
図12Bに示すように非埋もれ状態へ遷移させることができる。また、制御装置4は、動作制御信号を溶接ロボット1へ出力し、溶接トーチ11の移動速度を元の速度に減速させることによって、
図11Cに示すように埋もれアーク溶接を再開させることができる。
【0067】
(変形例3)
変形例3は、溶接ワイヤ6の溶融速度に対する溶接ワイヤ6の送給速度を変動させることによって、非埋もれ状態へ遷移させる構成例である。制御装置4は、溶接制御信号を溶接電源2へ出力し、溶接ワイヤ6の送給速度を減速させることによって、埋もれ状態から非埋もれ状態へ遷移させることができる。例えば溶接電流Iwを変動させることによって、溶接ワイヤ6の溶融速度に対する溶接ワイヤ6の送給速度を減速させることができる。溶接電流Iwが増加し、溶接ワイヤ6の溶融速度が上昇すると、溶接ワイヤ6が溶融部分7から引き上げられ、非埋もれ状態へ遷移する。また、制御装置4は、溶接制御信号を溶接電源2へ出力し、溶接ワイヤ6の送給速度を元の速度に変動させることによって埋もれアーク溶接を再開させることができる。
【0068】
(実施形態2)
実施形態2に係るアーク溶接装置は、非埋もれ状態へ遷移させたときのみ、溶接トーチ11の位置補正を行う点が実施形態1と異なるため、以下では主に上記相違点を説明する。その他の構成及び作用効果は実施形態と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
【0069】
図13及び
図14は、実施形態2に係る埋もれアーク溶接及び溶接トーチ11の位置補正の手順を示すフローチャートである。アークセンサ3側の処理手順は実施形態1と同様であるため図示を省略する。制御装置4は、実施形態1のステップS11〜ステップS13と同様の処理を実行することによって、溶接トーチ11を溶接開始点へ移動させ(ステップS71)、埋もれアーク溶接を開始させ(ステップS72)、ウィービングを開始させる(ステップS73)。そして、制御装置4は、溶接トーチ11を溶接線に沿って移動させる(ステップS74)。
【0070】
次いで、制御装置4は、溶接トーチ11が溶接終了点に到達したか否かを判定する(ステップS75)。溶接終了点に到達したと判定した場合(ステップS75:YES)、制御装置4は、溶接ロボット1及び溶接電源2を停止させ、溶接を終了させる(ステップS76)。溶接終了点に到達していないと判定した場合(ステップS75:NO)、制御装置4は検知開始タイミングであるか否かを判定する(ステップS77)。検知開始タイミングで無いと判定した場合(ステップS77:NO)、制御装置4は処理をステップS74へ戻す。
【0071】
検知開始タイミングであると判定した場合(ステップS77:YES)、制御装置4は、溶接制御信号を溶接電源2へ出力して溶接の設定電圧Eを上昇させることにより、埋もれ状態から非埋もれ状態へ遷移させる(ステップS78)。そして、制御装置4は、溶接ワイヤ6の偏倚量検知開始命令をアークセンサ3へ出力し(ステップS79)、ウィービング情報をアークセンサ3へ出力する(ステップS80)。
【0072】
次いで、制御装置4は、溶接トーチ11を溶接線に沿って移動させる(ステップS81)。そして、制御装置4は、非埋もれ状態においてアークセンサ3から出力される偏倚量を取得し、取得した偏倚量に基づいて溶接トーチ11の位置を補正する(ステップS82)。
【0073】
次いで、制御装置4は、溶接トーチ11が溶接終了点に到達したか否かを判定する(ステップS83)。溶接終了点に到達したと判定した場合(ステップS83:YES)、制御装置4は、溶接ロボット1及び溶接電源2を停止させ、溶接を終了させる(ステップS84)。溶接終了点に到達していないと判定した場合(ステップS83:NO)、制御装置4は検知終了タイミングであるか否かを判定する(ステップS85)。検知終了タイミングで無いと判定した場合(ステップS85:NO)、制御装置4は処理をステップS80へ戻す。
【0074】
検知終了タイミングであると判定した場合(ステップS85:YES)、制御装置4は、溶接制御信号を溶接電源2へ出力して溶接の設定電圧Eを元の電圧に低下させることにより、非埋もれ状態から埋もれ状態へ遷移させる(ステップS86)。そして、制御装置4は、偏倚量検知停止命令をアークセンサ3へ出力し(ステップS87)、処理をステップS74へ戻す。
【0075】
以上の通り、本実施形態2に係る制御装置4、アーク溶接装置、アーク溶接方法及び制御プログラム48によれば、非埋もれ状態時にアークセンサ3による溶接トーチ11の位置補正を行い、偏倚量の検知が不正確になる可能性がある埋もれ状態時においてはアークセンサ3による溶接トーチ11の位置補正を行わない。従って、常時、溶接位置の補正を行う場合に比べて、より正確に溶接位置を補正することができる。
【0076】
なお、設定電圧Eを上昇させることによって埋もれ状態から非埋もれ状態へ遷移させる例を説明したが、上記変形例1〜3のように非埋もれ状態へ遷移させる方法は特に限定されるものでは無い。
【0077】
今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。