(58)【調査した分野】(Int.Cl.,DB名)
回路基板を含むワークと、レーザ光を透過する支持体とが、少なくとも前記レーザ光の吸収で剥離可能に変質する分離層を介して積層される積層体において、前記ワークを着脱自在に保持する保持部材と、
前記保持部材に保持された前記積層体の前記支持体を透して前記分離層の全面に向け前記レーザ光を照射する光照射部と、
前記保持部材に保持された前記積層体の前記支持体及び前記分離層に対する前記光照射部からの光照射位置を、少なくとも前記光照射部からの光照射方向と交差する方向へ相対的に移動させる駆動部と、
前記光照射部及び前記駆動部を作動制御する制御部と、を備え、
前記光照射部は、レーザ光源からパルス発振されたスポット状の前記レーザ光の光軸を動かすレーザスキャナを有し、前記積層体に対して掃引するように構成され、
前記積層体に向けて前記レーザスキャナから照射する前記レーザ光の領域は、前記分離層の照射面全体が複数の照射領域に分割されるとともに、この分割した各照射領域に対する前記レーザスキャナからの照射が、前記光照射方向と交差する平面上で前記スポット状の前記レーザ光の一部が重なり合うように並んだ整列照射であり、
前記制御部は、前記複数の照射領域のうち一つの照射領域に対して、少なくとも前記レーザスキャナの作動により前記整列照射が行われ、前記複数の照射領域のうち一つの前記照射領域の全体が前記整列照射で隙間なく埋め尽くされた後に、次の照射領域に対する前記整列照射が行われ、それ以降は前記各照射領域毎にそれぞれ前記整列照射を同様に繰り返して、最終的に前記複数の照射領域のすべてが整列照射されるように制御することを特徴とするワーク分離装置。
前記駆動部が、前記光照射部に対して前記保持部材を前記光照射部からの光照射方向と交差する二方向へ相対的に動かすX軸移動機構及びY軸移動機構を有することを特徴とする請求項1又は2記載のワーク分離装置。
前記複数の照射領域の境目を挟んで照射される前記レーザ光の間隔は、前記レーザ光のビーム径よりも小さく設定されることを特徴とする請求項1、2又は3記載のワーク分離装置。
前記制御部が、前記光照射部から前記複数の照射領域への前記レーザ光の照射順序として、先に照射した前記照射領域と前記次の照射領域とが離隔する順番で照射されるように制御することを特徴とする請求項1、2、3又は4記載のワーク分離装置。
回路基板を含むワークと、レーザ光を透過する支持体とが、少なくとも前記レーザ光の吸収で剥離可能に変質する分離層を介して積層される積層体において、前記ワークを保持部材に着脱自在に保持する保持工程と、
前記保持部材に保持された前記積層体の前記支持体を透して前記分離層の全面に向け光照射部から前記レーザ光を照射する光照射工程と、
前記保持部材に保持された前記積層体の前記支持体及び前記分離層に対する前記光照射部からの光照射位置を、少なくとも前記光照射部からの光照射方向と交差する方向へ駆動部により相対的に移動させる相対移動工程と、を含み、
前記光照射部は、レーザ光源からパルス発振されたスポット状の前記レーザ光の光軸を動かすレーザスキャナを有し、前記積層体に対して掃引するように構成され、
前記光照射工程では、前記積層体に向けて前記レーザスキャナから照射される前記レーザ光の領域は、前記分離層の照射面全体が複数の照射領域に分割されるとともに、この分割した各照射領域に対する前記レーザスキャナからの照射が、前記光照射方向と交差する平面上で前記スポット状の前記レーザ光の一部が重なり合うように並んだ整列照射であり、
前記相対移動工程では、前記複数の照射領域のうち一つの照射領域に対して、少なくとも前記レーザスキャナの作動により前記整列照射が行われ、前記複数の照射領域のうち一つの前記照射領域の全体が前記整列照射で隙間なく埋め尽くされた後に、次の照射領域に対する前記整列照射が行われ、それ以降は前記各照射領域毎にそれぞれ前記整列照射を同様に繰り返して、最終的に前記複数の照射領域のすべてが整列照射されることを特徴とするワーク分離方法。
【発明を実施するための形態】
【0007】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
本発明の実施形態に係るワーク分離装置A及びワーク分離方法は、
図1〜
図10に示すように、回路基板(図示しない)を含むワーク1と、レーザ光Lを透過する支持体2とが、少なくともレーザ光Lの吸収で剥離可能に変質する分離層3を介して積層されてなる積層体Sに対し、支持体2を透した分離層3へのレーザ光Lの照射によりワーク1から支持体2を剥離させる装置と方法である。WLP(wafer level packaging)やPLP(panel level packaging)のような半導体パッケージなどを製造することや、厚さが極めて薄い半導体ウエハ(以下「極薄ウエハ」という)の処理工程のために用いられる。
詳しく説明すると、本発明の実施形態に係るワーク分離装置Aは、積層体Sのワーク1を着脱自在に保持するように設けられる保持部材10と、支持体2を透して分離層3に向け光源21からのレーザ光Lを照射するように設けられる光学系20の光照射部22と、支持体2及び分離層3に対する光照射部22からの光照射位置Pを相対的に移動させるように設けられる駆動部30と、を主要な構成要素として備えている。さらに、光照射部22から支持体2及び分離層3の照射面までの間隔を測定するように設けられる測長部40と、光照射部22及び駆動部30や測長部40などを作動制御するように設けられる制御部50と、を備えることが好ましい。
なお、
図1〜
図10に示されるように、保持部材10に対して積層体Sは通常、上下方向へ載置され、保持部材10上の積層体Sに向けて光照射部22からレーザ光Lが下方向へ照射される。保持部材10に対する積層体Sの保持方向や、光照射部22から積層体Sに向かうレーザ光Lの照射方向を以下「Z方向」という。駆動部30による相対的な移動方向であるレーザ光Lの照射方向(Z方向)と交差する二方向を以下「XY方向」という。
【0008】
ワーク1は、後述する支持体2に貼り合わされた積層状態で、回路形成処理や薄化処理などの半導体プロセスが供された回路基板を含むとともに搬送される矩形(パネル形状)の基板や円形のウエハなどであり、シリコンなどの材料で薄板状に形成される。ワーク1の具体例としては、例えば15〜3,000μmの厚さに薄化された基板やウエハが用いられる。特に極薄ウエハなどのようにワーク1の厚みが数十μm程度の場合には、ダイシングテープなどのようなテープ状の保持用粘着シートにワーク1の全面を貼り付けてサポートすることや、ダイシングフレームなどのようなリング状の保持フレームで外周部が補強されたテープ状の保持用粘着シートに対しワーク1を貼り付けることでサポートすることも可能である。
支持体2は、ワーク1の薄化工程や各種処理工程や搬送工程などでワーク1を支持することにより、ワーク1の破損や変形などが防止されるように必要な強度を有するサポート基板やキャリア基板と呼ばれるものである。支持体2は、特定の波長のレーザ光Lが透過するガラスや合成樹脂などの透明又は半透明な剛性材料で形成される。支持体2の具体例としては、厚みが例えば300〜3,000μmの透明又は半透明のガラス板やセラミック板やアクリル系樹脂製の板などが用いられる。
分離層3は、支持体2を介して照射されたレーザ光Lを吸収することにより、接着力を低下させるように変質して、僅かな外力を受けると接着性を失い剥離するか、又は破壊し得るように変質する層である。
分離層3の材料としては、例えばポリイミド樹脂などのような接着性を有しており、ワーク1と支持体2とが接着剤からなる接着層を介装することなく貼り合わせ可能な材料を用いることが好ましい。さらにワーク1と支持体2の剥離後において、容易に洗浄除去できる別の層を積層することも可能である。また分離層3が接着性を有していない材料からなる場合には、分離層3とワーク1の間に接着剤からなる接着層(図示しない)を設けて、接着層により分離層3とワーク1を接着する必要がある。
【0009】
積層体Sは、XY方向のサイズが大型であるもののZ方向の厚みが薄い矩形(長方形及び正方形を含む角が直角の四辺形)のパネル形状や円形状に形成される。
図1〜
図3や
図8〜
図10に示される例では、ワーク1として矩形の基板と、支持体2として矩形のサポート基板(キャリア基板)を分離層3で貼り合わせたパネル形状の積層体Sの場合を示している。
図4や
図5や
図6に示される例では、ワーク1として円形のウエハと、支持体2として円形のサポート基板(キャリア基板)を分離層3で貼り合わせた円形状の積層体Sの場合を示している。
また、その他の例として図示しないが、特に極薄ウエハなどのようにワーク1の厚みが数十μm程度の場合には、リング状の保持フレーム(ダイシングフレーム)で外周部を補強したテープ状の保持用粘着シート(ダイシングテープ)に対しワーク1が貼り付けられた形態になった積層体Sも含まれる。
積層体Sの具体例としては、
図8(a)(b)や
図10(a)(b)に示されるように、ファンアウト型PLP技術で製造される、ワーク1に複数の半導体素子Scが搭載され樹脂などの封止材Srで封止した封止体と、パネル形状の支持体2とが分離層3を介して積層されるパネル型積層体などが含まれる。複数の半導体素子Scを備えた封止体は、最終的にダイシングなどでXY方向へ切断した後に、再配線層などを介して電極取り出し部を取り付けるなどの最終工程を経ることにより、最終製品である複数の電子部品が製造される。
【0010】
保持部材10は、金属などの剛体で歪み(撓み)変形しない厚さの定盤などからなり、積層体Sの外形寸法よりも大きくて肉厚な略矩形又は円形などの平板状に形成され、積層体SとZ方向へ対向する保持面には、ワーク1の保持チャック11が設けられる。
保持チャック11は、ワーク1と接触によりワーク1を移動不能で且つ着脱自在に保持するものであり、積層体SとZ方向へ対向する保持面の全体又は一部に形成される。
保持チャック11の具体例としては、吸引による差圧でワーク1が吸着保持される吸着チャックを用いることが好ましい。特に吸着チャックの中でも、多孔質材からなる吸着面によってワーク1が差圧吸着されるポーラスチャックを用いることが好ましい。ポーラスチャックの場合には、ワーク1の全体が部分的に撓むことなく差圧吸着可能となるため、均一な保持状態を維持することができる。
また、保持チャック11の他の例としては、吸着チャックに代えて粘着チャックや静電チャックを用いることや、吸着チャック,粘着チャック,静電チャックの中から複数を組み合わせて用いることも可能である。
なお、保持部材10の他の例として図示しないが、平板状の保持面に代えて複数の支持ピンによりワーク1を介して積層体Sの全体が固定(移動不能で且つ着脱自在に保持)される構造や、ハニカムによる定盤構造も含まれる。ピンによりワーク1が固定される構造の場合には、複数の支持ピンの一部又は全部の先端でワーク1を吸着固定できるように構成することが好ましい。
【0011】
光照射部22は、レーザ発振器などのレーザ光源21からレーザ光Lを目標となる光照射位置Pに向けて導く光学系20の一部として設けられ、保持部材10に保持された積層体SとZ方向へ対向するように配置している。光照射部22は、光学系20で導かれたレーザ光Lを積層体Sに沿って移動させる走査(掃引)機能を有する。これにより、光学系20で導かれたレーザ光Lが積層体Sの支持体2を透過して分離層3の全面に照射される。
光照射部22から積層体Sに向け照射するレーザ光Lとしては、支持体2を透過し且つ分離層3が吸収可能な波長のレーザを用いることが好ましい。
詳しく説明するとレーザ光Lの中でも、投影形状がライン(スリット)状のレーザ光Lよりは、高出力なレーザが容易に得られるスポット(点)状のレーザ光Lが好ましい。連続発振されるレーザ(連続波レーザ)よりは、分離層3内に吸収されたレーザエネルギーによる熱の影響を抑えられ、且つ高エネルギーを分離層3内に与えるため、パルス発振されるレーザ光(パルスレーザ光)Lが好ましい。
すなわち、光照射部22には、レーザ光源21で発生されたスポット状などのレーザ光Lの光軸(主軸)L1を動かすためのレーザ掃引手段(レーザスキャナ)22aが設けられ、レーザスキャナ22aにより積層体Sに対してレーザ光Lを走査(掃引)させるように構成することが好ましい。
【0012】
光照射部22としては、
図1や
図3〜
図10に示されるように、レーザ光源21で発生されたスポット状のレーザ光Lの光軸L1を動かすレーザスキャナ22aと、レーザスキャナ22aからのレーザ光Lを分離層3に向けて導くレンズ22bと、を有することが好ましい。
レーザスキャナ22aとしては、回転自在に設けられるポリゴンスキャナ22a1やガルバノスキャナ22a2などが用いられ、レーザスキャナ22aから分離層3へ向かう光照射方向(Z方向)と交差するXY方向のいずれか一方、又はXY方向の両方へ掃引させることが好ましい。
レンズ22bは、レーザスキャナ22aからのレーザ光Lを集光する機能を有しており、ポリゴンスキャナ22a1やガルバノスキャナ22a2などと組み合わせて使用されるfθレンズを用いることが好ましい。fθレンズは、レンズの中心部やその周辺部で走査速度を一定にし、且つ一つの平面上に焦点を置くことが可能になる。
さらにレンズ22bとしては、レンズ中心を通りレンズ面に垂直な光軸L1に対して主光線L2が平行に配置可能なテレセントリック系レンズ22b1や、光軸L1に対して主光線L2が様々な角度に配置可能な非テレセントリック系レンズ22b2を用いることが好ましい。
特に非テレセントリック系レンズ22b2の場合には、レーザ光Lの照射が安定するレンズ中心部(レンズ中央とその周辺部分)を主に使用し、レーザ光Lの照射が不安定なレンズ外周端部は使用しないことが好ましい。
【0013】
光学系20及び光照射部22の具体例として
図1(a)や
図9(a)などに示される場合には、先ずレーザ光源21となるレーザ発振器で発生されたレーザ光Lを、ビームエキスパンダ23に通すことでビーム径が調整される。これに続きステアリングミラーなどの反射鏡24,25でレーザ光Lの向きを変えて、光照射部22となるレーザスキャナ22aに導かれる。最後にレーザスキャナ22aから超短パルスのレーザ光Lがレンズ22bを通して、保持部材10に保持した積層体Sの目標位置に対し照射されて掃引する。
レーザスキャナ22a及びレンズ22bの一例として
図1(a),
図3(a)〜(d),
図4(a)〜(d)及び
図8(a)(b)に示される場合には、レーザスキャナ22aとしてポリゴンスキャナ22a1を用い、ポリゴンスキャナ22a1は回転駆動する筒体の周囲に正N角形に配置されたミラー部を有している。レンズ22bとしては、テレセントリック系レンズ(テレセントリック系fθレンズ)22b1を用いている。
ポリゴンスキャナ22a1に向けて入射したレーザ光Lは、ミラー部に当たって反射し、レンズ22bを通って積層体Sに向け略垂直又は所定角度の光路に変換される。ポリゴンスキャナ22a1のミラー部の回転駆動による掃引方向は、XY方向のいずれか一方のみである。図示例では、正N角形のミラー部に対するレーザ入射方向(X方向)と平行な直線方向へ所定幅だけレーザ光Lを移動させている。
レーザスキャナ22aの他の例として
図5に示される場合には、ポリゴンスキャナ22a1とガルバノスキャナ22a2の組み合わせであり、ガルバノスキャナ22a2は回転駆動する反射鏡(ガルバノミラー)を有している。ポリゴンスキャナ22a1のミラー部の回転駆動と、ガルバノスキャナ22a2の反射鏡の回転駆動による掃引方向は、XY方向の両方である。
さらにレーザスキャナ22aの他の例として
図6に示される場合には、複数のガルバノスキャナ22a2である。複数のガルバノスキャナ22a2の反射鏡の回転駆動による掃引方向は、XY方向の両方である。
またレーザスキャナ22a及びレンズ22bの他の例として
図9(a)及び
図10(a)(b)に示される場合には、レーザスキャナ22aとしてポリゴンスキャナ22a1を用い、レンズ22bとして非テレセントリック系レンズ(非テレセントリック系fθレンズ)22b2を用いている。
なお、それ以外の変形例として図示しないが、レーザスキャナ22aとしてポリゴンスキャナ22a1やガルバノスキャナ22a2とは別な構造のものを用いて、XY方向のいずれか一方又はXY方向の両方へ掃引するなどの変更も可能である。
【0014】
ところで、積層体Sに対してレーザ光Lが照射可能な範囲には限界があり、比較的に大きな面積の積層体Sでは、分離層3の全体に亘って光照射部22からのレーザ光Lを一度に照射することが困難である。
またワーク1から支持体2を確実に剥離するには、光照射部22から分離層3に照射したレーザ光Lのエネルギー量(エネルギー密度)により、分離層3の全面を均一に分解して剥離可能な程度まで変質させる必要がある。分離層3の材質によっても分解変質に必要なエネルギー量が異なる。
このような状況下で例えば特開2012−024783号公報に記載されるように、分離層3の全体を複数の領域に分割して、これら分割領域に対し光照射部22からレーザ光Lを1回(1ショット)ずつ照射することが考えられる。
しかし、分離層3の全体を複数の照射領域に分割した程度では、各照射領域のサイズが大き過ぎて、各照射領域に対してレーザ光Lを十分に集中させることができず、各照射領域に照射したレーザ光Lのエネルギー量(エネルギー密度)が、分離層3の全面を均一に分解させるレベルまで達しないことがあった。分離層3の材質によっては、各照射領域の全面を均一に分解して剥離可能な程度まで変質できず、剥離ムラが発生した。
そこで、このような課題を解決するために本発明の実施形態に係るワーク分離装置A及びワーク分離方法では、
図1〜
図10に示されるように、分離層3の全体を複数の照射領域に分割するとともに、複数の照射領域に対して光照射部22からスポット状のレーザ光Lを整列照射している。
すなわち、保持部材10に保持された積層体Sの支持体2及び分離層3に向けて光照射部22から照射されるレーザ光Lの領域は、
図2(a)(b)などに示されるように、分離層3の照射面全体を複数の照射領域Rに分割し、複数の照射領域Rに対して光照射部22からスポット状のレーザ光Lを各照射領域R毎(単位照射領域毎)にそれぞれ整列照射する。
詳しく説明すると、複数の照射領域Rは、支持体2及び分離層3の全体面積よりも小さい面積となるように分割され、分割された各照射領域Rの形状を矩形(正方形及び長方形を含む角が直角の四辺形)形状とすることが好ましい。複数の照射領域Rの分割方向(配列方向)は、後述する駆動部30による相対的な移動方向と同じX方向やY方向に配列し、複数の照射領域Rのサイズは、後述する制御部50によって調整可能に設定することが好ましい。図示例では、複数の照射領域Rとして正方形に分割しているが、長方形に分割することも可能である。
【0015】
複数の照射領域Rに対して光照射部22からレーザ光Lを光照射する順序についても、後述する制御部50によって調整可能に設定し、
図2(c)(d)に示されるように、任意に設定された順序で光照射部22からレーザ光Lを各照射領域Rの全面にそれぞれ照射することが好ましい。
さらに、光照射部22から積層体Sに向けて照射されるレーザ光Lの照射角度は、
図1(a),
図3(a)〜(d)又は
図4(a)〜(d),
図8(a)(b)に示されるように、保持部材10に保持された積層体Sの支持体2や分離層3に対して略垂直に設定することが好ましい。
ここでいう「略垂直」とは、支持体2や分離層3の表面に対して90度のみに限らず、これに加えて90度から数度増減するものも含まれる。
また、その他の例として
図9(a),
図10(a)(b)に示されるように、保持部材10に保持された積層体Sの支持体2や分離層3に対して、レーザ光Lの照射角度を所定角度に設定することも可能である。
【0016】
積層体Sの分離層3における複数の照射領域Rに対して光照射部22のレーザスキャナ22aからスポット状のレーザ光Lが照射される場合には、
図3(a)〜(d)又は
図4(a)〜(d)や
図7に示されるように、各照射領域R毎に対してビーム形状が円形や略円形などのレーザ光Lを、各レーザ光Lの一部が互いに重なり合うように後述する駆動部30でX方向及びY方向へ並べて順次それぞれ整列照射させる。これにより、複数の照射領域Rのうち一つの照射領域Rの全体が、多数のスポット状のレーザ光Lで隙間なく埋め尽くされる。一つの照射領域Rの全体が多数のスポット状のレーザ光Lで埋め尽くされた後は、次の照射領域Rに対するスポット状のレーザ光Lの整列照射が同様に繰り返し行われる。最終的には複数の照射領域Rのすべてが整列照射される。
加えて、
図7に示されるように、複数の照射領域Rの境目Raを挟んで整列照射されるスポット状のレーザ光Lの間隔Rbは、レーザ光Lのビーム径dよりも小さく設定され、境目Raの反対側に配置されるスポット状のレーザ光Lをそれぞれの端部同士が互いに接するように整列照射させることが好ましい。
複数の照射領域Rの境目Raとは、X方向及びY方向へ配列された隣り合う照射領域R1,R2,R3,R4の間に形成される境界線である。境目Raの間隔Rbとは、境目Raを挟んで整列照射されるスポット状のレーザ光Lにおいてビーム中心Roの間に亘る距離をいう。これにより、照射領域R1,R2,R3,R4の全体がすべて多数のスポット状のレーザ光Lで埋め尽くされるとともに、照射領域R1,R2,R3,R4の境目Raにおいても、多数のスポット状のレーザ光Lで埋め尽くされる。
図示例の場合には、境目Raを挟んで整列照射されるスポット状のレーザ光Lの間隔Rbを、照射領域R1,R2,R3,R4に整列照射されるスポット状のレーザ光Lの間隔と、X方向やY方向でそれぞれ同寸法で、各レーザ光Lの一部が同様に重なり合うように設定している。
また、その他の例として図示しないが、境目Raを挟んで整列照射されるスポット状のレーザ光Lの間隔Rbを、照射領域R1,R2,R3,R4に整列照射されるスポット状のレーザ光Lの間隔と異なるように設定するなど、図示例以外の設定に変更することも可能である。
【0017】
さらに、光照射部22のレーザスキャナ22aから積層体Sに向けスポット状のレーザ光Lを照射する場合には、積層体Sに対するレーザ光Lの照射角度に応じて各レーザ光Lのビーム形状(断面形状)が円形や楕円形となる。
つまり、レーザスキャナ22aからレンズ22bを通してレーザ光Lが積層体Sに照射される状態において、積層体Sに対するスポット状のレーザ光Lの照射角度が略垂直(約90度)の場合には、
図7に示されるように、各レーザ光Lのビーム形状が円形となると同時に、各レーザ光Lのビーム径dがすべて等しくなる。
これに対し、レーザスキャナ22aからレンズ22bを通して積層体Sに照射したスポット状のレーザ光Lが傾斜すると、積層体Sに対する照射角度が略垂直(約90度)未満になり、レーザスキャナ22aから積層体Sまでレーザ照射拒離が変化する。この傾斜した場合には、各レーザ光Lのビーム形状が楕円形となると同時に、各レーザ光Lのビーム径dが変化する。スポット状のレーザ光Lのビーム形状は、ビーム形状が不安定な楕円形よりも円形が好ましい。
その理由は、レーザスキャナ22aからの積層体Sに対する照射角度が傾斜して略垂直(約90度)未満となった場合や、反りがある積層体Sの場合には、レーザスキャナ22aから積層体Sまでレーザ照射拒離が変化により、レーザ光Lのビーム径dが変化してしまう。レーザスキャナ22aから積層体Sへの照射エネルギー自体は変わらないため、ビーム径dが変化すると、ビーム径dの2乗に反比例して、レーザ光Lのエネルギー密度も変化する。
つまり、例えば特開2012−024783号公報に記載されるように、分割サイズが比較的に大きな照射領域の全体に向けて、レーザスキャナ22aからレーザ光Lを掃引させると、掃引に伴うレーザスキャナ22aの振り角度が広くなって、照射領域の中央と端部とでは照射エネルギー密度が変わり、剥離ムラを発生する可能性がある。
これに対して、分割サイズが比較的に小さな照射領域に向けてレーザスキャナ22aの掃引に伴う振る角度をコンパクトに制限することで、照射エネルギー密度が均一になって剥離ムラの発生防止が可能になる。
【0018】
駆動部30は、保持部材10又は光照射部22のいずれか一方か若しくは保持部材10及び光照射部22の両方を移動することにより、光照射部22から照射したレーザ光Lが、保持部材10に保持した積層体Sの支持体2及び分離層3に対して、少なくとも光照射部22からのレーザ光Lの照射方向(Z方向)と交差する二方向(XY方向)へ相対的に移動するように構成した光軸相対移動機構である。
駆動部30による相対的な移動方向は、XY方向のみに限られず、必要に応じてZ方向も含まれる。
駆動部30となる光軸相対移動機構には、主に保持部材10及び積層体Sを動かすワーク側移動タイプと、光照射部22を動かす光軸側移動タイプがある。
ワーク側移動タイプの場合は、
図1(a)(b)及び
図8(a)(b)や
図9(a)(b)及び
図10(a)(b)に示されるように、保持部材10に駆動部30が設けられ、駆動部30で保持部材10をX方向及びY方向やZ方向へ動かすことにより、光照射部22からの光照射位置PをXY方向やZ方向へ移動させる。この場合の駆動部30としては、XYステージやXYテーブルなどが用いられ、モータ軸などからなるX軸移動機構31及びY軸移動機構32を有している。さらに必要に応じて保持部材10をZ方向へ動かすZ軸移動機構33を設けることが好ましい。
駆動部30の具体例として
図1(a)(b)及び
図8(a)(b)や
図9(a)(b)及び
図10(a)(b)に示される場合には、レーザスキャナ(ポリゴンスキャナ)22aの回転駆動によるレーザ光LのX方向への走査(掃引)に加えて、保持部材10をXY方向やZ方向へ動かしている。
また光軸側移動タイプの場合は、
図5や
図6に示されるように、光学系20の一部のみに駆動部30を設けて、保持部材10が動かずに光照射部22からの光照射位置PをXY方向やZ方向へ移動させるように構成される。この場合の駆動部30としては、ポリゴンスキャナ22a1やガルバノスキャナ22a2などからなるXY軸移動機構34を有している。さらに必要に応じてZ方向へ相対移動させる場合には、図示しないが保持部材10にZ軸移動機構33を設けるか、或いは光照射部(レーザスキャナ)22を駆動部30によってZ方向へ動かす。
【0019】
測長部40は、光照射部22から保持部材10に保持された積層体Sの支持体2や分離層3の照射面までの照射距離を測定する非接触式の変位計や変位センサなどからなり、保持部材10に保持された積層体SとZ方向へ対向するように配置される。
測長部40の具体例として
図1(a)(b)及び
図8(a)(b)や
図9(a)(b)及び
図10(a)(b)に示される場合には、光照射部(レーザスキャナ)22に測長部40となるレーザ変位計を設け、光照射部(レーザスキャナ)22から分離層3の照射面までZ方向への長さを測定し、この測定値を後述する制御部50へ出力している。
また、その他の例として図示しないが、測長部40としてレーザ変位計以外の変位計や変位センサを用いることも可能である。
【0020】
制御部50は、保持部材10の保持チャック11の駆動源と、光学系20,光源21及び光照射部22と、駆動部30となる光軸移動機構と、測長部40にそれぞれ電気的に接続するコントローラーである。
さらに制御部50は、それ以外にも分離前の積層体Sを保持部材10に向けて搬送するための搬入機構(図示しない),光照射後の積層体Sから支持体2のみを保持して引き離す剥離機構(図示しない),剥離後の積層体S(ワーク1)を保持部材10から搬送するための搬出機構(図示しない)などにも電気的に接続するコントローラーでもある。
制御部50となるコントローラーは、その制御回路(図示しない)に予め設定されたプログラムに従って、予め設定されたタイミングで順次それぞれ作動制御している。すなわち制御部50は、光源21から光照射位置Pに照射されるレーザ光LのON/OFF制御を始めとするワーク分離装置Aの全体的な作動制御を行うだけでなく、これに加えてレーザ光Lの各種パラメーターの設定などの各種設定も行っている。
制御部50によって光学系20の光照射部22や駆動部30は、保持部材10に保持された積層体Sの支持体2及び分離層3を分割した複数の照射領域Rに対して、光照射部22からのレーザ光Lの照射を各照射領域R毎に行い、且つレーザ光Lの照射角度が支持体2や分離層3の表面と略垂直又は所定角度になるように制御している。
これに加えて制御部50となるコントローラーは、タッチパネルなどの入力手段51や表示部(図示しない)などを有し、入力手段51の操作により光照射部22の走査距離や、複数の照射領域Rのサイズや、複数の照射領域Rに対する光照射部22からのレーザ光Lの照射順序などが設定可能に構成されている。
【0021】
制御部50に設定される光照射部22から複数の照射領域Rへのレーザ光Lの照射順序は、
図2(a)(b)に示されるように、X方向及びY方向に配列した複数の照射領域Rに対し、駆動部30によるXY方向への相対的な移動と連係して、「連続的な照射」又は「不連続的な照射」を行い、最終的には複数の照射領域Rのすべてを照射する。なお、図面において照射の有無が濃淡で示され、照射前の照射領域Rを淡く表示し、照射後の照射領域Rを濃く表示している。
「連続的な照射」として
図2(c)示される場合には、積層体Sの端に相当する角部位に配置された照射領域RからX方向又はY方向のいずれか一方に並んだ一列分を、先(直前)に照射した照射領域Rと次に照射される照射領域Rとが連続する順番で照射し、一列分の照射が終了した後に他の列も同様に連続照射している。図示例では、複数の照射領域RにおいてX方向へ並んだ一列分を順次連続照射した後に、駆動部30で保持部材10に保持された積層体SをY方向へ一列分だけ動かして、他の列も同様に連続照射している。
「不連続的な照射」として
図2(d)示される場合には、X方向又はY方向のいずれか一方に並んだ一列分を先(直前)に照射した照射領域Rと次に照射される照射領域Rとが離隔する順番で照射し、一列分の照射が終了した後に他の列も同様に連続照射する以外は「連続的な照射」と同じように照射している。図示例では、X方向及びY方向へ一つ飛び毎に千鳥模様となるように照射して、照射済みの照射領域R同士がX方向及びY方向へ隣り合わないように制御している。
また、その他の例として図示しないが、複数の照射領域RにおいてY方向へ並んだ一列分に「連続的な照射」又は「不連続的な照射」を行うことや、「不連続的な照射」において複数(二つ)飛び毎に照射するなどの図示例以外に照射順序を変更することが可能である。
【0022】
そして、制御部50の制御回路に設定されたプログラムを、ワーク分離装置Aによるワーク分離方法として説明する。
本発明の実施形態に係るワーク分離装置Aを用いたワーク分離方法は、保持部材10に積層体Sのワーク1を着脱自在に保持する保持工程と、保持部材10に保持された積層体Sの支持体2を透して分離層3に向け光照射部22からレーザ光Lを照射する光照射工程と、保持部材10に保持された積層体Sの支持体2及び分離層3に対する光照射部22からの光照射位置Pを相対的に移動させる相対移動工程と、積層体Sのワーク1から支持体2を剥離する分離工程と、を主要な工程として含んでいる。
さらに、分離工程の後工程として、分離層3から分離したワーク1に残留している分離層3の残渣を洗浄液で除去する洗浄工程と、洗浄工程後のワーク1をダイシングなどで切断する切り離し工程と、を含むことが好ましい。
【0023】
保持工程では、搬送ロボットなどからなる搬入機構(図示しない)の作動により、分離前の積層体Sを保持部材10へ向けて搬入し、保持部材10の保持面において所定位置に分離前の積層体Sが保持チャック11で移動不能に保持される。
光照射工程では、光学系20及び光照射部22の作動により、保持部材10に保持された積層体Sに向けレーザ光Lが、支持体2を透して分離層3に照射される。
相対移動工程では、駆動部30や光照射部(レーザスキャナ)22の作動により、保持部材10に保持した積層体Sと光照射部22とがXY方向やZ方向へ相対的に移動される。
図1〜
図4及び
図9に示される場合には、駆動部30の作動により、光照射部22となるレーザスキャナ22aに対して、保持部材10に保持された積層体Sの支持体2及び分離層3をXY方向へ相対的に移動させている。また
図5や
図6に示される場合には、駆動部30の作動により、保持部材10に保持された積層体Sの支持体2及び分離層3に対して、光照射部22となるレーザスキャナ22aをXY方向へ相対的に移動させている。これにより、支持体2及び分離層3の照射面全体よりも小さく分割された複数の照射領域Rに対し、光照射部22のレーザスキャナ22aからスポット状のレーザ光Lを各照射領域R毎に整列照射している。これと同時に、光照射部22のレーザスキャナ22aから各照射領域R毎に整列照射されるスポット状のレーザ光Lの照射角度は、略垂直又は所定角度になるように保持されている。最終的には複数の照射領域Rのすべてにレーザ光Lが照射される。
これによって、レーザ光Lが単位照射領域R毎に満遍なく均一に照射される。このため、最終的には分離層3の全面に亘ってレーザ光Lが照射ムラを生じることなく照射され、分離層3の全面がワーク1と支持体2を剥離可能に変質する。
分離工程では、光照射後の積層体Sに対し支持体2を保持して引き離す剥離機構(図示しない)の作動により、保持部材10に保持された積層体Sのワーク1から支持体2を剥離して分離される。
分離工程の後は、搬送ロボットなどからなる搬入機構(図示しない)の作動により、分離後のワーク1が保持部材10の保持面から取り外されて搬出される。
それ以降は上述した工程が繰り返される。
【0024】
また
図8(a)(b)や
図10(a)(b)に示されるように、反りがある積層体Sの場合には、光照射部22のレーザスキャナ22aからスポット状のレーザ光Lを複数の照射領域R毎に整列照射する際に、光照射部22から複数の照射領域Rまでの照射距離が略一定となるように、測長部40による測定値に基づいてZ軸移動機構33を作動制御する。
具体的に制御例としては、光照射部22から光照射前の時点で、光照射部22とZ方向へ対向する各照射領域Rの代表点を測長部40により測定して測定値を検出し、この測定値に基づいて各照射領域Rの光照射を行うタイミングと合うようにZ軸移動機構33が作動制御される。つまり、Z軸移動機構33の作動制御により、保持部材10をZ方向へ移動させて、光照射部22のレーザスキャナ22aから複数の照射領域Rまでの照射距離が調整される。
また、その他の例として、測長部40で測定した測定値をフィードバックしながら、Z軸移動機構33の作動制御することにより、保持部材10をZ方向へ移動させることも可能である。
これにより、保持部材10に保持した反りがある積層体Sの分離層3と光照射部22のレーザスキャナ22aとの照射距離が略一定となるように調整可能となる。
【0025】
このような本発明の実施形態に係るワーク分離装置A及びワーク分離方法によると、保持部材10に保持した積層体Sに向け光照射部22からスポット状のレーザ光Lが積層体Sの支持体2を透して分離層3に照射される。
駆動部30による保持部材10と光照射部22との相対的な二方向(XY方向)の移動に伴い、分離層3の照射面全体を分割した複数の照射領域Rに対して、光照射部22のレーザスキャナ22aからスポット状のレーザ光Lが各照射領域R毎(単位照射領域毎)にそれぞれ整列照射される。
これにより、レーザ光Lが単位照射領域R毎に満遍なく照射される。最終的には複数の照射領域Rのすべてにレーザ光Lが照射ムラを生じることなく照射され、分離層3の全面がワーク1と支持体2を剥離可能に変質する。
したがって、積層体Sのサイズやワーク1の厚みと関係なく均一なレーザ光Lの照射を行ってワーク1から支持体2を容易に剥離することができる。
その結果、積層体の分離層に対してレーザ光の照射ムラが部分的に発生し易い従来のものに比べ、ワーク1が薄く大型(大面積)になっても支持体2を透して分離層3の大面積な全体にレーザ光Lを均一に照射できて、部分的な剥離不良が発生しないとともに、レーザ光Lの出力が強くなり過ぎず、ワーク1の回路基板に形成されているデバイスにダメージを起こすことや、部分的な過照射により煤の発生を起こすこともない。
また分離層3の材質によっては、各照射領域の全面を均一に分解して剥離可能な程度まで変質できない従来のものに比べ、分離層3の材質と関係なくワーク1から支持体2を確実に剥離することができる。
さらに反りがある積層体Sであっても均一な剥離が実現できる。
このため、ワーク1からの支持体2の高精度な分離が実現できて、高性能で且つクリーンな製品の製造が図れる。
【0026】
特に、光照射部22は、レーザスキャナ22aからのレーザ光Lを分離層3に向けて導くレンズ22bを有し、レンズ22bは、レンズ22bの光軸L1に対して主光線L2が平行に配置されるテレセントリック系レンズ22b1か、又は光軸L1に対して主光線L2が所定角度に配置される非テレセントリック系レンズ22b2であることが好ましい。
図1(a)や
図8(a)(b)に示されるテレセントリック系レンズ22b1の場合には、積層体Sに対する照射角度が略垂直になるため、レーザ光Lのビーム形状(断面形状)が楕円形にならず、分離層3の全面に亘ってレーザ光Lとして円形のビーム形状を並べることが可能になる。
したがって、レーザ光Lによる分離層3のより均一な剥離を行うことができる。
その結果、ワーク1が大型(大面積)であっても、より品質の高いレーザ剥離が行える。
さらに、分離層3が、レーザ光Lの入射角度によりレーザ光Lの吸収率が大きく異なる角度依存性のある構成材料である場合には有効である。
また
図9(a)や
図10(a)(b)に示される非テレセントリック系レンズ22b2の場合には、レーザスキャナ22aから分離層3までの照射距離が多少変化しても略円形のビーム形状が得られ、反りのために分離層3の位置がレーザ光Lの照射方向へ変化してもレーザ光Lのビーム形状(断面形状)が変化し難い。特に複数の照射領域Rのサイズが比較的に小さい時には、レーザ光Lのビーム形状が楕円にならず、安定した剥離が可能となる。
したがって、反りのある分離層3であってもレーザ光Lを均一に照射してワーク1から支持体2を確実に剥離することができる。
このため、反りのあるワーク1からの支持体2の高精度な分離が実現できて、高性能で且つクリーンな製品の製造が図れる。
【0027】
さらに、
図1(a)(b)や
図9(a)(b)などに示されるように駆動部30が、光照射部22に対して保持部材10を光照射部22からの光照射方向(Z方向)と交差する二方向(XY方向)へ相対的に動かすX軸移動機構31及びY軸移動機構32を有することが好ましい。
この場合には、X軸移動機構31及びY軸移動機構32の作動により、保持部材10に保持した積層体Sが、光照射方向(Z方向)と交差する二方向(XY方向)へ動いて、光照射部22を含む光学系20が動かなくても、分離層3の全面に亘ってレーザ光Lが照射可能になる。
したがって、簡単な構造で積層体Sの分離層3に均一なレーザ光Lの照射を行ってワーク1から支持体2を容易に剥離することができる。
その結果、装置全体の構造を簡素化できて製造コストの低減化が図れる。
【0028】
また、
図7に示されるように、複数の照射領域Rの境目Raを挟んで照射されるレーザ光Lの間隔Rbは、レーザ光Lのビーム径dよりも小さく設定することが好ましい。
この場合には、境目Raの反対側のレーザ光Lがそれぞれの端部同士を互いに接するように照射される。このため、レーザ光Lの部分的な照射不足が発生しない。
したがって、複数の照射領域Rの境目Raでも部分的な剥離不良の発生を防止することができる。
その結果、複数の照射領域Rの全体に亘って均一に剥離できて、高性能な製品の製造が図れる。
【0029】
また、
図2(d)に示されるように制御部50が、光照射部22から複数の照射領域Rへのレーザ光Lの照射順序として、先に照射した照射領域Rと次の照射領域Rとが離隔する順番で照射されるように制御することが好ましい。
この場合には、先に照射した照射領域Rと次の照射領域Rとを離隔する順番で照射することにより、隣り合う照射領域Rにおいて個々に応力が解放されるものの、それぞれの応力は微小であるために影響が小さい。
したがって、照射途中において反りによる内部の応力が局部的に解放されずに全面剥離することができる。
その結果、未だ照射されない照射領域Rとの界面でクラックが入ることや、ワーク1の回路基板に形成されているデバイスにダメージを与えることを防止でき、積層体Sの割れも完全に防止できて、歩留まりの向上が図れる。
特に分離層3の積層面全体が複数の照射領域Rとして分離層3の両端に亘り連続する長方形に分割された場合には、正方形に比べてタクトタイムを短縮化できるともに、レーザ光Lの照射部位と未照射部位の間に発生する応力を容易に開放できる。このため、レーザ光Lの照射条件や、ワーク1と分離層3の接着部位などに使用される材料の条件によって生じる剥がれ方向に働く応力によるワーク1の亀裂、及び、レーザ光Lにより反応するワーク1と分離層3の接着部位に、レーザ光Lの照射条件や接着材料の条件によってもし煤が発生した場合でも、煤が既に剥離した箇所に流れることで発生するワーク1の亀裂を確実に防止できる。さらに、長方形に分割された複数の照射領域Rを幅狭い帯状にすることで、より応力の発生を微小なものに抑えて、ワーク1の亀裂発生をより防止できる。
【0030】
またさらに、
図8(a)(b)や
図10(a)(b)に示されるように制御部50が、光照射部22からレーザ光Lを複数の照射領域R毎に照射する際に、光照射部22から複数の照射領域Rまでの照射距離が略一定となるように、測長部40による測定値に基づいてZ軸移動機構33を作動制御することが好ましい。
この場合には、保持部材10に保持した反りがある積層体Sの分離層3と光照射部22との照射距離が略一定となるように調整可能となる。
したがって、反りのある積層体Sであっても均一なレーザ光Lの照射を行ってワーク1から支持体2を容易に剥離することができる。
その結果、反りのある積層体Sであっても支持体2を透して分離層3の全面にレーザ光Lが均一に当たるため、部分的な剥離不良が発生しないとともに、レーザ光Lの出力が強くなり過ぎず、ワーク1の回路基板に形成されているデバイスにダメージを起こすことや、部分的な過照射により煤の発生を起こすこともない。
このため、反りのあるワーク1からの支持体2の高精度な分離が実現できて、高性能で且つクリーンな製品の製造が図れる。
【0031】
なお、前示の実施形態では、ワーク1と支持体2とが接着性を有する材料からなる分離層3で貼り合わせているが、これに限定されず、接着性を有していない材料からなる分離層3を用いた場合には、分離層3とワーク1の間に接着剤からなる接着層(図示しない)を設けて、接着層により分離層3とワーク1を接着してもよい。
さらに図示例では、駆動部30となる光軸相対移動機構により主に積層体S側を移動させるワーク側移動タイプを示したが、これに限定されず、光学系20の一部のみに設けた駆動部30により光照射部22が動く光軸側移動タイプを採用してもよい。
その具体例としては、光学系20の一部として光照射部22のレーザスキャナ22a(ポリゴンスキャナ22a1やガルバノスキャナ22a2)などをZ方向へ動かすことにより、同一の照射領域R内での照射においては、保持部材10が動かずにレーザスキャナ22aからの光照射位置PをZ方向へ移動させることも可能である。