【実施例】
【0124】
実施例1:Lgr5
+腸幹細胞の自己複製は、小分子の組み合わせを使用して維持される
ISCの自己複製および分化は、いくつかのシグナル伝達経路の調和した調節によって制御される(Crosnier, Stamataki, & Lewis, 2006; Scoville, Sato, He, & Li, 2008; van der Flier & Clevers, 2009)。本研究において、Lgr5
+幹細胞の自己複製状態を維持するための関連するシグナル伝達経路および他の細胞型によって提供される合図(cue)とは独立してLgr5
+幹細胞の分化を調節するための関連するシグナル伝達経路を標的化する小分子を同定した。
【0125】
陰窩および単一のLgr5−GFP細胞を、以前に記載されるとおりに単離した(Sato et al., 2009)。簡単に、小腸の近位の半分を採取し、長さ方向に開き、冷PBSで洗浄し、管腔内含有物を除去した。次いで、組織を、ハサミで2〜4mm片に切断し、10mlピペットを使用してピペットで吸ったり出したりする(pipet up and down)ことによって、冷PBSで5〜10回さらに洗浄した。組織断片を、氷上で30分間、PBS中の2mM EDTAとインキュベートした。EDTAの除去の後、組織断片を、PBSで洗浄し、陰窩を放出させた。陰窩が濃縮されている上清画分を回収し、70μmのセルストレーナーに通し、300gで5分間遠心分離した。細胞ペレットを、増殖因子を有さない細胞培養培地に再懸濁し、150gで遠心分離し、単一の細胞を除去した。次いで、陰窩を単一の細胞の単離のために培養または使用した。単一の細胞を得るために、陰窩を37℃で45分間培養培地中でインキュベートし、ガラスピペットで粉砕した。分離した細胞を、20μmのセルストレーナーに通し、ヨウ化プロピジウムで陰性染色し、単一の可視の高GFP細胞を、以前に記載されるとおりに、フローサイトメトリー(FACS Aria, BD)によってソーティングした(Sato et al., 2009)。Lgr5−EGFP−ires−CreERT2マウスから単離した小腸陰窩を、マトリゲルに植え込み、EGF、ノギン、およびR−スポンジン1(まとめて、ENRという)の存在下で従来の培養条件下で培養し、陰窩および絨毛様ドメインならびに陰窩の先にGFP
+細胞を有する類臓器体を生じ、これは、以前の報告と一致した(Sato et al., 2009)。単離した陰窩または単一の細胞を、最小限の改変を伴って、以前に記載されるとおりに培養した(Sato et al., 2009)。簡単に、陰窩または単一の細胞を、マトリゲル中に閉じ込め、24ウェルプレートのウェルの中心にプレーティングした。マトリゲル(増殖因子低減;BD Bioscience)の重合後、EGF(50ng/ml, Life Technologies)、ノギン(100ng/ml, Peprotech)およびR−スポンジン1(500ng/ml, R&D)を含む増殖因子ならびにCHIR99021(3μM、Stemgent)およびバルプロ酸(1mM、Sigma-Aldrich)を含む小分子を含む500μlの培養培地(アドバンストDMEM/F12(Life Technologies))を添加した。異なる培養条件との比較のために、小分子または増殖因子を、新たに単離された陰窩に、マトリゲル中にプレーティングされた直後に添加し、陰窩内のISCの潜在的な分化を最小にし、かつこのようにして陰窩培養を維持する能力を試験した。細胞培養培地を、1日おきに交換した。単一の細胞培養のために、細胞を、ジャグド−1ペプチド(1μM;AnaSpec)を含むマトリゲルに植え込み、Y−27632(10μM;Tocris)を最初の2日間添加した。細胞を、以前に記載されるとおりに(Sato et al., 2009)細胞コロニーとして、または単一の細胞としてのいずれかで継代した。単一の細胞の継代のために、細胞培養培地を、除去し、アキュターゼ(Life Technologies)を添加した。37℃での10〜20分間のインキュベーションの後、細胞コロニーを、ピペッティングにより単一の細胞に分離した。次いで、細胞を、洗浄し、新しいマトリゲル中に植え込み、24ウェルプレートにプレーティングした。CV条件で培養した細胞を、6日毎に1:20の継代比率(split ratio)で継代した。培養した陰窩のほぼ半分が、GFP+細胞を含み、これは、Lgr5−GFPマウスのインビボGFP発現と一致した(
図1)。
【0126】
ENR条件で使用した増殖因子は、必須のものを提供するが、Lgr5
+幹細胞の自己複製の維持には十分な合図ではなかった。腸幹細胞の自己複製状態の維持に必須の因子を同定するために、Wnt、ノッチ、およびBMPなどのISCのシグナル伝達経路を調節する選択された小分子を、Lgr5−GFPレポーターを使用してENR条件下で試験した。Wntシグナル伝達経路を活性化するGSK3βインヒビターであるCHIR99021(本明細書中CHIRまたはCという)は、培養物中の類臓器体の平均サイズおよび細胞数の定量化によって示されるように、陰窩細胞の増殖を促進した(
図2A、2Bおよび3A、3B)。CHIRは、培養物中のGFP
+細胞のパーセンテージおよび相対GFP強度を増大させ、これは、幹細胞の自己複製の増大を示した(
図2Aおよび2B)。特に、多くの数のGFP陰性細胞が、まだ、類臓器体中に存在し(
図2A)、これは、幹細胞自己複製の不十分な維持の結果または陰窩中のより成熟したGFP陰性細胞の増殖の促進の結果のようであった。ヒストンデアセチラーゼインヒビターであるバルプロ酸(VPAまたはV)もまた、GFP
+類臓器体のGFP発現を有意に増大させ、GFP陰性細胞は最小の存在であった(
図2A)。興味深いことに、CHIRおよびVPAが組み合わされた場合(CV)、培養物中の細胞増殖ならびにGFP発現細胞のパーセンテージおよび相対GFP強度は、有意に増大し(
図2Aおよび2B)、GFP
+類臓器体中にほぼ純粋なGFP
+細胞が存在し(
図2A)、これは、この培養条件では、分化または分化した細胞の増殖が最小であり、幹細胞の自己複製が増大したことを示した。
【0127】
CV条件でのGFP
+細胞は、新たに単離された単一の細胞の単一の高GFP集団に対応する単一の高GFP集団を示し(
図3C)、以前に報告されたLgr5
+幹細胞集団を示した(Sato et al., 2009)。特に、CV条件では、R−スポンジン1およびノギンが、Lgr5
+幹細胞の自己複製を維持するためになお必要であったが、EGFは陰窩の増殖を促進し、EGFは、Lgr5
+細胞の維持に影響を与えることなく、培養から除去され得た(
図3D)。CHIRの濃度を増大させることによって、GFP発現を促進するためのR−スポンジン1の必要性をさらに排除し(
図3E)、R−スポンジン1のWnt/β−カテニンシグナル伝達を増大させる役割と一致した。さらに、VPAまたはCHIR+VPAはまた、結腸由来のLgr5
+幹細胞のGFP発現を促進した(
図3F)。さらに、R−スポンジン2は、R−スポンジン1と比べてENR条件での類臓器体の形成の促進において、より低い濃度で良好な効能を示した(
図3G)。我々はまた、ヒトEPHB2
+結腸幹細胞または結腸陰窩を、ほとんど未分化の状態に維持することが以前に示された培養条件を試験したが(Jung et al., 2011; Sato et al., 2011a)、小腸Lgr5−GFP幹細胞に対して類似の効果を達成せず(
図4Aおよび4B)、これらの因子は、Lgr5
+幹細胞と対比して異なる機構によってEPHB2
+結腸幹細胞に作用し得ることが示唆された。
【0128】
成熟細胞型およびGFP陰性幹細胞(陰窩がモザイク様GFP発現パターンを示す場合)の非存在下でのCHIRおよびVPAの増殖およびLgr5
+自己複製効果をさらに確認するために、単一の高GFP細胞を、FACSソーティングによって単離し(
図3C)、ENRおよびCHIRもしくはVPAの存在下または両方の化合物の存在下(CV条件)でマトリゲル中で培養した。単一の幹細胞のアノイキス(anoikis)を阻害するRhoキナーゼインヒビターY−27632(Watanabe et al., 2007)を、以前に記載されるとおりに最初の2日間添加した(Sato et al., 2009)。7日の培養後、GFP
+幹細胞を含むコロニーが自発的に形成された。陰窩培養と同様に、CHIRは、細胞増殖を有意に増大させたが、GFP発現を中程度にのみ増大させ、VPAは、最小の増殖前(pro-proliferative)効果を伴ってGFP発現を促進した。CV条件について、細胞増殖は、有意に増大し、培養物中の97%を超える細胞は、GFP
+細胞であった(
図2C〜2Eおよび5A)。陰窩培養に比べて、純粋な単一のLgr5
+幹細胞をCHIR中で培養した場合、形成された類臓器体は、多数のGFP陰性細胞を含み、このことは、この条件では幹細胞は分化し、従って、Lgr5
+幹細胞の自己複製状態を維持するために他の因子が必要であったことを示した。
【0129】
単離された単一のLgr5−GFP
+細胞を標準的なENR条件で培養した場合、わずかな細胞が類臓器体に成長し、このことは、以前の報告と一致し(Sato et al., 2009)、最適状態に及ばない培養条件に起因するようであった。CHIRを培養に添加した場合(ENR−C)、コロニー形成効率は、20〜50倍有意に増大し(
図2F、2Gおよび5B、5C)、100ng/mlで添加した場合は、Wnt3Aの添加に同様に応答した(
図2FおよびSato et al., 2011b)。これとはっきりと対照的に、VPAは、CHIRの非存在下でコロニー形成効率を弱く増大させただけであった(ENR−V、
図2F、2Gおよび5B、5C)。驚くべきことに、単離された単一のLgr5−GFP
+幹細胞をCHIRおよびVPA両方の存在下で培養した場合、相乗効果があり、全細胞集団の約25%〜40%がコロニーに成長した(
図2F)。これは、Lgr5
+幹細胞について報告された最も効率的なコロニー形成を示すと考えられる。
【表1】
【表2】
【0130】
FACSでソーティングされた細胞の一部がアポトーシス前状態下にあり、典型的に12時間以内に死滅する場合(Sato et al., 2011b)、生存細胞を、播種の12時間後に手動で計数した。CHIRおよびVPAの両方が培養培地に存在した場合、90%を超える生存細胞が類臓器体に成長した(
図5D)。
【表3】
【0131】
さらに、CV条件で培養された細胞を、10を超える継代について、新たに単離されたLgr5−GFP
+細胞のコロニー形成効率と類似のコロニー形成効率を有し、かつ増殖能力の損失を有さない単一の細胞として継代し得、これらは、正常な核型を示した(2n=40)(
図2H)。これらの結果は、CHIRおよびVPAがLgr5
+幹細胞の自己複製を維持するための、標準的なENR条件には存在しないシグナルを提供することを示唆する。
【0132】
以前に報告されたように、ENR条件中の細胞は、アルカリ性フォスファターゼ(Alp)陽性腸細胞、ムチン2(Muc2)陽性杯細胞、クロモグラニンA(ChgA)陽性腸内分泌細胞、リゾチーム(Lyz)陽性パーネト細胞、およびLgr5−GFP
+幹細胞の染色によって確認される全ての腸上皮細胞型を含む陰窩−絨毛構造を有する類臓器体に成長した。Lgr5
+幹細胞は、陰窩の先端にのみ存在する(
図6Aおよび7A)。Ki67およびEdU染色によって、増殖している細胞が陰窩ドメイン内にのみ存在したことが明らかになった(
図6Bおよび6C)。しかし、CV条件において、GFP
+幹細胞は、コロニー全体のいたるところに存在し、パーネト細胞の存在は最小であり(
図6A)、他の細胞型は存在しなかった。ENR培養に比べて、CV条件においてKi67およびEdU陽性増殖細胞は、細胞コロニーのいたるところに存在した(
図6Bおよび6C)。これは、定量的リアルタイムPCRで確認され、ここで、CV条件中の細胞は、ENR条件中の細胞に比べて最小レベルのAlpi(腸細胞)、Muc2(杯細胞)、ChgA(腸内分泌細胞)、中程度のレベルのリゾチーム(パーネト細胞)、および高いレベルのLgr5(ISC)を発現した。この発現パターンは、複数の継代にわたって維持され、Lgr5発現レベルは維持された(
図6D)。
【0133】
CHIR単独は、腸細胞分化を低減するが、同時にパーネト細胞分化を増大させ(
図6D)、これは、以前の報告と一致した(Farin et al., 2012)。VPA単独は、分泌性分化を低減し(
図6D)、高い割合のGFP+幹細胞の維持を補助したが、幹細胞の分化の抑制には十分ではない。実際、単離された単一の幹細胞を、VPAの存在下であるが、CHIRまたはWntシグナル伝達を促進する他の薬剤なしで培養した場合、これらの生存は、Wntが存在した場合に比べて、大きく低かった。Wnt経路がIWP−2によってブロックされる場合、VPA単独は、幹細胞の自己複製を維持できない(
図7B、7C中のIV条件)。CHIRおよびVPAの組み合わせは、腸細胞分化および分泌性分化の両方を抑制し、Lgr5
+幹細胞の自己複製プログラムを維持した(
図6D)。これらの結果は、CHIRまたはVPAの単独はLgr5
+幹細胞の自己複製を維持するのに十分ではないが、CHIRまたは他のWntアクチベーターと組み合わせた場合、相乗効果を示すことを示唆する。
【0134】
要約すると、2つの小分子、CHIRおよびVPAは、パーネト細胞との直接の接触なしで、またはパーネト細胞の非存在下で、Lgr5+幹細胞の自己複製を支持し得る。特に、これらの小分子は、単一の幹細胞からのコロニー形成を大きく改善し得、このことは、これらの小分子がパーネト細胞によって典型的に提供される必須のニッチ(niche)シグナルを提供することを示す。
【0135】
実施例2:Lgr5
+幹細胞はCHIRおよびVPA中での培養後多能性のままである
腸幹細胞は、自己複製する能力、ならびに4つの主な細胞型:腸細胞、杯細胞、腸内分泌細胞およびパーネト細胞を含む腸上皮中の全ての細胞型に分化する能力を有する。CV条件で培養されたLgr5
+幹細胞の分化能力を試験するために、細胞コロニーを、Lgr5
+幹細胞が腸の成熟細胞型に自発的に分化するのを可能にするENR条件に移した。予想されるとおり、CHIRおよびVPAの回収後、類臓器体の形態は、陰窩先端に陰窩−絨毛構造およびLgr5
+幹細胞を有するENR条件で培養された類臓器体の典型的な形態に変化した(
図7Aおよび8A)。分化マーカーAlpi、Muc2、およびChgAのmRNA発現は上昇し、細胞は、(
図7BのENRおよびCVに比べて)同様のレベルのリゾチームを発現した。これらのマーカーに対する免疫細胞化学染色により、培養物中の分化した細胞型の存在が確認された(
図7A)。
【0136】
実施例3:腸幹細胞の分化は制御される
次に、インビトロで高純度のLgr5+幹細胞に増殖する能力に関して、Lgr5
+幹細胞の分化を成熟細胞型の方に振り向けることを試みた。WntおよびノッチがISCの分化を制御する主なシグナル伝達経路の2つであるので、Wnt経路インヒビターIWP−2(Iも同様)およびノッチインヒビターDAPT(Dも同様)を使用して、培養したLgr5
+幹細胞の分化を誘導した。ENR条件中の細胞が全ての上皮細胞型を含む類臓器体に自発的に分化するので、ENRを、分化培地中に含めた。CV条件での6日間の単一の幹細胞の培養の後、細胞コロニーを、回収し、いくつかのウェルに移し、単一または複数のインヒビターの存在下で培養した(
図8B)。
図7Bに示されるように、CVをIWP−2またはDAPTと入れ替えることによって、ISCマーカーLgr5発現が減少し、分化マーカーAlpi、Muc2、ChgA、およびリゾチームの発現を誘導した。特に、(例えば、RとV、IとIV、CとCV、またはDとDVの比較)VPAの存在によって、Muc2、ChgA、およびリゾチームの低いレベルの発現が引き起こされ、Alpiではそうではなく、このことは、VPAによって、分泌細胞系統分化を特異的に抑制したことを示した。あるいは、IWP−2でのWnt阻害によって、Alpi発現が優先的に誘導され、Muc2およびChgA発現が中程度に上昇し、リゾチームおよびLgr5発現が完全になくなった(abolish)。これは、Wntシグナル伝達が、幹細胞性(stemness)を維持し、分化を抑制するのに必要であり、さらに、Wntシグナル伝達は、パーネト細胞分化にも必要であることを示す。ノッチインヒビターDAPTは、Muc2、ChgA、およびリゾチームを含む分泌性細胞型のマーカーを大きく上昇させ、これは、ノッチ阻害が分泌性細胞分化を誘導するという以前の報告と一致した(Milano et al., 2004; VanDussen et al., 2012: Wong et al., 2004)。さらに、IWP−2とVPAの組み合わせは、おそらく両方のインヒビターの効果を組み合わせることによって腸細胞分化を特異的に誘導し、ここで、IWP−2は、Lgr5
+幹細胞分化を誘導し、VPAは、Lgr5
+幹細胞の分泌性細胞型への分化を抑制した。同様に、DAPTとCHIRの組み合わせは、主にパーネト細胞分化を誘導し、IWP−2とDAPTの組み合わせは、主に杯細胞分化を誘導した。これらの条件もまた、各分化した細胞型の形態に類似する明らかな形態学的変化を誘導した(
図7Cおよび8D)。腸細胞、杯細胞およびパーネト細胞のマーカーの染色によって、上記の観察を確認した(
図7C、7Dおよび8E、8F)。IWP−2またはCHIRの存在は、ChgA発現に有意に影響せず、これは、杯細胞およびパーネト細胞に比べて、腸内分泌細胞の分化はWnt阻害または活性化を厳密に必要とすることを示した。
【0137】
実施例4:CHIRおよびVPAの応答を媒介する機構を試験する
CHIRは、Wnt/β−カテニンシグナル伝達経路を活性化する高度に特異的なGSK3インヒビターであり(Bain et al., 2007)、胚性幹細胞の自己複製状態を維持するために使用されてきた(Ying et al., 2008)。CHIRの効果がWnt経路の活性化によったことを確認するために、リチウムおよびWnt3aを含む他のWnt経路アクチベーターの効果を試験した。CHIRをLiClまたはWnt3aと取り換えることによって、陰窩増殖が増大し、これは、ENR条件に比べてコロニーサイズおよび細胞数が増大することによって示された(
図9Aおよび9B)。これらの条件におけるコロニーは、以前に示されたように(Sato et al., 2011b)、陰窩様構造を示した(
図9A)。同様に、pan−HDACインヒビターを含む他のHDACインヒビターおよびタイプ特異的インヒビターの効果を試験した。pan−HDACインヒビターTSAならびにHDAC6特異的インヒビターツバスタチンAおよびコンパウンド7は、VPAでGFP発現を促進する同様の効果を示した(
図9Cおよび9D)。SBHAおよびブチレート(Butyrate)を含む他のpan−HDACインヒビターならびにクラスI(CI−994、MS275、
図9Cおよび9D)、クラスIIa(MC1568、
図9Cおよび9D)およびクラスIII(ニコチンアミド、
図9F)HDACインヒビターは、GFP発現を促進する効果を全く示さなかったか、またはほんの中程度示した(
図9C−9F)。TSAおよびVPAは、高い濃度で顕著な増殖阻害効果を示したが、両方の濃度でGFP発現を維持した(
図9E)。注目すべきことに、ヒト結腸陰窩の培養に使用されたサーチュインファミリーHDACインヒビター(クラスIII)であるニコチンアミド(Jung et al., 2011; Sato et al., 2011a)は、CHIRまたはWnt3aと組み合わせた場合、GFP発現または細胞増殖を促進せず(
図9F)、このことは、ニコチンアミドが、VPAとは異なる機構を介して作用することを示した。さらに、単一のLgr5
+幹細胞を、TSAもしくはツバスタチンAと共にCHIRを、またはWnt3a、BIOもしくはLiClと共にVPAを使用して培養した場合、細胞は、CV条件と同様のコロニー形成効率、コロニー形態およびGFP発現を示した(
図10)。
【0138】
以前の報告は、ノッチ経路活性化が分泌性細胞分化の阻害および幹細胞の自己複製の維持に必要であることを示し、VPA処置の効果と一致する。VPAがその効果を発揮するためにノッチ経路の要素を標的化するかどうかを評価した。第1に、VPAの添加によるノッチ阻害の救出を試験した。γ−セクレターゼインヒビターDAPTでの処置によって、細胞増殖およびGFP発現の低減が導かれ、これは、VPAによって用量依存的様式で救出された(
図11A)。これは、VPAがNICD形成の下流に作用し、リガンド−レセプター媒介性ノッチ活性化の要件を迂回し得ることを示唆する。
【0139】
VPAは、癌細胞株においてノッチ経路を活性化することが以前に示された(Greenblatt et al., 2007; Stockhausen et al., 2005)。VPAのノッチ経路の活性化に対する効果を調査するために、ENRまたはENRC条件で培養された細胞を、VPAで処理し、ノッチ経路遺伝子の発現について分析した。しかし、24時間のVPAのENRまたはENR−Cへの添加によって、ノッチ1またはHes1の発現が中程度に低下し、これは、ノッチの下流の標的遺伝子であることが決定された(
図11Bおよび11C)。さらに、24時間または6日間VPAおよびCHIRで処理された細胞中の陰性ノッチ標的Atoh1(Math1)の顕著な減少が観察された(
図11B−11D)。Atoh1は、ISCの分泌性細胞系統への分化に必須であることが示されている(van Es et al., 2010; Yang et al., 2001)。腸幹細胞は、Atoh1欠乏により誘導されるパーネト細胞の剥離(ablation)の後に、インビボおよびインビトロの両方で機能性のままである(Durand et al., 2012; Kim et al., 2012)。CHIRまたはCHIR+VPA処理後のAtoh1阻害は、腸幹細胞の自己複製プログラムの維持を補助する。
【0140】
従って、インビトロでのLgr5
+腸幹細胞の自己複製およびそれらの腸上皮中の異なる細胞型への分化の制御は、増殖因子および小分子インヒビターの組み合わせの使用を介して今回において達成され、これは、インビボ腸上皮の生物学を厳密に模倣する(
図12Aおよび12B)。生理学的条件下で(
図12A)、ISCの自己複製および分化は、Wntおよびノッチ経路の協調によって制御される。両方の経路の活性化(Wntオンおよびノッチオンで示される)は、ISCを未分化の自己複製状態に維持する。ノッチ経路の不活性化によって(ノッチオフ)、分泌性細胞型の特性を有する状態(specification)が導かれ、Wnt経路のさらなる不活性化によって(Wntオフ)、杯細胞分化が導かれる。ノッチの非存在下でのWnt経路の連続的な活性化によって、パーネト細胞分化が導かれる。腸内分泌細胞分化についてWnt経路の強い依存性はない。あるいは、連続的なノッチ活性化およびWnt不活性化によって、腸内分泌細胞分化が導かれる。Lgr5+幹細胞をインビトロで培養する場合(
図12B)、CHIR99021は、Wnt経路を活性化し、腸細胞分化を阻害するが、VPA単独またはCHIRを伴うVPAは、分泌性細胞の特性を有する状態を抑制する。CHIRとVPAの組み合わせによって、ISCが未分化の自己複製状態に維持される。DAPTでのノッチ経路の阻害によって、分泌性細胞型の特性を有する状態が導かれ、CHIRのさらなる添加によって、パーネト細胞分化が導かれるが、Wnt経路インヒビターIWP−2の添加によって、杯細胞分化が導かれる。あるいは、分化を誘導し、分泌性細胞型の特性を有する状態を抑制するIWP−2とVPAの組み合わせによって、腸細胞分化が導かれる。
【0141】
実施例5:内耳由来のLgr5陽性幹細胞の増殖はCHIRおよびVPAの存在下で増大される
哺乳動物の内耳のコルチ器の感覚毛細胞は、損傷の際に再生しない。Li et al., 2003は、成人の卵形嚢感覚上皮が幹細胞に特有の特徴を示す細胞を含むことを見出した。これらの内耳幹細胞は、EGF、bFGFおよびIGF−1の存在下で懸濁球(suspension sphere)としてインビトロで培養され得る(Li et al., 2003)。その後、有糸分裂後支持細胞が培養中に分裂して、新たな毛細胞に分化転換する能力を保持することが見出され(Patricia et al., 2006, Nature)、これらの支持細胞は内耳幹細胞であり得ることが示唆された。精製された蝸牛支持細胞は、胚性耳周囲間葉フィーダー細胞上でEGF、bFGFの存在下でインビトロで培養され得る(Patricia et al., 2006)。Shi et alは、新生および成体マウスの蝸牛中の支持細胞のサブセットが成体幹細胞のマーカーであるLgr5を発現することを見出した(Shi et al., 2012)。重要なことに、Lgr5陽性細胞は、単離され得、EGF、bFGFおよびIGF−1の存在下で単一細胞懸濁物中で培養され得、Lgr5陰性細胞と比較して増強された自己複製能力を示す。以前の内耳幹細胞培養は、懸濁培養法を使用し、該方法においては、おそらく細胞にとって不十分な増殖環境のために、全細胞の約0.068%のみ(Li et al., 2003)またはソーティングされたLgr5陽性細胞の2%が球を形成し得た(Shi et al., 2012)。本明細書で記載するように、内耳幹細胞についての高効率のインビトロ培養系が、今回開発された。
【0142】
P1からP2Lgr5−GFPマウスから単離されたマウス蝸牛は、
図13Aに示すように、Lgr5陽性細胞を含んだ。Lgr5+小腸幹細胞培養において使用されたのと同じ培養条件(EGF、ノギン、R−スポンジン1、または「ENR」)を、最初に確立した。
図13Bに示すように、EGF、ノギンおよびR−スポンジン1の組み合わせによって、EGF単独に比べて、単一の蝸牛上皮幹細胞からのコロニー形成効率が上昇した。予想されるように、CHIRとVPAの組み合わせは、コロニー形成効率、細胞増殖、および細胞のGFP発現を大きく増大させたが、CHIR単独はそうではなかった。驚くべきことに、ENR−CV組み合わせからノギンを除去することによって(「ER−CV」条件)、
図13Bに明視野画像およびGFP画像によって示すように、わずかに高いコロニー形成効率および高いGFP発現レベルが生じた。これらの結果は、R−スポンジン1またはCHIRによるWnt経路活性化が内耳幹細胞の増殖を促進し、CHIRとVPAの組み合わせが内耳幹細胞の増殖および自己複製を大きく促進することを示す。
【0143】
EGF、bFGFおよびIGF−1を含む有糸分裂性(mitogenic)増殖因子は、懸濁物培養系で以前に使用され、単離された内耳幹細胞の球形成を促進することが示された(Li et al., 2003; Shi et al., 2011)。次に、CHIRおよびVPAの効果を、表1に記載するように、これらの増殖因子の存在下で試験した。
【表4】
【0144】
Lgr5−GFPマウスから単離されたコルチ器を、アキュターゼを使用して単一の細胞に分離し、8日間マトリゲル中で可溶性因子と小分子の複数の組み合わせ中で培養した。得られた培養物を、単一の細胞にさらに分離し、FACSを使用して分析した。以前の結果と一致して、CHIRとVPAの添加によって、細胞増殖が大きく増大し(9〜20倍)、GFP+細胞のパーセンテージで示されるGFP発現が大きく上昇し(60倍)、GFP+細胞の相対GFP強度が大きく上昇したが(2倍)、CHIRまたはVPAの単独はそうではなかった(
図14Aおよび14B)。さらに、EGF、bFGFおよびIGF−1の組み合わせによって(EFIとして示す)、ENR条件と比較して細胞増殖およびGFP発現が改善した(
図14A〜14C)。
【0145】
CHIRおよびVPAと組み合わせた場合の個々の増殖因子の効果をさらに調査するために、CHIRおよびVPAと組み合わせた有糸分裂性増殖因子(EGF、bFGFおよびIGF−1)を含む増殖因子ならびにWntアゴニストR−スポンジン1を試験した。CV条件へのEGFの添加により、培養物中の細胞数の増加によって示される細胞増殖が大きく増加した。EGF+CVへのbFGFの添加により、細胞増殖およびGFP発現がさらに増大したが、EGF+CVへのIGF−1またはR−スポンジン1の添加ではそうならなかった(
図14D)。EGF+bFGF組み合わせへのIGF−1またはR−スポンジン1の添加により、GFP発現がわずかに上昇したが(
図14E)、我々は、これらが培養細胞の増殖およびGFP発現の維持に必須ではないことを見出した(
図14F)。
【0146】
実施例6:Lgr5陽性腸幹細胞は移植可能な陰窩を形成する
腸幹細胞を移植する可能性を試験するために、インビトロの健康な結腸組織に対する小腸陰窩の植付けを試験した。結腸組織を、野生型マウスから採取し、長さ方向に開いた。1cm断片を、除去し、PBSで洗浄した。上皮層を、外科用刃を使用してこすり落とすことによって除去し、組織を24ウェルプレートに配置した。Lgr5−GFPマウスから単離した小腸陰窩を、DiD膜色素で染色し、アドバンストDMEM/F12(Invitrogen)、2mM GlutaMax(Invitrogen)、10mM Hepes(Invitrogen)、100U/mlペニシリン/100μg/mlストレプトマイシン(Invitrogen)、1×N2サプリメント(Invitrogen)、1×B27サプリメント(Invitrogen)、50ng/ml EGF(Peprotech)、500ng/ml R−スポンジン1(R & D Systems)、10μM Y−27632(Rhoキナーゼインヒビター、Sigma-Aldrich;および100mg/mlノギン(Peprotech)を含む5〜10μlの陰窩培養培地内の結腸組織上に配置した。組織を、加湿環境において37℃で30〜60分間さらにインキュベートし、陰窩の接着を可能にした。次いで、陰窩培養培地を、ウェルに添加し、陰窩を7日間さらに培養した。播種した陰窩を、結腸に付着させ、24時間の間に広げた(
図15)。蛍光画像は、陰窩が48時間の間に結腸に植え付けられ(
図16)、少なくとも1週間の間Lgr5−GFP発現を維持したことを示した(
図17)。
【0147】
小腸陰窩の植付け能力をさらに試験するために、自発的な潰瘍性大腸炎を示し、ヒトの状態を模倣するTRUCマウスモデルを使用した。脱した組織を、TRUCマウスから切除し、PBSで洗浄し、24ウェルプレートに配置した。小腸陰窩を、DiDで染色し、脱した組織上に配置した。次いで、組織を、加湿環境において37℃で30〜60分間インキュベートし、陰窩の接着を可能にした。陰窩培養培地をウェルに添加した。脱した組織および陰窩を、インビトロで2日間さらに培養した。予想されるように、陰窩は、脱した組織に植付けられた(
図17)。
【0148】
実施例7:小腸類臓器体のためのパッチ培養系は3次元生理学的環境を模倣する
粘膜下組織骨格上に大規模な組織化された3次元細胞構造(即ち、類臓器体)の成長を支持し得るインビトロ培養系を、今回開発した。以下に記載するように、3次元組織構築物のための改善された小腸粘膜下組織(「SIS」)ベースの培養系を、粘膜下組織に前もって選択した細胞型を播種し、かつ特有のコラーゲンベースのかぶせもので成長を容易にすることによって調製した。このかぶせものは、最初は粘性の液体(fluid)重合前物質(pre-polymerization)であるが、播種された初期の細胞または類臓器体(細胞から二次培養された)を覆い、かつSISベースを覆い、コラーゲン残基内に細胞を包むために使用される(
図19Eおよび19F)。重合後、液体は固化し、細胞膜およびSISに接触するその位置を維持し、類臓器体の拡大を促進する。このかぶせものを有するSISの組成を変更することによって、細胞接着および増殖が容易になることを今回発見した。これは、インビボとは全く異なるインビトロで組織成熟を容易にする。これは、大きな内生型(endogenous)類臓器体への接着細胞の3次元拡大が移植前に達成される点で、他の粘膜下組織ベースの系および類似の合成系に対して特有の改善である。
【0149】
さらに、ゲル層を使用することなく、マトリゲルに匹敵する速度での粘膜下組織上での3次元類臓器体成長を支持する方法がまた発見された。この系は、脊椎動物SIS、およびSISパッチに播種された前もって選択された細胞で構成される。このゲル不含培養系を支持するために、前もって選択された生体活性活性薬剤を、細胞の播種前にパッチに注入する(
図19Cおよび19D)。
【0150】
パッチ培養系を開発するために、増殖因子を注入したSISベースおよびコラーゲンかぶせものの種々の組み合わせ(
図19Eおよび19F)を試した。これは、硬い(SIS)から柔らかい(コラーゲン)マトリックスへの転移を有するより生理学的な組織界面(interface)の作製を可能にした。コラーゲン残基で覆われた播種された細胞および類臓器体に、マトリゲルで提供されるものと類似の3次元環境が提供されることを決定した。従って、この系は、3次元類臓器体構築物の培養においてマトリゲルの適切な交換物である。播種された細胞または類臓器体の大部分は、両方、細胞膜の下半分でSISに接着するが、膜の非付着領域で重合したコラーゲンによっても覆われる(
図19E、挿入図)。従って、各細胞膜は、マトリックスがSISであろうとコラーゲンであろうと、マトリックスの形態中に機能的に覆われる。いくつかの試料において、種々の生体活性薬剤が、SIS単独より優れた細胞および類臓器体の播種、成長、および分化を支持するために使用された(
図19F)。出願人は腸幹細胞培養に特異的な生体分子の注入を記載するが、生体分子は、膵臓、乳房、肝臓、および胃の組織を含む種々の組織からの他の播種された細胞の増殖を補助するためにあつらえる(tailor)ことができることを宣言する。従って、組織特異的生体分子は、以下:抗ウイルス剤、抗菌剤、抗生剤、アミノ酸、ペプチド、タンパク質、糖タンパク質、リポタンパク、抗体、ステロイド化合物、抗生物質、抗真菌剤(antimycotic)、サイトカイン、ビタミン、炭水化物、脂質、細胞外マトリックス、細胞外マトリックス成分、化学療法剤、細胞傷害性剤、増殖因子、抗拒絶反応剤、鎮痛薬、抗炎症剤、ウイルスベクター、タンパク質合成補因子、ホルモン、内分泌組織、合成剤(synthesizer)、酵素、実質細胞を有するポリマー細胞骨格形成剤(scaffolding agent)、脈管形成薬、小分子、ナノ粒子、コラーゲン格子、抗原性薬剤、細胞骨格剤、核酸、細胞誘引物質(attractant)から選択され得る。
【0151】
初めに、陰窩を、以前の方法に従って単離した(Sato et al., 2009, Yui et al., 2012)。マウス小腸を、単離し、長さ方向に切開し、氷冷PBSで洗浄し、管腔内含有物をきれいにした。断片を、2mm片に切断し、50mlファルコンチューブに移し、10mlピペットを使用して50mlの氷冷PBS中で穏やかに洗浄した。上清を除去し、該プロセスを、上清が澄むまで続けた。断片を、2mM EDTAを含むPBS中で4℃で45分間インキュベートし、陰窩を放出させた。上清を除去し、断片を、50mlのPBSを用いてピペットで吸ったり出したりした。一旦、上清が陰窩画分を含むことが確認されると、上清を、70μmのセルストレーナーを通してろ過し、300gで5分間の遠心分離で回転させた(spin)。陰窩を、10mlの氷冷ベース培養培地(アドバンストDMEM/F12(Invitrogen)、2mM GlutaMax(Invitrogen)、10mM Hepes(Invitrogen)および100U/mlペニシリン/100μg/mlストレプトマイシン(Invitrogen)を含む)中に再懸濁し、15mlのファルコンチューブに移した。PBS洗浄を繰り返し、陰窩を、200gで2分間回転させ、単一の細胞を除去した。陰窩を、計数し、200μlのマトリックスを含むウェルあたり1000陰窩の濃度で、マトリゲルまたはコラーゲンIのいずれか(以下からなる:100μl 10×PBS、4.9μl NaOH、684μl H2Oおよび211μl コラーゲンI型(ラット尾高濃度9.49mg/ml;BD Biosciences)を有する48ウェルプレートにプレーティングした。選択したゲル製品の重合の後、アドバンストDMEM/F12(Invitrogen)、2mM GlutaMax(Invitrogen)、10mM Hepes(Invitrogen)、100U/mlペニシリン/100μg/mlストレプトマイシン(Invitrogen)、1×N2サプリメント(Invitrogen)、1×B27サプリメント(Invitrogen)、50ng/ml EGF(Peprotech)、500ng/ml R−スポンジン1(R & D Systems)、10μM Y−27632(Rhoキナーゼインヒビター、Sigma-Aldrich;および100ng/mlノギン(Peprotech)を含む500μlの1×標準陰窩培養培地(無血清)を添加した。パッチに播種する前に、細胞を4〜5日間増殖させ、一日おきに培地を交換した。Y−27632は、最初の48時間の間のみ培養培地に含ませた。
【0152】
培養の4〜5日後に、Lgr5+類臓器体を、以前に記載された改変されたプロトコルを使用して継代した(Sato et al., 2009)。培養培地を、マトリゲルから除去し、次いで、マトリゲルを、p1000ピペットを用いて人力で破壊し、次いで、BSAコートされた15mlファルコンチューブに移した。コラーゲンゲルを、コラゲナーゼXI型を含むDMEM中で37℃で5分間インキュベートし、次いで、BSAコートされた15mlファルコンチューブに移した。ベースの培地を添加し、類臓器体を、大部分の類臓器体が単一の陰窩になるまで、倒立顕微鏡による頻繁な観察によって穏やかに破壊した。類臓器体を、10mlのベース培地中で洗浄し、200gで2分間遠心分離した。ペレットを、500μlあたり500の単一の陰窩類臓器体の濃度で陰窩培養培地中に再懸濁した。
【0153】
パッチを、生成し、標準的な48ウェルプレートのウェル内に播種するために調製した(ウェルあたり1パッチ、管腔側を上にする)。SISを、所望の長さに切断し、各ウェルの底を覆った(48ウェルプレートについて約1cm)。SISの単離は、以前に記載されている(Badylak et al., 1989)。鈍い鉗子を使用して、各SISセグメントを、ウェルの底に移し、管腔側を上にしてその全直径まで注意深く広げた。方向を、倒立顕微鏡下の分析によって確認し、表在性表面上の陰窩の無細胞性残存物を可視化した。要求されるコンプライアンスおよび強度に依存して、SISの複数の層を、層状に積み重ね、互いに結合させ得る。この場合において、各セグメントを、所望の数のセグメントに対して互いの上部に広げ得、パッチを、鉗子で穏やかに圧縮し、5%CO
2、37℃で5分間空気乾燥させた。播種の前に、各パッチセグメントを、受動的蒸発により24時間脱水させ、濃縮した陰窩培養培地を注入し、任意に、以下に記載されるとおり小分子を注入した。具体的には、パッチの各セグメントを配置し、48ウェルプレートのウェル中に管腔側を上にして広げ、100μlの濃縮した因子(EGF、ノギン、R−スポンジン1、Y−27632、バルプロ酸、およびCHIR)を、5%CO
2および37℃での24時間のインキュベーションの間配置した。
【0154】
個々の500μlの単一の陰窩類臓器体試料を、パッチベースを含むウェルに配置し、5%CO
2および37℃で24時間インキュベートした(
図20A)。確実に接着させ、パッチ中に植え込まれた増殖因子から栄養的支持を得るために、播種されたパッチを、24時間培養培地中に維持した(
図20B)。
【0155】
いくつかの試料において、薄いコラーゲンゲル残基(ゲルパッチと称する)を、パッチ/類臓器体複合体の上部に被覆し、各類臓器体に対して最少であるが機能的な3次元環境を提供した。細胞表面から得られる物理的および化学的合図は、生理学的形態を複製するために、3次元細胞構造増殖を増強した(Seidi, A., et al., 2011)。コラーゲンIマトリックス(20〜40μl)を、播種されたパッチの上に層にし、パッチを越えたゲルの拡散を防止するために表面張力を強化することに気を付け(
図20C)、ウェルプレートを、5%CO
2、37℃で30分間インキュベートした。陰窩培養培地(500μl)を、各ウェルに配置し、1日おきに交換した。
【0156】
いくつかの試料において、パッチを、パッチにより最初の24時間に類臓器体の接着が容易になったかどうかを試験するために、播種前に、増殖因子中でインキュベートした。従って、GF注入(EGF、ノギン、R−スポンジン1、Y−27632、バルプロ酸、およびCHIRを含む)パッチ 対 非注入パッチ(PBS中のSIS)に播種した。このアッセイにおいて、非注入パッチは、培養培地の代わりにベースの媒体を使用し、同様に、類臓器体に培地増殖因子を与えなかった(deprive)。
【0157】
腸類臓器体の成長を、7つの別個の系:マトリゲル(対照)、増殖因子(本明細書中以下GFといい、EGF、ノギン、R−スポンジン1、Y−27632、バルプロ酸、およびCHIRを含む)を注入されたゲルパッチ系、GFを注入したがコラーゲンのかぶせものを有さないベアパッチ、コラーゲンIゲルのみ、培養培地に直接GFを添加したコラーゲンIゲル(EGF、ノギン、R−スポンジン1、Y−27632、バルプロ酸、およびCHIRを含む)、ゲル自体にGFを植え込んだコラーゲンIゲル(EGF、ノギン、R−スポンジン1、Y−27632、バルプロ酸、およびCHIRを含む)、およびコラーゲンのかぶせものまたはGFの注入を有さないベアパッチにおける類臓器体あたりの陰窩の数の定量によって評価した。培地に直接GFおよび小分子を添加したコラーゲンI群以外は、全ての培養培地は、各系の間の標準であり、全ての培養培地は、1日おきに交換され、EGF、ノギン、R−スポンジン1、Y−27632(最初の48時間のみ)を含んだ。標準的な陰窩培養培地を、上記する。
【0158】
実験を96時間にわたって行い、類臓器体の成長の毎日の定量を、類臓器体あたりの陰窩の数の視認によって、詳細に記録した。GFを有するゲルパッチ系は、マトリゲル対照に匹敵するレベルで類臓器体の成長を支持し得た(
図19)。GFを有さないベアパッチは、測定可能な類臓器体の成長を支持し得なかった。より精密な観察によって、ベアSISパッチは、3次元類臓器体とは全く異なるシートにおいてLgr5+細胞を成長させるようであった。しかし、GF(EGF、ノギン、R−スポンジン1、Y−27632、バルプロ酸、およびCHIR)を注入したベアパッチは、ゲルパッチ系およびマトリゲルの両方で同等に類臓器体の成長を支持した。このことは、十分なGFの支持を伴って、ゲルを含まない培養系は、マトリゲルと同等に、短期の3次元の類臓器体の成長を維持し得ることを示す。コラーゲンIのみは、中程度の類臓器体の成長を容易にするが、GFを注入したSISは、コラーゲンの3次元成長促進効果に対する実現可能な交換物である。さらに、同じGF(EGF、ノギン、R−スポンジン1、Y−27632、バルプロ酸、およびCHIR)を、コラーゲンIゲル培養の培養培地に直接添加した場合、類臓器体の成長速度は低いままであった。さらに、コラーゲンIゲルを、播種の前に上記したGFをゲルに直接植え込むことによって調製した場合、類臓器体の成長速度は低いままであった。GFPシグナルは、ゲルパッチ系のいたるところで維持された(
図21Bおよび21Cに代表的な例)。ベアパッチ(コラーゲンのかぶせものまたはGFを有さないSIS)が、構造化した類臓器体の成長を支持しなかったとの観察は、3次元構造を促進するための十分な物理的および化学的合図の重要性を再確認する。
【0159】
SISまたはコラーゲンのみが、文献において細胞播種のためのベース骨格として使用され、細胞単層の形成が生じている(Baumert et al. 2007; Campodonico et al. 2004; Feil, G., et al. 2006; Zhang, Y., et al. 2000)。対照的に、これらの2つのマトリックスの界面で増殖している細胞は、単層の成長より3次元の類臓器体の成長を好む。これは、生理学的環境をより精密に模倣し、加速されかつ構造化された成長を可能にする。重要なことに、これらの結果は、マトリゲルの優れた代替物である、小腸類臓器体についてのパッチ培養系を記載する。動物モデルにおけるマトリゲルベースの移植は、ヒトモデルに進める際に重大な障壁に遭遇し、最も重大なものは生体適合性の問題を含んだ。3次元の細胞ベースの構造を成長させることは、しばしば、厚いマトリックスゲルに植え込むことを必要とする。パッチ培養系は、この要件を克服し、同等の結果を提供する。マトリゲルを内生型細胞外マトリックス物質と特定の生体活性増殖因子の組み合わせと交換することによって、生体適合性の問題を回避し、3次元の類臓器体のエキソビボ成長を維持する。最初の播種からの3次元のエキソビボ類臓器体拡大の微速度撮影画像を、
図22に示す。
【0160】
播種前の増殖因子中でのパッチのインキュベーションによって最初の24時間で類臓器体の接着が容易になるかどうかを評価した。播種効率を、増殖因子注入パッチ(EGF、ノギン、R−スポンジン1、Y−27632、バルプロ酸、およびCHIRを含む)と非処理パッチ(PBS中に保存)とで比較した。アッセイを、培地の洗浄後の増殖因子を含まない培地のみ(ベース培地のみ)で細胞を培養する4時間目および12時間目の時点に維持される類臓器体のパーセンテージを測定することによって実施した。SISを省略し、類臓器体をプラスチックのコラーゲン被覆ウェルおよびコラーゲン非被覆ウェルに直接播種した場合、全ての類臓器体の分離が24時間以内に起こった。しかし、SISパッチは、24時間の時点で、構造およびGFP発現の両方において類臓器体の大部分を維持した。接着の改善は、細胞を、増殖因子注入パッチ(EGF、ノギン、R−スポンジン1、Y−27632、バルプロ酸、およびCHIRを含む)上に播種した場合に観察された。従って、増殖因子注入はまた、培養の間および移植の後に十分な栄養および因子を提供し、細胞植付けに対する橋渡しをする(bridge the gap)ために有用であり得る。
【0161】
実施例8:移植したパッチはインビボで成長促進特性を示す
パッチ系の無細胞性ゲル不含の変形物を、インビボでの粘膜治癒特性を評価するために試験した。インビボでの移植パッチの成長促進特性を試験するために、粘膜欠損のラット外科モデルを設計した。SISの一部を、6mmの円形のポリ(グリセロールセバセート)ウレタン(PGSU)の裏当て上に管腔側を上にして注意深く広げることによって、移植パッチを組み立てた(assemble)。パッチを、5%CO
2、37℃で30分間インキュベートし、PGSUとSISの接着を可能にした。
図23に示すように、4mmの欠損を、パンチ生検(punch biopsy)によって胃壁に生成した。無細胞性パッチ(直径6mm)を、胃の外壁の上に配置し、選択した物質で該欠損を注意深く覆った。縫合糸および近位の結合組織を使用して、採用したGrahamパッチ方法により、パッチを固定した
【数1】
。a)PGSU−裏当てSISパッチ(GFなし)、b)GF(EGF、ノギン、R−スポンジン1、Y−27632、バルプロ酸、およびCHIR)を注入したPGSU−裏当てSISパッチ、およびc)PGSU裏当てのみ(SISなし)を含む、無細胞性パッチの3つのバリアントを適用した。いずれの時点においても、いずれのラットにも腹膜炎は観察されなかった。機械的に誘導した胃壁の欠損の上への移植の1週間後、欠損およびパッチ移植物を含む胃の組織を、採取し、組織の組織学的試験を行った。
【0162】
パッチの変形物の移植は種々の程度の粘膜の治癒を示すと仮説を立てた。全試験は、欠損が上皮形成し、閉じたので、GFを有するSISパッチにおいて有意な利点を示した。GFを有さないSISパッチにおいて、上皮形成を有さない部分的な閉鎖が観察され、PGSUのみ(対照)のパッチにおいて、閉鎖または上皮形成は観察されなかった。組織学的試験によって、GFを有するおよび有さないSISパッチの両方において軽度の炎症が明らかになったが、胃の内容物の漏れはなかった。PGSUのみのパッチの組織学的試験によって、中程度の炎症および巨細胞の存在が示され、胃の内容物の漏れに応答しているようであった。従って、本明細書に記載されるパッチ培養系は、培養皿から直接患者への移植が可能であり、パッチが硬く、その低い高さプロフィールを考慮すれば、小さい空間(例えば、腸の管腔、脈管の空間)を閉塞する可能性が低いので、移動の潜在性が高い。
【0163】
実施例9:ヒト小腸陰窩/幹細胞の培養
ヒト小腸陰窩を、切除した正常な小腸検体から単離し、実施例1に記載されるとおりに培養した。ENR(EGF、ノギン、R−スポンジン1)条件に添加されたCHIR99021とVPAまたはツバスタチンAの組み合わせを含むマウス小腸幹細胞/陰窩の培養に使用した同じ細胞培養条件を、ヒト腸幹細胞/陰窩について公開された細胞培養溶液(Jung et al., 2011; Sato et al., 2011)と比較した。RT−PCRを使用して、特に自己複製または分化状態を決定することによって、培養中の上皮幹細胞の維持を評価した。LGR5を幹細胞マーカーとして使用し、ALPI、MUC2、CHGAおよびLYZを、分化マーカーとして使用した。培養物中の細胞数を計数し、コロニーの形態およびサイズを観察することによって、細胞増殖を評価した。
【0164】
マウス腸幹細胞培養と同様に、CHIR+VPAまたはCHIR+ツバスタチンAの組み合わせは、幹細胞マーカーLGR5の発現を大きく促進し、培養された細胞は、幹細胞が富化されていることを示唆した(
図24)。特に、CHIRおよびVPAまたはCHIRおよびツバスタチンAを含む培養条件は、LGR5発現の促進において公開された条件より優れていた(
図24)。さらに、培養培地に対する改善を示す、A83−01(ALK4、5、7、Tgf−βインヒビター)、SB202190(p38インヒビター)、およびニコチンアミド(ビタミンB誘導体)を含む個々の成分を試験した。LGR5発現に大きな影響を与えることなく(
図25B)、培養物中の細胞数を増大させることによって示されるように(
図25A)、CHIR+VPA条件に添加された場合、10mMのニコチンアミドがヒト小腸陰窩の増殖を増大させることを決定した。A83−01とSB202190の組み合わせ(AS)は、細胞の増殖を増大させたが(
図25A)、これらは、LGR5の発現を大きく減少させた(
図25B)。さらに、より低い濃度のVPA(0.5mM、マウス培養に使用した(1〜2mM)のと比べて)が、ヒト小腸陰窩の細胞増殖を増大させた(
図25A)。ひとまとめにすると、EGF、ノギン、R−スポンジン1、CHIR、VPA(0.5mM)、およびニコチンアミドまたはEX527を含む培養条件が、ヒト腸幹細胞にとっての最適な培養条件であったことを決定した。この条件において、単離された小腸陰窩は、マウス小腸幹細胞と同等のコロニーに成長した(
図26)。
【0165】
実施例10:
腸上皮細胞に対するCHIRおよびVPAのインビボ効果を試験するために、CHIR99021(100μl DMSO中30mg/Kg)およびVPA(100μl水中200mg/Kg)を、4〜6週齢の雌のLgr5−GFPマウスに、胃管栄養法により投与した。対照マウスに、100μl DMSOと100μl水の混合物を与えた。薬物を、7日間48時間毎に投与した(第0日、第2日、第4日および第6日に)。第7日に、マウスを屠殺し、腸組織を回収した。小腸を、PBSでさらに洗浄し、4%PFAで12時間固定し、パラフィンに包埋し、標準的なヘマトキシリンおよびエオシン(H&E)染色プロトコルを使用して染色した。倒立顕微鏡(EVOS, Advanced Microscopy Group)を使用して画像を取得した。CHIRおよびVPAのインビボ投与によって、7日のクールの間の3回の投与の後、陰窩のサイズが増大した(
図27)。
【0166】
参考文献
本明細書で言及される全ての特許、特許出願および刊行物は、各独立した特許および刊行物が具体的におよび個々に参照によって援用されるべきことが示されていたのと同程度に、参照によって本明細書に援用される。
【数2】
【数3】
【数4】
【数5】
【数6】
【数7】
【数8】
【数9】
【数10】
【数11】
【数12】
【数13】
【数14】
【0167】
他の態様
本発明はその詳細な説明に関連して記載されるが、前述の説明は、例示を意図し、添付の特許請求の範囲の範囲によって画定される発明の範囲を限定することを意図しないことが理解される。他の局面、利点および改変は、以下の特許請求の範囲の範囲内である。
【0168】
本発明の態様として、以下のものが挙げられる。
[1]骨形成因子のインヒビター、グリコーゲンシンターゼキナーゼ−3βのインヒビター、ロイシンリッチリピート含有Gタンパク質共役レセプター5に結合する薬剤、およびヒストンデアセチラーゼインヒビターを含む細胞培養溶液。
[2]骨形成因子のインヒビター、少なくとも約3μMのCHIR99021、およびヒストンデアセチラーゼインヒビターを含む細胞培養溶液。
[3]ヒストンデアセチラーゼインヒビターがPan−HDACインヒビターである、[1]または[2]記載の細胞培養溶液。
[4]Pan−HDACインヒビターが、バルプロ酸、トリコスタチンA、スベロイルアニリドヒドロキサム酸、およびスベロヒドロキサム酸(SBHA)からなる群より選択される、[3]記載の細胞培養溶液。
[5]ヒストンデアセチラーゼインヒビターがHDAC6インヒビターである、[1]または[2]記載の細胞培養溶液。
[6]HDAC6インヒビターが、ツバシン、ツバスタチンA、およびコンパウンド7からなる群より選択される、[5]記載の細胞培養溶液。
[7]骨形成因子のインヒビターが、ノギン、コーディン、フォリスタチン、DAN、DANシステイン−ノットドメインを含むタンパク質、スクレロスチン、ねじれ原腸形成、子宮感受性関連遺伝子−1、結合組織成長因子、インヒビン、BMP−3、およびドルソモルフィンからなる群より選択される、[1]または[2]記載の細胞培養溶液。
[8]グリコーゲンシンターゼキナーゼ−3βのインヒビターが、CHIR99021、LiCl、BIO−アセトキシム、CHIR98014、SB216763、SB415286、3F8、ケンパウロン、1−アザケンパウロン、TC−G24、TCS2002、AR−A014418、TCS21311、TWS119、BIO−アセトキシム、10Z−ヒメニアルジシン、GSK−3βインヒビターII、GSK−3βインヒビターI、GSK−3βインヒビターXXVII、GSK−3βインヒビターXXVI、FRATtideペプチド、Cdk1/5インヒビター、およびビキニンからなる群より選択される、[1]記載の細胞培養溶液。
[9]ロイシンリッチリピート含有Gタンパク質共役レセプター5に結合する薬剤が、R−スポンジン1、R−スポンジン2、R−スポンジン3、およびR−スポンジン4からなる群より選択される、[1]記載の細胞培養溶液。
[10]グリコーゲンシンターゼキナーゼ−3βのインヒビターがCHIR99021からなる群より選択され、ロイシンリッチリピート含有Gタンパク質共役レセプター5に結合する薬剤がR−スポンジン1であり、HDACインヒビターがバルプロ酸である、[1]記載の細胞培養溶液。
[11]ノギン、R−スポンジン1、CHIR99021、およびAtoh1インヒビターを含む細胞培養溶液。
[12]Atoh1インヒビターが阻害性核酸である、[11]記載の細胞培養溶液。
[13]上皮増殖因子をさらに含む、[1]、[2]または[11]記載の細胞培養溶液。
[14]ノッチ1抗体(N1 Ab)、デルタ1、デルタ様3、デルタ様4、ジャグド1、ジャグド2、DSLペプチド、およびデルタDからなる群より選択されるノッチアゴニストをさらに含む、[1]、[2]または[11]記載の細胞培養溶液。
[15]約5〜約500ng/mlのEGF、約5〜約500ng/mlのノギン、約50〜約1000ng/mlのR−スポンジン、約0.1〜約10μMのCHIR99021、および約0.1〜約5mMのバルプロ酸を含む細胞培養溶液。
[16]骨形成因子のインヒビター、R−スポンジン1、塩化リチウム、およびヒストンデアセチラーゼインヒビターを含む細胞培養溶液。
[17]ヒストンデアセチラーゼインヒビターがPan−HDACインヒビターである、[16]記載の細胞培養溶液。
[18]Pan−HDACインヒビターが、バルプロ酸、トリコスタチンA、スベロイルアニリドヒドロキサム酸、およびSBHAからなる群より選択される、[17]記載の細胞培養溶液。
[19]ヒストンデアセチラーゼインヒビターがHDAC6インヒビターである、[16]記載の細胞培養溶液。
[20]HDAC6インヒビターが、ツバシン、ツバスタチンA、およびコンパウンド7からなる群より選択される、[19]記載の細胞培養溶液。
[21]骨形成因子のインヒビターが、ノギン、コーディン、フォリスタチン、DAN、DANシステイン−ノットドメインを含むタンパク質、スクレロスチン、ねじれ原腸形成、子宮感受性関連遺伝子−1、結合組織成長因子、インヒビン、BMP−3、およびドルソモルフィンからなる群より選択される、[16]記載の細胞培養溶液。
[22]上皮増殖因子をさらに含む、[16]記載の細胞培養溶液。
[23]ノッチ1抗体(N1 Ab)、デルタ1、デルタ様3、デルタ様4、ジャグド1、ジャグド2、DSLペプチド、およびデルタDからなる群より選択されるノッチアゴニストをさらに含む、[16]記載の細胞培養溶液。
[24]骨形成因子のインヒビター、ロイシンリッチリピート含有Gタンパク質共役レセプター5に結合する薬剤、Wntアゴニスト、およびHDAC6インヒビターを含む細胞培養溶液。
[25]Wntアゴニストが、Wnt−1/Int−1、Wnt−2/Irp(Int−I関連タンパク質)、Wnt−2b/13、Wnt−3/Int−4、Wnt−3a、Wnt−4、Wnt−5a、Wnt−5b、Wnt−6、Wnt−7a、Wnt−7b、Wnt−8a/8d、Wnt−8b、Wnt−9a/14、Wnt−9b/14b/15、Wnt−10a、Wnt−10b/12、Wnt−11、Wnt−16、R−スポンジン1、R−スポンジン2、R−スポンジン3、R−スポンジン4、ノリン、CHIR99021、LiCl、BIO((2’Z,3’E)−6−ブロモインジルビン−3’−オキシム)、CHIR98014、SB216763、SB415286、3F8、ケンパウロン、1−アザケンパウロン、TC−G24、TCS2002、AR−A014418、2−アミノ−4−[3,4−(メチレンジオキシ)ベンジル−アミノ]−6−(3−メトキシフェニル)ピリミジン、IQ1、DCA、QS11、WAY−316606、(ヘテロ)アリールピリミジン、10Z−ヒメニアルジシン、TCS21311、TWS119、GSK−3インヒビターIX、GSK−3インヒビターIV、GSK−3βインヒビターII、GSK−3βインヒビターI、GSK−3βインヒビターXXVII、GSK−3βインヒビターXXVI、FRATtide、Cdk1/5インヒビター、ビキニン、および1−アザケンパウロンからなる群より選択される、[24]記載の細胞培養溶液。
[26]HDAC6インヒビターが、ツバシン、ツバスタチンA、およびコンパウンド7からなる群より選択される、[24]記載の細胞培養溶液。
[27]骨形成因子のインヒビターが、ノギン、コーディン、フォリスタチン、DAN、DANシステイン−ノットドメインを含むタンパク質、スクレロスチン、ねじれ原腸形成、子宮感受性関連遺伝子−1、結合組織成長因子、インヒビン、BMP−3、およびドルソモルフィンからなる群より選択される、[24]記載の細胞培養溶液。
[28]上皮増殖因子をさらに含む、[24]記載の細胞培養溶液。
[29]ノッチ1抗体(N1 Ab)、デルタ1、デルタ様3、デルタ様4、ジャグド1、ジャグド2、DSLペプチド、およびデルタDからなる群より選択されるノッチアゴニストをさらに含む、[24]記載の細胞培養溶液。
[30]i)上皮幹細胞または上皮前駆細胞または上皮幹細胞もしくは上皮前駆細胞の集団;
ii)R−スポンジン1;
iii)CHIR99021;
iv)ヒストンデアセチラーゼインヒビター;および
v)任意に、骨形成因子のインヒビター
を含む、細胞培養系。
[31]ヒストンデアセチラーゼインヒビターがPan−HDACインヒビターである、[30]記載の細胞培養系。
[32]Pan−HDACインヒビターが、バルプロ酸、トリコスタチンA、スベロイルアニリドヒドロキサム酸、およびSBHAからなる群より選択される、[31]記載の細胞培養系。
[33]ヒストンデアセチラーゼインヒビターがHDAC6インヒビターである、[31]記載の細胞培養系。
[34]HDAC6インヒビターが、ツバシン、ツバスタチンA、およびコンパウンド7からなる群より選択される、[33]記載の細胞培養系。
[35]骨形成因子のインヒビターが、ノギン、コーディン、フォリスタチン、DAN、DANシステイン−ノットドメインを含むタンパク質、スクレロスチン、ねじれ原腸形成、子宮感受性関連遺伝子−1、結合組織成長因子、インヒビン、BMP−3、およびドルソモルフィンからなる群より選択される、[30]記載の細胞培養系。
[36]上皮増殖因子をさらに含む、[30]記載の細胞培養系。
[37]ノッチ1抗体(N1 Ab)、デルタ1、デルタ様3、デルタ様4、ジャグド1、ジャグド2、DSLペプチド、およびデルタDからなる群より選択されるノッチアゴニストをさらに含む、[30]記載の細胞培養系。
[38]i)上皮幹細胞または上皮前駆細胞または上皮幹細胞もしくは上皮前駆細胞の集団;
ii)R−スポンジン1;
iii)CHIR99021;
iv)Atoh1インヒビター;および
v)任意に、骨形成因子のインヒビター
を含む、細胞培養系。
[39]Atoh1インヒビターが阻害性核酸である、[38]記載の細胞培養系。
[40]骨形成因子のインヒビターが、ノギン、コーディン、フォリスタチン、DAN、DANシステイン−ノットドメインを含むタンパク質、スクレロスチン、ねじれ原腸形成、子宮感受性関連遺伝子−1、結合組織成長因子、インヒビン、BMP−3、およびドルソモルフィンからなる群より選択される、[38]記載の細胞培養系。
[41]上皮増殖因子をさらに含む、[38]記載の細胞培養系。
[42]ノッチ1抗体(N1 Ab)、デルタ1、デルタ様3、デルタ様4、ジャグド1、ジャグド2、DSLペプチド、およびデルタDからなる群より選択されるノッチアゴニストをさらに含む、[38]記載の細胞培養系。
[43]i)上皮幹細胞または上皮前駆細胞または上皮幹細胞もしくは上皮前駆細胞の集団;
ii)R−スポンジン1;
iii)塩化リチウム;
iv)ヒストンデアセチラーゼインヒビター;および
v)任意に、骨形成因子のインヒビター
を含む、細胞培養系。
[44]ヒストンデアセチラーゼインヒビターがPan−HDACインヒビターである、[43]記載の細胞培養系。
[45]Pan−HDACインヒビターが、バルプロ酸、トリコスタチンA、スベロイルアニリドヒドロキサム酸、およびSBHAからなる群より選択される、[44]記載の細胞培養系。
[46]ヒストンデアセチラーゼインヒビターがHDAC6インヒビターである、[43]記載の細胞培養系。
[47]HDAC6インヒビターが、ツバシン、ツバスタチンA、およびコンパウンド7からなる群より選択される、[46]記載の細胞培養系。
[48]骨形成因子のインヒビターが、ノギン、コーディン、フォリスタチン、DAN、DANシステイン−ノットドメインを含むタンパク質、スクレロスチン、ねじれ原腸形成、子宮感受性関連遺伝子−1、結合組織成長因子、インヒビン、BMP−3、およびドルソモルフィンからなる群より選択される、[43]記載の細胞培養系。
[49]上皮増殖因子をさらに含む、[43]記載の細胞培養系。
[50]ノッチ1抗体(N1 Ab)、デルタ1、デルタ様3、デルタ様4、ジャグド1、ジャグド2、DSLペプチド、およびデルタDからなる群より選択されるノッチアゴニストをさらに含む、[43]記載の細胞培養系。
[51]i)上皮幹細胞または上皮前駆細胞または上皮幹細胞もしくは上皮前駆細胞の集団;
ii)R−スポンジン1;
iii)Wntアゴニスト;
iv)HDAC6インヒビター;および
v)任意に、骨形成因子のインヒビター
を含む、細胞培養系。
[52]Wntアゴニストが、Wnt−1/Int−1、Wnt−2/Irp(Int−I関連タンパク質)、Wnt−2b/13、Wnt−3/Int−4、Wnt−3a、Wnt−4、Wnt−5a、Wnt−5b、Wnt−6、Wnt−7a、Wnt−7b、Wnt−8a/8d、Wnt−8b、Wnt−9a/14、Wnt−9b/14b/15、Wnt−10a、Wnt−10b/12、Wnt−11、Wnt−16、R−スポンジン1、R−スポンジン2、R−スポンジン3、R−スポンジン4、ノリン、CHIR99021、LiCl、BIO((2’Z,3’E)−6−ブロモインジルビン−3’−オキシム)、CHIR98014、SB216763、SB415286、3F8、ケンパウロン、1−アザケンパウロン、TC−G24、TCS2002、AR−A014418、2−アミノ−4−[3,4−(メチレンジオキシ)ベンジル−アミノ]−6−(3−メトキシフェニル)ピリミジン、IQ1、DCA、QS11、WAY−316606、(ヘテロ)アリールピリミジン、10Z−ヒメニアルジシン、TCS21311、TWS119、GSK−3インヒビターIX、GSK−3インヒビターIV、GSK−3βインヒビターII、GSK−3βインヒビターI、GSK−3βインヒビターXXVII、GSK−3βインヒビターXXVI、FRATtide、Cdk1/5インヒビター、ビキニン、および1−アザケンパウロンからなる群より選択される、[51]記載の細胞培養系。
[53]HDAC6インヒビターが、ツバシン、ツバスタチンA、およびコンパウンド7からなる群より選択される、[51]記載の細胞培養系。
[54]骨形成因子のインヒビターが、ノギン、コーディン、フォリスタチン、DAN、DANシステイン−ノットドメインを含むタンパク質、スクレロスチン、ねじれ原腸形成、子宮感受性関連遺伝子−1、結合組織成長因子、インヒビン、BMP−3、およびドルソモルフィンからなる群より選択される、[51]記載の細胞培養系。
[55]上皮増殖因子をさらに含む、[51]記載の細胞培養系。
[56]ノッチ1抗体(N1 Ab)、デルタ1、デルタ様3、デルタ様4、ジャグド1、ジャグド2、DSLペプチド、およびデルタDからなる群より選択されるノッチアゴニストからなる群より選択されるノッチアゴニストをさらに含む、[51]記載の細胞培養系。
[57]上皮幹細胞がLGR5陽性幹細胞である、[30]、[38]、[43]または[51]記載の細胞培養系。
[58]上皮幹細胞の集団がLGR5陽性幹細胞の集団である、[30]、[38]、[43]または[51]記載の細胞培養系。
[59]上皮幹細胞または上皮前駆細胞の集団が、該系中の細胞の少なくとも30%を構成する、[30]、[38]、[43]または[51]記載の細胞培養系。
[60]上皮幹細胞または上皮前駆細胞の集団が、該系中の細胞の少なくとも85%を構成する、[30]、[38]、[43]または[51]記載の細胞培養系。
[61]上皮幹細胞または上皮前駆細胞の集団が、該系中の細胞の少なくとも90%を構成する、[30]、[38]、[43]または[51]記載の細胞培養系。
[62]上皮幹細胞または上皮前駆細胞の集団が、該系中の細胞の少なくとも95%を構成する、[30]、[38]、[43]または[51]記載の細胞培養系。
[63]上皮幹細胞または上皮前駆細胞の集団が、該系中の細胞の少なくとも99%を構成する、[30]、[38]、[43]または[51]記載の細胞培養系。
[64]i)腫瘍類臓器体;
ii)ロイシンリッチリピート含有Gタンパク質共役レセプター5に結合する薬剤;
iii)Wntアゴニスト;
iv)ヒストンデアセチラーゼインヒビターまたはAtoh1インヒビター;および
v)任意に、骨形成因子のインヒビター
を含む、細胞培養系。
[65]Wntアゴニストが、Wnt−1/Int−1、Wnt−2/Irp(Int−I関連タンパク質)、Wnt−2b/13、Wnt−3/Int−4、Wnt−3a、Wnt−4、Wnt−5a、Wnt−5b、Wnt−6、Wnt−7a、Wnt−7b、Wnt−8a/8d、Wnt−8b、Wnt−9a/14、Wnt−9b/14b/15、Wnt−10a、Wnt−10b/12、Wnt−11、Wnt−16、R−スポンジン1、R−スポンジン2、R−スポンジン3、R−スポンジン4、ノリン、CHIR99021、LiCl、BIO((2’Z,3’E)−6−ブロモインジルビン−3’−オキシム)、CHIR98014、SB216763、SB415286、3F8、ケンパウロン、1−アザケンパウロン、TC−G24、TCS2002、AR−A014418、2−アミノ−4−[3,4−(メチレンジオキシ)ベンジル−アミノ]−6−(3−メトキシフェニル)ピリミジン、IQ1、DCA、QS11、WAY−316606、(ヘテロ)アリールピリミジン、10Z−ヒメニアルジシン、TCS21311、TWS119、GSK−3インヒビターIX、GSK−3インヒビターIV、GSK−3βインヒビターII、GSK−3βインヒビターI、GSK−3βインヒビターXXVII、GSK−3βインヒビターXXVI、FRATtide、Cdk1/5インヒビター、ビキニン、および1−アザケンパウロンからなる群より選択される、[64]記載の細胞培養系。
[66]ヒストンデアセチラーゼインヒビターがHDAC6インヒビターである、[64]記載の細胞培養系。
[67]HDAC6インヒビターが、ツバシン、ツバスタチンA、およびコンパウンド7からなる群より選択される、[66]記載の細胞培養系。
[68]i)ノギン、R−スポンジン1、CHIR99021、およびヒストンデアセチラーゼインヒビターの存在下で、単離された上皮幹細胞をインキュベートする工程;ならびに
ii)該単離された上皮幹細胞から上皮類臓器体を形成する工程、ここで、該単離された上皮幹細胞の少なくとも約25%が、上皮類臓器体を形成する、
を含む、単離された上皮幹細胞から高い効率で上皮類臓器体を形成する方法。
[69]単離された上皮幹細胞の少なくとも約40%が上皮類臓器体を形成する、[68]記載の方法。
[70]単離された上皮幹細胞の少なくとも約50%が上皮類臓器体を形成する、[68]記載の方法。
[71]単離された上皮幹細胞の少なくとも約75%が上皮類臓器体を形成する、[68]記載の方法。
[72]単離された上皮幹細胞の少なくとも約90%が上皮類臓器体を形成する、[68]記載の方法。
[73]ヒストンデアセチラーゼインヒビターがPan−HDACインヒビターである、[68]記載の方法。
[74]Pan−HDACインヒビターが、バルプロ酸、トリコスタチンA、スベロイルアニリドヒドロキサム酸、およびSBHAからなる群より選択される、[73]記載の方法。
[75]ヒストンデアセチラーゼインヒビターがHDAC6インヒビターである、[68]記載の方法。
[76]HDAC6インヒビターが、ツバシン、ツバスタチンA、およびコンパウンド7からなる群より選択される、[75]記載の方法。
[77]単離された上皮幹細胞を、上皮増殖因子の存在下でインキュベートする工程をさらに含む、[68]記載の方法。
[78]単離された上皮幹細胞を、ノッチ1抗体(N1 Ab)、デルタ1、デルタ様3、デルタ様4、ジャグド1、ジャグド2、DSLペプチド、およびデルタDからなる群より選択されるノッチアゴニストの存在下で、インキュベートする工程をさらに含む、[68]記載の方法。
[79]コラーゲンまたは小腸粘膜下組織(SIS)の存在下で類臓器体を形成する工程をさらに含む、[68]記載の方法。
[80]i)ノギン、R−スポンジン1、CHIR99021、およびヒストンデアセチラーゼインヒビターの存在下で、単一の単離された上皮幹細胞をインキュベートする工程;ならびに
ii)該単離された上皮幹細胞から上皮類臓器体を形成する工程、ここで、該単一の単離された上皮幹細胞の少なくとも約6%が、上皮類臓器体を形成する、
を含む、単一の単離された上皮幹細胞から高い効率で上皮類臓器体を形成する方法。
[81]i)骨形成因子のインヒビター、R−スポンジン1、Wntアゴニスト、ヒストンデアセチラーゼインヒビター、および化学療法剤の存在下で、腫瘍類臓器体をインキュベートする工程;ならびに
ii)細胞生存能力の阻害、細胞増殖の阻害、腫瘍関連遺伝子発現の阻害、アポトーシスの活性化、および細胞生存の阻害からなる群より選択されるパラメータを測定する工程
を含み、該パラメータにおける増加の検出は、腫瘍類臓器体に関する化学療法剤の効能を示す、腫瘍類臓器体に関して化学療法剤の効能を決定する方法。
[82]Wntアゴニストが、Wnt−1/Int−1、Wnt−2/Irp(Int−I関連タンパク質)、Wnt−2b/13、Wnt−3/Int−4、Wnt−3a、Wnt−4、Wnt−5a、Wnt−5b、Wnt−6、Wnt−7a、Wnt−7b、Wnt−8a/8d、Wnt−8b、Wnt−9a/14、Wnt−9b/14b/15、Wnt−10a、Wnt−10b/12、Wnt−11、Wnt−16、R−スポンジン1、R−スポンジン2、R−スポンジン3、R−スポンジン4、ノリン、CHIR99021、LiCl、BIO((2’Z,3’E)−6−ブロモインジルビン−3’−オキシム)、CHIR98014、SB216763、SB415286、3F8、ケンパウロン、1−アザケンパウロン、TC−G24、TCS2002、AR−A014418、2−アミノ−4−[3,4−(メチレンジオキシ)ベンジル−アミノ]−6−(3−メトキシフェニル)ピリミジン、IQ1、DCA、QS11、WAY−316606、(ヘテロ)アリールピリミジン、10Z−ヒメニアルジシン、TCS21311、TWS119、GSK−3インヒビターIX、GSK−3インヒビターIV、GSK−3βインヒビターII、GSK−3βインヒビターI、GSK−3βインヒビターXXVII、GSK−3βインヒビターXXVI、FRATtide、Cdk1/5インヒビター、ビキニン、および1−アザケンパウロンからなる群より選択される、[81]記載の方法。
[83]骨形成因子のインヒビターが、ノギン、コーディン、フォリスタチン、DAN、DANシステイン−ノットドメインを含むタンパク質、スクレロスチン、ねじれ原腸形成、子宮感受性関連遺伝子−1、結合組織成長因子、インヒビン、BMP−3、およびドルソモルフィンからなる群より選択される、[81]記載の方法。
[84]ヒストンデアセチラーゼインヒビターがPan−HDACインヒビターである、[81]記載の方法。
[85]Pan−HDACインヒビターが、バルプロ酸、トリコスタチンA、スベロイルアニリドヒドロキサム酸、およびSBHAからなる群より選択される、[84]記載の方法。
[86]ヒストンデアセチラーゼインヒビターがHDAC6インヒビターである、[81]記載の方法。
[87]HDAC6インヒビターが、ツバシン、ツバスタチンA、およびコンパウンド7からなる群より選択される、[86]記載の方法。
[88]上皮増殖因子の存在下で腫瘍類臓器体をインキュベートする工程をさらに含む、[81]記載の方法。
[89]ノッチ1抗体(N1 Ab)、デルタ1、デルタ様3、デルタ様4、ジャグド1、ジャグド2、DSLペプチド、およびデルタDからなる群より選択されるノッチアゴニストの存在下で腫瘍類臓器体をインキュベートする工程をさらに含む、[81]記載の方法。
[90]少なくとも1つのWntアゴニストおよびノッチの少なくとも1つのインヒビターの存在下で上皮幹細胞をインキュベートする工程、ここで、各々は、パーネト細胞を生じるのに十分な量である、
を含む、細胞培養系中でパーネト細胞を形成する方法。
[91]ノッチのインヒビターがDAPTである、[90]記載の方法。
[92]Wntアゴニストが、Wnt−1/Int−1、Wnt−2/Irp(Int−I関連タンパク質)、Wnt−2b/13、Wnt−3/Int−4、Wnt−3a、Wnt−4、Wnt−5a、Wnt−5b、Wnt−6、Wnt−7a、Wnt−7b、Wnt−8a/8d、Wnt−8b、Wnt−9a/14、Wnt−9b/14b/15、Wnt−10a、Wnt−10b/12、Wnt−11、Wnt−16、R−スポンジン1、R−スポンジン2、R−スポンジン3、R−スポンジン4、ノリン、CHIR99021、LiCl、BIO((2’Z,3’E)−6−ブロモインジルビン−3’−オキシム)、CHIR98014、SB216763、SB415286、3F8、ケンパウロン、1−アザケンパウロン、TC−G24、TCS2002、AR−A014418、2−アミノ−4−[3,4−(メチレンジオキシ)ベンジル−アミノ]−6−(3−メトキシフェニル)ピリミジン、IQ1、DCA、QS11、WAY−316606、(ヘテロ)アリールピリミジン、10Z−ヒメニアルジシン、TCS21311、TWS119、GSK−3インヒビターIX、GSK−3インヒビターIV、GSK−3βインヒビターII、GSK−3βインヒビターI、GSK−3βインヒビターXXVII、GSK−3βインヒビターXXVI、FRATtide、Cdk1/5インヒビター、ビキニン、および1−アザケンパウロンからなる群より選択される、[90]記載の方法。
[93]上皮幹細胞を、骨形成因子の少なくとも1つのインヒビターの存在下でインキュベートする、[90]記載の方法。
[94]骨形成因子のインヒビターが、ノギン、コーディン、フォリスタチン、DAN、DANシステイン−ノットドメインを含むタンパク質、スクレロスチン、ねじれ原腸形成、子宮感受性関連遺伝子−1、結合組織成長因子、インヒビン、BMP−3、およびドルソモルフィンからなる群より選択される、[93]記載の方法。
[95]上皮幹細胞がLGR5陽性幹細胞である、[90]記載の方法。
[96]粘膜下組織基底、コラーゲンを含む被覆層、ならびに上皮幹細胞、上皮幹細胞を含む単離された組織および/または上皮類臓器体からなる群の任意の構成メンバーを含む細胞層を含む細胞培養系。
[97]コラーゲンを含む被覆が、上皮幹細胞、上皮幹細胞を含む単離された組織、または上皮類臓器体の上部にある、[96]記載の細胞培養系。
[98]コラーゲンを含む被覆が、上皮幹細胞、上皮幹細胞を含む単離された組織、または上皮類臓器体を取り囲んでいる、[96]記載の細胞培養系。
[99]コラーゲンを含む被覆が、SIS基底と上皮幹細胞、上皮幹細胞を含む単離された組織または上皮類臓器体との間にある、[96]記載の細胞培養系。
[100]粘膜下組織基底がSISを含む、[96]記載の細胞培養系。
[101]骨形成因子のインヒビター、ロイシンリッチリピート含有Gタンパク質共役レセプター5に結合する薬剤、Wntアゴニスト、(1R,4r)−4−((R)−1−アミノエチル)−N−(ピリジン−4−イル)シクロヘキサンカルボキサミドジ塩酸(「Y−27632」)、およびヒストンデアセチラーゼインヒビターを含む溶液をさらに含む、[96]記載の細胞培養系。
[102]粘膜下組織基底が、上皮増殖因子、骨形成因子のインヒビター、ロイシンリッチリピート含有Gタンパク質共役レセプター5に結合する薬剤、Wntアゴニスト、Y−27632、およびヒストンデアセチラーゼインヒビターを含む、[96]記載の細胞培養系。
[103]ロイシンリッチリピート含有Gタンパク質共役レセプター5に結合する薬剤が、R−スポンジン1、R−スポンジン2、R−スポンジン3、およびR−スポンジン4からなる群より選択される、[101]および[102]記載の細胞培養系。
[104]Wntアゴニストが、Wnt−1/Int−1、Wnt−2/Irp(Int−I関連タンパク質)、Wnt−2b/13、Wnt−3/Int−4、Wnt−3a、Wnt−4、Wnt−5a、Wnt−5b、Wnt−6、Wnt−7a、Wnt−7b、Wnt−8a/8d、Wnt−8b、Wnt−9a/14、Wnt−9b/14b/15、Wnt−10a、Wnt−10b/12、Wnt−11、Wnt−16、R−スポンジン1、R−スポンジン2、R−スポンジン3、R−スポンジン4、ノリン、CHIR99021、LiCl、BIO((2’Z,3’E)−6−ブロモインジルビン−3’−オキシム)、CHIR98014、SB216763、SB415286、3F8、ケンパウロン、1−アザケンパウロン、TC−G24、TCS2002、AR−A014418、2−アミノ−4−[3,4−(メチレンジオキシ)ベンジル−アミノ]−6−(3−メトキシフェニル)ピリミジン、IQ1、DCA、QS11、WAY−316606、(ヘテロ)アリールピリミジン、10Z−ヒメニアルジシン、TCS21311、TWS119、GSK−3インヒビターIX、GSK−3インヒビターIV、GSK−3βインヒビターII、GSK−3βインヒビターI、GSK−3βインヒビターXXVII、GSK−3βインヒビターXXVI、FRATtide、Cdk1/5インヒビター、ビキニン、および1−アザケンパウロンからなる群より選択される、[101]および[102]記載の細胞培養系。
[105]粘膜下組織基底、および上皮幹細胞、上皮幹細胞を含む単離された組織、または上皮類臓器体を含む細胞培養系であって、該粘膜下組織基底は、上皮増殖因子、骨形成因子、R−スポンジン1、CHIR99021、Y−27632、およびヒストンデアセチラーゼインヒビターを含む、細胞培養系。
[106]上皮増殖因子、骨形成因子のインヒビター、R−スポンジン1、CHIR99021、Y−27632、およびヒストンデアセチラーゼインヒビターを含む溶液をさらに含む、[105]記載の細胞培養系。
[107]粘膜下組織基底がSISを含む、[105]記載の細胞培養系。