【実施例】
【0030】
以下、実施例を具体的に説明する。はじめに多孔質シリカ系粒子について説明する。
[実施例1]
市販のシリカゾル(日揮触媒化成(株)製:SS−160、平均粒子径160nm、シリカ濃度20質量%)20kgをロータリーエバポレーターで濃縮して、シリカ濃度40質量%のシリカゾル10kgを得る。このシリカゾルに、珪酸塩溶液としてJIS3号水硝子726g(シリカ濃度29質量%)を加える。さらに、陽イオン樹脂(三菱化成社製、SK−1B)を一気に加えてpHを2.5とする。その後、陽イオン交換樹脂を分離する。これにより、脱アルカリ処理(Naイオンの除去等)がなされ、シリカ系微粒子濃度37.3質量%、水硝子由来の珪酸濃度2.0質量%、全固形分濃度39.3質量%のスラリーが得られる。
【0031】
このスラリーを、150℃、1.5rpmで回転中のドラムドライヤー(カツラギ工業(株)製、D−0405)に、10L/hrの流量で供給して乾燥させる。このとき、乾燥時間は40秒である。脱アルカリ処理から24時間以内に、この乾燥工程を行なった。その後、ジューサーミキサー(日立製作所(株)製)で10秒間粉砕して、乾燥粉体を得る。さらに、この乾燥粉体を26mesh篩(JIS試験用規格篩)でふるい、多孔質シリカ系粒子の乾燥粉体を得た。この乾燥粉体を500℃で4時間焼成して多孔質シリカ系粒子の焼成粉体を作製する。各実施例の多孔質シリカ系粒子の製造条件を表1に示す。
このようにして得られた各実施例の多孔質シリカ系粒子の物性を以下のように測定・評価した。その結果を表2に示す。
【0032】
(1)平均粒子径
平均粒子径は、レーザー回折法により測定された粒度分布から求めることができる。ここでは、粒子径分布測定装置LA-950(株式会社堀場製作所製)を用いて粒度分布を測定した。
(2)平均円形度、メジアン径(D
50)、最大粒子径(D
100)、およびD
100/D
50
これらの値は、多孔質シリカ系粒子群のSEM(走査型電子顕微鏡)写真(倍率:100倍)を撮影し、SEM用画像解析ソフトウェア((株)オリンパス製Scandium)を用いて、無作為に選択した粒子100〜200個の画像データより求める。
(3)形状
前述のSEM写真を観察し、形状を判断する。本実施例による多孔質シリカ系粒子の形状は球状や楕円体ではなく、破砕状であった。
【0033】
(4)比表面積
多孔質シリカ系粒子の粉体を磁性ルツボ(B−2型)に約30ml採取し、105℃の温度で2時間乾燥後、デシケーターに入れて室温まで冷却する。次に、サンプルを1g取り、全自動表面積測定装置(湯浅アイオニクス社製、マルチソーブ12型)を用いて、比表面積(m
2/g)をBET法にて測定し、シリカの比重2.2g/cm
3で単位質量当たりの比表面積(m
2/cm
3)に換算する。
【0034】
(5)細孔容積
多孔質シリカ系粒子の粉体10gをルツボに取り、105℃で1時間乾燥後、デシケーターに入れて室温まで冷却する。次いで、よく洗浄したセルに1g試料を取り、窒素吸着装置を用いて窒素を吸着させ、以下の式から細孔容積を算出する。
細孔容積(ml/g)=(0.001567×(V−Vc)/W)
上記の式で、Vは圧力735mmHgにおける標準状態の吸着量(ml)、Vcは圧力735mmHgにおけるセルブランクの容量(ml)、Wは試料の質量(g)を表す。また、窒素ガスと液体窒素の密度の比は0.001567とする。
【0035】
(6)SiO
2濃度
多孔質シリカ系粒子の粉体0.2gを白金皿で精秤し、硫酸10mlと弗化水素酸10mlを加えて、砂浴上で硫酸の白煙が出るまで加熱する。冷却後、水約50mlを加えて加温溶解する。冷却後、水200mlに希釈しこれを試験溶液とする。この試験溶液について誘導結合プラズマ発光分光分析装置(島津製作所(株)製、ICPS−8100、解析ソフトウェアICPS−8000)を使用し、多孔質シリカ系粒子のSiO2濃度を求める。
【0036】
(7)塗擦後の最大粒子径(D
R100)とメジアン径(D
R50)
電子天秤((株)AND製HF4000)上にウレタンエラストマー製の人工皮膚(株式会社ビューラックス製、バイオスキンプレート、品番P001-001#20、195×130×5Tmm)をセットし、人工皮膚の中央部に多孔質シリカ系粒子の粉体0.2gに純水3.8gを加えたスラリーを垂らした。続いて指4本を使用して1.0〜1.4KPaの荷重で円弧状に30秒間塗擦した。この人工皮膚の中央部のスラリーを採取し、SEM(走査型電子顕微鏡)写真(倍率:100倍)を撮影し、無作為に選択した粒子100〜200個の画像データから、前述のSEM用画像解析ソフトウェアを用いて最大粒子径(D
R100)とメジアン径(D
R50)を計測する。
【0037】
(8)圧縮変位
多孔質シリカ系粒子に圧縮力を加えた時に生じる圧縮変位を、微小圧縮試験機「MCT−210」(島津製作所社製)を用いて測定する。圧子は「FLAT200」(島津製作所社製)を使用する。測定結果を
図1〜
図3に示す。
図1は、0から0.5gfの圧縮力を圧縮速度0.21gf/secで印加したときの多孔質シリカ系粒子の変位を示すグラフである。圧縮力0.5gf(圧縮力f1)における変位量を求めることができる。0.5gfの圧縮力f1を加えたとき、0.5〜3μmの変位が発生することが好ましい。本実施例では約1.0μmである。
【0038】
図2は、0から2.5gfの圧縮力を圧縮速度0.21gf/secで印加したときの多孔質シリカ系粒子の変位を示すグラフである。この時、0.01〜1.0μmの階段状の変位が5回以上発生することが好ましい。グラフ上で、圧縮力が変化していないのに変位が増えている箇所が階段状の変位である。図中、階段状の変位の開始点を▼で示している。本実施例では、階段状の変位が13回出現している。このとき、それぞれの変位量は0.01〜1.0μmである。圧縮力2.5gf(圧縮力f2)における変位d2(μm)を求め、圧縮変位の傾き(f2/d2)を算出する。圧縮変位の傾き(f2/d2)は0.5〜2.5の範囲が好ましい。本実施例では0.9である。
【0039】
さらに、多孔質シリカ系粒子に圧縮力の印加を継続する。ここでも圧縮力は0.21gf/secの割合で増加して印加される。圧縮力が大きくなると、10μm以上の階段状変位が発生する。
図3は、10μm以上の階段状変位が出現するまで圧縮力を印加したときの、多孔質シリカ系粒子の変位を示すグラフである。10μm以上の階段状変位が現れた時の圧縮力をf3とする。圧縮力f3は5〜40gfの範囲であることが好ましい。圧縮力f3における変位d3(μm)を求め、圧縮変位の傾き(f3/d3)を算出する。ここで、変位d3は10μm以上の階段状変位が始まった時点で測定された変位である。圧縮変位の傾き(f3/d3)は0.3〜1.25の範囲が好ましい。本実施例では圧縮力f3は9.8gfであり、圧縮変位の傾き(f3/d3)は1.0である。
【0040】
【表1】
【0041】
【表2】
【0042】
[実施例2]
表1に示すように、粉砕時間を45秒間、篩を83mesh篩(JIS試験用規格篩)とした。これ以外は実施例1と同様に、多孔質シリカ系粒子を作製し、評価した。
【0043】
[実施例3]
本実施例では、原料シリカゾルに日揮触媒化成(株)製のSS−550(平均粒子径550nm、シリカ濃度20質量%)を用いた。これ以外は実施例1と同様に、多孔質シリカ系粒子を作製し、評価した。
【0044】
[実施例4]
本実施例では、シリカ濃度40質量%のシリカゾルを9.9kgとし、スラリーに第三成分としてα−酸化鉄(II)を40g添加した。これ以外は実施例1と同様に、孔質シリカ系粒子を作製し、評価した。
【0045】
[実施例5]
焼成工程を行わなかった以外は実施例1と同様に、多孔質シリカ系粒子を作製し、評価した。
【0046】
[実施例6]
本実施例では、シリカ濃度40質量%のシリカゾル10.0kgを用い、珪酸塩溶液としてJIS3号水硝子1.2kg(シリカ濃度29質量%)を用いた。これ以外は実施例1と同様に、多孔質シリカ系粒子を作製し、評価した。
【0047】
[実施例7]
本実施例では、シリカゾル(日揮触媒化成(株)製:SS−160、平均粒子径160nm、シリカ濃度20質量%)22.5kgをロータリーエバポレーターで濃縮して、シリカ濃度45質量%のシリカゾル10kgとした。このシリカゾルに、珪酸塩溶液としてJIS2号水硝子1.4kg(シリカ濃度35質量%)を加えた。これ以外は実施例1と同様に、多孔質シリカ系粒子を作成し、評価した。
【0048】
[比較例1]
スラリーに含まれるシリカ系微粒子成分と珪酸成分の質量比(シリカ/珪酸)を60/40とした。これ以外は実施例1と同様に、多孔質シリカ系粒子を作製し、評価した。珪酸成分が多いため、多孔質シリカ系粒子を構成する一次粒子の間隙に珪酸が入り込んで二次粒子が作製される。そのため、粒子の強度が高くなり、また、細孔容積が小さくなる。したがって、所望の崩壊性を持つ多孔質シリカ系粒子が得られなかった。
【0049】
[比較例2]
ふるい工程を行わない以外は実施例1と同様に、多孔質シリカ系粒子を作製し、評価した。本比較例では、篩工程を経ていないため、粗大粒子が多く存在し、最大粒子径が大きくなる。そのため、弱い塗擦力であっても塗擦開始時に皮膚を損傷する虞れがある。
【0050】
[比較例3]
珪酸成分の代りに純水を加えてスラリーを作製し、スラリーに含まれるシリカ系微粒子成分と珪酸成分との質量比(シリカ/珪酸)を100/0とした。これ以外は実施例1と同様に、多孔質シリカ系粒子を作製し、評価した。シリカ系微粒子のみで構成されているため、粒子の強度が弱く、低い圧縮力で崩壊してしまい、スクラブ効果を得ることができない。
【0051】
[比較例4]
乾燥温度を110℃、乾燥時間を60minに変更したこと以外は実施例1と同様に、多孔質シリカ系粒子を作製し、評価した。
【0052】
[比較例5]
原料シリカゾルに日揮触媒化成(株)製のSI−30(平均粒子径11nm、シリカ濃度20質量%)を用いた以外は実施例1と同様に多孔質シリカ系粒子を作製し、評価した。シリカ系微粒子の平均粒径が小さいため、多孔質シリカ系粒子の比表面積が大きく、また、粒子の強度が大きい。したがって、所望の崩壊性が得られない。
【0053】
[ボディ洗浄用化粧料の調製]
実施例1〜7または比較例1〜5で得られた多孔質シリカ系粒子を成分(1)として、表3に示す配合比率(質量%)となるように、各成分(2)〜(15)をビーカーに入れ、ホモジナイザーを使用して撹拌し、均一に混合した。
これにより、実施例1〜7の多孔質シリカ微粒子を配合したボディ洗浄用化粧料A〜Gと、比較例1〜5の多孔質シリカ微粒子を配合した化粧料a〜eが得られる。
【0054】
【表3】
【0055】
次いで、このようにして得られた化粧料A〜Gおよび化粧料a〜eの使用感(塗布中の感触と塗布後の感触)について、以下の試験法で評価した。
[洗浄用化粧料の使用感の評価]
多孔質シリカ系粒子を配合した洗浄用化粧料について、20名の専門パネラーによる官能テストを行い、スクラブ感、ヒリヒリ感のなさ、洗浄後の肌のつや、洗浄後の肌のくすみのなさ、洗浄後のヒリヒリ感のなさ、の5つの評価項目に関して聞き取り調査を行う。その結果を以下の評価点基準(a)に基づいて評価する。また、各人がつけた評価点を合計し、以下の評価基準(b)に基づき洗浄用化粧料の使用感に関する評価を行った。
【0056】
評価点基準(a)
5点:非常に優れている。
4点:優れている。
3点:普通。
2点:劣る。
1点:非常に劣る。
【0057】
評価基準(b)
◎:合計点が80点以上
○:合計点が60点以上80点未満
△:合計点が40点以上60点未満
▲:合計点が20点以上40点未満
×:合計点が20点未満
【0058】
評価結果を表4に示す。その結果、化粧料A〜Gは、その使用感が洗浄中、洗浄後においても非常に優れていることが分かった。しかし、化粧料a〜eは、その使用感がよくないことが分かった。
【0059】
【表4】