(58)【調査した分野】(Int.Cl.,DB名)
水位センサと外部からの電源供給を必要としない独立電源部とを少なくとも有し、設置された地点の座標情報を送出すると共に、前記水位センサで検出した水位が有意な水位となった時に、取得された水位と取得された時刻とを含む水位情報を送出する複数の子機と、
所定の範囲の通信エリアを有し、該通信エリア内に設置された前記複数の子機から送出された前記座標情報および前記水位情報を受信して、ハザードマップ作成部に送信する複数の親機と、
からなる閉域通信網を少なくとも1つ備えるセンシング部と、
前記複数の親機から送信された前記座標情報および前記水位情報を受信して、前記座標情報に対応するマップの位置に、前記水位情報に応じた水位を示すアイコンが表示されるハザードマップを作成し、該ハザードマップをウェブ上において閲覧可能とする前記ハザードマップ作成部とを備え、
前記複数の子機は、道路または地面に設置される視線誘導標とされ、任意の設置位置に設けられた取付手段に脱着可能に取り付けられる固定手段を備えており、前記子機の設置位置を移動可能とできることを特徴とするセンシング部を備えるハザードマップシステム。
前記センシング部における所定の前記閉域通信網では、前記親機の前記通信エリアの外に設置された子機が、当該親機の前記通信エリア内に設置された他の子機を介して、当該親機に前記座標情報および前記水位情報を送出するようにしたことを特徴とする請求項1に記載のセンシング部を備えるハザードマップシステム。
前記センシング部における所定の前記閉域通信網では、少なくとも2つの前記親機が設けられており、前記閉域通信網を構成する前記複数の子機のそれぞれの子機は、前記親機のいずれにも接続可能とされ、前記子機は接続された前記親機に前記座標情報および前記水位情報を送出するようにしたことを特徴とする請求項1に記載のセンシング部を備えるハザードマップシステム。
前記複数の子機が、前記親機の前記通信エリア内における過去に冠水が発生したことがある冠水発生実績エリアにそれぞれ設置されており、前記ハザードマップ作成部は、前記通信エリアにおける降水量が所定の量を超えたと共に取得した前記冠水発生実績エリアにおけるいずれかの水位が冠水が発生した水位となった際に、冠水が発生していない前記冠水発生実績エリアにおいても冠水が発生している前記ハザードマップを作成するようにしたことを特徴とする請求項1に記載のセンシング部を備えるハザードマップシステム。
前記独立電源部は、発電手段と、該発電手段により充電される二次電池とから構成されていることを特徴とする請求項1ないし4のいずれかに記載のセンシング部を備えるハザードマップシステム。
【発明を実施するための形態】
【0012】
本発明の実施例にかかるセンシング部を備えるハザードマップシステム1の構成を
図1に示す。この本発明にかかるセンシング部を備えるハザードマップシステム1では、閲覧要求があった際に、閲覧要求された地点を含む所定のエリアのハザードマップを閲覧者に提供することができる。
本発明のセンシング部を備えるハザードマップシステム1の説明をするに当たり、住宅などが水に浸かることを「浸水」、田畑や道路などが水に浸ることを「冠水」と一般的に云われているが、本明細書においては、「浸水」と「冠水」とを住宅などや田畑や道路などが水に浸ることを意味する同義語として扱い、以下の説明においては特に断らない限り「冠水」というものとする。
図1に示すハザードマップシステム1は、端末群10と情報提供部12とセンシング部2とを備えており、各部の間は通信網で接続されている。すなわち、情報提供部12と端末群10とは不特定多数の利用者によって共有して利用される拠点間を結ぶ公衆通信網やインターネット通信網からなる通信網11で接続され、センシング部2と情報提供部12とは、インターネット通信網や公衆通信網からなる広域通信網13で接続される。
センシング部2は、例えば3つの閉域通信網14A,14B,14Cとを備えており、閉域通信網14A〜14Cは、ハザードマップシステム1が作成しようとするハザードマップの地域を分割して、分割した地域毎に設置されている。すなわち、作成しようとするハザードマップの全地域をカバーする閉域通信網14A〜14Cが設置される。閉域通信網は、専用の通信回線を利用する通信網であり、データを途中で傍受されたり改ざんされるおそれを防止できる通信網である。
【0013】
第1の閉域通信網14Aは親機Aを備えており、親機Aの通信エリアが第1の閉域通信網Aがカバーする範囲となっている。複数台の子機A−A,A−B,A−Cが親機Aの通信エリアの範囲内に設置されており、それぞれ親機AにLAN(Local Area Network)等の無線の閉域通信で接続されている。子機A−A,A−B,A−Cは同じ構成とされ、設置された地点の水位を検出する水位センサと発電手段を有する動作用の電源部をそれぞれが備えている。子機A−A,A−B,A−Cが所定の地点にそれぞれ設置され、初めて電源が投入された際に、子機A−A,A−B,A−Cのそれぞれは一意の個体識別番号である子機IDと設置された地点の位置情報とを親機Aに送信して、相互の間の通信を確立する。そして、子機A−A,A−B,A−Cは、備えられた水位センサが規定水位を超えた有意な水位を検出した時に、水位センサが検出した水位のセンサ情報と、当該子機が水位を取得した時刻情報とを含む水位情報に子機IDを付加して親機Aへ送出する。子機A−A,A−B,A−Cが、有意な水位を検出した以後においては、所定時刻毎にID付きの水位情報が親機Aへ送出される。
【0014】
第2の閉域通信網14Bは親機Bを備えており、第2の閉域通信網14Bでは、第2の閉域通信網Bがカバーする範囲が親機Bの通信エリアを超える範囲となっている。すなわち、複数台の子機B−A,B−B,B−Cの内、2台の子機B−A,B−Bが親機Bの通信エリアの範囲内に設置され、残る1台の子機B−Cは親機Bの通信エリアの範囲の外に設置されている。子機B−A,B−B,B−Cのそれぞれは、他の子機にLAN等で無線接続する機能を有している。これにより、第2の閉域通信網14Bがカバーする範囲を、親機Bの通信エリアを超える範囲に拡張することができる。この場合、親機Bの通信エリアの範囲内に設置された2台の子機B−A,B−Bは、それぞれ親機BにLAN等の無線の閉域通信で接続されており、親機Bの通信エリアがカバーする範囲の外に設置された子機B−Cは、子機B−Aに無線接続されて、子機B−Aを介して親機Bに閉域通信で接続される。なお、子機B−A,B−B間においてもLAN等で互いに無線接続されている。子機B−A,B−B,B−Cは同じ構成とされ、設置された地点の水位を検出する水位センサと発電手段を有する動作用の電源部をそれぞれが備えている。子機B−A,B−B,B−Cが所定の地点にそれぞれ設置され、初めて電源が投入された際に、子機B−A,B−B,B−Cのそれぞれは一意の個体識別番号である子機IDと設置された地点の位置情報とを親機Bに送信して、相互の間の通信を確立する。そして、子機B−A,B−B,B−Cは、備えられた水位センサが規定水位を超えた有意な水位を検出した時に、水位センサが検出した水位のセンサ情報と、当該子機が水位を取得した時刻情報とを含む水位情報に子機IDを付加して親機Bへ送出する。子機B−A,B−B,B−Cが、有意な水位を検出した以後においては、所定時刻毎にID付きの水位情報が親機Bへ送出される。
【0015】
第3の閉域通信網14Cは親機Cおよび親機Dの2台の親機を備えており、親機Cおよび親機Dで形成される通信エリアが第3の閉域通信網Cがカバーする範囲となっている。すなわち、複数台の子機C−A,C−B,C−Cの内、2台の子機C−A,C−Bが親機Cの通信エリアがカバーする範囲内に設置され、残る1台の子機C−Cは親機Cの通信エリアがカバーする範囲の外であるが、親機Dの通信エリアがカバーする範囲内に設置されている。子機C−A,C−B,C−Cのそれぞれは、親機Cと親機DのいずれにもLAN等で無線接続する機能を有している。親機Cの通信エリアの範囲内に設置された2台の子機C−A,C−Bは、それぞれ親機CにLAN等の無線の閉域通信で接続されており、親機Cの通信エリアの範囲の外であって親機Dの通信エリアの範囲内に設置された子機C−Cは、親機DにLAN等の無線の閉域通信で接続されている。これにより、第3の閉域通信網14Cがカバーする範囲を拡張することができる。子機C−A,C−B,C−Cは同じ構成とされ、設置された地点の水位を検出する水位センサと発電手段を有する動作用の電源部をそれぞれが備えている。子機C−A,C−B,C−Cが所定の地点にそれぞれ設置され、初めて電源が投入された際に、子機C−A,C−B,C−Cのそれぞれは一意の個体識別番号である子機IDと設置された地点の位置情報とを親機Cあるいは親機Dに送信して、相互の間の通信を確立する。そして、子機C−A,C−B,C−Cは、備えられた水位センサが規定水位を超えた有意な水位を検出した時に、水位センサが検出した水位のセンサ情報と、当該子機が水位を取得した時刻情報とを含む水位情報に子機IDを付加して親機Cあるいは親機Dへ送出する。子機C−A,C−B,C−Cが、有意な水位を検出した以後においては、所定時刻毎にID付きの水位情報が親機Cあるいは親機Dへ送出される。
なお、
図1に示すハザードマップシステム1では第1の閉域通信網14A〜第3の閉域通信網14Cの3つの閉域通信網14しか備えていないが、ハザードマップシステム1が作成しようとするハザードマップの地域を分割して、分割した地域毎に閉域通信網14が設置されている。すなわち、
図1に示すハザードマップシステム1は、4つ以上の数の閉域通信網14を備えることができる。
【0016】
ここで、子機A−A,A−B,A−C、子機B−A,B−B,B−C、子機C−A,C−B,C−Cの構成を説明するが、同じ構成とされていることから子機20として以下に説明する。
図11に子機20の構成を示す機能ブロック図を示す。
子機20は
図11に示すように、マイクロコントローラ21、センサ22、位置測位装置23、閉域通信網通信I/F25とを備え、これらをバスにより接続している。また、各部へ電源を供給する発電手段を有する電源装置26を備えている。マイクロコントローラ21は、子機20の動作を統括制御する制御手段であり、時計機能を有している。具体的には、マイクロコントローラ21は、センサ22で検出した水位のセンサ情報を取得すると共に、取得した時刻情報を取り込んで、時刻情報を付したセンサ情報を内部のテンポラリメモリに書き込む。また、子機20が設置された地点の位置情報をテンポラリメモリに書き込む。この場合、子機20の位置情報は、子機20における位置測位装置23がGPS等を使用して測位した位置情報、あるいは、直接入力した子機20の位置情報とされる。また、図示しないスイッチがオンされて電源装置26から電源が投入された際には、子機20を初期化する。そして、位置情報の取得が終了した際に、テンポラリメモリに書き込まれている当該子機20の位置情報に、当該子機20に割り当てられている一意の子機IDを付加して、閉域通信網通信I/F25から親機30へ送信する。また、マイクロコントローラ21が、センサ22から取得した水位が規定水位を超えたと判断した場合は、マイクロコントローラ21は、そのセンサ情報と取得した時刻情報からなる水位情報に子機IDを付加して閉域通信網通信I/F25を介して所定時間毎に親機30へ送信する。なお、電源装置26は大容量キャパシタあるいは2次電池と、充電用の太陽光パネルとから構成された独立電源、あるいは、一次電池により構成された独立電源とされている。この独立電源は、外部からの電源供給を必要としない電源である。
【0017】
マイクロコントローラ21の構成について説明すると、
図13にマイクロコントローラ21の構成を示す機能ブロック図を示す。
図13に示すようにマイクロコントローラ21は、CPU(Central Processing Unit)41、ROM(Read Only Memory)42、RAM(Random Access Memory)43、I/O44を備え、これらをバス45で接続して構成されている。CPU41は、ROM42に記憶された制御プログラムを実行することにより、マイクロコントローラ21が上記したように動作する。この場合、テンポラリメモリはRAM43の領域に設定される。また、電源投入時には、CPU41がROM42に格納されている初期設定プログラムを実行し、マイクロコントローラ21が上記したように動作する。マイクロコントローラ21は、I/O44を介して子機20のバスに接続されている。なお、ROM42に記憶された制御プログラムは、子機20が子機A−A,A−B,A−Cとされた場合、子機B−A,B−B,B−Cとされた場合、子機C−A,C−B,C−Cとされた場合とで異なっている。子機B−A,B−B,B−Cとされた場合は、子機A−A,A−B,A−Cとされた場合の制御プログラムに、子機同士をLAN等の無線の閉域通信で接続するプログラムが追加されており、子機C−A,C−B,C−Cとされた場合は、子機A−A,A−B,A−Cとされた場合の制御プログラムに、複数の親機の内の電界強度が最も高い親機を選択してLAN等の無線の閉域通信で接続するプログラムが追加されている。
【0018】
次に、親機A,B,Cの構成を説明するが、親機の構成は同じとされているので、親機30として以下に説明する。
図12に親機30の構成を示す機能ブロック図を示す。
親機30は
図12に示すように、マイクロコントローラ31、広域通信網通信I/F32、閉域通信網通信I/F33とを備え、これらをバスにより接続している。また、各部へ電源を供給する電源装置34を備えている。マイクロコントローラ31は、前述した
図13に示す構成と同様とされ、CPU41、ROM42、RAM43、I/O44を備え、これらをバス45で接続して構成されているが、ROM42には親機30用の制御プログラムが記憶されている。マイクロコントローラ31では、ROM42に記憶されている親機30用の制御プログラムをCPU41が実行することにより、親機30の動作を統括制御している。すなわち、マイクロコントローラ31におけるCPU41は、閉域通信網通信I/F33を介して子機20から送信された子機ID付きの位置情報、子機ID付きの水位情報を受信してRAM43の領域に設定したテンポラリメモリに書き込む。そして、CPU41は、子機20から受信した子機ID付きの位置情報および子機ID付きの水位情報を、広域通信網通信I/F32を介して情報提供部12へ送信する。なお、電源装置34は、商用電源を所定電圧の直流電圧に降圧する電源装置とされている。また、電源装置34は、商用電源に替えて使用電力容量に合わせた大容量キャパシタあるいは2次電池と、充電用の太陽光パネルとから構成するようにしてもよい。
【0019】
上述したように、第1の閉域通信網14A〜第3の閉域通信網14Cにおいて、親機A,B,Cがその閉域通信網に属する子機A−A〜子機C−Cから送出された子機ID付きの設置された地点の位置情報、子機ID付きの水位情報(センサ情報+時刻情報)を受信すると、親機A,B,Cのそれぞれは、インターネット通信網や公衆通信網からなる広域通信網13を介して情報提供部12に、受信した子機ID付きの設置された地点の位置情報および子機ID付きの水位情報を送る。情報提供部12は、情報配信サーバー12aとデータ処理サーバー12bとデータベース部12cとを備えており、情報提供部12の構成を
図14(a)に示す。
図14(a)に示す構成の情報提供部12では、親機A,B,Cから広域通信網13を介して送られてきたデータが広域通信網通信I/F12dを介して受信されて、データ処理サーバー12bに渡される。データ処理サーバー12bは、受信したデータが子機ID付きの位置情報であった場合は、その位置情報を子機IDと関連付けてデータベース部12cのセンサ座標DB(DB:データベース)51に書き込む。この位置情報は、地図上の座標を示している。また、子機ID付きの水位情報(センサ情報+時刻情報)の場合は、現在時刻と共に子機ID付きの水位情報(センサ情報+時刻情報)を子機IDおよび取得時刻と関連付けてデータベース部12cのセンサ情報DB52に書き込む。これにより、親機A,B,Cから送出された子機A−A〜子機C−Cで検出された水位情報(センサ情報+時刻情報)が、子機IDと関連付けられてセンサ情報DB52に時々刻々と書き込まれていくようになる。
【0020】
データベース部12cは、各子機20の位置情報を子機IDと関連付けて記憶するセンサ座標DB51と、水位情報を子機IDおよび取得時刻と関連付けて記憶するセンサ情報DB52と、気象情報を配信している気象情報配信サーバーなどから取得した各地域の降雨量を記憶する降雨情報DB53と、例えば日本全国とされるハザードマップを作成する広域の地形・道路・河川の他、座標データを地図情報として保有している地図情報DB54と、冠水の危険があることを報知する地域毎の登録者の情報が記憶されている登録者情報DB55を備えている。
情報配信サーバー12a内に設けられているデータ処理装置50は、閲覧要求を情報配信サーバー12aが受け付けた際に、閲覧要求された地点を含む所定のエリアのリアルタイムの本発明にかかるハザードマップを作成する。このハザードマップは、例えば第1レイヤーの表示情報と、第1にレイヤーに重ねられる第2レイヤーの表示情報とから構成される。第1レイヤーの表示情報として、所定のエリアの地図情報が地図情報DB54から読み出されて設定され、第2レイヤーの表示情報として、少なくとも、子機A−A〜子機C−Cで検出された水位情報の水位を示すアイコンが、水位情報を取得した地点の座標に配置されている表示情報が設定される。この第2レイヤーの表示情報に、避難所やアンダーパスの地点の座標に配置されている避難所やアンダーパスのアイコン、冠水した地点の座標に配置されている冠水したことを示すアイコンを含ませることができる。
以下の説明においては、子機A−A〜子機C−Cを総称して示すとき、あるいは、いずれかを示すときには子機20として説明するものとする。また、同様に、親機A,B,Cを総称して示すとき、あるいは、いずれかを示すときには親機30として説明するものとする。
【0021】
具体的には、データ処理装置50は、ハザードマップの閲覧要求された地点を含む所定エリアの地図を地図情報DB54から読み出して、第1レイヤーの表示情報として設定する。地
図DB54には、地形・道路・河川の他、座標データを地図情報として保有している。また、データ処理装置50は、センサ情報DB52に格納されている水位情報の子機IDに関連する子機20の位置情報、すなわち子機20の座標位置をセンサ座標DB51を参照して読み出し、第1レイヤーに設定された地図上における子機20が設置された地点であって、その位置に対応する第2レイヤー上の表示位置(座標位置)を決定する。そして、データ処理装置50は、センサ情報DB52に格納されている取得された時刻が同時刻の水位情報を順次読み出して、水位情報におけるセンサ情報で示される水位を高さで表すアイコンを、当該水位情報に関連付けられている子機IDに対応する子機20の設置位置の座標に配置して、第2レイヤーの表示情報として設定する。この場合、センサ情報DB52にはリアルタイムで水位情報が書き込まれており、取得時刻が同時刻の水位情報のアイコンが、その水位情報を検出した子機20の設置された地点の座標に表示されるようになる。この場合、センサ情報DB52から読み出される同時刻の水位情報の時刻は、閲覧要求された現在の時刻と、その時刻より過去の直近のいくつかの過去の時刻とされる。そして、過去の時刻から現在の時刻までの時刻毎のハザードマップが作成される。現在の時刻のハザードマップでは、地図上にその時刻の水位情報を示すアイコンがリアルタイムで表示されるようになる。なお、閲覧要求された時刻が水位情報の取得時刻に一致しない場合は、それより前の直近の時刻が現在の時刻とされる。
【0022】
また、データ処理装置50は、現在の時刻に対応する水位情報を読み出して、水位情報のセンサ情報と関連付けされた子機IDの位置情報から、冠水危険領域を算出する。そして、登録者情報DB55から、算出された冠水危険領域内に位置登録されている登録者情報を検索し、検索された対象とする登録者に対応する端末群10の携帯電話10aあるいはPC10bに対し、冠水の危険が迫っていることのメッセージを電子メール等で報知する。この場合、登録者にショートメッセージサービス(SMS)で送ることができる場合は、SMSを用いて冠水の危険が迫っていることを報知する。報知を受けた登録者が、自身の携帯電話10aあるいはPC10bから情報提供部12にハザードマップの閲覧要求を行うと、その登録者に登録されている携帯電話10aあるいはPC10bに、上記したようにデータ処理装置50で作成された閲覧要求した登録者のいる地点、あるいは登録者が指定した地点を含む所定のエリアのハザードマップが、情報配信サーバー12aから配信される。登録者の携帯電話10aあるいはPC10bのディスプレイには、配信されたハザードマップが表示されて閲覧できる。すなわち、登録者が閲覧者となる。なお、携帯電話10aあるいはPC10bはGPS等を利用して現在の位置情報を検出し、閲覧要求に閲覧するエリアの位置情報を付加して送出することができる。
また、データ処理装置50は、閲覧要求された現在の時刻のリアルタイムのハザードマップを含む、直近の過去から現在の時刻までのいくつかのハザードマップが作成されており、閲覧者は、閲覧者がいる位置情報あるいは閲覧者が指定した位置情報に応じたエリアの時々刻々と推移するリアルタイムのハザードマップを閲覧できる。
【0023】
なお、登録者に冠水の危険が迫っていることを電子メール等で報知する場合に、登録者は“定めた地点(自宅等)において冠水した場合は、指定した携帯電話10aあるいはPC10bに電子メール送信をする”という内容を、登録者情報DB55に登録しておけばよい。上記内容は、携帯電話10aあるいはPC10bが、情報配信サーバー12aを介して登録者情報DB55に登録することができる。また、情報配信サーバー12aのデータ処理装置50で算出した冠水危険領域に対応するエリアに存在する登録者の携帯電話10aに対して、冠水の危険が迫っていることを電子メール等で報知してもよい。この場合には、当該エリアをカバーする携帯電話基地局に在圏している携帯電話に同報配信を行えばよく、登録者情報DB55は使用しない。
【0024】
情報配信サーバー12aの構成を
図14(b)に示す。
図14(b)に示す情報配信サーバー12aは、CPU61、ROM62、RAM63、I/O64、データ処理装置50を備え、これらをバス65で接続して構成されている。CPU61は、情報配信サーバー12aの動作を統括制御する制御手段であり、ROM62に記憶された制御プログラムをCPU61が実行することにより、登録者に冠水の危険が迫っていることを電子メール等で報知したり、閲覧要求があった際に、データ処理装置50に閲覧者がいる位置情報あるいは閲覧者が指定した位置情報に対応するエリアのハザードマップを作成させて配信したりする上記した動作が行われる。
【0025】
また、データ処理サーバー12bおよびデータ処理装置50は
図14(c)に示す構成とすることができる。
図14(c)に示すデータ処理装置50(データ処理サーバー12b)は、CPU71、ROM72、RAM73、I/O74を備え、これらをバス75で接続して構成されている。データ処理装置50の場合は、ROM72にデータ処理装置50の動作を統括制御する制御プログラムが記憶されており、この制御プログラムをCPU71が実行することにより、閲覧要求があった際に、閲覧者がいる位置情報あるいは閲覧者が指定した位置情報に対応するエリアのハザードマップを作成する。作成されたハザードマップは、閲覧要求をした閲覧者に配信される。また、データ処理サーバー12bの場合は、ROM72にデータ処理サーバー12bの動作を統括制御する制御プログラムが記憶されており、この制御プログラムをCPU71が実行することにより、子機20の位置情報を子機IDと関連付けてセンサ座標DB51に書き込むと共に、子機20で検出された水位情報(センサ情報+時刻情報)が、子機IDと関連付けられてセンサ情報DB52に時々刻々と書き込まれていくようになる。
【0026】
ここで、
図2に示すように、例えば16台の子機20−1〜20−16および親機30が設置されているエリアAにおいて、閲覧者が地点Dから閲覧要求をした際に、閲覧する本発明にかかるハザードマップの一例を
図3に示す。
図2に示すマップは、ハザードマップではなく、子機が現実に設置された位置を示す地図であり、ブロックA−1〜ブロックA−9の9ブロックからなるエリアAには、海抜が低い区域や従来から冠水が発生している冠水が予見される区域である区域aが存在する場合の子機の設置例が
図2に示されている。
図2に示すように、エリアAを管轄する親機30がエリアAの中央のブロックA−5に設置されており、16台の子機20−1〜20−16がブロック間の道路および区域aを取り囲むように設置されている。区域aは冠水が予見される区域であることから、区域aの周囲に8台の子機20−7,20−8,20−10〜20−12,20−14〜20−16が重点的に設置される。
【0027】
地点Dの閲覧者が閲覧するハザードマップは、上述した第1レイヤーおよび第2レイヤーの表示情報からなり、閲覧者の携帯電話10aあるいはPC10bのブラウザで第1レイヤーに第2レイヤーが重ねられて表示されるが、
図3では第1レイヤーの地図を省略して示している。また、
図3に示すハザードマップが示されるエリアは、閲覧者が位置するエリアAとされ、時刻が現在の時刻である9:59の時のハザードマップとされている。水位を示すアイコンは第2レイヤーの表示情報とされており、形状が円筒状とされて、円筒状のアイコンの高さで水位を示している。最も低いアイコンは50mm未満の水位を示し、これより若干高いアイコンは50mm以上100mm未満を示し、さらに若干高いアイコンは100mm以上200mm未満を示し、一番高いアイコンは200mm以上400mm未満の水位を示している。
【0028】
図3に示すエリアAのハザードマップでは、紙面の上方が北を示しており、このハザードマップを参照すると時刻9:59ではエリアA内の地点に設置されている子機20の複数が有意な水位を検出している。すなわち、ブロックA−4とブロックA−5の間の道路に設置した子機20−6が100mm以上200mm未満の水位を、ブロックA−5とブロックA−6の間の道路に設置した子機20−7が100mm以上200mm未満の水位を、ブロックA−7とブロックA−8の間の道路に設置した子機20−13が200mm以上400mm未満の水位を、ブロックA−8内に設置した子機20−14が200mm以上400mm未満の水位を、ブロックA−5とブロックA−8の間の道路に設置した子機20−10が200mm以上400mm未満、ブロックA−8とブロックA−9の間の道路に設置した子機20−15が100mm以上200mm未満の水位を、ブロックA−5,A−6,A−8,A−9の間の道路に設置した子機20−11が100mm以上200mm未満の水位を検出している。これらの検出された水位を示すアイコンは、エリアA内に設置された子機20であって、有意な水位を検出した子機20が設置された地点の座標位置に表示されている。なお、データ処理装置50は、ブロックA−8に位置する避難所Aは周囲の水位により危険であると判断して、避難所Aの表示態様を、点滅あるいは点灯表示もしくは色調を変更して危険であることを示す表示態様としてもよい。
【0029】
閲覧者に配信されるハザードマップは、閲覧要求された現在の時刻(9:59)だけの
図3に示すハザードマップだけではなく、図示していないが、その時刻より過去の直近のいくつかの過去の時刻との複数のハザードマップとされる。これにより、閲覧者は、時間の推移に伴う水位の変化を把握できるようになる。
上記したように、水位を示すアイコンは、エリアA内に設置された子機20の内の規定水位を超えた有意な水位を検出した子機20が設置された地点の座標位置に表示されている。
【0030】
次に、本発明のセンシング部を備えるハザードマップシステム1の第1実施例において、親機Aと子機A−A,A−Bとの設置位置の例を
図4に、子機の設置位置を移動させた場合の例を
図5に、親機Aと子機A−A,A−B,A−Cとの設置位置の他の例を
図6に示す。
図4に示す、ブロックA−1〜ブロックA−9の9ブロックからなるエリアAの地図は、
図1に示すハザードマップシステム1における閉域通信網14Aがカバーする範囲に相当する地図である。エリアAには、ブロックA−1〜A−3にかけて電灯線100が敷設され、電灯線100は電柱101の間に張架されており、ブロックA−1,A−4,A−7とブロックA−2,A−5,A−8との間に河川102が流れている。親機Aは、ブロックA−2,A−3,A−5,A−6の間の交差点付近の道路に設置されており、親機A通信エリア110の範囲は図示する略円形の範囲となる。子機A−A,A−Bは、親機A通信エリア110内であって、ブロックA−5に子機A−Aが設置され、ブロックA−2に子機A−Bが設置されている。子機A−A,A−Bは、独立電源とされた電源装置26を備えていることから、電灯線100からの商用電源を利用できるエリアに限られることはなく、エリアA内の任意の場所に設置することができる。また、子機A−A,A−Bは、地面であるグランドに設置されたアンカーナットに螺着することで設置することができる。すなわち、子機A−A,A−Bは、アンカーナットに脱着可能に固着されていることから、子機A−A,A−Bのいずれにおいても、現在固着されているアンカーナットから取り外して、他の場所に設置されているアンカーナットに取り付けることにより、子機A−A,A−Bのいずれにおいても設置位置を移動することができる。
【0031】
図5には、本発明のセンシング部を備えるハザードマップシステム1の第1実施例において、地域住民より情報提供を受け、降雨時に冠水が発生したエリアである冠水発生エリア103が示されている。冠水発生エリア103に子機は設置されていないが、冠水発生エリア103に子機を設置することで、的確な冠水情報を得ることができる。そこで、
図5に示すように、例えば、冠水していないエリアであるブロックA−2に設置された子機A−Bを上記したように移動させて冠水発生エリア103に設置する。
従来では、電源の問題や設置工事の問題等があり、子機を容易に移動することができなかったが、本発明のセンシング部を備えるハザードマップシステム1の第1実施例では、親機Aの親機A通信エリア110内であれば、子機を移動するだけで、冠水を検知したい地点を変更することが出来る。これにより、新たな子機を用意することなく、冠水発生場所を監視することができるようになる。
【0032】
図6に本発明のセンシング部を備えるハザードマップシステム1の第1実施例において、親機Aと子機A−A,A−B,A−Cとの設置位置の他の例を
図6に示す。
図4では子機A−A、子機A−Bを図示する位置に設置したが、子機A−B付近に冠水発生エリア105が発生し、子機A−A付近にも、冠水発生エリア104が発生した。さらに、ブロックA−6内のエリアにも冠水発生エリア106が発生した。そこで、
図6に示すように、独立電源とされた電源装置26を備えており、エリアA内の任意の場所に設置することができる子機A−Cを冠水発生エリア106に新たに設置する。この場合、冠水発生エリア106の地面であるグランドにアンカーナットを新設し、このアンカーナットに子機A−Cを固着する。冠水発生エリアが発生したことは、地域住民より情報提供を受けることで知ることができる。
従来であれば、道路外で、普段冠水が発生しない場所には子機を設置することは困難であったが、本発明のセンシング部を備えるハザードマップシステム1の第1実施例にかかる子機は、ソーラー等の発電手段と二次電池とを備えた独立電源とされていることから、電灯線100からの商用電源を利用できるエリアに限られることはなく、エリアA内の任意の場所に設置することができる。
上記したように地域住民等の視認や通行により得られた冠水情報を元に子機を配置可能とすることで、必要な所に必要なだけセンサを備える子機を設置することができるようになる。
【0033】
次に、本発明のセンシング部を備えるハザードマップシステム1の第2実施例において、親機Bと子機B−A,B−B,B−Cとの設置位置の例を
図7に示す。第2実施例においては、閉域通信網14Bがカバーする範囲を拡張することができる。
図7に示す、ブロックB−1〜ブロックB−9の9ブロックからなるエリアBの地図は、
図1に示すハザードマップシステム1における閉域通信網Bがカバーする範囲に相当する地図である。エリアBには、ブロックB−1〜B−3にかけて電灯線100が敷設され、電灯線100は電柱101の間に張架されており、ブロックB−1,B−4,B−7とブロックB−2,B−5,B−8との間に河川102が流れている。親機Bは、ブロックB−2,B−3,B−5,B−6の間の交差点付近の道路に設置されており、親機B通信エリア111の範囲は図示する略円形の範囲となる。子機B−A,B−Bは、親機B通信エリア111内であって、ブロックB−5に子機B−Aが設置され、ブロックB−2に子機B−Bが設置されている。ここで、
図7に示すように、ブロックB−8に冠水が発生し、冠水発生エリア107が生じたとする。冠水発生エリア107に子機を設置することで、的確な冠水情報を得ることができる。しかし、冠水発生エリア107は親機B通信エリア111の範囲の外に位置している。そこで、子機B−Aの通信エリア112と新設する子機B−Cの通信エリア112が一部重なって相互に通信可能な位置であって、冠水発生エリア107内の位置に子機B−Cを設置する。これにより、閉域通信網14Bがカバーする範囲を拡張することができる。
【0034】
なお、子機B−A,B−B,B−Cにおいては、子機間において閉域通信が可能な機能を備えている。また、子機B−A,B−B,B−Cは、独立電源とされた電源装置26を備えていることから、電灯線100からの商用電源を利用できるエリアに限られることはなく、エリアB内の任意の場所に設置することができる。この場合、冠水発生エリア107の地面であるグランドにアンカーナットを新設し、このアンカーナットに子機B−Cを固着する。冠水発生エリア107が発生したことは、地域住民より情報提供を受けることで知ることができる。
従来では、親機の通信エリアを超えて子機を設置することができなかったが、本発明のセンシング部を備えるハザードマップシステム1の第2実施例では、子機間において閉域通信が可能な機能を備えていることから、地域住民等の視認や通行により得られた冠水情報が親機の通信エリアの外であっても、子機同士が通信可能なエリアであれば、必要な所に必要なだけセンサを備える子機を設置して、冠水発生場所を監視することができるようになる。
【0035】
次に、本発明のセンシング部を備えるハザードマップシステム1の第3実施例において、親機Cと子機C−A,C−B,C−Cとの設置位置の例を
図8に示す。第3実施例においては、閉域通信網14Cがカバーする範囲を拡張することができる。
図8に示す、ブロックC−1〜ブロックC−9の9ブロックからなるエリアCの地図は、
図1に示すハザードマップシステム1における閉域通信網Cがカバーする範囲に相当する地図である。エリアCには、ブロックC−1〜C−3にかけて電灯線100が敷設され、電灯線100は電柱101の間に張架されており、ブロックC−1,C−4,C−7とブロックC−2,C−5,C−8との間に河川102が流れている。エリアCには親機Cと親機Dとの2つの親機が設置されており、親機Cは、ブロックC−2,C−3,C−5,C−6の間の交差点付近の道路に設置されており、親機C通信エリア114の範囲は図示する略円形の範囲となる。また、親機Dは、ブロックC−4,C−5,C−7,C−8の間の交差点付近の道路に設置されており、親機D通信エリア115の範囲は図示する略円形の範囲となり、親機C通信エリア114と親機D通信エリア115とは一部重なっている。子機C−A,C−Bは、親機C通信エリア114内であって、ブロックC−5に子機C−Aが設置され、ブロックC−2に子機C−Bが設置されている。ここで、
図8に示すように、ブロックC−4とブロックC−7との間に冠水が発生し、冠水発生エリア108が生じたとする。冠水発生エリア108に子機を設置することで、的確な冠水情報を得ることができる。冠水発生エリア107は親機C通信エリア114の範囲の外に位置しているが、親機D通信エリア115内であることから、冠水発生エリア108内の位置に子機C−Cを新設する設置する。これにより、閉域通信網14Cがカバーする範囲を拡張することができる。
冠水発生エリア108が発生したことは、地域住民より情報提供を受けることで知ることができる。従来では、親機の通信エリアを超えて子機を設置することができなかったが、本発明のセンシング部を備えるハザードマップシステム1の第3実施例では、2つの親機を備える閉域通信網としたことから、地域住民等の視認や通行により得られた冠水情報が一の親機の通信エリアの外であっても、他の親機の通信エリアであれば、必要な所に必要なだけセンサを備える子機を設置して、冠水発生場所を監視することができるようになる。
【0036】
次に、本発明のセンシング部を備えるハザードマップシステム1の第4実施例において、親機Aと子機A−A,A−Bとの設置位置の例を
図9に示す。
図9に示す、ブロックA−1〜ブロックA−9の9ブロックからなるエリアAの地図は、
図1に示すハザードマップシステム1における閉域通信網14Aがカバーする範囲に相当する地図である。エリアAには、ブロックA−1〜A−3にかけて電灯線100が敷設され、電灯線100は電柱101の間に張架されており、ブロックA−1,A−4,A−7とブロックA−2,A−5,A−8との間に河川102が流れている。親機Aは、ブロックA−2,A−3,A−5,A−6の間の交差点付近の道路に設置されており、親機A通信エリア110の範囲は図示する略円形の範囲となる。親機A通信エリア110内には、過去に冠水が発生したことがある3つの冠水発生実績エリア120,121,122があり、それぞれの冠水発生実績エリア120,121,122に子機A−A,A−B,A−Cが設置されている。具体的には、親機A通信エリア110内であって、ブロックA−5の冠水発生実績エリア120内に子機A−Aが設置され、ブロックA−2の冠水発生実績エリア121内に子機A−Bが設置され、ブロックA−6の冠水発生実績エリア122内に子機A−Cが設置されている。
【0037】
ここでエリアAにおける、所定の時点例えば10:00時点での降水量を降雨情報DB53より取得する。この時点で、1時間20mmの降水量が1時間経過したものとし、この時点での冠水データを、センサ座標DB51およびセンサ情報DB52より情報配信サーバー12aが取得する。情報配信サーバー12aは10:00時点では、冠水発生実績エリア120で冠水が発生したことが分かったとする。そこで、データ処理装置50において、冠水発生実績エリア120で冠水が発生した情報に基づいて、冠水発生実績エリア121,122においても冠水が発生したものと判断する。情報配信サーバー12aは、この冠水発生実績エリア120,121,122が冠水したことに基づいて、上記時点のハザードマップを作成する。
なお、冠水発生実績エリアの場所や冠水位などのを記憶する冠水実績情報DBが、図示していないがデータベース部12cに設けられている。
また、上述した本発明のセンシング部を備えるハザードマップシステム1の第1実施例ないし第4実施例の説明では、閉域通信網14を特定して説明したが、第1実施例ないし第4実施例はいずれの閉域通信網14にも適用することができる。
【0038】
次に、子機20において実行される子機処理のフローチャートを
図15に示す。子機20が所定の地点に設置されて、電源装置26がオンされると
図15に示す子機処理をマイクロコントローラ21が開始する。子機処理は、実際には、マイクロコントローラ21内のCPU41が実行するのであるが、説明の都合上マイクロコントローラ21が実行するものとして説明する。子機処理が開始されると、ステップS10にてマイクロコントローラ21は、それぞれの子機20に与えられている一意の個体識別番号である子機IDと当該子機20の認証用のパスワードとを親機30に送信する。次いで、ステップS11にてマイクロコントローラ21は、閉域通信における子機20の親機30への接続認証が完了したか否かを判断する。ここで、接続認証が完了されない場合(NO)は完了されるまでステップS10,S11の処理を繰り返し実行し、接続認証が完了されたとマイクロコントローラ21が判断した場合(YES)はステップS12に進む。ステップS11では、子機20の設置位置を移動させた場合の親機30への接続認証、他の子機20を介する子機20の親機30への接続認証、および、2つの親機30を備える閉域通信網14における接続認証が行われる。次いで、ステップS12にてマイクロコントローラ21は、子機20が設置された地点の位置情報が取得されたか否かを判断する。このステップS12では、位置測位装置23が現在位置、すなわち、子機20が設置された地点の座標である位置情報が、GPS等の測位部から取得されたか否かを判断する。ここで、位置情報が取得されない場合(NO)は取得されるまで待機し、位置情報が取得されたとマイクロコントローラ21が判断した場合(YES)はステップS13に進む。ステップS13でマイクロコントローラ21は、取得された位置情報に当該子機20に割り当てられているIDを付加して、当該子機20が属する親機30に閉域通信網を介して送信する。
【0039】
次いで、ステップS14にてマイクロコントローラ21は、センサ22で検出されている水位と、その取得時刻を検出する。次いで、ステップS15にてマイクロコントローラ21は検出された水位が、予め定められた規定水位を超えたか否かを判断する。ここで、規定水位を超えたとマイクロコントローラ21が判断した場合(YES)は、ステップS16に進んでマイクロコントローラ21は、センサ22から取得したセンサ情報とその取得時刻からなる水位情報を閉域通信網14を介して属する親機30に送信する。次いで、ステップS17に進んでマイクロコントローラ21は、例えば1分とされる短期間待機して、短期間の待機時間が終了するとステップS14にリターンし、上記したステップS14ないしステップS17の処理を繰り返し行う。これにより、ステップS15で規定水位を超えたとマイクロコントローラ21が判断した状態が継続している限りにおいて、マイクロコントローラ21は、短期間(例えば、1分)ごとにセンサ22から取得したセンサ情報とその取得時刻からなる水位情報を親機30に送信することになる。
【0040】
また、ステップS15で検出された水位が、規定水位を超えていないとマイクロコントローラ21が判断した場合(NO)は、ステップS18に分岐してマイクロコントローラ21は、前回の親機30への送信から例えば12時間の長期間の時間が経過したか否かを判断する。ここで、マイクロコントローラ21が長期間の時間が経過したと判断した場合(YES)は、ステップS19に進んでセンサ22から取得したセンサ情報とその取得時刻からなる水位情報を親機30に送信して、ステップS20に進む。また、ステップS18でマイクロコントローラ21が長期間の時間が経過していないと判断した場合(NO)は、ステップS20に分岐する。ステップS20でマイクロコントローラ21は、例えば10分とされる中期間待機してステップS14にリターンして、上記したステップS14以降の処理を繰り返し行う。これにより、ステップS15で規定水位を超えていないとマイクロコントローラ21が判断した状態が継続している限りにおいて、マイクロコントローラ21は、長期間(例えば、12時間)ごとにセンサ22から取得したセンサ情報とその取得時刻からなる水位情報を親機30に送信し、中期間(例えば、10分)毎にステップS14以降の処理を繰り返し行うことになる。
なお、子機処理は子機20の電源装置26がオンされている限り実行されており、電源装置26がオフされた際に子機処理は終了する。
【0041】
次に、親機30にて実行される親機処理のフローチャートを
図16に示す。親機30が所定の場所に設置されて、電源装置34がオンされると
図16に示す親機処理をマイクロコントローラ31が開始する。親機処理は、実際には、マイクロコントローラ31内のCPU41が実行するのであるが、説明の都合上マイクロコントローラ31が実行するものとして説明する。親機処理が開始されると、ステップS30にてマイクロコントローラ31は、当該親機30に属している子機20から送信されたデータを受信する。このデータがIDと認証用のパスワードの場合は、マイクロコントローラ31は、接続認証を行い子機20と親機30との間の通信を確立させる。接続認証は、マイクロコントローラ31が記憶されている子機20のIDに対応する認証用のパスワードとの一致を見ることで接続認証を行う。また、データがIDを付加した子機20の位置情報、あるいは、子機20が取得したセンサ情報とその取得時刻からなる水位情報の場合は、ステップS31に進みマイクロコントローラ31は、広域通信網13を介して情報提供部12のデータ処理サーバー12bに子機20から送られたデータを送信する。親機30から情報提供部12のデータ処理サーバー12bへの送信は、子機20からのデータを受信する毎に行われる。親機処理は、電源装置34がオフされた際に終了する。
【0042】
情報提供部12は、親機30から送信されたIDを付加した子機20の位置情報、あるいは、子機20が取得したセンサ情報とその取得時刻からなる水位情報を、広域通信網通信I/F12dを介して受信し、データ処理サーバー12bがセンサ座標DB51あるいはセンサ情報DB52に格納する。データ処理サーバー12bが実行するDB書込処理のフローチャートを
図17に示す。
図17に示すDB書込処理は、データ処理サーバー12bの電源が投入されたときに起動する。起動されるとステップS40でCPU71は、親機30からデータを受信する。受信できない場合は、受信できるまで待機する。受信するデータは、IDを付加した子機20の位置情報、あるいは、子機20が取得したセンサ情報とその取得時刻からなる水位情報である。次いで、ステップS41でCPU71は、受信したデータが、IDを付加した子機20の位置情報の場合は、I/O74を介してセンサ座標DB51にそのIDに関連つけて位置情報を書き込み、子機20が取得したセンサ情報の場合は、I/O74を介してセンサ情報DB52に取得時刻と水位情報を取得した子機20のIDに関連して書き込む。ステップS41の処理が終了するとステップS40にリターンして、ステップS40,S41の処理が繰り返し実行される。DB書込処理は、データ処理サーバー12bの電源がオフされた際に終了する。
【0043】
次に、情報配信サーバー12aで実行されるメッセージ配信処理(1)のフローチャートを
図18に示す。
図18に示すメッセージ配信処理(1)は、情報配信サーバー12aの電源が投入された時に起動する。情報配信サーバー12aは、上記したように
図14(b)の構成とされている。
メッセージ配信処理が起動されるとステップS50で、CPU61は前回配信した時から所定時間(例えば、1分)が経過したか否かを判断する。ここで、所定時間経過していないとCPU61が判断した場合(NO)は所定時間経過するまでステップS50で待機される。ステップS50で所定時間経過したとCPU61が判断した場合(YES)は、ステップS51に進み警告メッセージあるいは警告解除メッセージをCPU61が作成する。この場合、センサ情報DB52から子機20が検出した最新の時刻の水位情報を読み出して、冠水の危険が迫っているエリアがあるとCPU61が判断した場合に警告メッセージが作成され、冠水の危険が去ったエリアがあるとCPU61が判断した場合に警告解除メッセージが作成される。次いで、ステップS52でCPU61は、危険が迫っているエリアである警告領域が登録者情報DB55に登録されている登録者を抽出する。そして、ステップS53でCPU61は、作成したメッセージは配信済みか否かを判断する。ここで、配信済みでないとCPU61が判断した場合(NO)は、ステップS54に分岐してステップS52で抽出した登録者に作成したメッセージを配信する。また、配信済みとCPU61が判断した場合(YES)と、ステップS54の処理が終了した場合は、ステップS50にリターンしてステップS50ないしステップS54の処理が繰り返し実行される。このように、所定時間、例えば1分毎に警告/警告解除メッセージが作成されて、その領域にいる登録者にメッセージが配信されることから、登録者は遅滞なく危険が迫っている/危険が去ったことを理解することができる。
【0044】
次に、情報配信サーバー12aで実行される別のメッセージ配信処理(2)のフローチャートを
図19に示す。
図19に示すメッセージ配信処理(2)は、情報配信サーバー12aの電源が投入された時に起動する。情報配信サーバー12aは、上記したように
図14(b)の構成とされている。
メッセージ配信処理が起動されるとステップS60でCPU61は、センサ情報DB52から子機20が検出した同じ時刻とされる水位情報を読み出して、警告あるいは警告解除に相当する程度だけ、取得した子機20のセンサ情報の水位が変化したか否かを判断する。ここで、水位が変化していないとCPU61が判断した場合(NO)は、水位が変化するまでステップS60で待機される。また、ステップS60で水位が変化したとCPU61が判断した場合(YES)はステップS61に進み、警告メッセージあるいは警告解除メッセージをCPU61が作成する。この場合、冠水の危険が迫っている程度の水位が変化したとCPU61が判断した場合に警告メッセージが作成され、冠水の危険が去った程度の水位が変化したとCPU61が判断した場合に警告解除メッセージが作成される。次いで、ステップS62でCPU61は、危険が迫っているエリアとされる警告領域内の携帯電話基地局を指定する。そして、ステップS63でCPU61は、作成したメッセージは配信済みか否かを判断する。ここで、配信済みでないとCPU61が判断した場合(NO)は、ステップS64に分岐してステップS62で指定した携帯電話基地局から作成したメッセージを登録者情報DB55に登録されている登録者に配信する。また、配信済みとCPU61が判断した場合(YES)と、ステップS64の処理が終了した場合は、ステップS60にリターンしてステップS60ないしステップS64の処理が繰り返し実行される。このように、冠水の危険が迫っている程度の水位が変化した際に警告メッセージが作成されて、その領域にいる登録者に警告メッセージが配信されることから、登録者は遅滞なく危険が迫っていることを理解することができる。
【0045】
次に、情報配信サーバー12aで実行される閲覧要求処理のフローチャートを
図20に示す。
図20に示す閲覧要求処理は、情報配信サーバー12aの電源が投入された時に起動する。情報配信サーバー12aは、上記したように
図14(b)の構成とされている。
閲覧要求処理が起動されるとステップS70で、CPU61はハザードマップの閲覧要求があったか否かを判断する。ここで、閲覧要求がないとCPU61が判断した場合(NO)は、閲覧要求があるまでステップS70で待機される。閲覧者が自身の携帯電話10aあるいはPC10bから閲覧要求を行い、ステップS70で閲覧要求があったとCPU61が判断した場合(YES)は、ステップS71に進みハザードマップをCPU61が作成する。次いで、ステップS72でCPU61は、作成したハザードマップを閲覧要求した閲覧者に配信する。ステップS72の処理が終了するとステップS70にリターンして、ステップS70ないしステップS72の処理が繰り返し実行されることから、閲覧要求がある毎にハザードマップが作成されて、閲覧要求した閲覧者に配信されるようになる。閲覧要求処理は、情報配信サーバー12aの電源がオフされた際に終了する。
【0046】
閲覧要求処理のステップS71で実行されるハザードマップ作成処理のフローチャートを
図21に示す。
図21に示すハザードマップ作成処理は、情報配信サーバー12aのデータ処理装置50で実行される。
閲覧要求処理のステップS71の処理が開始されると、ハザードマップを作成処理が開始され、ステップS80で、閲覧者のいる地点、あるいは、閲覧者が指定した地点の座標と閲覧要求の現在の時刻とをCPU71が検出する。そして、ステップS81でCPU71は、検出した座標の地点を含む所定範囲のエリアを設定し、当該エリアの地図を地図情報DB54から取得して該地図をハザードマップの第1レイヤーの表示情報として設定する。次いで、ステップS82でCPU71は、センサ情報DB52から、設定したエリアの各子機20の取得時刻が同時刻の水位情報を取得する。この場合、センサ情報DB52から読み出される同時刻の水位情報は、閲覧要求された現在の時刻と、その時刻より過去の直近のいくつかの過去の時刻との水位情報とされ、読み出された水位情報は時刻毎にまとめられる。そして、ステップS83でCPU71は、センサ座標DB51から、設定したエリアの各子機20の座標を取得し、各子機20の座標位置に、取得した時刻毎にまとめられた各子機20の水位を表すアイコンを配置し、時刻毎の第2レイヤーの表示情報として設定する。この場合、例えば、現在の時刻が10:03の場合は、時刻が10:00,10:01,10:02,10:03の時刻毎の第2レイヤーの表示情報が設定される。次いで、ステップS84でCPU71は、データベース部12cが備えている図示しない避難情報DBから、設定したエリアの避難所、アンダーパスの座標を取得し、各座標位置に避難所、アンダーパスのアイコンを配置し、第2レイヤーの表示情報として設定する。次に、ステップS85でCPU71は、取得した時刻毎にまとめられた各子機20の水位に応じて冠水している領域を割り出し、該領域にある道路やアンダーパスに冠水注意のアイコンを配置して、時刻毎の第2レイヤーの表示情報として設定する。この場合、CPU71が、取得した各子機20の水位に応じて冠水した領域を割り出し、割り出した冠水領域に避難所がある場合には、避難所のアイコンの表示態様を点滅あるいは点灯表示もしくは色調を変更する。さらに、ステップS86でCPU71は、第1レイヤーの表示情報に、第2レイヤーの表示情報および時刻毎の第2レイヤーの表示情報を重ねた画像データを時刻毎に分けて作成し、設定したエリアの時刻毎のハザードマップを作成する。ステップS86の処理が終了すると、ハザードマップ作成処理は終了し、閲覧請求処理のステップS72にリターンする。
【0047】
なお、閲覧者が情報提供部12にハザードマップの閲覧要求を行うのは、自身の携帯電話10aあるいはPC10bにおけるブラウザから行い、情報提供部12の情報配信サーバー12aから配信されてきたハザードマップの画像データは、ブラウザで表示されるようになる。この場合、閲覧者に配信されるハザードマップは、閲覧要求された現在の時刻と、その時刻より過去の直近のいくつかの過去の時刻との複数のハザードマップとされる。これにより、閲覧者は、時間の推移に伴う水位の変化を、画面をスクロールすることにより観察することができる。なお、現在の時刻と、その時刻より過去の直近のいくつかの過去の時刻との複数のハザードマップを動画に編集して配信することにより、閲覧者は過去の時刻から現在の時刻までのハザードマップの変化が、動画とされたハザードマップにより観察することができる。
【0048】
以上説明した本発明の実施例にかかるセンシング部を備えるハザードマップシステム1の子機20は、道路に設置される道路付属物と兼用することができる。そこで、子機20を道路付属物である視線誘導標と兼用した構成を
図22に示す。
図22は視線誘導標200の構成を示す斜視図であり、視線誘導標200は、子機20の機能を実現する端末装置001を内蔵している。すなわち、
図22に示す視線誘導標200は、円筒状の縦に細長い樹脂製の円筒状ケース210と、円筒状ケース210の下端に装着される樹脂製あるいは金属製の基部213とから構成され、円筒状ケース210と基部213からなるケース内に端末装置001が内蔵されている。視線誘導標200の基部213の下面からは固定用のボルトが突出して設けられており、このボルトを道路等に設けられたアンカーナットに螺着することにより、視線誘導標200を設置することができる。また、基部213の内部に水や砂をつめて設置することも可能であり、この場合は、視線誘導標200を道路や道路以外の地面上に置くだけで子機20として利用することができる。これにより、視線誘導標200は設置位置を移動させたり、必要な時だけ(例えば、大雨警報時)設置して、その後は撤去する等柔軟に対応できるようになる。視線誘導標200の縦方向の長さL1は約300mm〜1200mmとされ、基部213の外径R1は約200mmとされる。
【0049】
視線誘導標200における円筒状ケース210の上面には、太陽光パネル211とGPS(Global Positioning System)アンテナ212とが設けられている。太陽光パネル211は、子機20の電源装置26を構成する二次電池を充電する発電手段であり、GPSアンテナ212は、GPS衛星からの電波を受信して、子機20の位置測位装置23に供給しており、これにより視線誘導標200が設置された位置の座標を割り出している。図示していないが二次電池および位置測位装置23、マイクロコントローラ21は、基部213の内部の収納空間に収納されている。円筒状ケース210の上部には矩形状の開口部210aが縦に3つ並んで形成されている。この開口部210aには、反射ガラスや反射シートが埋め込まれて、視線誘導標200の機能を奏している。なお、開口部210aの内側の位置に、冠水したことを表示する警告表示部の発光部を配置してもよい。円筒状ケース210の内部の空間には、端末装置001を構成する広域通信網用アンテナ部、閉域通信網用アンテナ部、水位センサなどが収納されている。
なお、子機20は視線誘導標に限らず、道路付属物一般と兼用することができる。この道路付属物は、視線誘導標、境界ブロック、縁石、支持柱、防護柵、壁構造物、標識、デリニエータ、道路鋲などとされ、道路付属物に端末装置を一体化あるいは装着することにより兼用することができる。
【0050】
図23に示す視線誘導標200を新設する態様を示す斜視図を
図24(a)(b)に示す。
子機20の機能を兼用する視線誘導標200を道路や道路以外の地面に新設する際には、道路や道路以外の地面を直方体状に切り出して示すグランド80に断面が略円形の取付孔80aを穿ち、この取付孔80a内に樹脂製あるいは金属製のアンカーナット81を固着する。視線誘導標200の基部213の下面からはボルト213aが突出するよう設けられており、このボルト213aをアンカーナット81に螺着する。これにより、グランドに視線誘導標200を設置することができる。
このように、視線誘導標200は自立可能とされ、閉域通信網はワイヤレスとされると共に、外部からの電源供給を必要としない独立電源部を備えていることから、外部電源が確保できない道路以外の地面などに直接おいて設置可能となり、公園や避難所、広場、田んぼの中や畦、住宅の庭、河川敷内などの地面にも設置可能となる。
【0051】
図23に示す視線誘導標200を設置位置から取り外す態様を示す斜視図を
図25(a)(b)に示す。
道路や道路以外の地面に設置された子機20の機能を兼用する視線誘導標200を取り外す際には、視線誘導標200をアンカーナット81に螺着した回転方向を逆方向に回転させる。これにより、視線誘導標200をグランド80から取り外すことができる。そして、取り外した視線誘導標200を他の設置位置に固定されているアンカーナット81に螺着して設置することで、視線誘導標200の移動、すなわち、子機20の設置位置を移動させることができる。